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Abstract

Let H be a linear unbounded operator in a Hilbert space. It is assumed that the resolvent of H is a compact
operator and H — H* is a Hilbert—Schmidt operator. Various integro-differential operators satisfy these
conditions. It is shown that H is similar to a normal operator and a sharp bound for the condition number
is suggested. We also discuss applications of that bound to spectrum perturbations and operator functions.
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1. Introduction and statement of the main result

Two operators A and A are said to be similar if there exists a boundedly invertible
bounded operator T such that A = T'AT. The constant k = |[|T~!||||T|| is called
the condition number. The condition number is important in applications. We refer
the reader to [5], where condition number estimates are suggested for combined
potential boundary integral operators in acoustic scattering, and [23], where condition
numbers are estimated for second-order elliptic operators. Conditions that provide
the similarity of various operators to normal and self-adjoint ones were considered by
many mathematicians, cf. [1, 4, 8, 14—18, 21] and references given therein. In many
cases, the condition number must be numerically calculated; see for example [2, 20].
The interesting generalizations of condition numbers of bounded linear operators in
Banach spaces were explored in the paper [6].

In the present paper we consider a class of unbounded operators in a Hilbert space
with Hilbert—-Schmidt Hermitian components. Various integro-differential operators
belong to that class. We suggest a sharp bound for the condition numbers of the
considered operators. It generalizes the bounds for the condition numbers of matrices
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from [10, 11]. We also discuss applications of the obtained bound to spectrum
perturbations and norm estimates for operator functions.

Let $ be a separable Hilbert space with scalar product (., .), norm ||.|| = v(.,.) and
unit operator /. For a linear operator A in $, Dom(A) is the domain, A* is the adjoint
of A, o(A) denotes the spectrum of A, A~! is the inverse to A, Rj(A) = (A — 1) (1 ¢
o (A)) is the resolvent, A; := (A — A*)/2i and A;(A) (k =1,2,...) are the eigenvalues
of A taken with their multiplicities and enumerated as [1;(A)| < |4;.1(A)]. By SN,
(1 £ p < o), we denote the Schatten—von Neumann ideal of compact operators K
with the finite norm N,(K) := [tr(KK*)?/?]'/P. The set SN, is the Hilbert-Schmidt
ideal.

Everywhere below, H is an invertible operator in $ with the following properties:
Dom(H) = Dom(H"), there exists some fixed value p € [1, c0) such that

H™' € SN, and, in addition, H; € S N,. (L.1)

Note that instead of the condition H~' € SN »» in our reasonings below, one can require
the condition (H — al)™! € SN, for some point a ¢ o-(H). Since H™! is compact, o-(H)
is purely discrete. It is assumed that all the eigenvalues A ;(H) of H are different. For a
fixed integer m, put
Su(H)= _inf |A,(H) — Au(H).
Jj=12,..;j#m

It is further supposed that

© 412
C(H) = [; 53(1{)] < oo, (1.2)

Hence, it follows that

S(H):=inf,,(H)= inf  [A;(H) - 4(H)|> 0.
m J#k;jk=1,2

.

Denote

0 12
8(H) = V2 N3(HD) = ) llm ACEDE| < VEN(HD)

k=1

gk+1(H) 5 )
T(H) := ———— and y(H):=exp [{"(H)T(H)].
kzz(; Vk!\0k(H)

It follows from condition (1.2) that &§;(H) ~ j**'/ for some a > 0. That is, &§;(H)
increases more rapidly than j'/2. So, we can interpret this condition to mean that the
eigenvalues of H are in some sense widely separated. Note also that g(H) is in some
sense a ‘measure of departure of H from normality’.

Now we are in a position to formulate our main result.

TueorEM 1.1. Let conditions (1.1) and (1.2) be fulfilled. Then there are an invertible
operator T and a normal operator D, acting in 9, such that

THx=DTx (xe€Dom(H)). (1.3)
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Moreover,
kr =TT < y(H).

The proof of this theorem is divided into a series of lemmas, which are presented
in the next three sections. The theorem is sharp: if H is normal, then g(H) = 0 and we
obtain y(H) = 1.

To illustrate Theorem 1.1, consider the case H =S + K, where K € SN, and S is a
positive-definite self-adjoint operator with a discrete spectrum, whose eigenvalues are
different and

Aj1(S) = Ai(S) = boj* (bg=const>0;a>1/2;j=1,2,...).

It can be directly checked that the condition ||R,(S)||||K]| < 1 implies A ¢ o(H). Since
IRL(S)Il < p~'(S, A), we have A ¢ o-(H) provided ||K|| < p(S, A). Hence, ||K|| > p(S, 1)
for any u € o(H). This implies the relation

Slipirjl,f [ (H) = 4;(S)] < [IK]l.

Thus, if
2Kl < irjl,f(/lm(S) = 4;(S)),

then 8(H) > inf j(1,41(S) — 4,(S) — 2|IK])) and (1.2) holds with

{(H) <4(S,K), where £i(S,K) := Z(/ljﬂ(s) —;(8) = 2lKI)? < 0. (1.4)
J=1
ExampLE 1.2. Consider in L?(0, 1) the problem
—u”"(x) + (Ku)(x) = Au(x) (O<x<1); u@)=u(l)=0,
where K is a Hilbert-Schmidt operator. So, H is defined by H = —d*/dx* + K with
Dom (H) = {v € L*(0,1) : v € L*(0, 1), »(0) = v(1) = 0}.

Take S = —d*/dx* with Dom (S) = Dom (H). Then A;(S)=r*;* (j=1,2,...) and
j41(S) = A;(S) = 7*(2j + 1). So, if 2||K|| < 372, then §(H) = 3> — 2||K|| and, due
to (1.4),

PH) < Y (PQ2j+ 1D = 2IKID 7 < oo,
j=1

In addition, g(H) < V2N, (K). Now one can directly apply Theorem 1.1.
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2. Auxiliary results

Let By be a bounded linear operator in $ having a finite chain of invariant

projections Py (k=1,...,n;n < c0):

0CPIHCPHC---CP,H=9 2.1
and

PkB()Pk = BUPk (k = 1,...,]’1). (22)

That is, Py By maps P;$ into P;$) for each k. Put
APy =Py — Py (Pp=0) and Ay = AP ByAPy.
It is assumed that the spectra o"(A;) of Ay in AP.$ satisfy the condition
cA)NoA))=0 (#kjk=1,...,n). (2.3)

Lemma 2.1. One has .

o(Bo) = |_J o4,

k=1
Proor. Put .
D:ZAk and W=By-D.
k=1
Due to (2.2), we have WP, = P,_1WP;. Hence,
W = WP, = W"'P,_ WP, = W' 2P, ,WP,_ WP,
= WP, W2 = W' 3P, sW3 = ... = PoW" = 0.
So, W is nilpotent. Similarly, taking into account that
(D-AD""WP, =D - AP WP, = Po (D = A" WP,
we prove that (D= AD"'W)" =0 (A ¢ o(D)). Thus,
Bo=AD'=D+wW=-aD"'=U+D-aD""W) YD -an™!

n—1

= Z(—l)k((b —AD'WKD - A
k=0

Hence, it easily follows that o (D) = o(By). Since Ay are mutually orthogonal, this
proves the lemma. O

Under conditions (2.1) and (2.2), put
Or=1—- P, By = QkBoQr and Cy = APy ByOy.

Since B is a block triangular operator matrix, according to the previous lemma

n

o(B)) = U oA (j=0,....n).

k=j+1

We need the following result.
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THeEOREM 2.2 (Rosenblum [22]). Let $ be a Hilbert space and let A, B, Q be bounded
linear operators on ). Suppose that 0(A) N o(B) = 0. Under these conditions, the
operator equation AX — XB + Q = 0 has a unique solution X given by

1
X=— f @l -A)' Q@ - B dz,
27Tl r
where U is a piecewise-smooth closed curve with 0(A) C ext(I') and o (B) C int(T').

Due to (2.3),
ocB)NocA)=0 (=1,...,n).

Under this condition, according to the Rosenblum theorem, the equation
AX;-XBi=-C; (j=1,...,n—-1) 2.4)

has a unique solution (see also [7, Section 1.3] and [3]).

Lemma 2.3, Let condition (2.3) hold and X; be a solution to (2.4). Then

(I =X = Xp2) - (I = X)) Bo (I + X)) + X2) -+ (I + Xp1)
=A;+As+--+A,=D. (2.5)

Proor. Since Xj = APijQj, we have XfA.f = B]'X/‘ = XjCj = Cij =0. Clearly,
Q;BoP; =0. Thus, By = A| + By + C; and, consequently,

(I =X)Bo(I +X1) = - X1)(A1 + Bi + C))( + X))
=A1+B+Ci-X\B+A X, =A, + B;.

Furthermore, B; = A, + B> + C,. Hence,

(Q1 — X2)B1(Q1 + X2) = (O1 — X1)(A2 + By + C2)(Q1 + X7)
=A)+ B, +Cy — XoBy + Ay X, = Ay + Bs.

Therefore,

(I =X2)(A1 + B)U + X2) = (P1+ Q1 — Xo)(A1 + B))(P1 + Q1 + X2)
=A; +(Q1 —X2)A1 + B1)(Q1 + X3) = A1 + Ay + By,

Consequently,

(I = X)(A1 + B + X2) = (I = Xo)(I = X1)Bo(I + X)) + X3)
=A| +A, + B;.

Continuing this process and taking into account that B,_; = A,,, we obtain the required
result. O
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Take
f’,, =T+ X)UI+X) -+ X,-1). (2.6)

It is simple to see that the inverse to I + X; is the operator I — X;. Thus,
T, = U= X)d = Xo2) - (L= X0)
and (2.5) can be written as
T, BT, = diag(Ap)}_,.
By the inequalities between the arithmetic and geometric means, we get

n—1

n—1 n—1
A 1
T, g| | 1+ 1X) < (1 —E X 2.7
1711 k:l( + |1 Xkl ( +”_1k=1 [ k”) (2.7)

and

n—1
R 1 n-l
-1 <( ) ) )
I < (14— D> Il 2.8)
k=1
3. The finite-dimensional case

In this section we apply Lemma 2.3 to an n X n matrix A whose eigenvalues are
different and are enumerated in the increasing way of their absolute values. We define

S(A) = min  [2;(A) - 4(A)| > 0. 3.1
k=1, ik j

Hence, there are an invertible matrix 7,, € C™" and a normal matrix D, € C"™" such
that
T;'AT, = D,. (3.2)

In this case,
n 12
8= V2| N3(AD = " lIm AP| < VEN: (4,
k=1
As is shown in [9, Theorem 2.3.1 and Lemma 2.3.2],

g(A) = N3(4) = Y LW(A)P < NJ(4) - |tr(4%). (3.3)
k=1

Furthermore, for a fixed m < n, put

n—1

1/2
o)=L W) =l = (3 )

-2

k+l(A)
T,(A) = Z; NE
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and N
A)T,(A) "
Yu(A) = (1 + M) _
n—1
We need the following result.

Lemma 3.1. Let condition (3.1) be fulfilled. Then there is an invertible operator T,
such that (3.2) holds with kr, := NT T < YalA).

Proor. Let {e;} be the Schur basis (the orthogonal normal basis of the triangular
representation) of matrix A:

al app a3z - A

0 a a -eea
A= 22 23 2n
0 0 0 - ay

with a;; = 4;(A). Besides, according to (3.3),

—_

k=1

Dl =)

=

n—

o~
||

(see also [9, Lemma 2.3.2]). To apply Lemma 2.3, take P; = Zizl(., ever, By =A,
AP = (., ex)ey,

Q;= Z (ener, Ap=APAAP, = A (A)APy,

k=j+1
Aj+1,j+1  Qj+l,j+2 " Qj+ln
Bj=0Q,AQ;= (.) RS
0 0 . Ay
Cj= AP./'AQJ':(“JLJH ajjr2 - aj,n)
and
D,, = diag(A,(A)). (3.4)

In addition,

_ (A G _ () G _[AmA) Cjn
A_( ¢ Bl), Bl_( ¢ Bz),...,B/_( o

(j <n). So, Bj is an upper-triangular (n — j) X (n — j) matrix. Equation (2.4) takes the
form
4;A)X; - X;B; = —-C;.

Since X; = X;0;, we can write X;(1;(A)Q; — B;) = C;. Therefore,
X;=C;(1;(A)Q; - B)™". (3.5)
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The inverse operator is understood in the sense of subspace Q;C". Hence,
IX1l < IC, 1A, Q5 = B)~I.

Besides,

n
2 2
IClI” = E |t jil

k=j+1
and, due to [9, Corollary 2.1.2],

n—j—1 k
g (Bj)
(A;(4)Q; - B)~'ll < )
S kz::j VEI8k1 (4)

But g(B;) = g(Q;B;Q;) < g(A) (j = 1). So,

n—1 k
(A0 — B) Y[ < £ __d)
410, = Bl s a)  8A5A)

and thus
IC)llTn(A)

1X;1l < .
8(A)6;(A)
Take T, = T, as in (2.6) with X, defined by (3.5). Besides, (2.7) and (2.8) imply

n—1

-1 T,(A) & lIC !
IT, ||<(1+ _IZHXH) S(“gm)(n_l) - 5,<A))

and

n-1 n—1
-1 < (1 Ta(A) ”C/” .
17 < ( T 2] W))

But, by the Schwarz inequality,

j=1 j=1 k=1
In addition,
n—1 n
Z IICIP lal” = g(A).
=1 k=k=j+1
Thus, ||T,|[> < y.(A) and ||T;'|* < y,(A). This proves the lemma. o

It should be noted that a result similar to Lemma 3.1 has been established in the
paper [12], but Lemma 3.1 is sharper than that result.
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4. Proof of Theorem 1.1

Levma 4.1. Under the hypothesis of Theorem 1.1, operator H™' has a complete system
of root vectors.

Proor. For any real ¢ with —ic ¢ o(H) with the notation Hg = (H + H)/2,
(H+icDh™" = +i(Hg + ic)™ " H)) Y (Hg + icD~".
Recall the Keldysh theorem, cf. [13, Theorem V. 8.1] and [19].

Tueorem 4.2 (Keldysh). Let A =S (I + K), where S = S* € SN, for some p € [0, o)
and K is compact. In addition, from Af =0 (f € 9) it follows that f = 0. Then A has
a complete system of root vectors.

Take into account that (H + icl)™" = H™'(I + icH™')™" € SN,. So, (Hg +ic)™' €
SN, and, by the Keldysh theorem, operator (H + icI)~!" has a complete system of root
vectors. Since (H + icI)™' and H~' commute, H~' has a complete system of root
vectors, as claimed. O

From the previous lemma, it follows that there is an orthonormal (Schur) basis
{éx}2, in which H~! is represented by a triangular matrix (see [13, Lemma 1.4.1]).

Denote P, = Zl;zl(., é;)e;. Then

H'P =PH'P, (k=1,2,..)).

Besides,
APCHT' AP, = LN (H)AP, (AP = Py — Pry,k=1,2,...;P) = 0).
Put .
D= Z/lkAISk (AP, =P - Py_1,k=1,2,..) and V=H-D.
k=1
‘We have

HP.f = PyHPf (k=1,2,...; f € Dom(H)). 4.1

Indeed, H'P; is an invertible k X k matrix and, therefore, H™'P:$ is dense in
Pi$. Since AP;Py =0 for j > k, we have 0 = AP;HH ' P, = AP;HP,H ' P;. Hence,
AP;Hf = 0 for any f € P,H. This implies (4.1).

Furthermore, put H, = HP,,. Due to (4.1),

|H,f —Hf|| >0 (f € Dom(H)) asn— oo.

From Lemma 3.1 and (3.4) with A = H,, it follows that in P,$ there is a invertible
operator T, such that T,H, = P,DT, and ||T,|* < v.(H,) <y(H). So, there is a
weakly convergent subsequence T),, whose limit we denote by 7. It is simple to
check that 7, = P,T. So, in fact, the pointed subsequence converges strongly. Thus,
TnH,f — THf and therefore P, DT, f =T, H, f — THf. Letting n; — oo, we
arrive at the required result. O
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5. Applications of Theorem 1.1

Rewrite (1.3) as Hx = T"'DTx. Let APy be the eigenprojections of the normal
operator D and E;, = T~'AP;T. Then

Hx = Z M(H)Ewx  (x € Dom(H)).

k=1

Let f(z) be a scalar function defined and bounded on the spectrum of H. Put
f(H) = ) F(H))Ey.
k=1

Theorem 1.1 immediately implies the following corollary.

CoroLLARY 5.1. Let conditions (1.1) and (1.2) hold. Then

lf CEDII < y(H) sup |f (A CHD))I.
In particular,
lle™™ 1l < y(H)e P (1 2 0),
where S(H) = inf; Re A;(H) and

y(H)

(D) (A ¢ o(H)), (.1

IRA(H)I| <
where p(H, 1) = infy |4 — A(H)|.
Let A and A be linear operators. Then the quantity

sva(A) := sup inf |t— s
teo (&) €A

is said to be the variation of A with respect to A.
Now let A be a linear operator in $ with Dom(H) = Dom(H) and

q:=||H - H| < c. (5.2)

From (5.1), it follows that A ¢ o"(H), provided qy(H) < p(H, A). So, for any u € o(H),
we have gy(H) > p(H, pt). This inequality implies our next result.

CoroLLARY 5.2. Let conditions (1.1), (1.2) and (5.2) hold. Then svy(H) < qy(H).

Now consider unbounded perturbations. To this end, put
H = Z AV(H)E, 0<v<).
k=1

We define H” similarly. We have

v(H)

H'R\(H
IH"RA( )”Swv(H,/l)

(A ¢ o(H)),
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where
U (H, ) = iI}:f [(A = A(H) A" (H).

Now let A be a linear operator in $ with Dom(H) = Dom(H) and
gy = IICH = B)H™|| < oo. (5.3)
Take into account that
Ry(H) = Ry(H) = Ry(H)(H — H)Ry(H) = Ry((H)(H — H)H™"H"R\(H),

A ¢ o(H), provided the conditions (5.3) and g, y(H) < ,(H, 1) hold. So, for any
u € o(H), we have
gvy(H) = Y(H, p). (5.4)

The quantity
v—r1svy(H) := sup inf |(t—s)s”"]
tea(H) S€7

is said to be the v-relative spectral variation of operator H with respect to H. Now (5.4)
implies the following corollary.

CoroLLARY 5.3. Let conditions (1.1), (1.2) and (5.3) hold. Then v —rsvy(H) < q,y(H).
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