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Special Values of Class Group
L-Functions for CM Fields

Riad Masri

Abstract. Let H be the Hilbert class field of a CM number field K with maximal totally real subfield

F of degree n over Q. We evaluate the second term in the Taylor expansion at s = 0 of the Galois-

equivariant L-function ΘS∞ (s) associated to the unramified abelian characters of Gal(H/K). This

is an identity in the group ring C[Gal(H/K)] expressing Θ
(n)
S∞

(0) as essentially a linear combination

of logarithms of special values {Ψ(zσ)}, where Ψ : Hn → R is a Hilbert modular function for a

congruence subgroup of SL2(OF) and {zσ : σ ∈ Gal(H/K)} are CM points on a universal Hilbert

modular variety. We apply this result to express the relative class number hH/hK as a rational multiple

of the determinant of an (hK − 1) × (hK − 1) matrix of logarithms of ratios of special values Ψ(zσ),

thus giving rise to candidates for higher analogs of elliptic units. Finally, we obtain a product formula

for Ψ(zσ) in terms of exponentials of special values of L-functions.

1 Introduction

Let K be a number field, hK be the order of the ideal class group ClK , wK be the

order of the torsion subgroup µK of the unit group O
×
K , and RK be the regulator.

The Dirichlet analytic class number formula evaluates the leading term in the Taylor

expansion of the Dedekind zeta function ζK (s) at s = 0,

ζK (s) = ars
r + ar+1sr+1 + O(sr+2),

as ar = −hK RK/wK , where r is the rank of the finitely generated abelian group

O
×
K . Stark’s Main conjecture [St1, St2, St3, St4] and its integral refinements due to

Stark [St4], Tate [T], Chinburg [Ch], Rubin [R], and Popescu [P], among others,

provide a vast Galois-equivariant generalization of the analytic class number formula

with fundamental consequences for number theory. Roughly, the conjectures predict

a relationship between the leading term at s = 0 of the imprimitive Artin L-functions

LM/K,S(ρ, s) associated to a Galois extension M/K of number fields with Galois group

G = Gal(M/K), and a certain Q[G]-module-invariant associated to the unit group

O
×
K of K . In the conjectures the Dedekind zeta function ζK (s) is replaced by the

G-equivariant L-function

ΘM/K,S(s) =

∑

ρ∈bG

LM/K,S(ρ, s) · eρ̆

with values in the group ring C[G], the regulator RK is replaced by a G-equivariant

regulator with values in C[G], and the rank r of O
×
K is replaced by the local rank

function of the projective Q[G]-module QO
×
M,S of S-units in M.
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Also of fundamental importance in number theory is the second term of ζK (s) at

s = 0. For example, the Kronecker first limit formula evaluates the second term of

ζQ(
√
−D)(s) at s = 0 as essentially the logarithm of the absolute value of the Dedekind

eta function. See C. L. Siegel’s book [Si] for a proof and some remarkable applica-

tions. The Rubin–Stark conjectures, and the even more general equivariant Tama-

gawa number conjecture of Burns and Flach [BF], predict nothing about the second

and higher terms of ΘM/L,S(s) at s = 0.

Our primary goal in this paper is to evaluate the second term at s = 0 of a

G-equivariant L-function associated to a certain group of unramified abelian charac-

ters. We now summarize our main result. Let K be an imaginary quadratic extension

of a totally real number field F of degree n over Q . Let χ ∈ Ĝ := Hom(G, C×) be an

irreducible character of G = Gal(H/K), where H is the Hilbert class field of K . Let

S∞ be the set of infinite primes of K . The Artin L-function of χ is defined by

LS∞(s, χ) =

∏

p 6∈S∞

(
1 − χ(σp)NK/Q (p)−s

)−1
, Re(s) > 1,

where σp ∈ G is the Frobenius automorphism associated to the (unramified) prime

p in H/K . For each χ ∈ Ĝ, let

eχ =
1

|G|
∑

σ∈G

χ(σ) · σ−1

be the associated idempotent in the group ring C[G]. The S∞, G-equivariant

L-function ΘS∞ : C → C[G] is defined by

ΘS∞(s) =

∑

χ∈bG

LS∞(s, χ) · eχ−1 .

The order of vanishing of ΘS∞(s) at s = 0 is n−1. In fact, because L(n−1)
S∞

(0, χ) = 0

for all χ ∈ Ĝ, χ 6= 1G non-trivial, the leading term of ΘS∞(s) at s = 0 arises from

ζ(n−1)
K (0), which is given by the analytic class number formula. In this case the Rubin–

Stark conjecture is proved and is of minimal interest. However, as we will see, the

second term at s = 0 is of considerable interest.

In the following theorem we summarize the main result of this paper, which is an

evaluation formula in C[G] for the second term of ΘS∞(s) at s = 0 (for the precise

statement, see Theorem 1.9).

Main Theorem There exists a positive, real-analytic Hilbert modular function

Ψ : Hn → R and CM points {zσ}σ∈G on a universal Hilbert modular variety X0 such

that

Θ
(n)
S∞

(0) =
n!

|O×
K : O

×
F |

∑

σ∈G

log
{

ασΨ(zσ)
}
· σ−1 in C[G].

Here, the {ασ}σ∈G are positive constants which are explicitly determined.
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In the remaining part of the introduction we describe the results of this paper in

more detail.

Let H be the complex upper half-plane and z = x + i y = (z1, . . . , zn) ∈ Hn. Let

{σ1, . . . , σn} be the n real embeddings of F, a and b be integral ideals in F, (a, b) ∈
a × b, and define

N(a + bz) =

n∏

j=1

(σ j(a) + σ j(b)z j).

Then the non-holomorphic Hilbert modular Eisenstein series associated to (a, b) is

defined by

E(s, z; a, b) =

∑ ′

(a,b)∈a×b/O×

F

N(y)s

|N(a + bz)|2s
, Re(s) > 1,

where the sum is over a complete set of non-zero, non-associate representatives of

a × b, and N(y) = N(y(z)) is the product of the imaginary parts of the components

of z ∈ Hn (recall that (a, b) and (a′, b ′) are associate if there exists a unit ǫ in O
×
F such

that (a, b) = (ǫa′, ǫb ′)).

Let dF be the absolute value of the discriminant of F and NF/Q (a) = |OF : a|.
We will compute the Fourier expansion of E(s, z; a, b) and use this to prove that the

Eisenstein series has a meromorphic continuation to C with a simple pole at s = 1.

Theorem 1.1 The Eisenstein series E(s, z; a, b) has a meromorphic continuation to C

with a simple pole at s = 1 with residue

Ress=1 E(s, z; a, b) =
2n−1πnRF

dFwFNF/Q (ab)
.

Furthermore, E(s, z; OF, OF) satisfies the functional equation

G(1 − s)E(s, z; OF, OF) = G(2(1 − s))E(1 − s, z; OF, OF),

where G(s) is the gamma factor

G(s) = d
s/2
F

[
π−s/2

Γ
( s

2

)] n

.

We will use the Fourier expansion to compute the Taylor expansion of E(s, z; a, b)

at s = 0,

(1.1) E(s, z; a, b) = En−1sn−1 + En(z)sn + O(sn+1).

The number En−1 is essentially the regulator RF , and the function En(z) is a multiple

of a positive, real-analytic Hilbert modular function Ψ : Hn → R. For F = Q ,

K = Q(
√
−D), and a = b = Z, this function is given by

log Ψ(z) = − log(2π) +
πy

6
+

∑

n∈Z
n6=0

σ−1(|n|)e−2π|n|ye2πinx,

https://doi.org/10.4153/CJM-2010-009-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-009-5


160 R. Masri

where

σ−1(n) =

∑

d>0
d|n

d−1.

We will combine (1.1) with classical methods of Siegel [Si] to study the modular

and analytic properties of Ψ(z). Let

GL2(F) =

{
M =

(
α β
γ δ

)
: α, β, γ, δ ∈ F and det(M) ∈ F×

}
,

and define the subgroup of matrices with totally positive determinant which stabilize

the lattice (a, b),

Γ(a, b) =
{

M ∈ GL2(F) : det(M) ∈ O
×,+
F , M · (a, b) = (a, b)

}
.

Here, O
×,+
F denotes the totally positive units of F. The group Γ(a, b) embeds as a

discrete subgroup of GL2(R)n, which induces a discontinuous action of Γ(a, b) on

Hn. We will determine the factor of automorphy occurring in the transformation

formula satisfied by Ψ(z) under the action of the group Γ(a, b).

Theorem 1.2 For all M ∈ Γ(a, b),

Ψ(M(z)) = |N(γz + δ)|−2nRF/wF Ψ(z).

Recall that the Dedekind eta function η : H → C is a non-vanishing, complex-

valued, holomorphic function such that |η(z)| appears in the Kronecker first limit

formula. An interesting question is whether there exists a naturally defined complex-

valued function whose absolute value equals Ψ(z). One possible approach would be

to prove that there exists an analytic function A : Hn → C such that A(z) = log Ψ(z)+

iB(z); that is, log Ψ(z) is the real part of a complex-valued, analytic function. It would

follow that |eA(z)| = Ψ(z).

It is well known that in one complex variable a harmonic function is the real part

of an analytic function. Let

∆ j = y2
j

( ∂2

∂x2
j

+
∂2

∂y2
j

)

be the Laplacian associated to each factor in the product Hn. We will prove that

log Ψ(z) vanishes under each operator ∆ j .

Theorem 1.3 ∆ j log Ψ(z) = 0 for j = 1, . . . , n.

Even though log Ψ(z) vanishes under each operator ∆ j , in several complex vari-

ables this condition is not strong enough to insure that log Ψ(z) is the real part of an

analytic function (see Section 6).

Proposition 1.4 log Ψ(z) is not the real part of an analytic function.
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Because K is an imaginary quadratic extension of F, the 2n embeddings of K occur

in complex conjugate pairs. Let Φ = {τ1, . . . , τn} be a CM type for K/F, which is a

choice of one embedding for each complex conjugate pair. We will construct for each

ideal class C ∈ ClK a CM point

Φ(zC ) = (τ1(zC ), . . . , τn(zC )) ∈ H
n

on a Hilbert modular variety X0(aC) := Hn/Γ0(aC) arising from the OF-module

decomposition AC = aCω1 + OFω2 of a fixed integral ideal AC ∈ C−1. Here, aC is an

integral ideal in F, Γ0(aC ) := Γ(aC , OF), (ω1, ω2) ∈ a−1
C OK × OK , and zC := ω2/ω1.

We also show that the CM points {Φ(zC) : C ∈ ClK} can be viewed as living on a

certain universal Hilbert modular variety X0 constructed from the universal covers of

the varieties X0(aC ).

Let ζK (s,C) be the Dedekind zeta function of the ideal class C ∈ ClK . We will

establish the identity

(1.2) ζK (s,C) =
1

|O×
K : O

×
F | (2nNF/Q (aC )dF/

√
dK )sE(s, Φ(zC ); aC , OF).

The Artin map yields an isomorphism G ∼= ClK , from which one obtains the identity

(1.3) LS∞(s, χ) =

∑

C∈ClK

χ(C)ζK (s,C).

Furthermore, for χ 6= 1G non-trivial the orthogonality relations for group characters

yields

L(n)
S∞

(0, χ) =

∑

C∈ClK

χ(C)an(C).(1.4)

We will combine equations (1.1) through (1.4) to evaluate L(n)
S∞

(0, χ).

Theorem 1.5 Using the same notation as above,

L(n)
S∞

(0, 1G) =
n!

|O×
K : O

×
F |

log
{

(2ndF/
√

dK )hK En−1

∏

C∈ClK

ǫ(C−1)
}

,

and for χ 6= 1G,

L(n)
S∞

(0, χ) =
n!

|O×
K : O

×
F |

∑

C∈ClK

χ(C) log ǫ(C−1),

where

ǫ(C−1) =
(

N(y(Φ(zC)))NF/Q (aC)−1
) En−1

Ψ(Φ(zC)).
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When K = Q(
√
−D), one can use the Kronecker first limit formula to express the

relative class number hH/hK as the volume of the fundamental domain for a special

subgroup of the unit group O
×
H spanned by elliptic modular units formed from ratios

of special values of η(z) (see [Si]). Analogously, we will combine Theorem 1.5 with

the class field theory product for ζH(s) and the Frobenius determinant relation to

obtain a formula for hH/hK as a multiple of the determinant of an (hK −1)×(hK −1)

matrix whose entries are logarithms of ratios of special values of the Hilbert modular

function Ψ(z) at CM points.

Theorem 1.6 Using the same notation as above,

hH

hK
=

wH

wK

RK

RH

1

|O×
K : O

×
F |hK−1

det
C,C ′ 6=1

log
{ ǫ(C(C ′)−1)

ǫ(C)

}
.

Theorem 1.6 gives rise to the following interesting question.

Question 1.7 When n > 1 are the ratios ǫ(C(C ′)−1)/ǫ(C) units, or simply alge-

braic numbers, in the Hilbert class field H?

It is important to point out that other functions similar to log Ψ(z) have been

studied. For example, Konno in [K] defined a zeta function Z(Q, a, b; s) associ-

ated to a certain positive definite quadratic form Q, meromorphically continued

Z(Q, a, b; s) to Re(s) > 1/2, and computed the constant term in the Laurent ex-

pansion of Z(Q, a, b; s) at s = 1 in terms of a function of the form log Ψ(z). He then

used this to evaluate LS∞(1, χ) and express hH/hK as a multiple of a product of linear

combinations of values of log Ψ(z).

Our approach using Hilbert modular Eisenstein series is different and provides

many advantages. First, it allows us to study the modular and analytic properties of

log Ψ(z) using the invariance of E(s, z; a, b) under Γ(a, b), and that E(s, z; a, b) is an

eigenfunction for the operators ∆ j . Second, it leads to an arithmetic interpretation

of the points at which Ψ(z) is evaluated as CM points on a universal Hilbert modular

variety. This is potentially interesting, given the recent work on CM values of Hilbert

modular functions by Bruinier and Yang [BY1, BY2, Y]). Third, it provides a con-

ceptually simple and direct way of evaluating L(n)
S∞

(s, χ) at s = 0, which is the most

natural value to consider in the context of the Rubin–Stark conjectures.

Asai [A] showed how to define the non-holomorphic Eisenstein series for an ar-

bitrary number field K of class number 1. He computed the constant term in the

Laurent expansion of the Eisenstein series at s = 1 in terms of a function of the

form log Ψ(z), and used the methods of Siegel [Si] to prove results similar to Theo-

rems 1.2 and 1.3 for log Ψ(z). Asai also related log Ψ(z) to certain Grössencharakter

L-functions.

The Rubin–Stark conjectures are actually stated for (S, T)-modified G-equivari-

ant L-functions. See [P] for a description of the hypotheses that the two finite sets of

primes S and T must satisfy. The (S∞, T)-modified L-functions arising in the context

of this paper can be described as follows. Let T be a non-empty, finite set of primes

in K . Let TH be the set of primes in H dividing primes in T. We require that T satisfy

the following hypotheses.
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(1) T ∩ S∞ = ∅.

(2) There are no non-trivial elements in µH which are congruent to 1 modulo all the

primes p in TH .

Hypothesis (2) is satisfied if, for example, T contains at least two primes of different

residual characteristic or a prime whose residue field is large compared to the size

of µK .

For such a set T and χ ∈ Ĝ, define the complex-analytic function

ζT(s, χ) =

∏

p∈T

(1 − χ(σp)NK/Q (p)1−s).

We then define the (S∞, T)-modified L-function associated to χ by

LS∞,T(s, χ) = ζT(s, χ)LS∞(s, χ).

Note that for any χ ∈ Ĝ, ζT(0, χ) 6= 0, and thus LS∞(s, χ) and LS∞,T(s, χ) have the

same order of vanishing at s = 0. Define ζT : C → C[G] by

ζT(s) =

∑

χ∈bG

ζT(s, χ) · eχ−1 .

Then the (S∞, T)-modified G-equivariant L-function ΘS∞,T : C → C[G] is defined

by

ΘS∞,T(s) := ζT(s)ΘS∞(s) =

∑

χ∈bG

LS∞,T(s, χ) · eχ−1 .

Remark 1.8. The function ΘS∞,T(s) satisfies the remarkable integrality property

ΘS∞,T(1 − n) ∈ Z[G] for all integers n ≥ 1. This is a consequence of a more general

integrality property for (S, T)-modified L-functions due independently to Deligne

and Ribet [DR], P. Cassou–Noguès [CN], and D. Barsky [B].

We now state precisely our main result, which is an evaluation formula in C[G]

for the second terms of ΘS∞(s) and ΘS∞,T(s) at s = 0.

Theorem 1.9 Using the same notation as above,

Θ
(n)
S∞

(0) =
n!

|O×
K : O

×
F |

∑

σ∈G

log
{

(2ndF/
√

dK )En−1ǫ(σ−1)
}
· σ−1 in C[G].

In particular,

Θ
(n)
S∞,T(0) = δT(0)Θ(n)

S∞
(0) in C[G].

Stark’s integral refinement of his conjecture concerns abelian extensions M/K and

their associated imprimitive Artin L-functions LM/K,S(ρ, s) of order of vanishing at
most 1 at s = 0 (see [St4]). The conjecture predicts the existence of a special S-unit

ǫM whose construction is closely related to the solution of Hilbert’s twelfth problem

regarding explicit generation of the abelian class fields of the base field K . Tate [T]
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showed that the non-trivial solution to Stark’s integral conjecture would lead to an

explicit generation of the abelian class fields of the base field K by exponentials of

special values of L-functions.

We obtain from equation (11.4) the following product formula for the special val-

ues {Ψ(Φ(zC)) : C ∈ ClK} in terms of exponentials of special values of L-functions.

Theorem 1.10 For each C ∈ ClK ,

Ψ(Φ(zC)) =
(

2ndF/
√

dK N(y(Φ(zC )))NF/Q (aC )−1
)−En−1

×
∏

χ∈bG

exp
{ |O×

K : O
×
F |

hKn!
χ(C)L(n)

S∞
(0, χ)

}
.

2 Proof of Theorem 1.1

In this section we compute the Fourier expansion of E(s, z; a, b) and use this to prove

Theorem 1.1. We will need formulas for the Fourier coefficients of the function

f (z) =

∑

a∈a

|N(z + a)|−2s, Re(s) > 1.

Let a∗ be the dual lattice of a, T be the trace, and vol(P) be the volume of a funda-

mental parallelotope P for a. Because the function f (z) is holomorphic on Hn and

periodic with respect to a, it has a Fourier expansion

f (z) =

∑

a∈a∗

ha(y, s)e2πiT(ax),

where the Fourier coefficients are given by the formula

ha(y, s) =
1

vol(P)

∫

P

f (z)e−2πiT(ax)dx.

Proposition 2.1 Using the same notation as above,

h0(y, s) =
N(y)1−2s

√
dFNF/Q (a)

[ √
πΓ

(
s − 1

2

)

Γ(s)

] n

,

and for a 6= 0,

ha(y, s) =
2nN(y)

1
2
−s

√
dFNF/Q (a)

[ πs

Γ(s)

] n
n∏

j=1

Ks− 1
2
(2π|σ j(a)|y j)NF/Q ((a))s− 1

2 ,

where

Kv(z) =

∫ ∞

0

e−z cosh(t) cosh(vt)dt, t > 0,

is the K-Bessel function.
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Proof Let d(a) be the absolute value of the discriminant of a. Then d(a) =

dFNF/Q (a)2, so that vol(P) =
√

d(a) =
√

dFNF/Q (a). Using the definition of f (z)

and that P is a fundamental parallelotope for the lattice a, we find that

ha(y, s) =
N(y)1−2s

√
dFNF/Q (a)

∫

Rn

|N(1 − ix)|−2se−2πiT(ayx)dx.

Define the 1-dimensional integral

h(y, s) =

∫

R

|1 − it|−2se−it ydt =

∫

R

(1 + t2)−se−it ydt, Re(s) >
1

2
.

Then using the definition of the trace we find that

ha(y, s) =
N(y)1−2s

√
dFNF/Q (a)

n∏

j=1

h(2πσ j(a)y j ; s).

Thus, to compute ha(y, s), it suffices to compute h(y, s).

For y = 0 we obtain

h(0, s) =

∫

R

(1 + t2)−sdt =

√
πΓ

(
s − 1

2

)

Γ(s)

(see [L2, p. 272]). It follows that the zeroth Fourier coefficient is

h0(y, s) =
N(y)1−2s

√
dFNF/Q (a)

[ √
πΓ

(
s − 1

2

)

Γ(s)

] n

.

Suppose y 6= 0. Since 1 + t2 is even, we can write

h(y, s) =

∫

R

(
1 + t2

)−s

e−it ydt = 2

∫ ∞

0

(1 + t2)−s cos(t y)dt.

Further, we have the formula

∫ ∞

0

(1 + t2)−s cos(t y)dt =
1√
π

( 2

|y|
) 1

2
−s

cos
(

π
( 1

2
− s

))
Γ(1 − s)Ks− 1

2
(|y|),

where

Kv(z) =

∫ ∞

0

e−z cosh(t) cosh(vt)dt, t > 0,

is the K-Bessel function (see [GR], pg. 426). It follows that

h(y, s) =
2√
π

( 2

|y|
) 1

2
−s

cos
(

π
( 1

2
− s

))
Γ(1 − s)Ks− 1

2
(|y|),
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from which we obtain

(2.1)

n∏

j=1

h(2πσ j(a)y j ; s) = 2n
[
πs−1 cos

(
π
(

1
2
− s

))
Γ(1 − s)

] n

n∏

j=1

(
|σ j(a)|y j)

s− 1
2 Ks− 1

2

(
2π|σ j(a)|y j

)
.

From the identity Γ
(

1
2

+ s
)
Γ
(

1
2
− s

)
=

π
cos(πs)

, we determine the identity

πs−1 cos
(
π
(

1
2
− s

))
Γ(1 − s) =

πs

Γ(s)
. Similarly, we determine the identity

n∏

j=1

(|σ j(a)|y j)
s− 1

2 = N(y)s− 1
2 NF/Q ((a))s− 1

2 .

Substituting these identities in (2.1) yields

ha(y, s) =
2nN(y)

1
2
−s

√
dFNF/Q (a)

[ πs

Γ(s)

] n
n∏

j=1

Ks− 1
2
(2π|σ j(a)|y j)NF/Q ((a))s− 1

2 .

We will need the following lemma, which can be proved in a manner analogous to

equation (8.1).

Lemma 2.2 Let [a] be the ideal class of F containing a. Then

ζF(2s, [a−1]) = NF/Q (a)2s
∑ ′

α∈a/O×

F

|N(α)|−2s,

where a/O
×
F denotes the sum over a collection of non-zero α in a which are non-associate

modulo O
×
F .

We are now in a position to compute the Fourier expansion of E(s, z; a, b). Using

Lemma 2.2 and the change of summation

∑

(a,b)∈a×b/O×

F

b6=0

=

∑

a∈a/O×

F

∑ ′

b∈b

,

we compute

E(s, z; a, b) =

∑ ′

a∈a/O×

F

N(y)s|N(a)|−2s +
∑

(a,b)∈a×b/O×

F
b6=0

N(y)s|N(a + bz)|−2s

= N(y)sNF/Q (a)−2sζF(2s, [a−1]) +
∑

a∈a/O×

F

∑ ′

b∈b

N(y)s|N(a + bz)|−2s

= N(y)sNF/Q (a)−2sζF(2s, [a−1]) +
∑′

b∈b/O×

F

∑

a∈a

N(y)s|N(a + bz)|−2s.

(2.2)
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Write z = x + i y, so that bz = bx + i(by). Letting z 7→ bz in f (z) yields

∑

a∈a

|N(a + bz)|−2s
=

∑

a∈a∗

ha(by, s)e2πiT(abx)

= h0(by, s) +
∑′

a∈a∗

ha(by, s)e2πiT(abx).

(2.3)

From the formula for h0(y, s) in Proposition 2.1,

h0(by, s) =

(
N(y)NF/Q ((b))

) 1−2s

√
dFNF/Q (a)

[ √
πΓ(s − 1

2
)

Γ(s)

] n

.

Then substituting (2.3) into (2.2) yields

E(s, z; a, b) = N(y)sNF/Q (a)−2sζF(2s, [a−1])

+
N(y)s|N(y)|1−2s

√
dFNF/Q (a)

[ √
πΓ(s − 1

2
)

Γ(s)

] n ∑ ′

b∈b/O×

F

NF/Q ((b))1−2s

+ N(y)s
∑ ′

b∈b/O×

F

∑ ′

a∈a∗

ha(by, s)e2πiT(abx)

= N(y)sNF/Q (a)−2sζF(2s, [a−1])

+
N(y)1−s

√
dFNF/Q (a)

[ √
πΓ(s − 1

2
)

Γ(s)

] n

NF/Q (b)−(2s−1)ζF(2s − 1, [b−1])

+ N(y)s
∑ ′

b∈b/O×

F

∑ ′

a∈a∗

ha(by, s)e2πiT(abx).

(2.4)

Using the definition of the trace we find that

ha(by, s) =

(
N(y)NF/Q ((b))

) 1−2s

√
dFNF/Q (a)

n∏

j=1

h(2πσ j(ab)y j ; s).

Then combining terms with fixed ab yields

(2.5)
∑ ′

b∈b/O×

F

∑ ′

a∈a∗

ha(by, s)e2πiT(abx)
=

N(y)1−2s

√
dFNF/Q (a)

∑′

ã∈a∗

σã(y, s)e2πiT(ãx),

where the Fourier coefficients are given by the following sum of divisors:

σã(y, s) =

∑

ã=ab
a∈a∗

b∈b/O×

F

n∏

j=1

h(2πσ j(ab)y j ; s)NF/Q ((b))1−2s.
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From the formula for ha(y, s), a 6= 0, in Proposition 2.1, we can express the Fourier

coefficients as

(2.6)

σã(y, s) = 2nN(y)s− 1
2

[ πs

Γ(s)

] n ∑

ã=ab
a∈a∗

b∈b/O×

F

( NF/Q ((a))

NF/Q ((b))

) s− 1
2

n∏

j=1

Ks− 1
2
(2π|σ j(ab)|y j).

Finally, by substituting (2.5) into (2.4) and using the formula (2.6), we obtain the

Fourier expansion

E(s, z; a, b) = N(y)sNF/Q (a)−2sζF(2s, [a−1])

+
N(y)1−s

√
dFNF/Q (a)

[ √
πΓ

(
s − 1

2

)

Γ(s)

] n

NF/Q (b)−(2s−1)ζF(2s − 1, [b−1])

+
2nN(y)

1
2

√
dFNF/Q (a)

[ πs

Γ(s)

] n

×
∑′

ã∈a∗

∑

ã=ab
a∈a∗

b∈b/O×

F

( NF/Q ((a))

NF/Q ((b))

) s− 1
2

e2πiT(abx)
n∏

j=1

Ks− 1
2
(2π|σ j(ab)|y j)

= A(s) + B(s) + C(s).

(2.7)

The expression (2.6) provides an analytic continuation of σã(y, s) to an entire

function on C. Furthermore, by estimating σã(y, s) on compact subsets of C, one can

show that the series
∑

ã∈a∗ σã(y, s)e2πiT(ãx) converges uniformly on compact subsets

and hence defines entire function on C. Therefore, C(s) is entire on C.

The function ζF(s,C) has a meromorphic continuation to C with a simple pole at

s = 1. Therefore, A(s) and B(s) have meromorphic continuations to C. We conclude

that E(s, z; a, b) = A + B + C has a meromorphic continuation to C.

We want to determine the poles of E(s, z; a, b). The function B(s) has a pole at

s = 1. To compute the residue, recall the Laurent expansion ζF(s,C) =
κ

s−1
+ O(1)

(see [L1, p. 254]), where the residue κ is given by κ =
2nRF

wF

√
dF

. Using the expansion

ζF(2s − 1, [a−1]) =
κ/2
s−1

+ O(1), and Γ(1/2) =
√

π, we find that the residue of the

pole of B(s) at s = 1 is

Ress=1 B(s) =
πn

√
dFNF/Q (ab)

κ

2
=

2n−1πnRF

dFwFNF/Q (ab)
.

We claim that A(s) and B(s) have simple poles at s = 1/2 with residues which can-

cel. Thus, since C(s) is holomorphic at s = 1/2, we can conclude that E(s, z; a, b) has

only the pole at s = 1 coming from B(s) with residue Ress=1 E(s, z; a, b) = Ress=1 B(s).

Using the expansion ζF(2s, [a−1]) =
κ/2

s− 1
2

+ O(1), we obtain

A(s) =
N(y)1/2

NF/Q (a)

κ

2

1

s − 1
2

+ O(1) =
N(y)1/22n−1RF√

dFwFNF/Q (a)

1

s − 1
2

+ O(1).
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Now, we know that Γ(s) has a simple pole at s = 0 with residue 1, so

(2.8) Γ

(
s − 1

2

) n

=
1

(s − 1
2
)n

+ O
(

s − 1

2

) 1−n

.

The functional equation for ζF(s,C) is given by G(s)ζF(s,C) = G(1−s)ζF(1−s,C),

where G(s) is the gamma factor G(s) = d
s/2
F

[
π−s/2Γ

(
s/2

)] n
(see [L1, p. 254]). Using

the functional equation, one can show that ζF(s,C) has a zero of order n − 1 at s = 0

with leading term

ζ(n−1)
F (0,C)

(n − 1)!
= lim

s→0
s−(n−1)ζF(s,C) = −RF

wF
,

and therefore ζF(s,C) = − RF

wF
sn−1 + O(sn). In particular,

(2.9) ζF(2s − 1, [b−1]) = −2n−1RF

wF

(
s − 1

2

) n−1

+ O
(

s − 1

2

) n

,

so that multiplying (2.8) and (2.9) yields

B(s) = − N(y)1/22n−1RF√
dFwFNF/Q (a)

1

s − 1
2

+ O(1).

We conclude that A(s) and B(s) have simple poles at s = 1/2 with residues which

cancel.

Finally, assume that a = b = OF . By applying the functional equations

G(s)ζF(s,C) = G(1 − s)ζF(1 − s,C)

and K−v(z) = Kv(z) in (2.7), one can show that E(s, z; OF, OF) satisfies the functional

equation

G(1 − s)E(s, z; OF, OF) = G(2(1 − s))E(1 − s, z; OF, OF).

This completes the proof of Theorem 1.1.

3 Taylor Expansion of E(s, z; a, b) at s = 0

We now use the Fourier expansion (2.7) to compute the first two terms in the Taylor

expansion of E(s, z; a, b) at s = 0,

E(s, z; a, b) = En−1sn−1 + En(z)sn + O(sn+1).

We will compute the Taylor expansions of A, B, and C separately.

First, observe that

N(y)sNF/Q (a)−2s
= 1 + log

(
N(y)NF/Q (a)−2

)
s + O(s2),
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and arguing as in Section 2 we determine that

ζF(2s, [a−1]) = −2n−1RF

wF
sn−1 +

2nζ(n)
F (0, [a−1])

n!
sn + O(sn+1).

Then

A(s) = −2n−1 RF

wF
sn−1 +

( 2nζ(n)
F (0, [a−1])

n!
− 2n−1 RF

wF
log

(
N(y)NF/Q (a)−2

))
sn

+ O(sn+1).

Second, using the expansion

(3.1)
[ 1

Γ(s)

] n

= sn + O(sn+1)

and Γ(−1/2) = −2
√

π, we find that

B(s) =
(−1)n2nπnN(y)NF/Q (b)√

dFNF/Q (a)
ζF(−1, [b−1])sn + O(sn+1).

Third, using K−v(z) = Kv(z) and K1/2(z) =
√

π/2z · e−z , we compute

(3.2)

n∏

j=1

K−1/2(2π|σ j(ab)|y j) =
N(y)−1/2

2n
NF/Q ((ab))−1/2e−2πS(aby),

where S(aby) :=
∑n

j=1 |σ j(ab)|y j . Using (3.1) and (3.2), we find that

C(s) =
1√

dFNF/Q (a)

∑′

ã∈a∗

∑

ã=ab
a∈a∗

b∈b/O×

F

e−2πS(aby)

NF/Q ((a))
e2πiT(abx)sn + O(sn+1).

Finally, from the sum A + B + C, we conclude that En−1 = −2n−1 RF

wF
, and

En(z) = log
(

(N(y)NF/Q (a)−2)En−1Ψ(z)
)
,

where

log Ψ(z) =
2nζ(n)

F (0, [a−1])

n!
+

(−1)n2nπnN(y)NF/Q (b)√
dFNF/Q (a)

ζF(−1, [b−1])

+
1√

dFNF/Q (a)

∑′

ã∈a∗

∑

ã=ab
a∈a∗

b∈b/O×

F

e−2πS(aby)

NF/Q ((a))
e2πiT(abx).
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4 Proof of Theorem 1.2

The group Γ(a, b) embeds discretely in GL2(R)n,

M →
((

σ1(α) σ1(β)

σ1(γ) σ1(δ)

)
, . . . ,

(
σn(α) σn(β)

σn(γ) σn(δ)

))
,

which induces a discontinuous action of Γ(a, b) on Hn,

M(z) =

(
σ1(α)z1 + σ1(β)

σ1(γ)z1 + σ1(δ)
, . . . ,

σn(α)zn + σn(β)

σn(γ)zn + σn(δ)

)
.

From the definition of Γ(a, b) we have the invariance property

E(s, M(z); a, b) = E(s, z; a, b)

for all M ∈ Γ(a, b). Then using the Taylor expansion

E(s, z; a, b) = En−1sn−1 + En(z)sn + O(sn+1),

we see that En(M(z)) = En(z) for all M ∈ Γ(a, b).

Write

(4.1) En(z) = log Ψ(z) + En−1 log
(

N(Im(z))NF/Q (a)−2
)

,

where we have set N(y) = N(Im(z)). Then using (4.1) and the invariance of En(z)

under Γ(a, b) we compute

log Ψ(M(z)) = En(M(z)) − En−1 log
(

N(Im(M(z)))NF/Q (a)−2
)

= En(z) − En−1 log
(

N(Im(M(z)))NF/Q(a)−2
)

= log Ψ(z) + En−1 log
(

N(Im(z))NF/Q (a)−2
)

− En−1 log
(

N(Im(M(z)))NF/Q (a)−2
)

= log Ψ(z) + En−1 log
( N(Im(z))

N(Im(M(z)))

)
.

Using N(Im(z)) =
∏n

j=1 Im(z j) and the identity

Im
( az + b

cz + d

)
=

Im(z)

|cz + d|2 ,

we compute

N(Im(M(z))) =

n∏

j=1

Im(z j)

|σ j(γ)z j + σ j(δ)|2 ,
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so that
N(Im(z))

N(Im(M(z)))
=

n∏

j=1

|σ j(γ)z j + σ j(δ)|−2.

This yields the transformation formula

(4.2) log Ψ(M(z)) = log Ψ(z) + log
( n∏

j=1

|σ j (γ)z j + σ j (δ)|−2En−1

)
.

Finally, exponentiate both sides of (4.2) and use the definition of the norm N( · ),

and En−1 = −2n−1RF/wF.

5 Proof of Theorem 1.3

Let σ be an embedding of F, (a, b) ∈ a × b, and z ∈ H. It can be shown by direct

computation that

y2
∆(ys|σ(a) + σ(b)z|−2s) = s(s − 1)ys|σ(a) + σ(b)z|−2s.

Using the relation

N(y)s|N(a + bz)|−2s
=

n∏

j=1

ys
j |σ j (a) + σ j(b)z j|−2s,

it follows immediately that

(5.1) ∆ jE(s, z; a, b) = s(s − 1)E(s, z; a, b).

Thus, E(s, z; a, b) is an eigenfunction for the operators ∆ j with eigenvalue s(s − 1).

Substitute the Taylor expansion

E(s, z; a, b) = En−1sn−1 + En(z)sn + O(sn+1)

into the right-hand side of (5.1), expand, and equate coefficients to obtain the re-

currence relation ∆ jEk = Ek−2 − Ek−1, for k = 0, 1, . . ., where Ek = 0 for k =

−2,−1, . . . , n − 2.

From the definition of En(z) we see that

log Ψ(z) = En(z) − En−1 log
(

N(y)NF/Q (a)−2
)
.

We claim that

∆ j

(
En(z) − En−1 log(N(y)NF/Q (a)−2)

)
= 0,

and hence log Ψ(z) vanishes under the operators ∆ j . To see this, note that as a con-

sequence of the recurrence relation, ∆ jEn(z) = −En−1, and a straightforward com-

putation yields

∆ j log
(

N(y)NF/Q (a)−2
)

= −1.

The claim follows from these two facts.
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6 Proof of Proposition 1.4

Let a, b ∈ Cn, n > 1. The set L = {a + bz : z ∈ C} is called a complex line in Cn. Let

Ω be a domain in Cn. A C2 function f : Ω → C is called pluriharmonic if for every

complex line L the function z → f (a + bz) is harmonic on the set ΩL = {z ∈ C :

a + bz ∈ Ω}.

If z0 ∈ Cn and r > 0, the open polydisc centered at z0 of radius r is defined by

Dn(z0, r) = {z ∈ C
n : |z j − z0

j | < r, j = 1, . . . , n.}.

Pluriharmonic functions are characterized as follows, (see [Kr, p. 82]).

Proposition 6.1 Let Dn(z, r) ⊂ Cn be a polydisc and f : Dn(z, r) → R be C2. Then

f is pluriharmonic on Dn(z, r) if and only if f is the real part of an analytic function on

Dn(z, r).

Define the differential operators

∂

∂z
=

1

2

( ∂

∂x
− i

∂

∂y

)
and

∂

∂z
=

1

2

( ∂

∂x
+ i

∂

∂y

)
.

One can establish the following useful criterion for pluriharmonicity.

Proposition 6.2 A C2 function f on Ω is pluriharmonic if and only if

∂2

∂z j∂zk

f = 0

for all j, k = 1, . . . , n. In particular, the second condition holds if and only if f satisfies

the Neumann equation ∂∂ f = 0.

It can be shown that log Ψ(z) does not satisfy the second condition of Proposi-

tion 6.2, and thus log Ψ(z) is not the real part of an analytic function.

7 CM Points on Hilbert Modular Varieties

In this section we follow in part Moreno [M, Section 3.2]. Let DK/F be the relative

different. Since K is a quadratic extension of F, K = F(
√

α) for some α ∈ F. By

considering prime ideal factors, it can be shown that (
√

α)D−1
K/F

= ãOK for some

ideal ã in F. The ideal class [ã] is independent of the choice of α.

The following lemma is due to Chevalley [C].

Lemma 7.1 Let A be an integral ideal in K. Then the relative norm NK/F(A) lies in

the ideal class of the form a[ã], a being an integral ideal in F, if and only if there exist
ω1 ∈ a−1OK and ω2 ∈ OK such that A = aω1 + OFω2.

Choose a complete set of representatives {a j} j∈ J of ideal classes of F. Among

the ideal classes {a j[ã]} j∈ J of F, choose the sub-collection {ai[ã]}i∈I of ideal classes
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which contain the relative norm of an ideal in K . We may assume that the ideals

{ai}i∈I are integral.

Let C be an ideal class of K , and let A be an integral ideal in C. Then NK/F(A) ∈
ai[ã] for some i ∈ I. It follows from Lemma 7.1 that there is a decomposition A =

aiω1 + OFω2, where (ω1, ω2) ∈ a−1
i OK × OK . Up to multiplication by a unit in F,

we may assume that the imaginary parts of the components of zC := ω2/ω1 under a

given choice of n real embeddings of F are positive.

Because K is an imaginary quadratic extension of F, the 2n embeddings of K occur

in complex conjugate pairs. Let Φ = {τ1, . . . , τn} be a CM type for K/F, which is a

choice of one embedding for each complex conjugate pair. Define the CM point

Φ(zC) := (τ1(zC), . . . , τn(zC)) ∈ H
n.

Let Γ0(ai) := Γ(ai, OF), and form the Hilbert modular variety

X0(ai) := H
n/Γ0(ai).

There is an embedding
{

C ∈ ClK : NK/F(C) = ai[ã]
}

→֒ X0(ai)

defined by C 7→ Φ(zC ) mod Γ0(ai).

Proposition 7.2 The map C 7→ Φ(zC) mod Γ0(ai) is well defined.

Proof Suppose B is an integral ideal in K which is equivalent to A. Then by

Lemma 7.1, B = aiω
′
1 + OFω

′
2, where (ω ′

1, ω
′
2) ∈ a−1

i OK × OK . Again, we may as-

sume that the imaginary parts of the components of z ′C = ω ′
2/ω ′

1 are positive. It can

be shown that there exists a matrix M ∈ Γ0(ai) such that M(Φ(zC)) = Φ(z ′C) (see

[M, Lemma 1]). Thus, the map is well defined.

Let A be the ideal defined by taking the least common multiple of the ideals

{ai}i∈I. Form the discrete subgroup Γ0(A) < GL2(R)n, and the corresponding

Hilbert modular variety, X0(A) := Hn/Γ0(A). Then X0 := X0(A) is the minimal

common cover of the varieties X0(ai). That is, if |I| = N, there is the following

covering diagram.

X0

uukkkkkkkkkkkkkkkkkkk

##
GGGGGGGGG

||yy
yy

yy
yy

y

))TTTTTTTTTTTTTTTTTTTTT

X0(a1) X0(a2) . . . X0(aN−1) X0(aN)

If Y is a cover which fits into the diagram

Y

uukkkkkkkkkkkkkkkkkkk

##
HH

HH
HH

HH
HH

||yy
yy

yy
yy

y

**TTTTTTTTTTTTTTTTTTTTTT

X0(a1) X0(a2) . . . X0(aN−1) X0(aN),
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there is a cover Y −→ X0. Finally, using the covers X0 −→ X0(ai), one obtains an

embedding ClK →֒ X0 defined by C 7→ Φ(zC) mod Γ0(A).

8 CM Values of Hilbert Modular Eisenstein Series

Let C ∈ ClK and fix an integral ideal AC ∈ C−1. Then as A runs over all integral ideals

in C, the ideal A · AC = (α) runs over all principal ideals (α) with (α) ≡ 0 mod AC .

It follows that

ζK (s,C) =
∑′

A∈C

NK/Q (A)−s
=

∑′

(α)⊂AC

NK/Q (A−1
C (α))−s

= NK/Q (AC)s
∑′

α∈AC /O×

K

NK/Q ((α))−s.

(8.1)

From (8.1) and a counting argument, we obtain

|O×
K : O

×
F |ζK (s,C) = NK/Q (AC)s|O×

K : O
×
F |

∑′

α∈AC /O×

K

NK/Q ((α))−s

= NK/Q (AC)s
∑ ′

α∈AC /O×

F

NK/Q ((α))−s.

(8.2)

From Section 7 there is a decomposition AC = aCω1 + OFω2, where (ω1, ω2) ∈
a−1

C OK × OK and aC ∈ {ai}. Therefore, we can express (8.2) as

|O×
K : O

×
F |ζK (s,C) = NK/Q (AC )s

∑′

(a,b)∈aC×OF/O×

F

NK/Q ((aω1 + bω2))−s

= NK/Q (AC/ω1)s
∑ ′

(a,b)∈aC×OF/O×

F

NK/Q ((a + bzC ))−s.

(8.3)

We will need the following lemma.

Lemma 8.1 Let Φ be a CM type for K/F. Then

NK/Q ((a + bzC )) = |N(a + bΦ(zC ))|2.

Proof For an embedding τ of K let τ̃ be its restriction to F. Then

NK/Q ((a + bzC )) =

n∏

j=1

τ j(a + bzC)τ j(a + bzC )

=

n∏

j=1

(τ̃ j(a) + τ̃ j(b)τ j(zC))(τ̃ j(a) + τ̃ j(b)τ j(zC )) =
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=

n∏

j=1

(τ̃ j(a) + τ̃ j(b)τ j(zC))(τ̃ j(a) + τ̃ j(b)τ j(zC))

=

n∏

j=1

|τ̃ j(a) + τ̃ j(b)τ j(zC)|2

= |N(a + bΦ(zC))|2.

Using Lemma 8.1 we can express (8.3) as

(8.4) |O×
K : O

×
F |ζK (s,C) = NK/Q (AC/ω1)s

∑′

(a,b)∈aC×OF/O×

F

|N(a + bΦ(zC))|−2s.

We will also need the following lemma, which follows from a calculation with

determinants, (see also [M, p. 237]).

Lemma 8.2 Using the same notation as above,

NK/Q (AC/ω1) = N(y(Φ(zC )))2nNF/Q (aC)dF/
√

dK .

Using Lemma 8.2 we can express (8.4) as

|O×
K : O

×
F |ζK (s,C)

= (2nNF/Q (aC )dF/
√

dK )s
∑ ′

(a,b)∈aC×OF/O×

F

N(y(Φ(zC)))s|N(a + bΦ(zC ))|−2s

= (2nNF/Q (aC )dF/
√

dK )sE
(

s, Φ(zC ); aC , OF

)
.

We now obtain the identity

ζK (s,C) =
1

|O×
K : O

×
F |

(2nNF/Q (aC )dF/
√

dK )sE(s, Φ(zC ); aC , OF).(8.5)

Remark. It is important to observe that the above construction depends only on the

inverse class C−1. This can be seen by combining the argument used in section 7 to

show that the map C 7→ Φ(zC ) mod Γ0(aC ) is well-defined with the invariance of the

Eisenstein series E(s, z; aC , OF) with respect to the group Γ0(aC).

9 Proof of Theorem 1.5

From (8.5) we obtain the identity

ζK (s,C) =
1

|O×
K : O

×
F |

(2ndF/
√

dK )sNF/Q (aC)sE(s, Φ(zC ); aC , OF).
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It follows from (1.3) that

(9.1)

LS∞(s, χ) =
1

|O×
K : O

×
F |

(2ndF/
√

dK )s
∑

C∈ClK

χ(C)NF/Q (aC )sE(s, Φ(zC ); aC , OF).

Suppose that χ = 1G. Substitute the Taylor expansions

(
2ndF/

√
dK

) s
= 1 + log

(
2ndF/

√
dK

)
s + O(s2),

NF/Q (aC)s
= 1 + log

(
NF/Q (aC )

)
s + O(s2),

E(s, Φ(zC); aC , OF) = En−1sn−1 + En(Φ(zC))sn + O(sn+1)

into the RHS of (9.1) and differentiate both sides n times with respect to s to obtain

(9.2)
L(n)

S∞
(s, 1G)

n!
=

1

|O×
K : O

×
F |

∑

C∈ClK

(
En−1 log

(
2ndF/

√
dK

)

+ En−1 log(NF/Q (aC)) + En(Φ(zC))
)

+ O(s).

Using the definition of En(Φ(zC)), we compute

En−1 log(NF/Q (aC)) + En(Φ(zC))

= log(NF/Q (aC )En−1 ) + log((N(y(Φ(zC)))NF/Q (aC )−2)En−1Ψ(Φ(zC)))

= log
(

(N(y(Φ(zC )))NF/Q (aC )−1)En−1Ψ(Φ(zC))
)
.

(9.3)

Substitute (9.3) in (9.2) and let s → 0 to obtain the formula for L(n)
S∞

(0, 1G).

Suppose that χ 6= 1G. By the orthogonality relations for group characters,∑
C∈ClK

χ(C) = 0. Proceeding as above, we find that

(9.4)
L(n)

S∞
(s, χ)

n!
=

1

|O×
K : O

×
F |

∑

C∈ClK

χ(C)
{

En−1 log
(

NF/Q (aC )
)

+ En(Φ(zC))
}

+ O(s).

Again, substitute (9.3) into (9.4) and let s → 0 to obtain the formula for L(n)
S∞

(0, χ).

10 Proof of Theorem 1.6

From class field theory there is the decomposition,

(10.1) ζH(s) = ζK (s)
∏

χ∈bG
χ6=1G

LS∞(s, χ).
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(see [N, p. 524]). Using the functional equation for the Dedekind zeta function as in

section 2 we compute

lim
s→0

s−(n−1)ζH(s) = −hHRH

wH
and lim

s→0
s−(n−1)ζK (s) = −hK RK

wK
.

Then equating leading terms of the Taylor expansions at s = 0 of both sides of (10.1)

yields

(10.2) −hHRH

wH
= −hKRK

wK

∏

χ∈bG
χ6=1G

L(n)
S∞

(0, χ)

n!
.

Using Theorem 1.5 we can express (10.2) as

−hHRH

wH
= −hKRK

wK

1

|O×
K : O

×
F |hK−1

∏

χ∈bG
χ6=1G

∑

C∈ClK

χ(C) log ǫ(C−1),

or equivalently as,

(10.3)
hH

hK
=

wH

wK

RK

RH

1

|O×
K : O

×
F |hK−1

∏

χ∈bG
χ6=1G

∑

C∈ClK

χ(C) log ǫ(C−1).

Let G be a finite abelian group and χ ∈ Ĝ. Let f be a complex-valued function

on G. The following formula is a consequence of the Frobenius determinant relation

(see [L2, p. 283]):

∏

χ∈bG
χ6=1G

∑

a∈G

χ(a) f (a−1) = det
a,b6=1

{
f (ab−1) − f (a)

}
.(10.4)

Define f : ClK → R by

f (C) = log ǫ(C), C ∈ ClK .

Using (10.4) we obtain the relation

(10.5)
∏

χ∈bG
χ6=1G

∑

C∈ClK

χ(C) log ǫ(C−1) = det
C,C ′ 6=1

log
{ ǫ(C(C ′)−1)

ǫ(C)

}
.

Substitute (10.5) into (10.3) to complete the proof.
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11 Proof of Theorem 1.9

Define f : ClK → R by f (C) = log ǫ(C−1), and g : Ĝ → C by

g(χ) =

∑

C∈ClK

χ(C) f (C).

Then

∑

χ∈bG

χ(C ′)g(χ) =

∑

χ∈bG

χ(C ′)
∑

C∈ClK

χ(C) f (C)

=

∑

C∈ClK

f (C)
∑

χ∈bG

χ(C ′)χ(C).

By the orthogonality relations for group characters,

∑

χ∈bG

χ(C ′)χ(C) =

{
hK if C = C ′,

0 if C 6= C ′.

Thus,
∑

χ∈bG χ(C ′)g(χ) = hK f (C ′), or equivalently,

(11.1) f (C) =
1

hK
{g

(
1G

)
+

∑

χ∈bG
χ6=1G

χ(C)g(χ)}.

From (11.1) and Theorem 1.5,

(11.2) log ǫ(C−1) − 1

hK

∑

C∈ClK

log ǫ(C−1) =
|O×

K : O
×
F |

hK n!

∑

χ∈bG
χ6=1G

χ(C)L(n)
S∞

(0, χ).

Furthermore, by Theorem 1.5,

(11.3)
|O×

K : O
×
F |

hK n!
L(n)

S∞
(0, 1G) = log

((
2ndF/

√
dK

) En−1
)

+
1

hK

∑

C∈ClK

log ǫ(C−1).

Add (11.3) to both sides of (11.2) to obtain

(11.4) log
((

2ndF/
√

dK

)En−1

ǫ(C−1)
)

=
|O×

K : O
×
F |

hKn!

∑

χ∈bG

χ(C)L(n)
S∞

(0, χ).
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Finally, as a consequence of (11.4) and the isomorphism G ∼= ClK , we obtain the

following equality in C[G],

∑

σ∈G

log
(

(2ndF/
√

dK )En−1ǫ(σ−1)
)
· σ−1

=
|O×

K : O
×
F |

hKn!

∑

σ∈G

∑

χ∈bG

χ(σ)L(n)
S∞

(0, χ) · σ−1

=
|O×

K : O
×
F |

n!

∑

χ∈bG

L(n)
S∞

(0, χ)
( 1

hK

∑

σ∈G

χ(σ) · σ−1
)

=
|O×

K : O
×
F |

n!

∑

χ∈bG

L(n)
S∞

(0, χ) · eχ−1

=
|O×

K : O
×
F |

n!
Θ

(n)
S∞

(0).
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