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ON SOME GELFAND-MAZUR LIKE THEOREMS
IN p-NORMED ALGEBRAS

V.K, SRINIVASAN AND HU SHAING

This paper is dedicated to the memory of

the late Professor C.T. Rajagopal

The main theorem of this paper shows that a complex p-normed

algebra which is a pre-Bezout domain is isomorphic to the field

of complex numbers, if it is a generalized unique factorization

domain. This theorem generalizes the previous result of the

authors proved by them in their paper Bull. Austral. Math. Soo.

20 (1979), 21*7-252. Some applications are then given.

1. Introduction

A Gelfand-Mazur like theorem in a p-normed algebra is a theorem which

asserts that a complex p-normed algebra is isomorphic to the field C of

complex numbers, when the algebra satisfies some algebraic or analytical

condition. The classical Gelfand-Mazur theorem is such an example. While

every Banach algebra is an example of a p-normed algebra, not every

p-normed algebra need be a Banach algebra. In fact, p-normed algebras

need not be even locally convex. Zelazko, in a series of papers [//], [9]

and 1101 extended many results that are valid for commutative Banach

algebras to the case of p-normed algebras which are commutative. Lack of
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local convexity makes these proofs completely different from the case of

Banach algebras.

It is indicated below that by using the results of Zelazko, neither

the algebra T of all entire functions, nor the algebra P(x) of all

complex polynomials can be made into a p-normed algebra. The latter is a

principal ideal domain while the former is what we call a generalized

unique factorization domain. Both of them are pre-Bezout domains. This

leads us to the following conjecture.

CONJECTURE. A complex •p-normed algebra, which is a generalized

unique factorization domain and a pre-Bezout domain, is isomorphic to the

field C of complex numbers.

In this paper we prove the above conjecture. This paper also derives

some of the results proved in the paper of Srinivasan and Hu Shaing [£].

2.

We gather all the relevant definitions and theorems which we use in

Section 3.

An integral domain A is a commutative ring with an identity element

1 + 0 in which there are no divisors of zero. A Bezout domain is an

integral domain A in which all finitely generated ideals are principal.

This means given any two elements a and b of A the greatest common

divisor d exists in A with

(2.1) d = ar + bs , for some r and s of A .

A pre-Bezout domain A is an integral domain in which property (2.1)

holds for pairs of elements a and b which are co-prime. Every Bezout

domain is a pre-Bezout domain, while the converse statement is not, in

general, true. In a paper still to be published Mott and Zafrullah [5]

have shown that, in a pre-Bezout domain, every irreducible element is

indeed a prime element.

A principal ideal domain is also a Bezout domain. The algebra T of

all entire functions is an example of a Bezout domain which is not a

principal ideal domain.

The next definition is a generalization of a unique factorization

domain.
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DEFINITION 2 .1 . Let A be an integral domain. A i s called a

generalized unique factorization domain if, for each non-zero non-unit

element a € A , we can find a unique finite or infinite set of distinct

primes {p } , a. € S , such that

(2.2) (a) = 0 \pa

where {n } are unique positive integers corresponding to a , and 5 is

an indexing set.

Every unique factorization domain is trivially a generalized unique

factorization domain. However there are examples of generalized unique

factorization domains which are not unique factorization domains. The

algebra T of all entire functions is not a unique factorization domain.

That F is a Bezout domain was proved by Helmer [2]. The statement that

F is a generalized unique factorization domain follows from the following

theorem of Helmer [2].

THEOREM 2.1 (Helmer [ 2 ] , Theorem 6, p . 31+8). Let V be the ring of

all entire functions taken with the usual addition and multiplication.

Every non-zero non-unit f(z) 6 T is expressible as either a finite or a

countable infinite product of irreducible functions of Y . The

representation is unique except for the order of factors and units.

While a unique factorization domain becomes a principal ideal domain

if the Bezout domain condition is added to i t , such is not the case for a

generalized unique factorization domain, r is both a generalized unique

factorization domain and a Bezout domain, but is not a principel ideal

domain. It is the only natural example of a generalized unique

factorization domain known to the authors which is not already a unique

factorization domain.

DEFINITION 2.2. Let A be a complex linear algebra. A is called a

p-normed algebra if there exists a functional || || defined on A

satisfying the following conditions:

(a) \\x\\ > 0 for each x € A and ||x|| =0 if and only if

x = 0 ;

(b) ||x+z/|| < ||x|| + \\y\\ for a l l I and i/ in A ;
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(c) \\xy\\ £ \\x\\\\y\\ for a l l I and j in A ;

(d) for a (. C and x € A , \\ax\\ = |a|P||x|| for some fixed p

such that 0 < p £ 1 ;

(e) A has an identity 1 , with ||l|| = 1 ;

(f) the metric d defined on A by the relation

d(x, y) = \\x-y\\ is complete.

REMARK 2.1 . For the sake of convenience, we have assumed that our

p-normed algebras are complete and that they have identity elements.

Zelazko [77] considered the case of a p-normed algebra without an identity

element. Every Banach algebra with an identity can be considered to be a

p-normed algebra with p = 1 . However, there are p-normed algebras which

are not Banach algebras for p-normed algebras may not be even locally

convex.

The concept of a topological zero divisor is analogous to the concept

of the same in Banach algebras. The next theorem was proved by Zelazko for

p-normed algebras.

THEOREM 2.2 (Zelazko [70]) . Let A be a complex p-normed algebra

without any topological divisors of zero, other than the element 0 € A .

Then A is isomorphic to the field C .

The next theorem is a modification of Lemma 1.5.2 (p. 21) in Rickart

[6] . But the result is stated here for the case of integral domains.

THEOREM 2.3 . Let A be a complex p-normed algebra which is an

integral domain. Then the following conclusions hold:

(1) the necessary and sufficient condition for h t A , h f 0 ,

to be a topological divisor of zero is that the principal

ideal (h) be not closed;

(2) if, for each h (. A , h t 0 , (h) is closed, then A is

isomorphic to the field C of complex numbers.

THEOREM 2.4. Let A be a complex p-normed algebra, which is also a

division algebra. Then A is isomorphic to C .

THEOREM 2.5 (Zelazko [ 9 ] , [ 7 0 ] ) . Let A be a complex p-normed

algebra. Then
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(1) for each x € A , if x satisfies \\x-l\\ < 1 , then x is

invertible,

(2) every maximal ideal M is closed.

Zelazko extended many of the results which are valid for commutative

Banach algebras to complex p-normed commutative algebras. The maximal

ideal theory which is usually called Gelfand's representation theory for

commutative Banach algebras can be extended to that of commutative

p-normed algebras.

Let A be a complex p-normed algebra, which is also commutative.

Let A be the space of maximal ideals of A . Let

(2.3) Ks = [x 6 A : lim||x"|| = o) .

Let the spectral radius for any x i. A be defined by the relation

(2.U) IN f l = (sup{|X| : Ax iKs})-P .

THEOREM 2.6 (Zelazko [ 9 ] , [ J 0 ] ) . The spectrum a(x) of an element

x € A is a compact subset of C . Further for each element x € A , the

following relation holds:

(2.5) sup |x(Afl|P = ||*|| •

The radical of A , rad(/l) , is given precisely by

(2.6) radU) = \x 6 A : ||x|| = 0} .

3.

In this section we prove many results that generalize the results

stated in the paper of Srinivasan and Hu Shaing [S].

THEOREM 3.1 (Fundamental Theorem). Let A be a complex q-normed

algebra (0 < q s l) which is also a pre-Bezout domain. Let p be an

irreducible element of A . For any non-negative integer n , the

principal ideal [p ) is closed, or equivalently, pn is not a

topological divisor of zero.

Proof. We first observe that, by a result of Mott and ZafrulI ah [5],
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p i s a prime, since A i s a pre-Bezout domain. From now on the proof

depends on induction on n .

CASE 1. For n = 0 , the resul t i s t r i v i a l .

CASE 2 . Let n = 1 . Consider the ideal (p) . Let {pa } be any

sequence of elements in (p) converging to an element a € A . To prove

tha t a € (p) , i t suffices to show that p divides a . If p does not

divide a , then p and a are co-prime. As A i s a pre-Bezout domain,

we can find r and s in A such that

(3.1) pr + as = 1 .

Since {pa } converges to a , i t follows that

(3.2) ||pa -a|| -+ 0 as n -»-«>.

From (3.2) it follows that

(3.3) \\pans-as\\ 5 ||s|||| [pa^] || -v 0 .

The subst i tut ion of as = 1 - pr in equation (3.3) yields

(3.1+) |lpa s+pr-l| | •*• 0 as n •*• °° .

(3.1+) implies tha t for sufficiently large n , say n = n_ ,

(3.5) ||pa s ^ r - l | | < 1 .
n0

It now follows from Theorem 2.5 (l) that pa s + pr = p[a s+r) is

0 "o

invertible, thereby leading to the invertibility of p itself. The above

contradicts the primality of p . Hence p must divide a . Consequently

the ideal (p) is closed.

CASE 3. We now assume that for all i with O S i S m , [p] is

closed or equivalently that p is not a topological divisor of zero. We

shall show that (p ) is closed. Let •jp a > be any sequence in

(p ) converging to an element a £ A . We shall show that pm

divides a . If p does not divide a we can write a = p h , where

h and p are relatively prime, and where obviously 0 5 i < m . As A
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is a pre-Bezout domain, we can find s and t such that ht + ps = 1

Hence

(3.6) pVht + p1 s = pV or at = p% - p% s .

Since p a -all •+ 0 , it follows that

; 3 .7 )
m+1
p a -a 0 .

Substituting for a t , we obtain from (3.7) the re la t ion

(3.8) ^ yl+1-VVant+ps-\\ I +0 as n •* » .

There are now two possibilities. Either, for some n~ ,

(3.9)

or, for all n ,

(3.10) l ^ - ^ t + p s - l l - 1 .

If equation (3.9) holds, it follows (from Theorem 2.5 (l)) that

p ap\p a t+sl is invertible, leading to the invertibillty of p itself;
I. «0 ;

thus (3-9) produces a contradiction. If (3.10) holds, then set

(3.11) An -

Then c l e a r l y \\A || = 1 for each n . Now, us ing (3 .10) and ( 3 . 8 ) , we

ob ta in

(3.12)

The relation (3.12) implies however that p (0 5 t 5 m) is a topological

divisor of zero, thereby contradicting the inductive hypothesis. Thus both

(3.9) and (3.10) lead to contradictions, on account of the assumption that

p does not divide a . Hence p divides a . Thus a € (p ) .
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This proves that (p" ) is closed. The proof by induction is complete.

THEOREM 3.2. Let A be a complex p-normed algebra, which is a

generalized unique factorization domain and a pre-Bezout domain. Then A

is isomorphic to the complex field.

Proof. By Theorem 2.3 (2), i t suffices to show that for any a ± 0 ,

a € A , (a) is closed. If a is a unit this is obvious. If a is a

non-zero non-unit of A , then, by the definition of a generalized unique

factorization domain, we can write

(3.13) (a) = n \p a

f n \As each p is closed by Theorem 3.1 we see that (a) is closed. This

completes the proof of the theorem.

PROPOSITION 3.3. Let A be a complex p-normed algebra, which is

also a principal ideal domain. Then A is isomorphic to the complex field

C .

Proof. We observe that a principal ideal domain is a unique

factorization domain and hence a generalized unique factorization domain.

Besides a principal ideal domain is a Bezout domain and hence a pre-Bezout

domain. The result now follows from Theorem 3.2.

REMARK 3.1. Proposition 3-3 was proved for Banach algebras by

Srinivasan and Hu Shaing in [8] .

Let A{D) denote the algebra of a l l complex valued functions which

are continuous on the closed unit disc D = {z/\z\ 5 l} and which are

analytic inside the open unit disc D = {s / | s | < l} taken under the usual

algebraic operations. Hoffman [3] has shown that A(D) is a Bezout domain

([3] , p. 88). A(D) can be turned into a p-normed algebra by defining,

for f{z) € A(D) ,

(3.1*0 ll/ll = sup \f(z)\P (0 < p < 1) .
|a|si

THEOREM 3.4. Let A(D) be the disc algebra mentioned above. Let T

be the algebra of all entire functions. Let C(x) be the algebra of all

formal power series in one variable x over C . Then the following
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conclusions hold:

(1) neither C(x) nor T can be made into p-normed algebras

under any norm;

(2) A(D) is not a generalized unique factorization domain.

Proof. (l) C{x) is a principal ideal domain. For C(x) the result

follows from Proposition 3.3. For T the result can be deduced from

Theorem 3.2, since T is a generalized unique factorization domain which

is also a Bezout domain.

(2) A(D) is a p-normed algebra using the norm given in (3.1*0. If

A(D) were to be a generalized unique factorization domain, it would follow

from Theorem 3.2 that it is isomorphic to C , since A{D) is a Bezout

domain. This shows that A(D) cannot be a generalized unique

factorization domain.

REMARK 3.2. By the 'Spectral Theorem' we shall mean the statement:

'The spectrum of any element in a complex p-normed algebra is a compact

subset' (Theorem 2.6). Since T contains elements which have unbounded

spectrum, the result that it cannot be made into a p-normed algebra could

have been directly deduced from the 'Spectral Theorem'. However, the fact

that the 'Spectral Theorem' does not imply Theorem 3.2 or Proposition 3.3

follows from the example of C(x) in which every element has a bounded

spectrum. The impossibility of making C{x) into a p-normed algebra is a

consequence of Theorem 3.2 (or Proposition 3.3), and it cannot be deduced

from the 'Spectral Theorem'. That Theorem 3.2 is a true generalization of

Proposition 3.3 follows from T . The impossibility of making it into a

p-normed algebra follows from Theorem 3.2 and not from Proposition 3.3,

since T is not a principal ideal domain. Iyer [4] has shown that T can

however be made into a B -algebra (a locally convex complete metrizable

algebra). Thus, while the two conditions of pre-Bezout domain and

generalized unique factorization domain make a p-normed algebra trivial,

such is not the case for B -algebras as is illustrated by V .

The proofs of the next two theorems are similar to the proofs given in

the paper of Srinivasan [7], for the case of Banach algebras. We merely

state these results for p-normed algebras.

THEOREM 3.5. Let A be a complex p-normed algebra, which is also
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an integral domain. If A is locally finite, then A is isomorphic to

C .

THEOREM 3.6. Let u (n > 2) be the n-dimensional linear space of

complex n-tuples over C . C; cannot be simultaneously made into an

integral domain and a p-normed algebra.

REMARK 3 .3 . We cannot drop the requirement of ' i n tegra l domain' in

Theorem 3.5 or in Theorem 3.6. In fact , C (n > 2) can be made into a

p-normed algebra, though not into an integral domain. This can be done as

follows: i f x = (x1, x 2 , . . . , xj and y = [y^ t/2> . . . , yn) , we define

mul t ip l ica t ion by

and

||a:|| = max \x.f (0 < p 5 1) .
ISiSn ^

C (n 2 2) becomes a p-normed algebra, but obviously has divisors of
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