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ABSTRACT. Snow avalanche simulation software is a commonly used tool for hazard estimation and
mitigation planning. In this study a depth-averaged flow model, combining a simple entrainment and
friction relation, is implemented in the software SamosAT. Computational results strongly depend on
the simulation input, in particular on the employed model parameters. A long-standing problem is to
quantify the influence of these parameters on the simulation results. We present a new multivariate
optimization approach for avalanche simulation in three-dimensional terrain. The method takes into
account the entire physically relevant range of the two friction parameters (Coulomb friction, turbulent
drag) and one entrainment parameter. These three flow model parameters are scrutinized with respect
to six optimization variables (runout, matched and exceeded affected area, maximum velocity, average
deposition depth and mass growth). The approach is applied to a documented extreme avalanche event,
recorded in St Anton, Austria. The final results provide adjusted parameter distributions optimizing the
simulation–observation correspondence. At the same time, the degree of parameter–variable
correspondence is determined. We show that the specification of optimal values for certain model
parameters is near-impossible, if corresponding optimization variables are neglected or unavailable.
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INTRODUCTION
Snow avalanche simulation tools are used for hazard
estimations and protection planning (Sampl and Zwinger,
2004; Christen and others, 2010a). Initial conditions and
flow model parameters have to be defined carefully to obtain
meaningful simulation results. The challenges arising in this
process are manifold. Existing avalanche dynamics models
contain parameters some of which are more conceptual than
physical. A direct calibration, i.e. measuring the specific
material parameters in the field directly, is hardly possible.
Existing guidelines provide model parameter suggestions or
estimates for release conditions for extreme avalanches
(Salm and others, 1990; Maggioni and Gruber, 2003; Gruber
and Bartelt, 2007). They are used to quantify avalanche
danger for hazard scenarios with different return periods.
Back calculation of real avalanche events requires modifi-
cation of these parameter suggestions to include physical
processes such as flow regime transitions (Issler and Gauer,
2008; Bartelt and others, 2012) as well as the effects of snow
temperature and entrainment (Naaim and others, 2013; Vera
Valero and others, 2015). Only then is it possible to
reproduce observed runout, flow velocities, impact pressures
and deposition depths. However, at present it is still not clear
whether process-oriented models can be used in engineering
practice since they demand the specification of detailed
snow-cover and release information. Therefore there is still
an urgent need to find an optimization method to establish
model parameters for hazard scenarios solved with existing
simulation software in avalanche practice.
Early optimization approaches date back to Dent and

Lang (1980, 1983), who utilized velocity and deposition

data from single snow-flow test experiments to fit model
parameters. This work was followed by, for example, Ancey
and others (2003), who introduced a deterministic inversion
method, finding a parameter distribution for a simplified
flow model, reproducing avalanche runouts. Besides deter-
ministic approaches, there has been a strong development
of probabilistic (especially Bayesian) frameworks originating
from the hydrological community. These developments
were accompanied by debates concerning different (formal
and informal) optimization strategies (Beven and Binley,
1992; Vrugt and others, 2008). The main issues concern the
arising quantification of uncertainty (Montanari and others,
2009).
In the field of snow and avalanches, several authors

(Ancey, 2005; Eckert and others, 2007, 2008; Gauer and
others, 2009) have employed Bayesian techniques to solve
the inverse problem for lumped mass propagation models
and avalanche runout, by, for example, analyzing occur-
rence frequencies for multiple avalanche paths. Naaim
and others (2013) employed this method to link model
parameters to physical properties of snow. However,
challenges in the model validation arise, because formal
Bayesian approaches explicitly consider model input and
parameter uncertainty (Vrugt and others, 2008). Therefore
the individual error sources have to be identified and
quantified in order to assign the resulting probability to one
of them (Beven and others, 2008; Vrugt and others, 2008).
This problem is especially severe with regard to avalanches
because of the interaction of input and parameter un-
certainty (Eckert and others, 2010). For example, Ancey
(2005) showed the dependence between a frictional
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parameter and input parameters such as avalanche volume
and snow properties for a sliding-block model.
Informal statistical approaches, to which the proposed

method is similar, do not explicitly consider model un-
certainties (McMillan and Clark, 2009). They are based on
a more arbitrary function to quantify the correspondence
between simulation results and observation. With this
objective measure, adjusted parameter distributions can
be computed. At the same time, these resulting distribu-
tions represent an estimate of total uncertainty. Despite the
differences between informal and formal Bayesian ap-
proaches it has been found that they can yield very
similar estimates of the total result uncertainty (Vrugt and
others, 2008).
The application of optimization methods with simulation

tools operating in three-dimensional (3-D) terrain is limited.
Most studies of avalanche simulation tools are based on
multi-parameter models, but they have mostly been opti-
mized for single optimization variables, namely the ava-
lanche runout (Ancey, 2005; Gruber and Bartelt, 2007;
Bozhinskiy, 2008). Providing single constraints is insufficient

to obtain a unique multivariate parameter set. Information on
flow variables (e.g. velocity) is rarely accessible and is
therefore used in few case studies (Sailer and others, 2002;
Ancey and Meunier, 2004; Issler and others, 2005; Gauer
and others, 2009; Fischer and others, 2014). In cases where
no information is available, empirical analysis can provide
rough estimates for missing measurements. For example, the
analyses of McClung and Schaerer (2006) allow us to
estimate the maximum avalanche velocity by scaling it with
the total fall height along the avalanche path. The estimate is
based on basic energy relations, recently confirmed for a
variety of extreme avalanches (Gauer, 2014).
The main focus of the presented optimization concept is

to provide adjusted parameter distributions employing a
systematic, multivariate comparison of simulation results
with field observations and their related uncertainties. The
proposed framework is sketched in Figure 1. It is tested for a
catastrophic avalanche. A simple, three-parameter flow
model including entrainment is employed and implemented
in the operational snow avalanche simulation software,
SamosAT (Snow Avalanche MOdelling and Simulation –
Advanced Technology) (Zwinger and others, 2003; Sampl
and Zwinger, 2004). A large number of simulation runs is
performed following an input parameter distribution. The
results are analyzed in an avalanche path dependent
coordinate system (Fischer, 2013). The multivariate par-
ameter optimization is carried out with respect to three
varying model parameters and six different optimization
variables, enabling the quantification of simulated and
observed avalanche characteristics. By introducing a selec-
tion rule, parameter combinations with optimal simulation–
observation correspondence are identified. The main results
are problem-suited parameter distributions. These adjusted
distributions provide peak values for the flow model
parameters leading to an optimized simulation result and
provide a base for future guidelines.

SIMULATION CONCEPT
The simulation concept comprises the choice of

1. the simulation software including the physical flow
model and its numerical implementation (simulation
approach)

2. the initial and boundary conditions, including the digital
elevation model (DEM), initial distribution of snow and
the model parameter settings (simulation input)

3. the survey and interpretation of simulation results in
view of the model evaluation, and the comparison to the
field observations (simulation output).

Simulation approach
Simulation software for the dense, most destructive part of
snow avalanches is based on two-dimensional depth-
averaged, deterministic flow models (Savage and Hutter,
1989; Naaim and others, 2002; Pitman and others, 2003;
Sampl and Zwinger, 2004; Christen and others, 2010b;
Mergili and others, 2012; Pudasaini, 2012). An adequate
mathematical description requires switching between differ-
ent coordinate systems. The following model equations will
be written in a Lagrangian framework using the notation �
for flow variables depth h and velocity u and the mountain
surface z in a natural coordinate system moving with the

Fig. 1. The proposed framework consists of three parts: observation,
simulation and optimization. Monte Carlo simulation runs are
performed for a large number of parameter combinations � ¼

�, �, eb following the input parameter distributions �in� . The simu-
lation software, SamosAT, is utilized, taking into account boundary
and initial conditions, which are obtained from the observations.
The set of optimization variables X ¼ f. . .g (with variables runout r,
matched affected area (true) T, exceeded affected area (false) F,
maximum velocity umax, average deposition depth d and mass
growth G) is defined in terms of the simulation results (flow depths
h, velocities u and massm of the avalanche) as well as observations
and their related uncertainty X̂ � �X̂. The simulation–observation
correspondence �ð�Þ is quantified for each simulation run. Based
on a consistently defined correspondence limit �lim, parameter
combinations are withdrawn or accepted, yielding the final results:
adjusted parameter distributions ��.
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avalanche. In the Eulerian framework, variables and surface
are denoted h, u, z with respect to the coordinate system
aligned with the avalanche path. The mountain surface is
represented by a DEM with a spatial resolution of 5m� 5m,
which is assumed to represent the winter, snow-covered
surface sufficiently. Sampl and Zwinger (2004) presented a
Lagrangian formulation of the mass and momentum bal-
ance, describing the spatio-temporal evolution of the
primary variables: depth-averaged flow depth and velocity
(Iverson, 2012). Here the equations are formulated for an
incompressible, isotropic material, with a general basal
shear stress �b and an entrainment rate _q, integrated over an
infinitesimal control volume V ¼ Ah, that moves with the
avalanche (Zwinger and others, 2003). This yields a locally
orthogonal coordinate system. i ¼ 1 is in the direction of the
surface-parallel velocity vector, i ¼ 2 is surface-parallel and
orthogonal to the velocity vector and i ¼ 3 appears naturally
normal to the surface z:

dV
dt
¼
dðAhÞ
dt

¼ _qA, ð1Þ

dui
dt
¼ gi þ

1
Ah

I

@A

h�b
2

 !

ni dl � �i1
�b

h
�

ui
h

_q, ð2Þ

with the components of the gravitational acceleration gi, the
surface-parallel velocity components u1,u2, the surface-
normal flow depth h and the resulting normal stress
�b ¼ h ðg3 � @2z

@x21
u2Þ. The term @2z

@x21
accounts for the change

in the normal acceleration due to surface curvature in the
flow direction (Gray and others, 1999; Pudasaini and
Hutter, 2003; Fischer and others, 2012). The first term on
the right-hand side of Eqn (2) accounts for the acceleration
due to gravity. The second term arises due to the pressure
gradients on the control volume V, with boundary line @A
with elements dl and the normal vector ni (Zwinger and
others, 2003). The third term describes the frictional
decelerations opposing the direction of movement i ¼ 1,
with the Kronecker delta �ij. The last term arises due to the
modified mass balance (right-hand side of Eqn (1)) and
causes a momentum loss if additional mass ( _q > 0) has to be
accelerated by the avalanche.
Equations (1) and (2) are solved with a smoothed particle

hydrodynamics (SPH) scheme (Monaghan, 1992) for the
three variables u ¼ ðu1,u2Þ and depth h, by discretization of
the released avalanche volume in a large number of mass
elements. The number of mass elements is calculated in
accordance with the claim that the mass per numerical
particle is �2000 kg (cf. Sampl and Zwinger, 2004). The
simulation end time tend was chosen carefully according to
the criterion that the pressure isoline of p ¼ plim showed no
significant changes over time, which was sufficiently
reached with tend ¼ 350 s for the specific avalanche simula-
tions (Fischer, 2013; Teich and others, 2014). The total
duration of a computation is in the order of several minutes
with a standard computer.

Basal shear stress �b and entrainment rate _q
Over the years many different (mostly phenomenological)
friction and entrainment relations have been implemented
in different flow models (Harbitz, 1998). The goal of this
work is not to discuss or compare different approaches
but to show that a systematic, multivariate parameter

optimization is possible. Therefore the well-known Voellmy
friction relation for the basal shear stress and a simple
assumption for the entrainment rate are employed. The
basal shear stress �b combines a Coulomb bottom friction
with a velocity-dependent drag term:

�b ¼ �b�þ
g
�

u2 , ð3Þ

with dimensionless friction parameter � and turbulent
friction coefficient � (m s� 2) (Voellmy, 1955).
The entrainment rate,

_q ¼
�b

eb
kuk, ð4Þ

is proportional to the bottom shear stress �b, which is similar
to other definitions found in the literature (Christen and
others, 2010b), and includes the phenomenological par-
ameter eb (m2 s� 2), which allows for interpretation as
specific erosion energy. For small parameter values eb ! 0
the entrainment rate is very large, _q!1; however,
independently of the entrainment rate, the amount of
entrained snow is limited by the available snow reservoir
q < hsnow (cf. Eqn (5) below). Entraining the entire snow
reservoir hsnow at the flow front corresponds to the process of
frontal plowing. Larger eb values allow for a gradual erosion,
from the front to the tail of the avalanche (Gauer and Issler,
2004). For large parameter values eb !1 the entrainment
rate diminishes _q! 0, i.e. no snow is entrained.

Simulation input
To perform snow avalanche simulations, parameter set-up
for the employed flow model and initial conditions have to
be defined.

Initial conditions
For the presented analysis, initial conditions are assumed to
be constant and are estimated through direct measurement
or empirical methods. Release areas are either delineated by
direct event observation or a set of empirical rules, which
are mainly based on slope and planar curvature (Maggioni
and Gruber, 2003; Bühler and others, 2013). Typically the
initial distribution of released snow is either directly
measured or estimated by means of an extreme snowfall.
The estimated snow depth h0 is often linked to the sum of
new snow over 3 days for a certain return period (Burkard
and Salm, 1992) measured on flat ground at a reference
altitude z0.
Here we estimate a smooth initial snow-cover distri-

bution hsnow, assuming equal precipitation at each location.
This approach allows us to determine the initially released
snow mass and the potentially erodible snow mass in a
consistent manner. Precipitation varies with altitude through
the snow depth–altitude gradient �h. The influence of wind
transport is neglected:

hsnow ¼ ðh0 þ ðz � z0Þ�hÞ cos �: ð5Þ

� is the local slope angle. The snow depth gradient �h is a
regional coefficient and varies for different precipitation
characteristics (Burkard and Salm, 1992). The smooth snow
distribution leads to lower (higher) snow depth on steep (flat)
slopes. Once the avalanche is released, the snow reservoir
hsnow is depleted inside the release area and evolves over
time. hsnow ¼ �

R
_q dt for the rest of the mountain surface.
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Reference event
Documentation of extreme events characterizing processes
in terms of release conditions, flow path and runout zone
provides important information for performing hazard
assessment and model optimization. The Wolfsgruben
avalanche path starts in a release area of �20ha, with
mean slope angle 36.5° at �2244ma.s.l. It follows a gully,
with a width of �100m, and finally reaches the community
of St Anton a.A., Austria (at �1260ma.s.l.; Fig. 2). On
13 March 1988 a catastrophic avalanche struck the village,
affecting an area of �6.5 ha with mean slope angle of
14.5°. The avalanche led to severe loss of life and property.
Three houses and nine cars were destroyed, and several
other buildings, about 20 cars and existing infrastructure
were damaged (back-calculated pressures range between
about 7.5 and 17.5 kPa). Several people were killed or
injured. The event return period has been estimated to be
sufficiently large to serve as a design event (>150 years in
Austria; cf. Johannesson and others, 2009).
The observations allow us to reconstruct the initial snow-

cover distribution hsnow of the event, with reference snow
height of h0 ¼ 1:61m at z0 ¼ 1289ma.s.l. and a snow-
depth–altitude gradient of �h ¼ 8 cm (100m)� 1 for the

Arlberg region. Considering Eqn (9) and the given topog-
raphy this information leads to a total release volume of
Vrelease � 354600m3. The snow reservoir depth for entrain-
ment ranges between about 0.6 and 1.8m. Besides basic
observations of snow avalanches (e.g. the delineation of
release areas, affected path and runout zone), information
on physical properties like deposition depth (�4m) and
density (�400 kgm� 3), as well as flow velocity, is essential
for the parameter optimization. This information allows us
to define optimization variables (e.g. runout, maximum
velocity or mass growth), which are related to the avalanche
(Table 1; next section).

Flow model parameters � ¼ f�, �, ebg
For the presented optimization the input parameter
distributions, given by �in� ¼ f�1, . . . ,�Ng, yield simu-
lation samples of size N. For each simulation run, a set of
flow model parameter combinations �n = f�n, �n, eb,ng
with n ¼ 1, . . . ,N is assigned. The number of simulation
runs N in a sample has to be sufficiently large that the
obtained results are statistically significant and stable
(N>� 8000; cf. Analysis subsection below, ‘investigating
the statistical significance’). Plausible combinations of input
parameters for the deterministic flow model are obtained
through a Latin hypercube sampling (Stein, 1987). This
sampling method provides a probabilistic representation of
the input distributions dividing the range of each variable
into equally probable intervals. The flow model parameters
� ¼ f�, �, ebg are assumed independent. Naturally the
random samples include a certain degree of correlation.
Since independence in the input samples is desirable, a
correlation control is applied on the initial parameter
sample (Oberguggenberger and others, 2009; Fischer and
others, 2014). With this empirical method the parameter
samples are rearranged in order to get closer to parameter
independence (i.e. close to a diagonal rank correlation
matrix; Iman and Conover, 1982).
The input parameter distributions�in� are specified by their

distribution function and the related parameter range. Since
the estimation of the adjusted distribution for a specific event
is a goal of the analysis, we assume an equal distribution
function for the input samples, which leaves the parameter
ranges � ¼ ½�inmin,�

in
max� to be specified. Assigning the

parameter ranges too small may exclude possible solutions;
defining the ranges too large multiplies the computational
efforts. The interval bounds �inmin,�

in
max may be constrained

by the physically relevant parameter space, values found in
the literature or results of experimental work.
For example, considering the limits �! 0, �!1 or

eb !1, the effect of Coulomb friction, turbulent friction or
entrainment is negligible. In contrast, the limits �!1,

Fig. 2. Wolfsgruben avalanche (images WLV). (a) Wolfsgruben
avalanche path (vertical drop �z ¼ 984m): central flowline in
black, release area (196225m2, with mean slope angle 36.5°) in
blue, affected area (64 153m2, at 14.5°) in orange. (b) Destroyed
house in the runout area. Back-calculated pressures of damages on
infrastructure range from about 7.5 to 17.5 kPa.

Table 1. Observational variables X̂ for the Wolfsgruben avalanche

Value X̂ Uncertainty �X̂

Âaffected 64 153m2 �10%
r̂ 2219m �50m
ûmaxð�z ¼ 984mÞ 58.9m s� 1 �2.5m s� 1

Ĝ ¼ mdeposit
mrelease

1.45 �0.1
d̂ 4 �0.5m
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�! 0 lead to infinite friction, i.e. the avalanche cannot
move; eb ! 0 corresponds to entrainment by frontal
plowing, which may initiate uncontrolled mass gain, often
accompanied and identifiable by unrealistic lateral spread-
ing of the avalanche. In practice, the limits do not coincide
with 0 or 1 but may be determined by scaling analysis of
the respective terms in the model equations. Taking into
account values of back calculations for similar flow models
allows us to further specify the parameter ranges. Voellmy
(1955) estimated values in the range �=0.08–0.15 and
� =400–600m s� 2. Gubler (1987) used velocity data, find-
ing different values for the Coulomb friction in the path and
the runout zone, in the range �=0.15–0.5. For practical
purposes different authors have recommended different
values. For example, Buser and Frutiger (1980), Salm
and others (1990) and Gruber and Bartelt (2007) (often
referred to as Swiss Guidelines) proposed Coulomb friction
values �=0.155–0.3 and turbulent friction coefficients
� =400–1000m s� 2 depending on different variables such
as return period, avalanche size or terrain features.
Barbolini and others (2000) found Coulomb friction values
between 0.13 and 0.4 and turbulent friction coefficients
between 1000 and 4500m s� 2 for different models and
sites. Naaim and others (2010) fixed � to 1500m s� 2,
obtaining � values between 0.15 and 0.35 based on
historical data from the avalanche path Taconnaz. In a
similar framework, Naaim and others (2013) scanned values
for the static Coulomb friction from 0.1 to 0.7 and turbulent
friction from 500 to 1500m s� 2. However, with some
exceptions (Sovilla and others, 2007; Bozhinskiy, 2008;
Naaim and others, 2013), snow entrainment is disregarded
or not explicitly treated. Parameter specifications derived by
experiments fit in similar ranges; for example, experiments
performed on snow chutes by Tiefenbacher and Kern (2004)
and Platzer and others (2007) allowed estimation of an
effective Coulomb friction of �=0.22–0.72. However, in
the present context, friction coefficients appear more
conceptual than physical.
Based on this, we specify the following parameter

range specifications for the equally distributed input
parameters �in� : � ¼ ½0:1, 0:6�, � ¼ ½400, 15 000�ms

� 2 and
eb ¼ ½0, 75 000�m2 s� 2, with minimal spacing �� ¼ 0:01,
�� ¼ 50m s� 2, �eb ¼ 250m2 s� 2.

Simulation results
Primary simulation results are the time evolution of flow
depth and velocities. However, the most important simu-
lation results for the evaluation are the peak values, i.e.
maximum values over time, of flow depth h, velocity juj and
impact pressure p ¼ � juj2, with � ¼ 200 kgm� 3, the density
of flowing snow. The formulation of impact pressure is
chosen according to guidelines used for avalanche simula-
tions but may differ significantly from this general form
(Sovilla and others, 2008). Defining runout or impacted area
in terms of impact pressures is in accordance with ava-
lanche hazard mitigation guidelines (Johannesson and
others, 2009; Fischer, 2013; Teich and others, 2014).
However, they could equivalently be defined in terms of
velocities. The simulation results are evaluated in an
avalanche path dependent coordinate system, with flow-
path coordinate s and lateral coordinate l, according to the
main flow path shown in Figure 2a with a domain width of
500m (Fischer, 2013).

OPTIMIZATION VARIABLES
The optimization variables represent the different categories
that are accessed through the observational data and
simulation results. To perform an objective analysis, a set
of six optimization variables X ¼ fr, T, F, umax,d,Gg,

1. runout r

2. matched affected area (true) T

3. exceeded affected area (false) F

4. maximum velocity umax

5. average deposition depth d

6. mass growth G,

is defined in terms of both observation and simulation.
Observational variables and their associated uncertainty are
denoted by bX � �X̂ (Table 1), simulation variables by plain X.
In this work we do not explicitly account for simulation
uncertainties introduced by the deterministic flow model.
The information about the source of uncertainty is dispen-
sable for the employed optimization concept. Thus simu-
lation uncertainties can implicitly be associated with the
uncertainty of the corresponding observational variable �X̂.

Runout r
The definition of avalanche runout in the sense of a
simulation and observation is not straightforward, especially
in 3-D terrain. Here we define a peak impact pressure
related runout in an avalanche-dependent coordinate
system. Utilizing a pressure-related measure as runout has
several advantages for operational simulation tools (Fischer,
2013; Teich and others, 2014). For each simulation run,
runout r refers to the farthest coordinate s, measured as
projected distance in the avalanche-path flow direction,
where the maximum value of the peak impact pressure in
the cross section still exceeds the predefined pressure limit
plim, i.e. maxl pðs, lÞ > plim. Here we set plim = 1 kPa, which
may be adapted for different hazard-mapping guidelines.
To determine the observational runout br ¼ 2219m the

affected area is dealt with in exactly the same manner as the
simulation pressure results, assuming peak impact pressures
larger than the pressure limit, bp > plim, inside the observed
affected area bAaffected (Fig. 3). The uncertainty associated
with the delineation of the affected area is the range of
�r̂ � 50m.

Relative matched and exceeded affected area, T, F
Peak impact pressures serve as a basis to define observed
and simulated affected areas, assuming that peak pressures
observed in the avalanche bp exceed the pressure limit plim,
i.e. bp > plim inside the observed affected area. Comparing
the simulated and observed affected areas, four different
classifications arise. The four cases include all combinations
of matching/non-matching or exceeding/non-exceeding
observed area with simulated affected area (cf. the four
differently colored areas in Fig. 3; Mergili and others, 2013).
Considering the given affected and total area, two of them
are independent. The optimization variables T and F for
matching and exceeded areas are defined relative to the
affected area and are specified as:

true prediction T ¼ Amatching=Aaffected – simulated area

with p > plim matching observed affected area bAaffected,
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false prediction F ¼ Aexceeded=Aaffected – simulation area
with p > plim exceeding observed affected area bAaffected.

It is crucial to consider the main flow direction, represented
by the path coordinate s (Fischer, 2013), since information
on affected areas is mainly available in the runout. To
properly account for the false prediction, only areas beyond
(in flow direction) the path coordinate s, where bp > plim, are
considered, due to lack of observations in the upstream
direction.
The observational value for the optimization variable

true prediction T ¼ Amatching=Aaffected is given by bT ¼
Aaffected=Aaffected ¼ 1, and consequently for the false predic-
tion F ¼ Aexceeded=Aaffected by bF ¼ 0=Aaffected ¼ 0. For the
situation sketched in Figure 3 the respective simulation
variable values could be approximated to T � 0:7 and
F � 0:05. The associated uncertainty is estimated and
expressed relative to the affected area bAaffected, �T̂,bF ¼ 0:1.

Maximum velocity, umax

The maximum velocity umax is defined for each simulation
run by taking the maximum of the peak velocities over the
entire simulation domain:

umax ¼ max
s, l
kuk: ð6Þ

The observational value for the optimization variable
bumax along an avalanche path with fall height �z is
empirically estimated by bumax � 0:6

ffiffiffiffiffiffiffiffiffiffi
g�z

p
(McClung and

Schaerer, 2006). For the investigated Wolfsgruben ava-
lanche path the maximum velocity is bumaxð�z=984m) =
58.9m s� 1, which is a reasonable value for avalanches of
that size (Gauer and others, 2007; Fischer and others, 2014).
The associated uncertainty may be determined by regression
(Gauer, 2014) and is estimated at �ûmax ¼ 2:5m s� 1.

Average deposition depth d
The average deposition depth is defined as observed depth,
averaged in the affected area. It can be directly measured in
the field. The documentation by avalanche experts for the
Wolfsgruben avalanche includes deposition depths between
3 and 5m with a density of b�deposit ¼ 400 kgm� 3. This

allows the estimate bd ¼ 4� 0:5m.
Densification in snow avalanches, comparing released,

flowing and deposited snow, can reach a factor of three
(Ancey, 2005). Thus, the average deposition depth needs to
be defined in terms of the simulation results. We take the
peak flow depth h and define d ¼ h �

�̂deposit
averaged in the

affected area.

Mass growth G
The mass growth index G is a dimensionless number,
describing the increase of flowing avalanche mass due to
entrainment. It is defined as the ratio of deposited to
released mass

bG ¼
mdeposit
mrelease

ð7Þ

and has been measured for a variety of avalanche events.
However, measurements of the growth index are associated
with large variations and uncertainties (Sovilla and others,
2006, 2007), for example due to the densification (Ancey,
2005).
Considering densification, released snow mass, affected

area and documented deposition depths leads to an estimate
of bG ¼ 1:45� 0:1 for the Wolfsgruben avalanche.
In terms of the avalanche simulations (cf. Eqns (1) and (4))

the growth index may be written as

G ¼ 1þ
1

Vrelease

Z tend

0
_qAdt ¼

mðt ¼ tendÞ
mðt ¼ 0Þ

: ð8Þ

OPTIMIZATION CONCEPT
The goal of the optimization concept is to provide an
objective function as an intuitive, scalar metric, describing
the correspondence between simulation and documentation
in different categories. The metric allows us to perform a
ranking, determining simulation runs and according par-
ameter sets with the highest correspondence to the obser-
vation. This matches a selection rule allowing us to accept
or withdraw certain parameter combinations, providing
input distributions �in� and yielding problem-suited, adjusted
output parameter distributions ��, representing optimal
parameter combinations. A flow chart of the optimization
concept is depicted in Figure 1. The resulting parameter
distributions include model and parameter uncertainties and
are of fundamental interest for engineers and scientists.
Using the target function presented here, the optimization

of the model parameters could be performed straight-
forwardly with a Gauss–Newton algorithm, or – more
appropriately for the usually coarse DEM grid – a simplified

Fig. 3. Sketched simulation results (e.g. simulation outline plim;
blue) and affected area Âaffected (orange), superimposed with
avalanche path domain and coordinate system along the central
flowline (black). Runout r, r̂, matched area Amatched (green) and
exceeded area Aexceeded (red) and their complements (blue and gray
area), which lead to the optimization variables for true and false
prediction T, F, maximum velocity umax, average deposition depth
d and mass growth G.

max
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gradient method (Sailer and others, 2008). The numerical
gradients (Jacobian) obtained in such methods for the
optimal parameter set could be used for first-order sensitivity
studies (Fellin and Ostermann, 2006). However, such
inverse calculations are not unique and several local
minima could exist. Depending on the initial guess of the
model parameters, one of these local minima is found and
could be falsely seen as the global minimum, so that a
wrong optimal parameter set is chosen (cf., e.g., Ancey,
2005). Investigating the whole physically relevant parameter
space and performing statistics on the best simulation runs
as proposed here is computationally more expensive, but
much more information is produced: local minima can
easily be detected and excluded, a complete sensitivity
analysis can be performed (Fischer, 2013) and reasonable
ranges of the model parameters can be determined.
As a measure of the correspondence between obser-

vational and simulation optimization variables, we
determine �Xð�Þ for each optimization variable X ¼
fr, T, F, umax,d,Gg, conditional upon the choice of the
parameter set � ¼ f�, �, ebg summarized in a target function
�ð�Þ. The function describing the correspondence is chosen
to be a normalized, Gaussian function N with mean bX and
variance �2

X̂
:

�Xð�Þ ¼
N ðXð�Þ j bX,�2

X̂
Þ

N ðbX j bX,�2
X̂
Þ
¼ exp �

1
2

Xð�Þ � bX
�X̂

 !2
0

@

1

A:

ð9Þ

A metric is then defined in the interval ½0, 1�, where
�Xð�Þ ! 0 indicates negligible correspondence and
�Xð�Þ ! 1 optimal correspondence between observation
and simulation with respect to the investigated optimization
variable. However, the choice of the Gaussian function is
arbitrary and it could be replaced by another function (e.g.
Heaviside, triangle).
The final correspondence target function �ð�Þ is defined

as

�ð�Þ ¼
X

X
wX �Xð�Þ ð10Þ

with
P

X wX¼ 1, such that �ð�Þ is also bounded by the
interval ½0, 1�. A ranking of � allows for determining the
parameter set � with optimal agreement between obser-
vation and simulation. The results of the optimization
clearly depend on the non-unique definition of the target
function, which is a heuristic construction (e.g. not
accounting for dependencies between the different optimi-
zation variables). The weighting factors wX allow us to
emphasize or reduce the impact of certain optimization
variables X. For the presented investigation the weighting
factors are kept equal, with the exception of excluding
single optimization variables. For example, if no information
on the variable bX is available it may not be included in the
optimization process, corresponding to a zero weighting
factor wX ¼ 0 and a reduced set of optimization variables.
The optimization procedure can then be adapted to cases
with more or fewer observational data.
Defining a limit �lim matches a selection rule, where

simulation runs with a simulation–observation correspon-
dence larger than the limit �ð�Þ � �lim are accepted and the
other parameter combinations with �ð�Þ < �lim are with-
drawn. The correspondence limit �lim may be a user-defined

value or, in accordance with other engineering applications,
be defined in terms of a design event �design (e.g. assuming
an acceptable deviation of 5% for each observational
variable bX). The resulting parameter distributions (including
parameter and model uncertainties) then allow us to
determine characteristic values for actions, which are based
on certain quantiles in engineering concepts like the
Eurocodes. Thus, in terms of design events, the limit
�lim ¼ �design is calculated following Eqn (10):

�design ¼
X

X
wX exp �

1
2
0:95bX
�X̂

 !2
0

@

1

A ¼ 0:64: ð11Þ

For the N�lim simulation runs with �ð�Þ � �lim, a
frequency analysis of the model parameters � is performed.
The frequency distribution yielding the adjusted distribution
�� is analyzed for each parameter of the model parameters
� ¼ f�, �, ebg. The adjusted distribution �� allows us to
further investigate the model behavior. Of particular interest
are statistical features, such as the 25%, 50% (median) and
75% quantiles for each parameter �25%, �50%, �75%,
minimum and maximum values �min,�max and the par-
ameter value ��max that correspond to the highest simu-
lation–observation correspondence, i.e. max�ð�Þ.
Additionally, violine plots (Kampstra, 2008) are a helpful
tool for visual interpretation of the adjusted distributions,
showing an approximate form of the frequency distribution
(Fig. 4).

ANALYSIS OF ADJUSTED OUTPUT PARAMETER
DISTRIBUTIONS �� FOR � ¼ f�, �, ebg
The analysis of the output parameter distributions �� is
carried out, varying the set-up with respect to:

optimization variable weighting factors wX, i.e. changing
the size of the optimization variable set X ¼
fr, T, F, umax,d,Gg,

Fig. 4. Adjusted parameter frequency �� for the N�lim simulation
runs with � � �lim. The violine plot above summarizes statistical
features of the adjusted distributions �� such as the minimum value
�min the 25%, 50% and 75% quantiles �25%, �50% and �75% and
the maximum value �max. To provide a reference to the input
distribution �in� the minimum and maximum values �inmin,�

in
max are

shown.
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the simulation–observation correspondence limit �lim,

the sample size N.

Full set of optimization variables
X ¼ fr;T; F; umax;d;Gg, N ¼ 104, �lim ¼ �design

Here we consider the full set of optimization variables
X ¼ fr, T, F, umax,d,Gg, with N ¼ 104 sample size of the
input parameter distribution �in� at a correspondence limit
�lim ¼ �design. Figure 4 shows the adjusted output parameter
distributions �� with N�lim ¼ 44. For �� and �eb a clear
peak is found, i.e. �25%, �50%, �75% and ��max are relatively
close (Table 2). The distribution �� indicates the tendency of
� to only provide the desired simulation–observation
correspondence �lim above a certain boundary value around
7500 < � (m s� 2). However, no clear peak tendency for � is
found, which is underlined by the fact that ��max is outside
the 75% quantile.

Range and sensitivity of simulated optimization
variables X with respect to the adjusted output
parameter distributions ��

The range of simulated optimization variables (X; Table 3)
allows us to estimate the quality of the performed back
calculation. Simulated runouts are in the range 2190–
2263m with an average value of r� �r ¼ 2219� 297m,

which corresponds to the observed range br ¼ 2219m
(Table 1). Similar correspondences are obtained for all
optimization variables.
Helpful information to interpret the resulting parameter

distributions �� is the quantification of the flow model
parameter � sensitivity with respect to the optimization
variables X. A Spearman rank correlation analysis is
performed (Fischer, 2013). The correlation coefficients
range from –1 to +1, –1 indicating negative monotonic
correlation (increasing parameter leads to decreasing vari-
able), +1 indicating positive monotonic correlation (in-
creasing parameter leads to increasing variable) and 0
indicating no correlation. Table 4 summarizes the par-
ameter-optimization variable correlation coefficients. Be-
sides the obvious relations, which reflect the meaning of
the parameters in the employed flow model (e.g. increasing
friction leads to decreasing runout or velocities; entrain-
ment rate determines growth index), the quantification
allows for a relative evaluation. The information that
turbulent and Coulomb friction equally influence the
maximum velocity or that no parameter but eb significantly
influences the deposition depth is important for model
tweaking and the interpretation of the adjusted parameter
distributions, especially with respect to a reduced set of
optimization variables.

Reduced set of optimization variables X, N ¼ 104,
�lim ¼ �design

With two examples we highlight the benefits of a multi-
variate parameter optimization. The multivariate parameter
optimization is based on a set of different optimization
variables X ¼ fr, T, F, umax,d,Gg; reducing this set has a
significant effect on the adjusted output parameter distribu-
tions �� and thus the ability to quantify optimal parameter
set-ups. To investigate the effect, we manipulate the
correspondence target function (Eqn (10)), excluding certain
optimization variables X by changing the related weighting
factors wX ¼ 0.

Reduced set of optimization variables
X ¼ fr;T; F;d;Gg, i.e. wumax ¼ 0
Excluding the optimization variable umax by settingwumax ¼ 0
has a considerable effect on the adjusted output parameter
distributions, in particular on the � distribution ��. Figure 5
shows the adjusted parameter distributions �� with N�lim ¼

51. For � and eb clear peaks are observed, i.e. the values of
�25%, �50%, ��max , �75% and eb,25%, eb,50%, eb,�max ,eb,75% are
very close (Table 2). For � few additional outliers with small
values are observed. Investigating the adjusted distribution
��, only very small constraints for optimal � values can be

Table 2. Information on the adjusted output parameter distributions
��, for different sets of optimization variables X. Listed are
minimum and maximum values �min, �max, 25%, 50% and 75%
quantiles for each parameter �25%, �50%, �75% and ��max . The
same data are visualized in Figure 6

�min �25% �50% ��max �75% �max

Full set X ¼ fr; T; F; umax;d;Gg
� 0.23 0.24 0.26 0.26 0.26 0.29
� (m s� 2) 7500 8825 12 375 14 150 13 925 14 900
eb (m2 s� 2) 8750 10 250 11 500 11 500 13 375 15 250

Reduced set X ¼ fr; T; F; d;Gg, wumax ¼ 0
� 0.16 0.25 0.26 0.26 0.26 0.29
� (m s� 2) 1300 4700 8650 8500 12 075 14 900
eb (m2 s� 2) 9000 10 562 11 500 11 500 12 750 14 000

Reduced set X ¼ fr; T; F; umaxg, wG ¼ wd ¼ 0
� 0.22 0.24 0.25 0.26 0.27 0.29
� (m s� 2) 5300 8400 10 650 15 000 12 900 15 000
eb (m2 s� 2) 6250 26 187 40 250 29 500 58 250 75 000

Table 3. Distribution of simulated optimization variables
X ¼ fr, T, F,umax,d,Gg with adjusted output parameter distribu-
tions �� and �lim ¼ �design. X denotes the average, and �X the
variance

min ðXÞ X � �X max ðXÞ

r (m) 2190 2219�297 2263
T 0.94 0.99�0.013 1.0
F 0.71 1.08�0.19 1.55
umax (m s� 1) 54.7 56.7�0.9 58.6
d (m) 3.5 3.8�0.1 4.0
G 1.38 1.49�0.06 1.60

Table 4. Information on the correlation of the adjusted parameter
distributions �� and the optimization variables X. Shown is the
Spearman (rank) correlation coefficient rs of optimization variables
X and parameters �. Only highly significant (p < 0:01) correlations
with krsk > 0:25 are shown

r T F umax d G

� –0.939 –0.937 –0.881 –0.526 – –0.542
� – – – 0.567 – –
eb –0.505 –0.526 –0.591 – –0.812 –0.999
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drawn. Besides the effect that no high simulation–obser-
vation correspondence solutions are found for small
� < 1300m s� 2, � values are found in the entire investigated
range evenly distributed.

Reduced set of optimization variables
X ¼ fr;T; F; umaxg, i.e. wG ¼ wd ¼ 0
Excluding the optimization variable average deposition
depth d and growth index G has little effect on the adjusted
output distribution �� but significantly influences the output
� and eb distributions (Fig. 5). The number of simulation runs
above the correspondence limit �lim is N�lim ¼ 613. While
clear constraints are found for �, the distributions �� and �eb
are spread out in almost the entire investigated range
(Table 2). Interestingly, � values are spread evenly in
the investigated interval with a lower bound at �min ¼
5300m s� 2. This means for � > �min the chances are equal of
finding � values that lead to simulation runs with simu-
lation–observation correspondence � � �lim, which is also
reflected by the fact that the parameter value leading to

highest correspondence ��max is found at the upper bound of
the investigated range ��max ¼ �max ¼ 15000m s� 2. For �eb
only a lower bound is found, eb > eb,min¼6250 m2 s� 2,
corresponding to an exclusion of simulation runs with
frontal plowing as entrainment mechanism.

Comparison of different sets of optimization
variables X
Excluding single or multiple optimization variables has a
significant effect on the information value of adjusted
output parameter distributions ��. The different examples
show that form and range of the adjusted parameter
distributions significantly varies. Results are summarized
in Table 2 and Figure 6 for a visual interpretation of the
violine plots. For the presented cases the distribution �� is
hardly influenced by the reduced set of optimization
variables. The adjusted distribution �eb is unaffected by
missing knowledge about the maximum velocity umax but
heavily influenced by the optimization variable G. This
observation is not surprising, taking into account the
correlation of optimization variables and model parameters.
Excluding information on maximum velocity umax signifi-
cantly decreases the information value of the adjusted
distribution ��. A similar effect, but much less pronounced,
is observed for leaving out average deposition depth d and
growth index G. However, all adjusted output distributions
�� have one thing in common, a lower � value bound for
high simulation–observation correspondence.

Full set of optimization variables X, N = 104,
varying �lim

The choice of the correspondence limit �lim determines the
number of simulation runs N�lim with � � �lim. Figure 7
shows the nonlinear decrease of N�lim with increasing �lim.
Above a certain limit �lim > 0:75, no simulation runs are
found, i.e. N�lim ¼ 0. For �lim < 0:2, N�lim increases dramat-
ically. This can be interpreted as residual correspondence
and is due to the fact that some optimization variables are
complementary (e.g. an avalanche reaching the affected
area implies �T,d ¼ 0 but �F ¼ 1). For �lim ¼ 0 it naturally is
N�lim ¼ N and �� ¼ �in� . Figure 8 shows the evolution of the
adjusted output distributions �� in dependence on the �lim.
Lower �lim lead to larger bounds of ��, depending on the
parameter �, i.e. for ��. In the presented example ��

converges to ���max
for large correspondence limits �lim.

This is an important observation since multiple distribution
maxima may also exist (cf., e.g., �� for �lim ¼ 0:15).

Full set of optimization variables X, �lim ¼ �design,
variable sample size N, investigating the statistical
significance
To determine the statistical stability and draw conclusions
on the significance of our results we investigate the
dependence of �� on N. To do so we employ a
bootstrapping technique drawing random samples of size
N from the sample with 104 simulation runs, increasing the
sample size N ¼ 250, . . . , 104. A first observation is that
N�lim is directly proportional to sample size N indicating the
equal random distribution of the full sample. The minimum
sample size for statistically stable results is reached when
the parameter distributions stay constant for increasing
sample size N (e.g. when �50 converges for increasing
sample size N).

Fig. 5. Adjusted parameter frequency �� for the N�lim simulation
runs with � � �lim: (left) wumax ¼ 0 ; (right) wG ¼ wd ¼ 0. The
violine plot above summarizes statistical features of the adjusted
output distributions �� such as the minimum value �min, the 25%,
50% and 75% quantiles �25%, �50% and �75% and the maximum
value �max. To provide a reference to the input distribution �in� the
minimum and maximum values �inmin,�

in
max are shown.
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In the presented case the changes on �� appear
negligible when the sufficient sample size N>�8000 is
reached (Fig. 9). Between 3000<N<8000 the results are
intermediately stable. However, if N is chosen too low, in
the presented case N>�2000 the adjusted output distribu-
tions are not stable and one may identify statistically non-
significant parameter choices, i.e. N�lim is too low.
One should note that the minimum sample size is

dependent on N�lim , which is a function of �lim and directly
proportional to the sample size N itself. For example, with
�lim � 0:4, N � 4000–5000 appears to be sufficient. For
smaller N, which corresponds to the situation where the
input parameter distribution �in� is not well chosen, the
optimal parameter distribution �� may vary significantly.
However, it is beyond the scope of this work to derive a
general rule determining the sufficient sample size.

CONCLUSIONS
A new optimization concept for snow avalanche simulation
has been presented. The method allows us to optimize

multiple model parameters using a multivariate evaluation
by comparing simulation results with field data based on
objective, well-defined optimization variables. With these
variables the simulation–observation correspondence is
determined, and adjusted output parameter distributions
representing optimal parameter combinations are found.
A large number of simulation runs are performed and for

each parameter combination � ¼ f�, �, ebg a set of
simulated optimization variables X ¼ fr, T, F, umax,d,Gg is
determined. Parameter combinations with high correspon-
dence are identified by analyzing the correspondence
between simulated and observed optimization variables bX
using the scalar metric �ðXÞ. A selection rule based on a
correspondence limit �lim is introduced and linked to a
design event correspondence level �design in a consistent
manner. Parameter frequency distributions �� are derived
and analyzed statistically (e.g. to determine quantiles or
bounds for the model parameters). Violine plots, which
allow an intuitive interpretation of the parameter distribu-
tions (e.g. to identify multiple distribution maxima), are
utilized for visualization. Additionally, an extensive sensi-
tivity analysis allows for linking model parameters and
simulation outcome and determining their predictive import-
ance. For the investigated event, the statistical evaluation of
the adjusted output parameter distributions showed a clear
peak for the Coulomb friction parameter �25% =
0:24 < � < �75%=0:26 and the erosion energy parameter
eb,25% = 8825m2 s� 2 < eb < eb,75% = 13 925m2 s� 2. More-
over these peaks coincide with the parameter values of
maximum correspondence ��max ¼ 0:26 and eb,�max = 11 500
m2 s � 2, indicating high information reliability. For
the turbulent friction parameter � a lower bound
� > �min ¼ 7500m s� 2, but no clear peak was identified,
i.e. the parameter value of maximum correspondence
��max ¼ 14 150m s� 2 is slightly larger than the 75% quantile
value �75%=13 925m s� 2. This means that the optimal value
of � is some arbitrary value larger than �min. However, for �
values in this range, the magnitude of the turbulent friction
diminishes, making its existence questionable, which is in
agreement with other observations (Ancey and Meunier,

Fig. 6. Comparison of violine plots for the adjusted output parameter frequency �� for the three cases: (1) all optimization variables (Fig. 6);
(2) wumax ¼ 0; and (3) wG ¼ wd ¼ 0 (Fig. 5). The violine plots summarize statistical features of the adjusted distributions �� such as the
minimum value �min the 25%, 50% and 75% quantiles �25%, �50% and �75% and the maximum value �max. To provide a reference to the
input distribution �in� , the minimum and maximum values �inmin,�

in
max are shown. The same data are summarized in Table 2.

Fig. 7. Number of simulation runs N�lim , that are assigned to the
adjusted parameter distributions ��, i.e. with sufficiently large
simulation–observation correspondence � � �lim.
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2004). Compared to prior optimization approaches, the
optimal values of the turbulent friction appear to be about
one order of magnitude larger (0.5–1.5�103 m s–2!
0.5–1.5�104 m s� 2). However, care has to be taken with
this comparison, since in other studies entrainment or
curvature effects (that introduce additional velocity-depend-
ent friction and thus may have a significant influence on the
effective values of the turbulent friction coefficient; cf.
Fischer and others, 2012) were partly disregarded. Single
parameters cannot be exchanged between different models
due to differences in the model implementation. The fact that
lower values for the turbulent friction coefficient � (i.e. higher
friction) appear as high-correspondence solutions when
leaving out the maximum velocity umax as optimization
variable is in correspondence with prior studies and
indicates that lower � values lead to avalanche velocities
that are too low (as previously noted by Gubler, 1987;
Fischer and others, 2014; Gauer, 2014).
At this point, the advantage of adjusted parameter

distributions over singular parameter sets should be high-
lighted. Statistical information is a major topic in modern
engineering design. For example, the upper limit of a 90%
confidence interval is usually used as a characteristic value
for an action such as impact pressure in engineering codes.
The derived parameter distributions include the total model
and parameter uncertainties, which are related to a certain
deviation of the design event. Thus predictive ensemble
simulations are possible and can be used to determine
confidence intervals for impact pressures or runouts, i.e.
towards a conceptual approach (Meunier and Ancey, 2004)
with operational models in 3-D terrain. Furthermore the
combination of parameter distributions rather than singular
parameter values is indispensable in order to consider the
full spectrum of multi-event or multipath analyses.
With different examples we highlight the importance of

the multivariate approach. Decreasing the size of the
optimization variable set significantly reduces the informa-
tion value of the adjusted parameter distributions. To adapt
the set of optimization variables may be crucial when
parameter distributions for different questions or applica-
tions have to be determined (e.g., for dam planning, an

accurate flow velocity is more important than an accurate
runout). The importance of each optimization variable
varies for the different model parameters and is directly
linked to the results of the sensitivity analysis. For example,
the optimization variable of maximum velocity umax is very
important to increase the information value of the turbulent
friction parameter distribution �� but only slightly influences
the distribution of the Coulomb friction ��. This is also
reflected by the fact that the parameter � is linked to many
other optimization variables. The influence of the corre-
spondence limit �lim is studied and the related statistical
stability is investigated.
One should note that the presented outcomes may

change for other design event definitions, other avalanche
paths and may not be transferable to flow models of the
same family, or their implementation. Furthermore model
parameters may not be constant but may vary in time and
space, i.e. for different flow regimes and along the
avalanche path. However, the strength of this optimization
concept is the possibility that it might be adapted to multi-
event or multipath analyses, or to other flow models and
their related parameters, and it handles reduced or extended
sets of optimization variables, i.e. more or less prior
information.
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Fig. 8. Comparison of violine plots for the adjusted output parameter frequency �� for varying �lim. The violine plots summarize statistical
features of the adjusted distributions �� such as the minimum value �min, the 25%, 50% and 75% quantiles �25%, �50% and �75% and the
maximum value �max. To provide a reference to the input distribution �in� the minimum and maximum values �inmin,�

in
max are shown.
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Fig. 9. Comparison of violine plots for the adjusted output parameter frequency �� for varying sample size N. The violine plots summarize
statistical features of the adjusted distributions �� such as the minimum value �min the 25%, 50% and 75% quantiles �25%, �50% and �75%
and the maximum value �max. Note the scale of the parameter ranges.
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