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Abstract

Let H be a linear unbounded operator in a Hilbert space. It is assumed that the resolvent of H is a compact
operator and H − H∗ is a Hilbert–Schmidt operator. Various integro-differential operators satisfy these
conditions. It is shown that H is similar to a normal operator and a sharp bound for the condition number
is suggested. We also discuss applications of that bound to spectrum perturbations and operator functions.
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1. Introduction and statement of the main result

Two operators A and Ã are said to be similar if there exists a boundedly invertible
bounded operator T such that Ã = T−1AT . The constant κT = ‖T−1‖ ‖T‖ is called
the condition number. The condition number is important in applications. We refer
the reader to [5], where condition number estimates are suggested for combined
potential boundary integral operators in acoustic scattering, and [23], where condition
numbers are estimated for second-order elliptic operators. Conditions that provide
the similarity of various operators to normal and self-adjoint ones were considered by
many mathematicians, cf. [1, 4, 8, 14–18, 21] and references given therein. In many
cases, the condition number must be numerically calculated; see for example [2, 20].
The interesting generalizations of condition numbers of bounded linear operators in
Banach spaces were explored in the paper [6].

In the present paper we consider a class of unbounded operators in a Hilbert space
with Hilbert–Schmidt Hermitian components. Various integro-differential operators
belong to that class. We suggest a sharp bound for the condition numbers of the
considered operators. It generalizes the bounds for the condition numbers of matrices
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from [10, 11]. We also discuss applications of the obtained bound to spectrum
perturbations and norm estimates for operator functions.

Let H be a separable Hilbert space with scalar product (. , .), norm ‖.‖ =
√

(. , .) and
unit operator I. For a linear operator A in H, Dom(A) is the domain, A∗ is the adjoint
of A, σ(A) denotes the spectrum of A, A−1 is the inverse to A, Rλ(A) = (A − Iλ)−1 (λ <
σ(A)) is the resolvent, AI := (A − A∗)/2i and λk(A) (k = 1, 2, . . .) are the eigenvalues
of A taken with their multiplicities and enumerated as |λ j(A)| ≤ |λ j+1(A)|. By S Np
(1 ≤ p < ∞), we denote the Schatten–von Neumann ideal of compact operators K
with the finite norm Np(K) := [tr(KK∗)p/2]1/p. The set S N2 is the Hilbert–Schmidt
ideal.

Everywhere below, H is an invertible operator in H with the following properties:
Dom(H) = Dom(H∗), there exists some fixed value p ∈ [1,∞) such that

H−1 ∈ S Np and, in addition, HI ∈ S N2. (1.1)

Note that instead of the condition H−1 ∈ S Np, in our reasonings below, one can require
the condition (H − aI)−1 ∈ S Np for some point a < σ(H). Since H−1 is compact, σ(H)
is purely discrete. It is assumed that all the eigenvalues λ j(H) of H are different. For a
fixed integer m, put

δm(H) = inf
j=1,2,...; j,m

|λ j(H) − λm(H)|.

It is further supposed that

ζ(H) :=
[ ∞∑

j=1

1
δ2

j(H)

]1/2
<∞. (1.2)

Hence, it follows that

δ̂(H) := inf
m
δm(H) = inf

j,k; j,k=1,2,...
|λ j(H) − λk(H)| > 0.

Denote

g(H) :=
√

2
[
N2

2 (HI) −
∞∑

k=1

|Im λk(H)|2
]1/2
≤
√

2N2(HI),

τ(H) :=
∞∑

k=0

gk+1(H)
√

k!δ̂k(H)
and γ(H) := exp [ζ2(H)τ2(H)].

It follows from condition (1.2) that δ j(H) ∼ jα+1/2 for some α > 0. That is, δ j(H)
increases more rapidly than j1/2. So, we can interpret this condition to mean that the
eigenvalues of H are in some sense widely separated. Note also that g(H) is in some
sense a ‘measure of departure of H from normality’.

Now we are in a position to formulate our main result.

Theorem 1.1. Let conditions (1.1) and (1.2) be fulfilled. Then there are an invertible
operator T and a normal operator D, acting in H, such that

T Hx = DT x (x ∈ Dom(H)). (1.3)
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Moreover,

κT := ‖T−1‖ ‖T‖ ≤ γ(H).

The proof of this theorem is divided into a series of lemmas, which are presented
in the next three sections. The theorem is sharp: if H is normal, then g(H) = 0 and we
obtain γ(H) = 1.

To illustrate Theorem 1.1, consider the case H = S + K, where K ∈ S N2 and S is a
positive-definite self-adjoint operator with a discrete spectrum, whose eigenvalues are
different and

λ j+1(S ) − λ j(S ) ≥ b0 jα (b0 = const > 0;α > 1/2; j = 1, 2, . . .).

It can be directly checked that the condition ‖Rλ(S )‖ ‖K‖ < 1 implies λ < σ(H). Since
‖Rλ(S )‖ ≤ ρ−1(S , λ), we have λ < σ(H) provided ‖K‖ < ρ(S , λ). Hence, ‖K‖ ≥ ρ(S , µ)
for any µ ∈ σ(H). This implies the relation

sup
k

inf
j
|λk(H) − λ j(S )| ≤ ‖K‖.

Thus, if

2‖K‖ < inf
j

(λ j+1(S ) − λ j(S )),

then δ̂(H) ≥ inf j(λ j+1(S ) − λ j(S ) − 2‖K‖) and (1.2) holds with

ζ(H) ≤ ζ1(S ,K), where ζ1(S ,K) :=
∞∑
j=1

(λ j+1(S ) − λ j(S ) − 2‖K‖)−2 <∞. (1.4)

Example 1.2. Consider in L2(0, 1) the problem

−u′′(x) + (Ku)(x) = λu(x) (0 < x < 1); u(0) = u(1) = 0,

where K is a Hilbert–Schmidt operator. So, H is defined by H = −d2/dx2 + K with

Dom (H) = {v ∈ L2(0, 1) : v′′ ∈ L2(0, 1), v(0) = v(1) = 0}.

Take S = −d2/dx2 with Dom (S ) = Dom (H). Then λ j(S ) = π2 j2 ( j = 1, 2, . . .) and
λ j+1(S ) − λ j(S ) = π2(2 j + 1). So, if 2‖K‖ < 3π2, then δ̂(H) = 3π2 − 2‖K‖ and, due
to (1.4),

ζ2(H) ≤
∞∑
j=1

(π2(2 j + 1) − 2‖K‖)−2 <∞.

In addition, g(H) ≤
√

2N2(K). Now one can directly apply Theorem 1.1.
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2. Auxiliary results

Let B0 be a bounded linear operator in H having a finite chain of invariant
projections Pk (k = 1, . . . , n; n <∞):

0 ⊂ P1H ⊂ P2H ⊂ · · · ⊂ PnH = H (2.1)

and
PkB0Pk = B0Pk (k = 1, . . . , n). (2.2)

That is, PkB0 maps PkH into PkH for each k. Put

∆Pk = Pk − Pk−1 (P0 = 0) and Ak = ∆PkB0∆Pk.

It is assumed that the spectra σ(Ak) of Ak in ∆PkH satisfy the condition

σ(Ak) ∩ σ(A j) = ∅ ( j , k; j, k = 1, . . . , n). (2.3)

Lemma 2.1. One has

σ(B0) =

n⋃
k=1

σ(Ak).

Proof. Put

D̂ =

n∑
k=1

Ak and W = B0 − D̂.

Due to (2.2), we have WPk = Pk−1WPk. Hence,

Wn = WnPn = Wn−1Pn−1WPn = Wn−2Pn−2WPn−1WPn

= Wn−2Pn−2W2 = Wn−3Pn−3W3 = · · · = P0Wn = 0.

So, W is nilpotent. Similarly, taking into account that

(D̂ − λI)−1WPk = (D̂ − λI)−1Pk−1WPk = Pk−1(D̂ − λI)−1WPk,

we prove that ((D̂ − λI)−1W)n = 0 (λ < σ(D)). Thus,

(B0 − λI)−1 = (D̂ + W − λI)−1 = (I + (D̂ − λI)−1W)−1(D̂ − λI)−1

=

n−1∑
k=0

(−1)k((D̂ − λI)−1W)k(D̂ − λI)−1.

Hence, it easily follows that σ(D̂) = σ(B0). Since Ak are mutually orthogonal, this
proves the lemma. �

Under conditions (2.1) and (2.2), put

Qk = I − Pk, Bk = QkB0Qk and Ck = ∆PkB0Qk.

Since B j is a block triangular operator matrix, according to the previous lemma

σ(B j) =

n⋃
k= j+1

σ(Ak) ( j = 0, . . . , n).

We need the following result.

https://doi.org/10.1017/S1446788714000354 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000354


[5] Condition numbers for unbounded operators 335

Theorem 2.2 (Rosenblum [22]). Let H be a Hilbert space and let A, B,Q be bounded
linear operators on H. Suppose that σ(A) ∩ σ(B) = ∅. Under these conditions, the
operator equation AX − XB + Q = 0 has a unique solution X given by

X =
1

2πi

∫
Γ

(zI − A)−1Q(zI − B)−1 dz,

where Γ is a piecewise-smooth closed curve with σ(A) ⊂ ext(Γ) and σ(B) ⊂ int(Γ).

Due to (2.3),
σ(B j) ∩ σ(A j) = ∅ ( j = 1, . . . , n).

Under this condition, according to the Rosenblum theorem, the equation

A jX j − X jB j = −C j ( j = 1, . . . , n − 1) (2.4)

has a unique solution (see also [7, Section I.3] and [3]).

Lemma 2.3. Let condition (2.3) hold and X j be a solution to (2.4). Then

(I − Xn−1)(I − Xn−2) · · · (I − X1) B0 (I + X1)(I + X2) · · · (I + Xn−1)
= A1 + A2 + · · · + An = D̂. (2.5)

Proof. Since X j = ∆P jX jQ j, we have X jA j = B jX j = X jC j = C jX j = 0. Clearly,
Q jB0P j = 0. Thus, B0 = A1 + B1 + C1 and, consequently,

(I − X1)B0(I + X1) = (I − X1)(A1 + B1 + C1)(I + X1)
= A1 + B1 + C1 − X1B1 + A1X1 = A1 + B1.

Furthermore, B1 = A2 + B2 + C2. Hence,

(Q1 − X2)B1(Q1 + X2) = (Q1 − X1)(A2 + B2 + C2)(Q1 + X1)
= A2 + B2 + C2 − X2B2 + A2X2 = A2 + B2.

Therefore,

(I − X2)(A1 + B1)(I + X2) = (P1 + Q1 − X2)(A1 + B1)(P1 + Q1 + X2)
= A1 + (Q1 − X2)(A1 + B1)(Q1 + X2) = A1 + A2 + B2.

Consequently,

(I − X2)(A1 + B1)(I + X2) = (I − X2)(I − X1)B0(I + X1)(I + X2)
= A1 + A2 + B2.

Continuing this process and taking into account that Bn−1 = An, we obtain the required
result. �
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Take
T̂n = (I + X1)(I + X2) · · · (I + Xn−1). (2.6)

It is simple to see that the inverse to I + X j is the operator I − X j. Thus,

T̂−1
n = (I − Xn−1)(I − Xn−2) · · · (I − X1)

and (2.5) can be written as

T̂−1
n B0T̂n = diag(Ak)n

k=1.

By the inequalities between the arithmetic and geometric means, we get

‖T̂n‖ ≤

n−1∏
k=1

(1 + ‖Xk‖) ≤
(
1 +

1
n − 1

n−1∑
k=1

‖Xk‖

)n−1
(2.7)

and

‖T̂−1
n ‖ ≤

(
1 +

1
n − 1

n−1∑
k=1

‖Xk‖

)n−1
. (2.8)

3. The finite-dimensional case

In this section we apply Lemma 2.3 to an n × n matrix A whose eigenvalues are
different and are enumerated in the increasing way of their absolute values. We define

δ̂(A) := min
j,k=1,...,n;k, j

|λ j(A) − λk(A)| > 0. (3.1)

Hence, there are an invertible matrix Tn ∈ C
n×n and a normal matrix Dn ∈ C

n×n such
that

T−1
n ATn = Dn. (3.2)

In this case,

g(A) :=
√

2
[
N2

2 (AI) −
n∑

k=1

|Im λk(A)|2
]1/2
≤
√

2N2(AI).

As is shown in [9, Theorem 2.3.1 and Lemma 2.3.2],

g2(A) = N2
2 (A) −

n∑
k=1

|λk(A)|2 ≤ N2
2 (A) − |tr(A2)|. (3.3)

Furthermore, for a fixed m ≤ n, put

δm(A) = inf
j=1,2,...,n; j,m

|λ j(A) − λm(A)|, ζ(A) =

(n−1∑
k=1

1
δ2

k(A)

)1/2
,

τn(A) :=
n−2∑
k=0

gk+1(A)
√

k!δ̂k(A)
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and

γn(A) :=
(
1 +

ζ(A)τn(A)
n − 1

)2(n−1)
.

We need the following result.

Lemma 3.1. Let condition (3.1) be fulfilled. Then there is an invertible operator Tn

such that (3.2) holds with κTn := ‖T−1
n ‖ ‖Tn‖ ≤ γn(A).

Proof. Let {ek} be the Schur basis (the orthogonal normal basis of the triangular
representation) of matrix A:

A =


a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

· · · · · · ·

0 0 0 · · · ann


with a j j = λ j(A). Besides, according to (3.3),

n−1∑
k=2

k−1∑
j=1

|a jk|
2 = g2(A)

(see also [9, Lemma 2.3.2]). To apply Lemma 2.3, take P j =
∑ j

k=1(., ek)ek, B0 = A,
∆Pk = (., ek)ek,

Q j =

n∑
k= j+1

(., ek)ek, Ak = ∆PkA∆Pk = λk(A)∆Pk,

B j = Q jAQ j =


a j+1, j+1 a j+1, j+2 · · · a j+1,n

0 a j+2, j+2 · · · a j+2,n
· · · · · ·

0 0 · ann

 ,
C j = ∆P jAQ j =

(
a j, j+1 a j, j+2 · · · a j,n

)
and

Dn = diag(λk(A)). (3.4)

In addition,

A =

(
λ1(A) C1

0 B1

)
, B1 =

(
λ2(A) C2

0 B2

)
, . . . , B j =

(
λ j+1(A) C j+1

0 B j+1

)
( j < n). So, B j is an upper-triangular (n − j) × (n − j) matrix. Equation (2.4) takes the
form

λ j(A)X j − X jB j = −C j.

Since X j = X jQ j, we can write X j(λ j(A)Q j − B j) = C j. Therefore,

X j = C j (λ j(A)Q j − B j)−1. (3.5)
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The inverse operator is understood in the sense of subspace Q jC
n. Hence,

‖X j‖ ≤ ‖C j‖ ‖(λ j(A)Q j − B j)−1‖.

Besides,

‖C j‖
2 =

n∑
k= j+1

|a jk|
2

and, due to [9, Corollary 2.1.2],

‖(λ j(A)Q j − B j)−1‖ ≤

n− j−1∑
k=0

gk(B j)
√

k!δk+1
j (A)

.

But g(B j) = g(Q jB jQ j) ≤ g(A) ( j ≥ 1). So,

‖(λ j(A)Q j − B j)−1‖ ≤

n−1∑
k=0

gk(A)
√

k!δk+1
j (A)

=
τn(A)

g(A)δ j(A)

and thus

‖X j‖ ≤
‖C j‖τn(A)
g(A)δ j(A)

.

Take Tn = T̂n as in (2.6) with Xk defined by (3.5). Besides, (2.7) and (2.8) imply

‖Tn‖ ≤

(
1 +

1
n − 1

n−1∑
j=1

‖X j||

)n−1
≤

(
1 +

τn(A)
g(A)(n − 1)

n−1∑
j=1

‖C j‖

δ j(A)

)n−1

and

‖T−1
n ‖ ≤

(
1 +

τn(A)
g(A)(n − 1)

n−1∑
j=1

‖C j‖

δ j(A)

)n−1
.

But, by the Schwarz inequality,(n−1∑
j=1

‖C j‖

δ j(A)

)2
≤

n−1∑
j=1

‖C j‖
2

n−1∑
k=1

1
δ2

k(A)
.

In addition,
n−1∑
j=1

‖C j‖
2 =

n−1∑
j=1

n∑
k=k= j+1

|a jk|
2 = g2(A).

Thus, ‖Tn‖
2 ≤ γn(A) and ‖T−1

n ‖
2 ≤ γn(A). This proves the lemma. �

It should be noted that a result similar to Lemma 3.1 has been established in the
paper [12], but Lemma 3.1 is sharper than that result.
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4. Proof of Theorem 1.1

Lemma 4.1. Under the hypothesis of Theorem 1.1, operator H−1 has a complete system
of root vectors.

Proof. For any real c with −ic < σ(H) with the notation HR = (H + H∗)/2,

(H + icI)−1 = (I + i(HR + icI)−1HI)−1(HR + icI)−1.

Recall the Keldysh theorem, cf. [13, Theorem V. 8.1] and [19].

Theorem 4.2 (Keldysh). Let A = S (I + K), where S = S ∗ ∈ S Np for some p ∈ [0,∞)
and K is compact. In addition, from A f = 0 ( f ∈ H) it follows that f = 0. Then A has
a complete system of root vectors.

Take into account that (H + icI)−1 = H−1(I + icH−1)−1 ∈ S Np. So, (HR + icI)−1 ∈

S Np and, by the Keldysh theorem, operator (H + icI)−1 has a complete system of root
vectors. Since (H + icI)−1 and H−1 commute, H−1 has a complete system of root
vectors, as claimed. �

From the previous lemma, it follows that there is an orthonormal (Schur) basis
{êk}

∞
k=1 in which H−1 is represented by a triangular matrix (see [13, Lemma I.4.1]).

Denote P̂k =
∑k

j=1(., ê j)ê j. Then

H−1P̂k = P̂kH−1P̂k (k = 1, 2, . . .).

Besides,

∆P̂kH−1∆P̂k = λ−1
k (H)∆P̂k (∆P̂k = P̂k − P̂k−1, k = 1, 2, . . . ; P̂0 = 0).

Put

D =

∞∑
k=1

λk∆P̂k (∆P̂k = P̂k − P̂k−1, k = 1, 2, . . .) and V = H − D.

We have
HP̂k f = P̂kHP̂k f (k = 1, 2, . . . ; f ∈ Dom(H)). (4.1)

Indeed, H−1P̂k is an invertible k × k matrix and, therefore, H−1P̂kH is dense in
P̂kH. Since ∆P̂ jP̂k = 0 for j > k, we have 0 = ∆P̂ jHH−1P̂k = ∆P̂ jHP̂kH−1P̂k. Hence,
∆P̂ jH f = 0 for any f ∈ P̂kH. This implies (4.1).

Furthermore, put Hn = HPn. Due to (4.1),

‖Hn f − H f ‖ → 0 ( f ∈ Dom(H)) as n→∞.

From Lemma 3.1 and (3.4) with A = Hn, it follows that in P̂nH there is a invertible
operator Tn such that TnHn = P̂nDTn and ‖Tn‖

2 ≤ γn(Hn) ≤ γ(H). So, there is a
weakly convergent subsequence Tn j whose limit we denote by T . It is simple to
check that Tn = PnT . So, in fact, the pointed subsequence converges strongly. Thus,
Tn j Hn j f → T H f and therefore P̂n j DTn j f = Tn j Hn j f → T H f . Letting n j → ∞, we
arrive at the required result. �
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5. Applications of Theorem 1.1

Rewrite (1.3) as Hx = T−1DT x. Let ∆Pk be the eigenprojections of the normal
operator D and Ek = T−1∆PkT . Then

Hx =

∞∑
k=1

λk(H)Ek x (x ∈ Dom(H)).

Let f (z) be a scalar function defined and bounded on the spectrum of H. Put

f (H) =

∞∑
k=1

f (λk(H))Ek.

Theorem 1.1 immediately implies the following corollary.

Corollary 5.1. Let conditions (1.1) and (1.2) hold. Then

‖ f (H)‖ ≤ γ(H) sup
k
| f (λk(H))|.

In particular,
‖e−Ht‖ ≤ γ(H)e−β(H)t (t ≥ 0),

where β(H) = infk Re λk(H) and

‖Rλ(H)‖ ≤
γ(H)
ρ(H, λ)

(λ < σ(H)), (5.1)

where ρ(H, λ) = infk |λ − λk(H)|.
Let A and Ã be linear operators. Then the quantity

svA(Ã) := sup
t∈σ(Ã)

inf
s∈σ(A)

|t − s|

is said to be the variation of Ã with respect to A.
Now let H̃ be a linear operator in H with Dom(H) = Dom(H̃) and

q := ‖H − H̃‖ <∞. (5.2)

From (5.1), it follows that λ < σ(H̃), provided qγ(H) < ρ(H, λ). So, for any µ ∈ σ(H̃),
we have qγ(H) ≥ ρ(H, µ). This inequality implies our next result.

Corollary 5.2. Let conditions (1.1), (1.2) and (5.2) hold. Then svH(H̃) ≤ qγ(H).

Now consider unbounded perturbations. To this end, put

H−ν =

∞∑
k=1

λ−νk (H)Ek (0 < ν ≤ 1).

We define Hν similarly. We have

‖HνRλ(H)‖ ≤
γ(H)

ψν(H, λ)
(λ < σ(H)),
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where
ψν(H, λ) = inf

k
|(λ − λk(H))λ−νk (H)|.

Now let H̃ be a linear operator in H with Dom(H) = Dom(H̃) and

qν := ‖(H − H̃)H−ν‖ <∞. (5.3)

Take into account that

Rλ(H) − Rλ(H̃) = Rλ(H)(H̃ − H)Rλ(H̃) = Rλ(H̃)(H̃ − H)H−νHνRλ(H),

λ < σ(H̃), provided the conditions (5.3) and qνγ(H) < ψν(H, λ) hold. So, for any
µ ∈ σ(H̃), we have

qνγ(H) ≥ ψ(H, µ). (5.4)

The quantity
ν − rsvH(H̃) := sup

t∈σ(H̃)
inf

s∈σ(H)
|(t − s)s−ν|

is said to be the ν-relative spectral variation of operator H̃ with respect to H. Now (5.4)
implies the following corollary.

Corollary 5.3. Let conditions (1.1), (1.2) and (5.3) hold. Then ν − rsvH(H̃) ≤ qνγ(H).
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