A BOUND FOR SIMILARITY CONDITION NUMBERS OF UNBOUNDED OPERATORS WITH HILBERT-SCHMIDT HERMITIAN COMPONENTS

MICHAEL GIL ${ }^{\prime}$
(Received 25 April 2014; accepted 30 June 2014; first published online 12 September 2014)

Communicated by J. Borwein

Abstract

Let H be a linear unbounded operator in a Hilbert space. It is assumed that the resolvent of H is a compact operator and $H-H^{*}$ is a Hilbert-Schmidt operator. Various integro-differential operators satisfy these conditions. It is shown that H is similar to a normal operator and a sharp bound for the condition number is suggested. We also discuss applications of that bound to spectrum perturbations and operator functions.

2010 Mathematics subject classification: primary 47A30; secondary 47A55, 47A56, 47B10, 47B40.
Keywords and phrases: operators, similarity, condition numbers, spectrum perturbations, norm of operator function.

1. Introduction and statement of the main result

Two operators A and \tilde{A} are said to be similar if there exists a boundedly invertible bounded operator T such that $\tilde{A}=T^{-1} A T$. The constant $\kappa_{T}=\left\|T^{-1}\right\|\|T\|$ is called the condition number. The condition number is important in applications. We refer the reader to [5], where condition number estimates are suggested for combined potential boundary integral operators in acoustic scattering, and [23], where condition numbers are estimated for second-order elliptic operators. Conditions that provide the similarity of various operators to normal and self-adjoint ones were considered by many mathematicians, cf. [1, 4, 8, 14-18, 21] and references given therein. In many cases, the condition number must be numerically calculated; see for example [2, 20]. The interesting generalizations of condition numbers of bounded linear operators in Banach spaces were explored in the paper [6].

In the present paper we consider a class of unbounded operators in a Hilbert space with Hilbert-Schmidt Hermitian components. Various integro-differential operators belong to that class. We suggest a sharp bound for the condition numbers of the considered operators. It generalizes the bounds for the condition numbers of matrices

[^0]from [10, 11]. We also discuss applications of the obtained bound to spectrum perturbations and norm estimates for operator functions.

Let \mathfrak{H} be a separable Hilbert space with scalar product (.,.), norm $\|\|=.\sqrt{(., .)}$ and unit operator I. For a linear operator A in $\mathfrak{H}, \operatorname{Dom}(A)$ is the domain, A^{*} is the adjoint of $A, \sigma(A)$ denotes the spectrum of A, A^{-1} is the inverse to $A, R_{\lambda}(A)=(A-I \lambda)^{-1}(\lambda \notin$ $\sigma(A))$ is the resolvent, $A_{I}:=\left(A-A^{*}\right) / 2 i$ and $\lambda_{k}(A)(k=1,2, \ldots)$ are the eigenvalues of A taken with their multiplicities and enumerated as $\left|\lambda_{j}(A)\right| \leq\left|\lambda_{j+1}(A)\right|$. By $S N_{p}$ $(1 \leq p<\infty)$, we denote the Schatten-von Neumann ideal of compact operators K with the finite norm $N_{p}(K):=\left[\operatorname{tr}\left(K K^{*}\right)^{p / 2}\right]^{1 / p}$. The set $S N_{2}$ is the Hilbert-Schmidt ideal.

Everywhere below, H is an invertible operator in \mathfrak{H} with the following properties: $\operatorname{Dom}(H)=\operatorname{Dom}\left(H^{*}\right)$, there exists some fixed value $p \in[1, \infty)$ such that

$$
\begin{equation*}
H^{-1} \in S N_{p} \text { and, in addition, } H_{I} \in S N_{2} . \tag{1.1}
\end{equation*}
$$

Note that instead of the condition $H^{-1} \in S N_{p}$, in our reasonings below, one can require the condition $(H-a I)^{-1} \in S N_{p}$ for some point $a \notin \sigma(H)$. Since H^{-1} is compact, $\sigma(H)$ is purely discrete. It is assumed that all the eigenvalues $\lambda_{j}(H)$ of H are different. For a fixed integer m, put

$$
\delta_{m}(H)=\inf _{j=1,2, \ldots, j \neq m}\left|\lambda_{j}(H)-\lambda_{m}(H)\right| .
$$

It is further supposed that

$$
\begin{equation*}
\zeta(H):=\left[\sum_{j=1}^{\infty} \frac{1}{\delta_{j}^{2}(H)}\right]^{1 / 2}<\infty . \tag{1.2}
\end{equation*}
$$

Hence, it follows that

$$
\hat{\delta}(H):=\inf _{m} \delta_{m}(H)=\inf _{j \neq k ; j, k=1,2, \ldots}\left|\lambda_{j}(H)-\lambda_{k}(H)\right|>0 .
$$

Denote

$$
\begin{aligned}
g(H) & :=\sqrt{2}\left[N_{2}^{2}\left(H_{I}\right)-\sum_{k=1}^{\infty}\left|\operatorname{Im} \lambda_{k}(H)\right|^{2}\right]^{1 / 2} \leq \sqrt{2} N_{2}\left(H_{I}\right), \\
\tau(H) & :=\sum_{k=0}^{\infty} \frac{g^{k+1}(H)}{\sqrt{k!} \hat{\delta}^{k}(H)} \quad \text { and } \quad \gamma(H):=\exp \left[\zeta^{2}(H) \tau^{2}(H)\right] .
\end{aligned}
$$

It follows from condition (1.2) that $\delta_{j}(H) \sim j^{\alpha+1 / 2}$ for some $\alpha>0$. That is, $\delta_{j}(H)$ increases more rapidly than $j^{1 / 2}$. So, we can interpret this condition to mean that the eigenvalues of H are in some sense widely separated. Note also that $g(H)$ is in some sense a 'measure of departure of H from normality'.

Now we are in a position to formulate our main result.
Theorem 1.1. Let conditions (1.1) and (1.2) be fulfilled. Then there are an invertible operator T and a normal operator D, acting in \mathfrak{H}, such that

$$
\begin{equation*}
T H x=D T x \quad(x \in \operatorname{Dom}(H)) \tag{1.3}
\end{equation*}
$$

Moreover,

$$
\kappa_{T}:=\left\|T^{-1}\right\|\|T\| \leq \gamma(H) .
$$

The proof of this theorem is divided into a series of lemmas, which are presented in the next three sections. The theorem is sharp: if H is normal, then $g(H)=0$ and we obtain $\gamma(H)=1$.

To illustrate Theorem 1.1, consider the case $H=S+K$, where $K \in S N_{2}$ and S is a positive-definite self-adjoint operator with a discrete spectrum, whose eigenvalues are different and

$$
\lambda_{j+1}(S)-\lambda_{j}(S) \geq b_{0} j^{\alpha} \quad\left(b_{0}=\text { const }>0 ; \alpha>1 / 2 ; j=1,2, \ldots\right) .
$$

It can be directly checked that the condition $\left\|R_{\lambda}(S)\right\|\|K\|<1$ implies $\lambda \notin \sigma(H)$. Since $\left\|R_{\lambda}(S)\right\| \leq \rho^{-1}(S, \lambda)$, we have $\lambda \notin \sigma(H)$ provided $\|K\|<\rho(S, \lambda)$. Hence, $\|K\| \geq \rho(S, \mu)$ for any $\mu \in \sigma(H)$. This implies the relation

$$
\operatorname{supinf}_{k}\left|\lambda_{k}(H)-\lambda_{j}(S)\right| \leq\|K\| .
$$

Thus, if

$$
2\|K\|<\inf _{j}\left(\lambda_{j+1}(S)-\lambda_{j}(S)\right)
$$

then $\hat{\delta}(H) \geq \inf _{j}\left(\lambda_{j+1}(S)-\lambda_{j}(S)-2\|K\|\right)$ and (1.2) holds with

$$
\begin{equation*}
\zeta(H) \leq \zeta_{1}(S, K), \quad \text { where } \zeta_{1}(S, K):=\sum_{j=1}^{\infty}\left(\lambda_{j+1}(S)-\lambda_{j}(S)-2\|K\|\right)^{-2}<\infty . \tag{1.4}
\end{equation*}
$$

Example 1.2. Consider in $L^{2}(0,1)$ the problem

$$
-u^{\prime \prime}(x)+(K u)(x)=\lambda u(x) \quad(0<x<1) ; \quad u(0)=u(1)=0,
$$

where K is a Hilbert-Schmidt operator. So, H is defined by $H=-d^{2} / d x^{2}+K$ with

$$
\operatorname{Dom}(H)=\left\{v \in L^{2}(0,1): v^{\prime \prime} \in L^{2}(0,1), v(0)=v(1)=0\right\} .
$$

Take $S=-d^{2} / d x^{2}$ with $\operatorname{Dom}(S)=\operatorname{Dom}(H)$. Then $\lambda_{j}(S)=\pi^{2} j^{2}(j=1,2, \ldots)$ and $\lambda_{j+1}(S)-\lambda_{j}(S)=\pi^{2}(2 j+1)$. So, if $2\|K\|<3 \pi^{2}$, then $\hat{\delta}(H)=3 \pi^{2}-2\|K\|$ and, due to (1.4),

$$
\zeta^{2}(H) \leq \sum_{j=1}^{\infty}\left(\pi^{2}(2 j+1)-2\|K\|\right)^{-2}<\infty
$$

In addition, $g(H) \leq \sqrt{2} N_{2}(K)$. Now one can directly apply Theorem 1.1.

2. Auxiliary results

Let B_{0} be a bounded linear operator in \mathfrak{H} having a finite chain of invariant projections $P_{k}(k=1, \ldots, n ; n<\infty)$:

$$
\begin{equation*}
0 \subset P_{1} \mathfrak{H} \subset P_{2} \mathfrak{H} \subset \cdots \subset P_{n} \mathfrak{H}=\mathfrak{H} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{k} B_{0} P_{k}=B_{0} P_{k} \quad(k=1, \ldots, n) \tag{2.2}
\end{equation*}
$$

That is, $P_{k} B_{0}$ maps $P_{k} \mathfrak{G}$ into $P_{k} \mathfrak{G}$ for each k. Put

$$
\Delta P_{k}=P_{k}-P_{k-1} \quad\left(P_{0}=0\right) \quad \text { and } \quad A_{k}=\Delta P_{k} B_{0} \Delta P_{k}
$$

It is assumed that the spectra $\sigma\left(A_{k}\right)$ of A_{k} in $\Delta P_{k} \mathfrak{G}$ satisfy the condition

$$
\begin{equation*}
\sigma\left(A_{k}\right) \cap \sigma\left(A_{j}\right)=\emptyset \quad(j \neq k ; j, k=1, \ldots, n) . \tag{2.3}
\end{equation*}
$$

Lemma 2.1. One has

$$
\sigma\left(B_{0}\right)=\bigcup_{k=1}^{n} \sigma\left(A_{k}\right)
$$

Proof. Put

$$
\hat{D}=\sum_{k=1}^{n} A_{k} \quad \text { and } \quad W=B_{0}-\hat{D} .
$$

Due to (2.2), we have $W P_{k}=P_{k-1} W P_{k}$. Hence,

$$
\begin{aligned}
W^{n} & =W^{n} P_{n}=W^{n-1} P_{n-1} W P_{n}=W^{n-2} P_{n-2} W P_{n-1} W P_{n} \\
& =W^{n-2} P_{n-2} W^{2}=W^{n-3} P_{n-3} W^{3}=\cdots=P_{0} W^{n}=0 .
\end{aligned}
$$

So, W is nilpotent. Similarly, taking into account that

$$
(\hat{D}-\lambda I)^{-1} W P_{k}=(\hat{D}-\lambda I)^{-1} P_{k-1} W P_{k}=P_{k-1}(\hat{D}-\lambda I)^{-1} W P_{k},
$$

we prove that $\left((\hat{D}-\lambda I)^{-1} W\right)^{n}=0(\lambda \notin \sigma(D))$. Thus,

$$
\begin{aligned}
\left(B_{0}-\lambda I\right)^{-1} & =(\hat{D}+W-\lambda I)^{-1}=\left(I+(\hat{D}-\lambda I)^{-1} W\right)^{-1}(\hat{D}-\lambda I)^{-1} \\
& =\sum_{k=0}^{n-1}(-1)^{k}\left((\hat{D}-\lambda I)^{-1} W\right)^{k}(\hat{D}-\lambda I)^{-1} .
\end{aligned}
$$

Hence, it easily follows that $\sigma(\hat{D})=\sigma\left(B_{0}\right)$. Since A_{k} are mutually orthogonal, this proves the lemma.

Under conditions (2.1) and (2.2), put

$$
Q_{k}=I-P_{k}, B_{k}=Q_{k} B_{0} Q_{k} \quad \text { and } \quad C_{k}=\Delta P_{k} B_{0} Q_{k} .
$$

Since B_{j} is a block triangular operator matrix, according to the previous lemma

$$
\sigma\left(B_{j}\right)=\bigcup_{k=j+1}^{n} \sigma\left(A_{k}\right) \quad(j=0, \ldots, n)
$$

We need the following result.

Theorem 2.2 (Rosenblum [22]). Let \mathfrak{G} be a Hilbert space and let A, B, Q be bounded linear operators on \mathfrak{H}. Suppose that $\sigma(A) \cap \sigma(B)=\emptyset$. Under these conditions, the operator equation $A X-X B+Q=0$ has a unique solution X given by

$$
X=\frac{1}{2 \pi i} \int_{\Gamma}(z I-A)^{-1} Q(z I-B)^{-1} d z
$$

where Γ is a piecewise-smooth closed curve with $\sigma(A) \subset \operatorname{ext}(\Gamma)$ and $\sigma(B) \subset \operatorname{int}(\Gamma)$.
Due to (2.3),

$$
\sigma\left(B_{j}\right) \cap \sigma\left(A_{j}\right)=\emptyset \quad(j=1, \ldots, n)
$$

Under this condition, according to the Rosenblum theorem, the equation

$$
\begin{equation*}
A_{j} X_{j}-X_{j} B_{j}=-C_{j} \quad(j=1, \ldots, n-1) \tag{2.4}
\end{equation*}
$$

has a unique solution (see also [7, Section I.3] and [3]).
Lemma 2.3. Let condition (2.3) hold and X_{j} be a solution to (2.4). Then

$$
\begin{align*}
& \left(I-X_{n-1}\right)\left(I-X_{n-2}\right) \cdots\left(I-X_{1}\right) B_{0}\left(I+X_{1}\right)\left(I+X_{2}\right) \cdots\left(I+X_{n-1}\right) \\
& \quad=A_{1}+A_{2}+\cdots+A_{n}=\hat{D} . \tag{2.5}
\end{align*}
$$

Proof. Since $X_{j}=\Delta P_{j} X_{j} Q_{j}$, we have $X_{j} A_{j}=B_{j} X_{j}=X_{j} C_{j}=C_{j} X_{j}=0$. Clearly, $Q_{j} B_{0} P_{j}=0$. Thus, $B_{0}=A_{1}+B_{1}+C_{1}$ and, consequently,

$$
\begin{aligned}
\left(I-X_{1}\right) B_{0}\left(I+X_{1}\right) & =\left(I-X_{1}\right)\left(A_{1}+B_{1}+C_{1}\right)\left(I+X_{1}\right) \\
& =A_{1}+B_{1}+C_{1}-X_{1} B_{1}+A_{1} X_{1}=A_{1}+B_{1} .
\end{aligned}
$$

Furthermore, $B_{1}=A_{2}+B_{2}+C_{2}$. Hence,

$$
\begin{aligned}
\left(Q_{1}-X_{2}\right) B_{1}\left(Q_{1}+X_{2}\right) & =\left(Q_{1}-X_{1}\right)\left(A_{2}+B_{2}+C_{2}\right)\left(Q_{1}+X_{1}\right) \\
& =A_{2}+B_{2}+C_{2}-X_{2} B_{2}+A_{2} X_{2}=A_{2}+B_{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(I-X_{2}\right)\left(A_{1}+B_{1}\right)\left(I+X_{2}\right) & =\left(P_{1}+Q_{1}-X_{2}\right)\left(A_{1}+B_{1}\right)\left(P_{1}+Q_{1}+X_{2}\right) \\
& =A_{1}+\left(Q_{1}-X_{2}\right)\left(A_{1}+B_{1}\right)\left(Q_{1}+X_{2}\right)=A_{1}+A_{2}+B_{2} .
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\left(I-X_{2}\right)\left(A_{1}+B_{1}\right)\left(I+X_{2}\right) & =\left(I-X_{2}\right)\left(I-X_{1}\right) B_{0}\left(I+X_{1}\right)\left(I+X_{2}\right) \\
& =A_{1}+A_{2}+B_{2} .
\end{aligned}
$$

Continuing this process and taking into account that $B_{n-1}=A_{n}$, we obtain the required result.

Take

$$
\begin{equation*}
\hat{T}_{n}=\left(I+X_{1}\right)\left(I+X_{2}\right) \cdots\left(I+X_{n-1}\right) . \tag{2.6}
\end{equation*}
$$

It is simple to see that the inverse to $I+X_{j}$ is the operator $I-X_{j}$. Thus,

$$
\hat{T}_{n}^{-1}=\left(I-X_{n-1}\right)\left(I-X_{n-2}\right) \cdots\left(I-X_{1}\right)
$$

and (2.5) can be written as

$$
\hat{T}_{n}^{-1} B_{0} \hat{T}_{n}=\operatorname{diag}\left(A_{k}\right)_{k=1}^{n}
$$

By the inequalities between the arithmetic and geometric means, we get

$$
\begin{equation*}
\left\|\hat{T}_{n}\right\| \leq \prod_{k=1}^{n-1}\left(1+\left\|X_{k}\right\|\right) \leq\left(1+\frac{1}{n-1} \sum_{k=1}^{n-1}\left\|X_{k}\right\|\right)^{n-1} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\hat{T}_{n}^{-1}\right\| \leq\left(1+\frac{1}{n-1} \sum_{k=1}^{n-1}\left\|X_{k}\right\|\right)^{n-1} \tag{2.8}
\end{equation*}
$$

3. The finite-dimensional case

In this section we apply Lemma 2.3 to an $n \times n$ matrix A whose eigenvalues are different and are enumerated in the increasing way of their absolute values. We define

$$
\begin{equation*}
\hat{\delta}(A):=\min _{j, k=1, \ldots, n ; k \neq j}\left|\lambda_{j}(A)-\lambda_{k}(A)\right|>0 \tag{3.1}
\end{equation*}
$$

Hence, there are an invertible matrix $T_{n} \in \mathbb{C}^{n \times n}$ and a normal matrix $D_{n} \in \mathbb{C}^{n \times n}$ such that

$$
\begin{equation*}
T_{n}^{-1} A T_{n}=D_{n} \tag{3.2}
\end{equation*}
$$

In this case,

$$
g(A):=\sqrt{2}\left[N_{2}^{2}\left(A_{I}\right)-\sum_{k=1}^{n}\left|\operatorname{Im} \lambda_{k}(A)\right|^{2}\right]^{1 / 2} \leq \sqrt{2} N_{2}\left(A_{I}\right)
$$

As is shown in [9, Theorem 2.3.1 and Lemma 2.3.2],

$$
\begin{equation*}
g^{2}(A)=N_{2}^{2}(A)-\sum_{k=1}^{n}\left|\lambda_{k}(A)\right|^{2} \leq N_{2}^{2}(A)-\left|\operatorname{tr}\left(A^{2}\right)\right| . \tag{3.3}
\end{equation*}
$$

Furthermore, for a fixed $m \leq n$, put

$$
\begin{gathered}
\delta_{m}(A)=\inf _{j=1,2, \ldots, n ; j \neq m}\left|\lambda_{j}(A)-\lambda_{m}(A)\right|, \quad \zeta(A)=\left(\sum_{k=1}^{n-1} \frac{1}{\delta_{k}^{2}(A)}\right)^{1 / 2}, \\
\tau_{n}(A):=\sum_{k=0}^{n-2} \frac{g^{k+1}(A)}{\sqrt{k!} \hat{\delta}^{k}(A)}
\end{gathered}
$$

and

$$
\gamma_{n}(A):=\left(1+\frac{\zeta(A) \tau_{n}(A)}{n-1}\right)^{2(n-1)}
$$

We need the following result.
Lemma 3.1. Let condition (3.1) be fulfilled. Then there is an invertible operator T_{n} such that (3.2) holds with $\kappa_{T_{n}}:=\left\|T_{n}^{-1}\right\|\left\|T_{n}\right\| \leq \gamma_{n}(A)$.

Proof. Let $\left\{e_{k}\right\}$ be the Schur basis (the orthogonal normal basis of the triangular representation) of matrix A :

$$
A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & a_{22} & a_{23} & \cdots & a_{2 n} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
0 & 0 & 0 & \cdots & a_{n n}
\end{array}\right)
$$

with $a_{j j}=\lambda_{j}(A)$. Besides, according to (3.3),

$$
\sum_{k=2}^{n-1} \sum_{j=1}^{k-1}\left|a_{j k}\right|^{2}=g^{2}(A)
$$

(see also [9, Lemma 2.3.2]). To apply Lemma 2.3, take $P_{j}=\sum_{k=1}^{j}\left(., e_{k}\right) e_{k}, B_{0}=A$, $\Delta P_{k}=\left(., e_{k}\right) e_{k}$,

$$
\begin{aligned}
& Q_{j}=\sum_{k=j+1}^{n}\left(., e_{k}\right) e_{k}, \quad A_{k}=\Delta P_{k} A \Delta P_{k}=\lambda_{k}(A) \Delta P_{k}, \\
& B_{j}=Q_{j} A Q_{j}=\left(\begin{array}{cccc}
a_{j+1, j+1} & a_{j+1, j+2} & \cdots & a_{j+1, n} \\
0 & a_{j+2, j+2} & \cdots & a_{j+2, n} \\
\cdot & \cdot & \cdot & \cdots \\
0 & 0 & \cdot & a_{n n}
\end{array}\right), \\
& C_{j}=\Delta P_{j} A Q_{j}=\left(\begin{array}{llll}
a_{j, j+1} & a_{j, j+2} & \cdots & a_{j, n}
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{equation*}
D_{n}=\operatorname{diag}\left(\lambda_{k}(A)\right) \tag{3.4}
\end{equation*}
$$

In addition,

$$
A=\left(\begin{array}{cc}
\lambda_{1}(A) & C_{1} \\
0 & B_{1}
\end{array}\right), \quad B_{1}=\left(\begin{array}{cc}
\lambda_{2}(A) & C_{2} \\
0 & B_{2}
\end{array}\right), \ldots, B_{j}=\left(\begin{array}{cc}
\lambda_{j+1}(A) & C_{j+1} \\
0 & B_{j+1}
\end{array}\right)
$$

$(j<n)$. So, B_{j} is an upper-triangular $(n-j) \times(n-j)$ matrix. Equation (2.4) takes the form

$$
\lambda_{j}(A) X_{j}-X_{j} B_{j}=-C_{j} .
$$

Since $X_{j}=X_{j} Q_{j}$, we can write $X_{j}\left(\lambda_{j}(A) Q_{j}-B_{j}\right)=C_{j}$. Therefore,

$$
\begin{equation*}
X_{j}=C_{j}\left(\lambda_{j}(A) Q_{j}-B_{j}\right)^{-1} \tag{3.5}
\end{equation*}
$$

The inverse operator is understood in the sense of subspace $Q_{j} \mathbb{C}^{n}$. Hence,

$$
\left\|X_{j}\right\| \leq\left\|C_{j}\right\|\left\|\left(\lambda_{j}(A) Q_{j}-B_{j}\right)^{-1}\right\| .
$$

Besides,

$$
\left\|C_{j}\right\|^{2}=\sum_{k=j+1}^{n}\left|a_{j k}\right|^{2}
$$

and, due to [9, Corollary 2.1.2],

$$
\left\|\left(\lambda_{j}(A) Q_{j}-B_{j}\right)^{-1}\right\| \leq \sum_{k=0}^{n-j-1} \frac{g^{k}\left(B_{j}\right)}{\sqrt{k!} \delta_{j}^{k+1}(A)}
$$

But $g\left(B_{j}\right)=g\left(Q_{j} B_{j} Q_{j}\right) \leq g(A)(j \geq 1)$. So,

$$
\left\|\left(\lambda_{j}(A) Q_{j}-B_{j}\right)^{-1}\right\| \leq \sum_{k=0}^{n-1} \frac{g^{k}(A)}{\sqrt{k!} \delta_{j}^{k+1}(A)}=\frac{\tau_{n}(A)}{g(A) \delta_{j}(A)}
$$

and thus

$$
\left\|X_{j}\right\| \leq \frac{\left\|C_{j}\right\| \tau_{n}(A)}{g(A) \delta_{j}(A)}
$$

Take $T_{n}=\hat{T}_{n}$ as in (2.6) with X_{k} defined by (3.5). Besides, (2.7) and (2.8) imply

$$
\left\|T_{n}\right\| \leq\left(1+\frac{1}{n-1} \sum_{j=1}^{n-1}\left\|X_{j}\right\|\right)^{n-1} \leq\left(1+\frac{\tau_{n}(A)}{g(A)(n-1)} \sum_{j=1}^{n-1} \frac{\left\|C_{j}\right\|}{\delta_{j}(A)}\right)^{n-1}
$$

and

$$
\left\|T_{n}^{-1}\right\| \leq\left(1+\frac{\tau_{n}(A)}{g(A)(n-1)} \sum_{j=1}^{n-1} \frac{\left\|C_{j}\right\|}{\delta_{j}(A)}\right)^{n-1}
$$

But, by the Schwarz inequality,

$$
\left(\sum_{j=1}^{n-1} \frac{\left\|C_{j}\right\|}{\delta_{j}(A)}\right)^{2} \leq \sum_{j=1}^{n-1}\left\|C_{j}\right\|^{2} \sum_{k=1}^{n-1} \frac{1}{\delta_{k}^{2}(A)}
$$

In addition,

$$
\sum_{j=1}^{n-1}\left\|C_{j}\right\|^{2}=\sum_{j=1}^{n-1} \sum_{k=k=j+1}^{n}\left|a_{j k}\right|^{2}=g^{2}(A)
$$

Thus, $\left\|T_{n}\right\|^{2} \leq \gamma_{n}(A)$ and $\left\|T_{n}^{-1}\right\|^{2} \leq \gamma_{n}(A)$. This proves the lemma.
It should be noted that a result similar to Lemma 3.1 has been established in the paper [12], but Lemma 3.1 is sharper than that result.

4. Proof of Theorem 1.1

Lemma 4.1. Under the hypothesis of Theorem 1.1, operator H^{-1} has a complete system of root vectors.

Proof. For any real c with $-i c \notin \sigma(H)$ with the notation $H_{R}=\left(H+H^{*}\right) / 2$,

$$
(H+i c I)^{-1}=\left(I+i\left(H_{R}+i c I\right)^{-1} H_{I}\right)^{-1}\left(H_{R}+i c I\right)^{-1} .
$$

Recall the Keldysh theorem, cf. [13, Theorem V. 8.1] and [19].
Theorem 4.2 (Keldysh). Let $A=S(I+K)$, where $S=S^{*} \in S N_{p}$ for some $p \in[0, \infty)$ and K is compact. In addition, from $A f=0(f \in \mathfrak{G})$ it follows that $f=0$. Then A has a complete system of root vectors.

Take into account that $(H+i c I)^{-1}=H^{-1}\left(I+i c H^{-1}\right)^{-1} \in S N_{p}$. So, $\left(H_{R}+i c I\right)^{-1} \in$ $S N_{p}$ and, by the Keldysh theorem, operator $(H+i c I)^{-1}$ has a complete system of root vectors. Since $(H+i c I)^{-1}$ and H^{-1} commute, H^{-1} has a complete system of root vectors, as claimed.

From the previous lemma, it follows that there is an orthonormal (Schur) basis $\left\{\hat{e}_{k}\right\}_{k=1}^{\infty}$ in which H^{-1} is represented by a triangular matrix (see [13, Lemma I.4.1]). Denote $\hat{P}_{k}=\sum_{j=1}^{k}\left(., \hat{e}_{j}\right) \hat{e}_{j}$. Then

$$
H^{-1} \hat{P}_{k}=\hat{P}_{k} H^{-1} \hat{P}_{k} \quad(k=1,2, \ldots)
$$

Besides,

$$
\Delta \hat{P}_{k} H^{-1} \Delta \hat{P}_{k}=\lambda_{k}^{-1}(H) \Delta \hat{P}_{k} \quad\left(\Delta \hat{P}_{k}=\hat{P}_{k}-\hat{P}_{k-1}, k=1,2, \ldots ; \hat{P}_{0}=0\right)
$$

Put

$$
D=\sum_{k=1}^{\infty} \lambda_{k} \Delta \hat{P}_{k} \quad\left(\Delta \hat{P}_{k}=\hat{P}_{k}-\hat{P}_{k-1}, k=1,2, \ldots\right) \quad \text { and } \quad V=H-D .
$$

We have

$$
\begin{equation*}
H \hat{P}_{k} f=\hat{P}_{k} H \hat{P}_{k} f \quad(k=1,2, \ldots ; f \in \operatorname{Dom}(H)) . \tag{4.1}
\end{equation*}
$$

Indeed, $H^{-1} \hat{P}_{k}$ is an invertible $k \times k$ matrix and, therefore, $H^{-1} \hat{P}_{k} \mathfrak{H}$ is dense in $\hat{P}_{k} \mathfrak{H}$. Since $\Delta \hat{P}_{j} \hat{P}_{k}=0$ for $j>k$, we have $0=\Delta \hat{P}_{j} H H^{-1} \hat{P}_{k}=\Delta \hat{P}_{j} H \hat{P}_{k} H^{-1} \hat{P}_{k}$. Hence, $\Delta \hat{P}_{j} H f=0$ for any $f \in \hat{P}_{k} H$. This implies (4.1).

Furthermore, put $H_{n}=H P_{n}$. Due to (4.1),

$$
\left\|H_{n} f-H f\right\| \rightarrow 0 \quad(f \in \operatorname{Dom}(H)) \quad \text { as } n \rightarrow \infty .
$$

From Lemma 3.1 and (3.4) with $A=H_{n}$, it follows that in $\hat{P}_{n} \mathfrak{H}$ there is a invertible operator T_{n} such that $T_{n} H_{n}=\hat{P}_{n} D T_{n}$ and $\left\|T_{n}\right\|^{2} \leq \gamma_{n}\left(H_{n}\right) \leq \gamma(H)$. So, there is a weakly convergent subsequence $T_{n_{j}}$ whose limit we denote by T. It is simple to check that $T_{n}=P_{n} T$. So, in fact, the pointed subsequence converges strongly. Thus, $T_{n_{j}} H_{n_{j}} f \rightarrow T H f$ and therefore $\hat{P}_{n_{j}} D T_{n_{j}} f=T_{n_{j}} H_{n_{j}} f \rightarrow T H f$. Letting $n_{j} \rightarrow \infty$, we arrive at the required result.

5. Applications of Theorem 1.1

Rewrite (1.3) as $H x=T^{-1} D T x$. Let ΔP_{k} be the eigenprojections of the normal operator D and $E_{k}=T^{-1} \Delta P_{k} T$. Then

$$
H x=\sum_{k=1}^{\infty} \lambda_{k}(H) E_{k} x \quad(x \in \operatorname{Dom}(H))
$$

Let $f(z)$ be a scalar function defined and bounded on the spectrum of H. Put

$$
f(H)=\sum_{k=1}^{\infty} f\left(\lambda_{k}(H)\right) E_{k}
$$

Theorem 1.1 immediately implies the following corollary.
Corollary 5.1. Let conditions (1.1) and (1.2) hold. Then

$$
\|f(H)\| \leq \gamma(H) \sup _{k}\left|f\left(\lambda_{k}(H)\right)\right| .
$$

In particular,

$$
\left\|e^{-H t}\right\| \leq \gamma(H) e^{-\beta(H) t} \quad(t \geq 0)
$$

where $\beta(H)=\inf _{k} \operatorname{Re} \lambda_{k}(H)$ and

$$
\begin{equation*}
\left\|R_{\lambda}(H)\right\| \leq \frac{\gamma(H)}{\rho(H, \lambda)} \quad(\lambda \notin \sigma(H)) \tag{5.1}
\end{equation*}
$$

where $\rho(H, \lambda)=\inf _{k}\left|\lambda-\lambda_{k}(H)\right|$.
Let A and \tilde{A} be linear operators. Then the quantity

$$
s v_{A}(\tilde{A}):=\sup _{t \in \sigma(\tilde{A})} \inf _{s \in \sigma(A)}|t-s|
$$

is said to be the variation of \tilde{A} with respect to A.
Now let \tilde{H} be a linear operator in \mathfrak{H} with $\operatorname{Dom}(H)=\operatorname{Dom}(\tilde{H})$ and

$$
\begin{equation*}
q:=\|H-\tilde{H}\|<\infty . \tag{5.2}
\end{equation*}
$$

From (5.1), it follows that $\lambda \notin \sigma(\tilde{H})$, provided $q \gamma(H)<\rho(H, \lambda)$. So, for any $\mu \in \sigma(\tilde{H})$, we have $q \gamma(H) \geq \rho(H, \mu)$. This inequality implies our next result.
Corollary 5.2. Let conditions (1.1), (1.2) and (5.2) hold. Then $s v_{H}(\tilde{H}) \leq q \gamma(H)$.
Now consider unbounded perturbations. To this end, put

$$
H^{-v}=\sum_{k=1}^{\infty} \lambda_{k}^{-v}(H) E_{k} \quad(0<v \leq 1)
$$

We define H^{ν} similarly. We have

$$
\left\|H^{v} R_{\lambda}(H)\right\| \leq \frac{\gamma(H)}{\psi_{v}(H, \lambda)} \quad(\lambda \notin \sigma(H))
$$

where

$$
\psi_{v}(H, \lambda)=\inf _{k}\left|\left(\lambda-\lambda_{k}(H)\right) \lambda_{k}^{-v}(H)\right| .
$$

Now let \tilde{H} be a linear operator in \mathfrak{H} with $\operatorname{Dom}(H)=\operatorname{Dom}(\tilde{H})$ and

$$
\begin{equation*}
q_{v}:=\left\|(H-\tilde{H}) H^{-v}\right\|<\infty . \tag{5.3}
\end{equation*}
$$

Take into account that

$$
R_{\lambda}(H)-R_{\lambda}(\tilde{H})=R_{\lambda}(H)(\tilde{H}-H) R_{\lambda}(\tilde{H})=R_{\lambda}(\tilde{H})(\tilde{H}-H) H^{-\nu} H^{v} R_{\lambda}(H)
$$

$\lambda \notin \sigma(\tilde{H})$, provided the conditions (5.3) and $q_{v} \gamma(H)<\psi_{v}(H, \lambda)$ hold. So, for any $\mu \in \sigma(\tilde{H})$, we have

$$
\begin{equation*}
q_{v} \gamma(H) \geq \psi(H, \mu) \tag{5.4}
\end{equation*}
$$

The quantity

$$
v-\operatorname{rsv}_{H}(\tilde{H}):=\sup _{t \in \sigma(\tilde{H})} \inf _{s \in \sigma(H)}\left|(t-s) s^{-v}\right|
$$

is said to be the v-relative spectral variation of operator \tilde{H} with respect to H. Now (5.4) implies the following corollary.
Corollary 5.3. Let conditions (1.1), (1.2) and (5.3) hold. Then $v-\operatorname{rsv}_{H}(\tilde{H}) \leq q_{v} \gamma(H)$.

Acknowledgement

I am very grateful to the referee of this paper for his/her deep and helpful remarks.

References

[1] N. E. Benamara and N. K. Nikolskii, 'Resolvent tests for similarity to a normal operator', Proc. Lond. Math. Soc. (3) 78 (1999), 585-626.
[2] T. Betcke, S. N. Chandler-Wilde, I. G. Graham, S. Langdon and M. Lindner, 'Condition number estimates for combined potential integral operators in acoustics and their boundary element discretisation', Numer. Methods Partial Differential Equations 27 (2011), 31-69.
[3] R. Bhatia and P. Rosenthal, 'How and why to solve the operator equation $A X-X B=Y$ ', Bull. Lond. Math. Soc. 29 (1997), 1-21.
[4] J. A. van Casteren, 'Operators similar to unitary or selfadjoint ones', Pacific J. Math. 104(1) (1983), 241-255.
[5] S. N. Chandler-Wilde, I. G. Graham, S. Langdon and M. Lindner, 'Condition number estimates for combined potential boundary integral operators in acoustic scattering', J. Integral Equations Appl. 21 (2009), 229-279.
[6] G. Chen, Y. Wei and Y. Xue, 'The generalized condition numbers of bounded linear operators in Banach spaces', J. Aust. Math. Soc. 76 (2004), 281-290.
[7] Yu. L. Daleckii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Space (American Mathematical Society, Providence, RI, 1971).
[8] M. M. Faddeev and R. G. Shterenberg, 'On similarity of differential operators to a selfadjoint one', Math. Notes 72 (2002), 292-303.
[9] M. I. Gil', Operator Functions and Localization of Spectra, Lecture Notes in Mathematics, 1830 (Springer, Berlin, 2003).
[10] M. I. Gil', 'Perturbations of functions of diagonalizable matrices', Electron. J. Linear Algebra 20 (2010), 303-313.
[11] M. I. Gil', 'Matrix equations with diagonalizable coefficients', Gulf J. Math. 1 (2013), 98-104.
[12] M. I. Gil', 'A bound for condition numbers of matrices', Electron. J. Linear Algebra 27 (2014), 162-171.
[13] I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, 18 (American Mathematical Society, Providence, RI, 1969).
[14] I. M. Karabash, 'J-selfadjoint ordinary differential operators similar to selfadjoint operators', Methods Funct. Anal. Topology 6(2) (2000), 22-49.
[15] I. M. Karabash, A. S. Kostenko and M. M. Malamud, 'The similarity problem for J-nonnegative Sturm-Liouville operators', J. Differential Equations 246 (2009), 964-997.
[16] A. Kostenko, 'The similarity problem for indefinite Sturm-Liouville operators with periodic coefficients', Oper. Matrices 5(4) (2011), 707-722.
[17] A. Kostenko, 'The similarity problem for indefinite Sturm-Liouville operators and the HELP inequality', Adv. Math. 246 (2013), 368-413.
[18] M. M. Malamud, 'Similarity of a triangular operator to a diagonal operator', J. Math. Sci. 115(2) (2003), 2199-2222.
[19] A. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Translations of Mathematical Monographs, 71 (American Mathematical Society, Providence, RI, 1988).
[20] S. V. Parter and S.-P. Wong, 'Preconditioning second-order elliptic operators: condition numbers and the distribution of the singular values', J. Sci. Comput. 6(2) (1991), 129-157.
[21] B. Pruvost, 'Analytic equivalence and similarity of operators', Integral Equations Operator Theory 44 (2002), 480-493.
[22] M. Rosenblum, 'On the operator equation $B X-X A=Q$ ', Duke Math. J. 23 (1956), 263-270.
[23] M. Seidel and B. Silbermann, 'Finite sections of band-dominated operators, norms, condition numbers and pseudospectra', in: Operator Theory: Advances and Applications, Vol. 228 (Springer, Basel, 2013), 375-390.

MICHAEL GIL', Department of Mathematics,
Ben Gurion University of the Negev,
P.O. Box 653, Beer-Sheva 84105, Israel
e-mail: gilmi@ bezeqint.net

[^0]: (C) 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 \$16.00

