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Introduction

The fact that the most general symmetrisable operators in Hilbert
Space do not possess a number of the desirable properties of such operators
in unitary spaces makes it necessary to look for a more restricted class
of operators. There are two reasons for our particular choice. In the first
place many of the conditions introduced in the course of Part II concerned
relationships between the domain of the symmetrising operator H and the
domain and range of the symmetrisable operator A. These conditions
are now all automatically satisfied. The other reason is that the construc-
tion used in section 4 to relate symmetrisable operators to certain symmetric
operators clearly required that either H or H~x was bounded. The case of
H~1 bounded has already been dealt with in section 9 and shown to be fairly
simple. The case in which H is bounded is clearly of considerable complexity,
since we have already seen (example in proof of Theorem 10.6.) that the
continuous spectrum may be complex in this case. We follow the usual
convention and define \H\ the bound of H by

|ff |= sup ||Jffa||.
IMI-i

11. Remarks on the bound of If, on 9tH and some properties of A
already established

We can assume that the bound of H is equal to 1. This is because if
H is a symmetrising operator, so is CLH where a is any real positive number,
in particular a = lj{bd of H).

For simplicity we shall assume %lB = [0], i.e. H is strictly positive.
We are already aware of the complication which arises when %lH has positive
dimension. On the other hand we can proceed from the general case to ours
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32 J. P. O. SUberstein [2]

as can be seen from the following argument. The null-spaces are related by
SR.H Cg^CSH^; 9lH is closed and 9ljj is a closed subspace say Hit Let P^
be the projector on 3ft. Then since 3lH reduces both H and HA, 2R does
likewise. It follows that HA = PnHAPn = P^HPmPmAPm. Let H&
and Am be the restrictions of P^HPm and PmAPm to subspace ffll.
Then on 2Ji Hm is strictly positive and symmetrises Am. 3R is a Hilbert
Space or a Unitary Space so that the theory of operators symmetrisable
by positive operators is equivalent to the theory of P^AP^ (or its
restriction on SK) where A is any symmetrisable operator.

In the remainder of this paper it will be assumed (unless the contrary
is stated) that H is a strictly positive definite self-adjoint bounded linear
operator in § with upper bound 1 at most. Unless otherwise stated HA
is assumed self-adjoint, i.e. the operators A are assumed symmetrisable
in the strict sense.

The results obtained in Part II showed that any symmetrisable A
under consideration will be closed and A = A+* = A**. Further the point
spectrum of A and of A* (if it exists) is real. (This is no longer true for A*
if HA is merely symmetric). The continuous spectrum may be complex
and we shall investigate conditions under which it is real.

Remark 11.1. The continuous spectrum of a closed linear operator A
is usually defined as consisting of those points X for which Aj1 == (.4—XI)~l

is defined as an unbounded closed linear operator on a dense domain. It
follows from this that for every y in £, with ||y|| = 1 say, there exists
for any en > 0 a yn, with \\yK\\ = 1 and \\y—yn\\ ^ eB such that yn is in
the domain of Aj1 with H-^^yJI 2; MJ|yn|| where Mn is arbitrarily large.
Thus if y £ SRAx there exists a sequence (yn) tending to y such that xn = Aj*yn

with ||a;n|| -*- oo, in fact every sequence tending to y contains such a sub-
sequence (Cf. [1] theorem 3.17). Putting zn = #n/||a;J| we have a sequence
(zn) such that

A

where ||zB|| = ||yB|| = 1 and en -*• 0 as n -v oo ((zj does not tend to a limit
because X would otherwise be an eigenvalue since Ax is closed). The
existence of sequences such as (zn) is therefore a necessary condition for X
to belong to the continuous spectrum.

12. A special class of operators

In order to show that it is plausible to enquire further into the con-
tinuous spectrum we discuss operators of the type BH where B, H are
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self-adjoint and bounded and H is positive definite. Such operators are
clearly symmetrisable by «H where a is any positive real number. We
can prove

THEOREM 12.1. / / H is positive definite and H, B are bounded self-
adjoint operators then the continuous spectrum of A = BH cannot include
a point not on the real axis.

PROOF. Since BH = (IH^HH^H) where \H\ is the bound of H,
we can take the bound of H to be 1 without loss of generality. Next we
suppose A to be in the continuous spectrum; then by Remark 11.1 there
exists a sequence (a;B) such that

(12.1) Axn-Xxn = sttyn

where ||a:n||=||yB|| = 1; eB -*• 0 as « -> oo. (eB can be taken real, positive).
Let Hxn = axn+pzn where a ( > 0), /J are real and zn is an element of

unit length orthogonal to xn. (We can clearly choose zn so that fi is real;
a is real by the self-adjointness of H). Let (xn, zn, «„) be a complete or-
thonormal set in the subspace spanned by (xn, zn, yn). Further, for some
real bxl, bM and complex bit (»V= j) depending on n but such that \b(j\ ^ |B|,

Bxn = b11xn+Bltzn+513un+Buvn

Bzn = blsxn+bMzn+Si3un+B2lvn+5i6wn

where vn, wn complete the orthonormal set in {xn, zn, Bxn, Bzn, yn}. Also

for some numbers yt such that \yt\ ^ 1 (* = 1, 2, 3). Then

BHxn = (od

Hence

(i) aJfu+pbn = X+enyi = X say,

(ii) a512+^62a = eny2,

(iii) «5 M - | -^ M = eny3, 514 = - / J /«5 M , 626 = 0.

Now we suppose the imaginary part of X, J{X) =£ 0. Then if n is large
enough \S{X')\ ^ \\S{X)\—en\ > 0 and by (i) /? ^ 0 so that

bls = (X'-
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Further by (ii)

so that

For « sufficiently large, eB is arbitrarily small so that cc//3 is arbitrarily
small. Since H is bounded this implies a is arbitrarily small. Let y = {Hzn, zn)
then since \H\ ^ 1, y sS 1. Since H is positive fiz ^ ay < a. Therefore /? is
arbitrarily small. It follows that (612) = A'/fi is arbitrarily large, which is
impossible since B is bounded. Hence if ./(A) ^ 0 it is impossible for A
to belong to the continuous spectrum.

The complete statement of the spectral properties of these special
operators is

THEOREM 12.2. For operators of type A = BH where B, H are bounded
and self-adjoint and H is positive, the point spectrum and continuous spectrum
are real, the residual spectrum is empty.

The first two statements were proved in theorems 10.1 and 12.1 To
prove the final statement we observe that A* = HB which is symmetrisable
by the positive definite operator H~x. Hence by theorem 10.9 the result
follows.

13. Two general lefnmas and another proof of theorem 12.1

LEMMA 13.1. / / (xn) is a sequence such that \\xn\\ = 1 and for some non
real I \\AxxK\\ -> 0, then if H symmetries A, \\H*xn\\ -+ 0.

By assumption there exists a sequence of numbers en tending to 0 and
a sequence of elements yn with ||yB|| = 1 such that

Axn—hcn = enyn.
Therefore

(HAxn, xn) = X(Hxn, xn)+en{Hyn, xn).

The left hand side is real so that, taking imaginary parts

and therefore

Since H is bounded the right hand side tends to 0 with » which establishes
the lemma.

An immediate consequence of this is
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LEMMA 13.2. The sequence {xn) of Lemma 13.1. tends weakly to 0.

PROOF. For any x such that \\Mx\\ = 1

so that
lim (xn, Hx) = 0.

n-*oo

Since ||a;B|| = 1 for all n and the set of all Hx is dense in £ it follows that

Finally we use the first of these lemmas to give an alternative proof
of theorem 12.1. With the notation introduced there let us suppose again
that S(A)^0 and let |£| be the bound of B. Then H&ffasJI ^ |£|
\\Hxn\\ £ |B| \\Hixn\\. By equation (12.1)

BHxn = ten+enyn

so that

But by lemma 13.1, if J{X) # 0, | |#izn|| -> 0 so that by the above
I -> 0, which would require |A| = 0 contrary to hypothesis.

14. The relationship between symmetrisable operators and certain
self-adjoint operators

We now proceed to generalise the representation given in section 4
for symmetrisable operators in U,,. We showed there that a symmetrisable
operator was related by a process of projection to a Hermitian symmetric
or self-adjoint operator. There were two representations, one applying to
an operator whose symmetrising operator had lower bound 1, and the other
— A* in that case — with upper bound equal to 1. Since we are dealing
with operators symmetrisable by a bounded operator we shall evidently
wish to generalise the procedure adopted for A* in theorem 4.1. We use the
following notation:

§ is the Hilbert Space in which H and A are defined.
§2 = § + $ ' is a Hilbert Space containing §, £' as subspaces of "equal

dimension" and as orthogonal complements.
§' orthogonal complement of § in §s. (Is a Hilbert Space isomorphic with

$)•
S Symmetric unitary operator (Symmetry for short) in ip2 which transforms

§ into §' and §' into £.
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H Self-adjoint positive definite operator in £ with bound less than 1.
(The requirement of strict inequality is a convenience which does
not affect the generality of the results).

/ Identity operator in |>2.
IQ Identity in 4? (when it is obvious that we require the restriction of /

to § we shall drop the subscript).
P§, Pe» Projections with range $, §' respectively.
Vx = (P§Hi+P§>S(I§—H)i)P§ operator whose restriction to § as domain

is isometric.
U Range of Vx.
V2 == (—P${I§—H)i+P$'SHi)SP$> operator whose restriction to §' as

domain is isometric.
U' Range of operator F2.
Pu> P\V Projections with range U, U' respectively.
Px Restriction of Pu to domain §.
v = Fx+r2.
/, g,- • • Elements of §8.
x, y, • • • Elements of $.
*', y', • • • Elements of §'.
/ = x+x' for all / e £a with x = P§/, x' = P§'f. x+x' will be called the

resolved expression for /.
It is evident by inspection that Vx and F2 are isometric if restricted

to § and $' respectively and hence U, U' are closed. We prove that their
ranges are orthogonal. Let / and g be any elements of §4 and let their
resolved expression be x-\-x' and y-\-y'. Then

(^i/. Vzg) = (Hix+S(I$-H)ix, -(I$-H)iSy'+SHiSy')

= -({lQ-H)iHix. Sy')+(Hi{I$-H)ix, Sy')

= 0

since (/§—H)l and Hi commute. We have also used the fact that (/§—H)l
is self-adjoint which is true since the bound of H is less than 1.

To prove V = V1+V\ unitary similar standard arguments are used
(Cf. [4] p. 74-5).

It can similarly be proved that Pu can be expressed explicitly by

(14-1) Pu =

(Cf. [4] p. 75—6).
It follows by inspection that

(14.2) H =

or what is the same thing, for any element x of
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(14.3) Hx = P$PxiX.

We shall need some lemmas.

LEMMA 14.1. Let <S>A denote the domain of A which is dense in §. Then
P\nC$)A) is dense in 11. Both Un§ and U n l p ' are reduced to [0].

Suppose / 6 U and / orthogonal to Pu(®x)- Then for all x e'S)A

{f, PUx) = 0.

But f = Vxy for some y of § and the contraction of PJJ on § is Pt = V-^Hi
so that

(Viy, VtHlx) = 0
and hence ,

{y, Hix) = (Hiy, x) = 0

for all x € <£)A and hence Hiy = y = 0. The last remark follows from the
fact that both Hi and (/§—H)i are strictly positive definite.

We have also the following remark which we write as

LEMMA 14.2. The manifold U is the graph of the operator T = (I—H)iH~i
if § is regarded as the domain space and & as the range space.

This is obvious if we recollect that tl is the range of F x . Hence if
/ e U then

f = Vxz

for some ze!g; it follows that

x= P$f = Hiz

Tx = P§>f = {I-H)iz

= (I-H)iHix.

It follows from this that H~i is unbounded if and only if U. is asymptotic
to §' , i.e. if for every e > 0 there exist vectors xeXL, y e § ' such that
IWI = llvll = i. l l*-y| | £ e but u n $ ' = [0].

We now proceed to define an operator K in U which is to be related
to A as follows.

Let / = P\xx for any xe^S>A, A symmetrisable by H, then

(14.4) Kf = PuAx

We now proceed to discuss the properties of K. We begin with

LEMMA 14.3. / / K is defined by (14.4) then it is a symmetric operator
in U.

The domain of K is clearly PuC$)A) which is dense in U by lemma 14.1.
Let / and g be any two elements of Pu (Su), / = P\xxa.ndg = P\xy say.Tb n
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(Kf,g)=(PUAx,Pny)

x, y)

x, P§y)

x, y) by (14.3)

= (HAx, y)
= (x, HAy)
= {x, P§PuAy)

Before investigating whether K is maximal and under what conditions K is
self-adjoint we show how K is related to A*.

THEOREM 14.1. If K is defined by (14.4) then the relations

(14.5) M = i V ' fe®«
K ' A+u = v = P§Kf
defined the operator A+ whose domain is HC&A) which is dense. Also A+ = A*.

We can put / = Pyar where x e 3)^. Then

u = P§Py\x
= Hx

A+u = P§PnAx
= HAx

and
A+Hx = HAx

in accordance with Definition 8.1. for all x belonging to 2)^. The last two
statements in the theorem follow from lemma 8.3 and Remark 8.1.

Remark 14.1. (14.4), the definition of K implies

K = VHiAH-lV* = VH-iHAH-lV*.

It follows that K is closed if and only if H~iHAH~i is closed. By
virtue of the fact that HA is closed and H~l is bounded below it follows that
H-iHA is closed (Cf. Dixmier [1] Proposition 3.3). It follows by Dixmier's
theorem 3.5 that

LEMMA 14.4. IfKis defined by (14.4) it is closed if and only if Hixn -> 0
andHiAxn = H~lHAxn -*• 0 implies xn -* 0.

We now come to discuss possible extensions of K.

LEMMA 14.5. K cannot have any elements of extension in P\x(&)-
For if g e Pu(l>) t n e n S = PuV for some y and for all x e %A
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(KPUx, Pny) = (PyxX,K*PUy)

which by the reasoning of the proof of Lemma 14.3 implies

for all x belonging to %A so that since HA is self-adjoint y e %A and
= HAy = P§K Pny.

We now discuss the nature of possible extensions of K and the relation-
ship of such extensions to A and A*. The discussion is exploratory but con-
tains a proof of the statements in theorem 14.2.

By Lemma 14.4 K may not be closed. If Pu(&) # U, we can have

(14.6) * * * . = / . - /

If / does not belong to PUC&A), K is not defined there. But we have seen
that (14.6) is actually impossible for / in Pu(£)- It follows that we can
extend K to a closed symmetric operator R = K** such that the restriction
of R on Pu(&) is K as defined by (14.4). It is evident that P§f e 2)^.. For

^f implies

implies P§Kfn = A+P§fn -> P§g

which shows that P§fe'5)A. and A*P§f = §g
If R is not maximal then R is clearly not self-ad joint and R ^ R*.

It is of interest to discover whether R* (= K*) is related to .4*.
Let / be any element of <S)K and g be an element of 5)K, such that

K*g = h.
Then

/ = Pux = Hx+S(I-H)lHlx,

Kf = P^Ax = HAx+S{I-H)iHlAx.

Since g, h e U. there exist elements y, z of § such that y = Hl«, z = Hiv and
«/, h = z+S(I-H)iH-lz. Now

= (HAx+S{I-H)iHiAx,y+S{I-H)iH-iy)

= (4*. y)

(f,K*g) = (Hx+S{I-H)iHix, z+S(I-H)lH~iz)

= (Hx,z) + ((I-H)x,z)

= {x, z).

Hence for all xe%A

{Ax, y)=[- r)
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so that z = A*y. But y = P§g, z = P§K*g from which we conclude that
every element g of 5)K. is such that P§g belongs to %A, and P§K*g =

Conversely let y be any element of %A. such that y = P§(g), A*y
Py\h where g, h e 11. Then for all x e %A

(Ax, y) = (x, A*y).

Since A*y = P$h, A*yefHHi and

h = A*y+S{I-H)tH-lA*y.

Then for every / e 3)x and hence / = P\ix, say,

(Kf,g) = (HAx+S(I-H)iHiAx,y+S(I-H)iH-iy)

= {Ax, y),
(f,h) = (Hx+S(I-H)iHix,A*y+S(I-H)iH-iA*y)

= (Ax, y).

Hence K*g = h and we have

THEOREM 14.2. / / A and K are related as in (14.4) then to every g be-
longing to 2)K. there corresponds a y belonging to 3)^. such that P§g = y,
P§K*g — A*y and to every y in %A. which is such that y and A*y belong to

there corresponds a g such that P§g = y and g belongs to %K. and
= A*y.

Remark 14.2. It follows from this that K* = VH~iA*HiV*.
We are now in a position to prove

THEOREM 14.3. If A is symmetrisable then K as defined by (14.4) is
essentially self-adjoint, i.e. R. = K** = K* in U.

If K has a deficiency index other than (0, 0) there exists an / in U such
that K*f = A/ for some A with S(X) ^ 0. Let x = P§/ then by Theorem 14.2.

A*x = foe for some X with J(X) ^ 0

which is impossible by theorem 10.8. We conclude that K* = K**.
We shall show presently that K ^= R in general.

Remark 14.3. The self-ad jointness of HA was only appealed to in the
last theorem. Lemma 14.5 depends on the fact that HA is maximal symmetric,
the other results are true for any A such that HA is symmetric.

It appears worthwhile to investigate, briefly, the effect of relaxing the
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symmetrisability condition and allowing HA to be merely symmetric. We
can for instance prove

THEOREM 14.4. / / A such that HA is maximal symmetric then K as
defined by (14.4) is such that R = K** is closed maximal symmetric in U.

To prove this a slight modification of theorem 10.8 is required. The
argument used in the proof of theorem 10.8 stands except for the last six
lines. Here we use the fact that if HA is maximal $${((HA)*xm, xm)} is either
non-negative or non-positive (cf. Stone [7] Theorem 9.6) and this together
with \(xn, (HA)*xn)—X(Hxn, xn)\ ^ e for arbitrary e and sufficiently large n
leads to the conclusion that A * can have eigenvalues only in the upper or the
lower half of the complex plane but not in both. By repeating the argument
in the proof of Theorem 14.3 it is shown that K*f = Xf is only possible for
/ ^ 0 if J{X) ^ 0 (or J(X) ^ 0). This proves that R is maximal.

Still retaining the generalised definition of symmetrisability we add
some further remarks about the relationship between A and K. The definition
(14.4) is seen to imply on substituting for P u : A = H~iV*KVHi. (Under
fairly general conditions, as we have seen, we can take R in place of K).
By inspection V*KV = F, say, is a symmetric operator in |>. Clearly, since
V is unitary, F is self-adjoint or essentially self-adjoint if and only if K is
likewise. In any case

(14.7) A = H-iFHl

for some symmetric F. If HA is closed, then

(14.8) HA = HlFHl.

It appears natural to wonder whether choosing F in such a way that (14.8)
is self-adjoint (or maximal symmetric etc.) necessarily leads to symmetris-
able A (or A such that HA is maximal symmetric etc.) ? The answer is in the
negative. For let F be the "elementary symmetric transformation" defined
by i(I-\-U)(I—U)'1, where U is the isometric transformation which takes
et into e{+1 for some complete orthonormal system (e{) in §. Let Hi =
\{I-U){I-U*). Then

HiFHi = Jz{I~U){I-U*)(I+U){I-U)-l[I-U){I-U*)

which is bounded symmetric and therefore self-adjoint. But since F is
only symmetric in Jp, K is only symmetric in U so that by theorem 14.3
A cannot be symmetrisable. It is evident in any case that A = H~lFHi is
unbounded so that HA cannot be equal to HiFHi.

There is a representation of A* equivalent to (14.7). To establish it we
use
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LEMMA 14.6. If A is closed B bounded and closed and %AB and %A

dense then (AB)* = B*A*.
By Dixmier [1] Proposition 3.3, AB is closed. Let (AB)* = C. For all

x e %AB, ye%c: ((AB)*y, x) = (y, ABx). For all z in the domain of A*
and u in the domain of (B*A*)*

(B*A*z, u) = (A*z, Bu) = (z, (B*A*)*u).

Hence Bu is in the domain of A** = A and (B*A*)* = AB sincealways

(B*A*)* D (AB)**. Therefore (B*A*)** = (AB)* or (AB)* = B*A*.

COROLLARY. IfGis also bounded, then (GAB)* = (AB)*G* = (B*A*)G*.

PROOF. For all a; in %GAB = %AB and all y in 3)(G^B),

(*, (GAB)*y) = (GABx, y) = (ABx, G*y^

= (x, (AB)*G*y) = (*, (B*A*)G*y).

We can now construct A* explicitly.
The analogue of the operator A+ defined in Section 8 for symmetrisable

A is defined by A+H — (HA)*. If HA is maximal symmetric then the proof
of theorem 8.2 together with Remark 8.1 stands with obvious minor modifi-
cations so that 4̂+ = .4*. By (14.8) and the corollary to lemma 14.6

(HA)* = HiF*Hl
so that

A+ = (H~iF*)H-i
and

(14.9) A* = (HiF*)H-i

= m~F*H-i
since the range of H~i is 9i.

15. Remarks on the spectrum

The construction of section 14 can be expected to throw some light on
the continuous and the residual spectrum of A. If the operator R is self-
adjoint, i.e. A is symmetrisable, then every / of II is in the range of R—U
for all non-real X. Let Px be the restriction of Pu to the domain § then X
will belong to the resolvent set of A if and only if for all / in the range of Px

there exists a g in the range of Px such that

It can be observed immediately that if the domain or range of R is contained
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in the range of Pl then a non-real X does not belong to the continuous spec-
trum of A. For if / = Pxx and either g or Kg belong to Px %) then the other
one must also, and in consequence g = Pxy and the range of P^X(S—XI)
i.e. (A —XI) is §. The same argument shows that any X in the resolvent set
of R is in the resolvent set of A.

We have, however, the following

Remark 15.1. The condition %g CfRP implies P^SQ) = 11 which implies
H~i is bounded. For 2># C9*Pi implies K = R by lemma 14.5 and ^RKC^Pi

by definition (14.4); but 2>JJ u 3lx = U when 1? is self-adjointx so that
3}PiDU; by definition (14.1) SRFi = Vt(mHi) so that 3^* = F*(U) = §.
(A more general statement is contained in lemma 15.1).

The above remarks suggest that it may be profitable to study operators
K or R of the form VHlBHW* where B is at least symmetric. We shall
call those K of type P. By Remark 14.1 such operators correspond to opera-
tors A for which BHl = AH~l and hence A = BH. (By Corollary to
lemma 14.6 such an A is symmetrisable (by H) if HBH = (HB*)H. When
R is of type P, we have 9t/? C 5RPi so that the resolvent set of R is the resol-
vent set of A, the continuous spectrum is real and the residual spectrum
empty. An example of such operators are operators of the type A = BH
for which B is bounded. (K ^ R in general, in this case.)

A = BH may be symmetrisable for B merely symmetric as is shown by
the following example. Let U be the isometric transformation defined to-
wards the end of section 14 (i.e. Uet = ei+1). Let B = i{I+U)l(I—U),
H = \{I-U){I-U*) then A =±(I+U)(I-U*), HA =^(1-17) {U-U*)
(I—U*), which is self-adjoint. Both A and HA are bounded. It can be
easily verified that K = VHiBHiV* is unbounded and that *', but not —i,
belongs to the continuous spectrum of A. Clearly K is not closed and R is
not of type P. This is another example of symmetrisable operators with a
nonreal continuous spectrum.

When R is merely symmetric, i.e. A such that HA is symmetric, then
for some geU and some X, with J{X) ^ 0, K*g = Xg. It follows from
theorem 14.2 that y = P§g is an eigen-element of .4* and A*g = Xg and
consequently X is in the residual spectrum of A. This reasoning can be
extended.

THEOREM 15.1. If A* has an eigenvalue X with J{X) > 0 (< 0) and with
eigen-element y in %{Hi then the whole half-plane S(X) < 0(> 0) belongs to the
residual spectrum of A.

1 It is evident that since the graphs of K and —K-1 (K'1 may be multivalued in this
-context) are orthogonal complements the sum of the projections of these graphs onto the
domain space must be the whole domain space. (Cf. Dixmier [1] Remark (R), in particular
•equation (2) p. 19.)
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For any y = Hlx we have, g = Vxx where g eVL and y = R§g. Hence
g is a characteristic element of K* with characteristic value A where J(X) > 0
(< 0). By the properties of the symmetric operator K it then follows that the
whole half-plane ./(A) > 0(< 0) is in the point spectrum of K* and hence of
A*.

For symmetric K it may be worth-while to make some comments on the
case when K is closed. The range of (K—XI) is contained (in the wide sense)
in the range of Pt. Hence if the range of Hi is not closed then for all A
there are elements of II not in the range otKx, i.e. the resolvent set is empty.
It follows that K cannot be maximal symmetric for in that case one of the
half-planes ./(A) > 0(< 0) would belong to the resolvent set. This, in
conjunction with theorem 15.1 leads to

LEMMA 15.1. If A is an operator such that HA is maximal symmetric
then the corresponding K as defined in (14.4) is closed only if H~i is bounded.

Lemma 14.4 is therefore trivial for all A such that HA is maximal sym-
metric. The remarks made relating the continuous spectrum of A to the range
of K apply, with obvious modifications, to the case when HA is merely
symmetric.

The results obtained about the spectrum of symmetrisable operators
are summarised in

THEOREM 15.2. Let A be a symmetrisable operator in §, H its symmetris-
ing operator, K the operator in VL defined by (14.4) and P , the restriction
of Pu to domain £. Then

(i) the point spectrum of A and A* (if it exists) is real, the point spectrum
of A* contains the point spectrum of A;

(ii) K is self-adjoint; K = R if and only if H~i is bounded;
(iii) if (R—XI)f e SRP implies f e 9tP then the whole spectrum of A is

restricted to the real axis and the residual spectrum is empty;
(iv) there exist symmetrisable operators for which the continuous spectrum

is not restricted to the real axis;
(v) by (i) the residual spectrum of A cannot include A if S(X) =£ 0;
(vi) class (iii) includes all A for which SRtf C JP in particular class (ii)

and all operators A = BH where B is bounded, self-adjoint.

A similar theorem could be stated for A such that HA is merely
symmetric.

16. Extension of the space $

It was mentioned in section 9 that a possible way of dealing with a
symmetrisable operator A in § is to introduce in § a new inner product and
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hence a new metric which would make A symmetric. This procedure will
now be described in detail. We continue to assume the symmetrising operator
If to be positive, self-adjoint and have bound less than 1.

Let xn e 9tHi and /„ = H~ixn. Let §+ be the linear space consisting
of all elements such as /„ (i.e. Jp) and possibly certain others. In §+ an
inner product is defined by

(16.1) V.gh=(Hlf,Hig)

to begin with for all /, g in §; this also supplies the metric for §+ . Then § +

satisfies all the Hilbert space axioms except possily completeness. The
extension of § follows standard lines so we shall only sketch the procedure.
If Hi has no positive lower bound then $lHi is not closed although it is
everywhere dense. Let x be an element of § not beloning to SR#j. Let (xn)
be a sequence of elements of SRHi converging to x. Let /„ = H~ixn. Then

II/.-/JH = (**(/.-/.). Hi(fn-fM))
= ll3n-3mll2->-0 as «,m->oo.

Therefore the sequence (/„) converges in §+ but it cannot converge to an
element of § since x 4 9W a*"* Hi is closed in §. Hence we must add an
ideal element / • to § so that § + D § u {/*}, if § + is to be complete. Further-
more Hi is extended to /* by putting Hif* = x and then (16.1) is extended
to {/•}. This process of extension is carried out for all sequences (/„) which
converge in the §+ metric. If this is done $+ is complete. For suppose there
exists a sequence containing ideal elements f* such that ||/J—/„!!+-»• 0 as
n, m -*• oo. Suppose the limit of the sequence f* is g* which does not belong
to §+. Now for every f* there exists a sequence (/„ „) of elements of §
such that l im^ J|/B>1>-/:||+ -> 0 so that

if m, n, p, q are large enough. Hence a simple sequence can be picked out of
the double sequence (/„_„) which converges to an element of $+, /* say.
Clearly f* also converges to /• and g* = /*. It follows that $+ is complete
and § is dense in ip+ (in the §+ topology). The extended Hi is everywhere
defined on Jp+ and its range is §. Also for all /, g e §+

\\Hf\\X = (Hf, Hf)+ = (Hif, Hif) <= \\EPHif\\ \\Hif\\

<\\Hif\\* (since Hife§)

= I I/I I I
and

(#/. g)+ = (HiHf, Hig) =
further
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||ff/*||+ = 0 =• (HHif*, HHhf*) = 0 => Hif* = 0

=> (#*/•. .»*/•) = | | /* | | +=0

so that H has bound less than 1, is self-adjoint and positive definite.
All the operators like Vt, V%, P defined at the beginning of section 14

were defined explicitly in terms of H. Therefore they can be extended by
merely extending H since H still has the same bound.

Let A be any operator symmetrisable by H. Its definition in $Q ensures
that it is properly defined in §+ for

LEMMA 16.1. If % is dense in $) it is also dense in Jp+.
Suppose the lemma false. Then there exists an element /* in §+ such

that {x, /•)+ = 0 for all x e 2). But this implies, since Hf* e §,

{x, Hf*) = 0 for all xe%,

which is impossible if % is dense in § unless /* = 0.
Hence A is defined on a domain dense in Jp+. Further if /, g e 2)^ then

(Af,g)+ = (HAf.g) = (/, HAg) = (/, Ag)+

so that A is symmetric in £+, in the §+-topology. We must introduce a
distinctive notation for the adjoint in §+ and we put T* to denote the ad-
joint of T, viz.

where this relation is defined. When / e $ this leads to

(77. Hg) = (/, HTXg)

so that T*H D # J J with equality when T is defined only in £. When A
is symmetrisable in § (and only defined in §) HA+ = A*H oi A+ = A
on §. If ̂ 4 is not closed or not self-adjoint in § + then the elements of extension
must be ideal elements. This is because fnXf, AfnXg, where/„, /belong
to £, would imply not only

(4a;,/„)+ = (a;, Afn)+ for all xe%A, and for all »,

but in particular going to the limit

(HAz.f)=.(x.Hg)

and (HA)*f = HAf = Hg, since HA self-adjoint in $ and hence / e %*.
However, results such as these can be obtained from the analysis of

section 14. For it follows from the fact that #*($+) = § and Pu($+) =
V1Hi(^+) = V^Q) = II that the operator P\x with domain restricted to
§+ defines a one-one correspondence between all of § + and all of U. There-
fore relations such as (14.4) will define operators in U by operators in § +
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and conversely. Further by using the relations A± = H^A*H, and K =
VHiAH-iV*,K* = VH-hA*HiV* with the extended definitions of V
and Hi it is seen that K and K* correspond to A and A*. Hence if K is
symmetric or self-adjoint in It, A is symmetric or self-adjoint in §+. Further
if K has no extensions on P\X(!Q)> A has no extensions on §. Also if K is
closed in XL, A is closed in §+ since a sequence /„ converges in § + if and only
if Pfn converges in It. Finally by theorem 14.3.

THEOREM 16.1. If A is symmetrisable in § then A is essentially self-
adjoint in §+.

The approach to symmetrisable operators by considering them in the
extended space §+ (in the §+-topology) was essentially the method used by
K. O. Friedrichs [2] in his analysis of semi-bounded operators. By the above
remarks an analysis of operators in §»+ is equivalent to an analysis of corre-
sponding operators in It. In sections 14 and 15 an attempt was made to
relate the properties of such operators to those of operators in |>. It became
evident there that the properties that had the most crucial bearing on the
basic operator A in § were the domain and range of the induced operator
R. in U.s These properties have their exact equivalents in the corresponding
operators in § + (the extensions of A to §+). The advantage, if any, in con-
sidering K in It rather than its equivalent in §+ is the transparent relation of
K not only to A but also to A *, so that properties of the three operators could
be studied simultaneously. The relation between the properties of operators
A and their extensions in §+ to the properties of A in § is exactly analogous
to the relation of the properties of K and its extensions to the properties
of the corresponding A in §.
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