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PREFRATTINI SUBGROUPS AND COVER-AVOIDANCE 
PROPERTIES IN U-GROUPS 

M. J. TOMKINSON 

1. I n t r o d u c t i o n . W. Gaschutz [5] introduced a conjugacy class of subgroups 
of a finite soluble group called the prefrattini subgroups. These subgroups 
have the property t ha t they avoid the complemented chief factors of G and 
cover the rest. Subsequently, these results were generalized by Hawkes [12], 
Makan [14; 15] and Chambers [2]. Hawkes [12] and Makan [14] obtained 
conjugacy classes of subgroups which avoid certain complemented chief factors 
associated with a saturated formation or a Fischer class. Makan [15] and 
Chambers [2] showed tha t if W, D and V are the prefrattini subgroup, g-
normalizer and a strongly pronormal subgroup associated with a Sylow basis S, 
then any two of W, D and V permute and the products and intersections of 
these subgroups have an explicit cover-avoidance property. I t was also shown 
by Makan [15] that W, D and V generate a distributive sublattice of the sub­
group lattice of G. 

Our aim here is to present these ideas in a more unified setting and also to 
consider the extension of the results to the class U of locally finite groups with 
a satisfactory Sylow structure. The class U was introduced in [3], in which a 
theory of saturated formations was developed for each QS-closed subclass fi 
of U. Fur ther results from the theory of finite soluble groups have also been 
extended to the class U (see e.g. [6; 7; 10]) and this paper may be considered 
as a continuation of this programme. 

T h e main results concern the prefrattini subgroups of U-groups. The diffi­
culties which one expects in dealing with maximal subgroups in infinite groups 
are largely surmounted by using two results of B. Hart ley. T h e first of these 
(Theorem E and Lemma 4.2 of [8]) reduces the definition of U to being the 
class of locally finite groups in which each subgroup has conjugate Sylow 
Il-subgroups for each set of primes II and also shows tha t : 

T H E O R E M 1.1. A U-group G has a series 

1 ^ Gi g G2 S Gz ^ G, 

where Gt < G, G\ is locally nilpotent, Gi/G\ is divisible abelian of finite rank, 
Gz/Gi is abelian with a finite Sylow p-subgroup for each prime p} and G/G% is 
finite. 

We shall mainly use the corollary of this result tha t G/Op>vv>(G) is finite. 
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The second result of Hartley on which our results depend heavily is the 
following [11]: 

THEOREM 1.2. Let G be a periodic abelian-by-finite group and V an yjlc-module 
over ZPG. If $(V) = 0, then every composition factor of V is complemented. 

We follow Hawkes' approach in defining the prefrattini subgroups. If S is 
a Sylow basis of G and Sp> is the associated Sylow ^'-subgroup of G, then we 
define 

WP(S) = n \M\M is maximal in G and M ^ Sp>}. 

The prefrattini subgroup of G associated with S is defined to be 

Since the Sylow bases of a U-group are conjugate [3, Theorem 2.10], this 
definition ensures that the prefrattini subgroups form a characteristic con-
jugacy class of subgroups of G. Our main result is: 

THEOREM A. Let G G U H (L3Î)2Ï©*. Then a prefrattini subgroup of G avoids 
every complemented chief factor of G and covers the rest. 

Here Ltyl denotes the class of locally nilpotent groups, 21 the class of abelian 
groups and @* the class of finite soluble groups. The above result cannot be 
extended to apply to the whole of U C (Lïïl)ïï2©* but the class of groups 
considered does contain the more well-known subclasses of U, in particular 
(L9Î)©* and S, the class of homomorphic images of periodic soluble linear 
groups. 

Our application of Theorem 1.2 in the proof of Theorem A will depend on 
the following extension of a theorem of Gaschutz [4] which we prove in Section 
Three. 

THEOREM B. Let A be an abelian normal p-subgroup of the U-group G such that 
G/A is a finite extension of a p'-group. If A C\ $(G) = 1, then A has a com­
plement in G. 

In order to present the permutability results more systematically, we make 
the following definition: 

Let S be a Sylow basis of the U-group G. A set 38 = \BP) of subgroups of 
G, one for each prime p, is called a CAR-system associated with S (or a 
SCAR-system) if 

(i) BP è SP> for each prime p, 
(ii) Bp either covers or avoids each chief factor of G. 

(CAR = cover-avoidance, reducing.) 
The intersection B = C\PBP is called a CAR -subgroup associated with S (or 

a SCAR-subgroup). 
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If D is an g-normalizer of a $-group G, then D = C\PDV where Dp = 
NG(CP H 5y) if £ 6 ir(g) and Dp = 5,. if £ € «-(g). (See [3] for notation.) 
We see that Z) is an example of a C4i?-subgroup. Theorem A shows that a 
prefrattini subgroup W = PlP WP is a C4i?-subgroup if G G (L9?)8I©*. 

Chambers [2] calls a subgroup F strongly pronormal if, for each prime p, 
V has a Sylow ^-subgroup P which is a Sylow ^-subgroup of its normal 
closure PG. We see in Section Two that these subgroups are a very special 
example of C4i?-subgroups and will have a natural position in any general 
discussion of these subgroups. 

We also show that the strongly pronormal subgroups into which S reduces 
permute with every SC4i?-subgroup (2.5) and that in a U^-group (i.e. a 
U-group in which every ^-subgroup is abelian) every CAR-subgroup is strongly 
pronormal (2.8). 

Our results for prefrattini subgroups are, in fact, given in a more general 
form in Section Four than has been stated in Theorem A. We consider 3£-
prefrattini subgroups, which are the intersection of the maximal subgroups in 
a suitable s e t ^ which contain Sp>. Theorem B is used to show that the set of 
all maximal subgroups and also certain other sets can be used for«3T. 

We then show that if D is an g-normalizer of G then we can define associated 
sets^Ts and 3£%. The<3TVprefrattini subgroup is shown to be the product of 
D and the ^-prefrattini subgroup. 

The result of Makan [15] concerning the distributivity of the lattice gener­
ated by V, W and D is obtained as a special case of a general result which 
again depends heavily on a strongly pronormal subgroup being a very special 
type of C^4i?-subgroup. 

Finally in Section Seven we observe that the proof that the prefrattini sub­
groups of a finite soluble group are C4i?-subgroups can be shortened by using 
a very elementary lemma. Unfortunately this method involves the considera­
tion of a minimal normal subgroup and cannot be used in the class U. 

2. C^4i?-subgroups. 

PROPOSITION 2.1. Let SS = \BV) be a SCAR-system of the U-group G and 
B = Hp Bp the corresponding SCAR-subgroup. Then 

(i) S reduces into B and B C\ Sp = BPC\ SP, 
(ii) B covers those p-chief factors covered by Bp and avoids those which are 

avoided by BP. 

LEMMA 2.2. If â? = {BP} is a SCAR-system of the U-group G and N <\ G, 
then BN/N = {BPN/N} is a (SN/N)CAR-system of G/N. If B and B are the 
corresponding CAR-sub groups, then B — BN/N. 

Proof. The first part of the lemma is clear. By (2.1), (BPN C\ SPN)/N is a 
Sylow ^-subgroup of B. But (BpNr\SpN)/N and (Bp H SP)N/N are both 
Sylow ^-subgroups of BPN/N and so_(BpN C\ SPN)/N = (Bp H SP)N/N is a 
Sylow ^-subgroup of BN/N. Hence B = BN/N. 

https://doi.org/10.4153/CJM-1975-091-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-091-1


840 M. J. TOMKINSON 

We now observe that new SC4i£-systems can be constructed from a given 
SC4i?-system Se and an arbitrary collection of normal subgroups Vp. 

THEOREM 2.3. Let Se = \BP\ be a SCAR-system of the U-group G and, for 
each prime p, let Vp be a normal subgroup of G. Then 

(i) <fl = {BpVp} is a SCAR-system of G; in particular^ = \SP>VV) is a 
SCAR-system of G; 

(ii) if J = C\P BPVP and V = Dp Sp> VPJ then J = BV; 
(iii) / avoids the p-chief factor H/K of G if and only if V avoids H/K and 

B avoids HVP/KVP; 
(iv) J = {Bp P SP>VP) is a SCAR-system of G; 
(v) if I = np (Bp P Sp> Vp) = B P V, then I covers the p-chief factor H/K 

if and only if V covers H/K and B covers (H P Vp)/ (K P Vp). 

Proof. It is clear that J and J are SC^4i?-systems. We must therefore 
prove that J = BV and the cover-avoidance properties (iii) and (v). 

sP,.(Bpr\sp)(vp P sP) = BP(VP P sp) = BP(VP P sp>)(vp r\ sp) =BPVP 

and so (Bp P SP)(VP P Sp) is a Sylow ^-subgroup of BPVP. Hence J has a 
Sylow ^-subgroup 

BPVP nsp= (BP p sp)(vp P sp) = (BP P sp)(vpsp> P sp) 
= (Bnsp)(vr>sp). 

(Bpvp P sp) (BQvQ p sQ) = (BP P sp)(vpsp, P sp) (Bq P sq)(vqsq> r\ sq) 
= (B ^ SP)(VPSP> n Sp(Bqn Sq))(Vn SQ) 
= {B r\ sp)(vpsp, nBQn spsg)(vr\ sq) 
= (Bnsp)(Bqr\sq(vpsp>nsp))(vnsq) 
= (B p sp) (Bq p sq) (vpsp> r\ sp)(vn sq) 
= (B p SP)(B p sq)(v P sp)(v P sq). 

Therefore J = (BPVP P Sp\p a prime > ^ BV S (B, V) ^ J and so J = BV. 
If V or B covers H/K, then clearly J covers H/K. So let H/K be a £-chief 

factor avoided by both V and B. Then H C\ KVP = K and H.KVP = HVP. 
If B avoids HVV/KVP, then KVPBP P HVP = KVP and so K.VPBP P H = 
KVpr\H = K, i.e., BV avoids H/K. If B covers HVP/KVP, then KVPBV ^ 
HVP è H and so B V covers H/K. This proves (iii). 

If V or B avoid H/K, then clearly I avoids H/K. So let H/K be a p-chief 
factor covered by both V and B. Then K(VPC\H) = if and i£ P ( F„ P if ) 
= VPC\K. IÎ B covers (if H F„ ) / (XP i F,), then BP(K C\ Vp) ^ H C\ Vv 

and so (Bp P S,, F„) (K P F„) ^ F H F , n 5 p ^ p = i / H 7„. Therefore 
(Bpr\Sp.Vp)K ^ ( f f H 7„)X = if and 7 covers H/K. If £ avoids 
(if P VP)/{KC\ Vp), then Bpr\HC\ Vv S K C\VP S K. Thus Bpr\Sp>Vp 

Pi if ^ X and f avoids H/K. 
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The cover-avoidance properties of J and / can be given in a clearer form 
if we impose a fairly natural condition on B. A CAR-subgroup B is called 
perspective if whenever H/K and H\/K\ are chief factors of G such that 
HC\Ki = K, HKi = Hx and B covers Hi/Ku then B covers H/K. 

An g-normalizer is an example of a perspective CAR -subgroup. 

COROLLARY 2.4. Let Se be a perspective SCAR-system of the VL-group G and 
UVV = \SV>VP\ where Vp < G. Then 

(i) J = B V avoids those chief factors which are avoided by both V and B and 
covers the rest; 

(ii) I = B P\ V covers those chief factors which are covered by both V and B and 
avoids the rest. 

We now show that these C4i£-subgroups V are just the strongly pronormal 
subgroups considered by Chambers [2]. 

THEOREM 2.5. A subgroup V of the U-group is strongly pronormal in G if and 
only if V is a SCAR-subgroup of the form C\PSP>VV, where S is a Sylow basis 
reducing into V and each Vp is a normal subgroup of G. 

Proof. Let F be strongly pronormal in G and let S be a Sylow basis of G 
reducing into V. Let Vp = (Sp H V)G\ then V ^ C\PSP>VP. But n P S P ' F„has 
a Sylow ^-subgroup (Sv C\ SP> Vp) = Sp C\ Vp = Sp C\ V and so V = r\pSp> Vp. 

Conversely, let V = C\PSP>VP be a SCi4i?-subgroup with Vp <\ G. Then 
Sp P\ V = Sp C\ SP> Vp — Sp C\ Vp is a Sylow ^-subgroup of the normal sub­
group Vv and so V is ^-normally embedded for each prime p. 

COROLLARY 2.6. Let V be a strongly pronormal subgroup of the U-group G and 
let S be a Sylow basis of G reducing into V. Then V permutes with every SCAR-
subgroup of G. 

Using the characterization given in (2.5) together with (2.4) for the special 
case of an Ç-normalizer we have: 

COROLLARY 2.7. Let ^ be a QS-closed subclass of U and let % be a saturated 
^-formation. If G is a §l-group, V is a strongly pronormal subgroup of G, S is 
a Sylow basis of G reducing into V and D is the %-normalizer of G associated 
with S, then: 

(i) DV avoids the ^-eccentric chief factors avoided by V and covers the rest; 
(ii) D C\ V covers the ^-central chief factors covered by V and avoids the rest. 

In view of the following result, the permutability of strongly pronormal 
subgroups is particularly useful in U^-groups. 

THEOREM 2.8. Let G be a WA-group. Then every CAR-subgroup of G is strongly 
pronormal. 

Proof. G has ̂ -length one for each prime p [6, Lemma 2.2]. Let K = Op>p(G) 
and let B = C\VBP be a S CAR -subgroup of G. Then Bv = SV>(K r\ Bv) and 
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K P Bp O Bp. Also, since Bp ^ Ov, (G) and K/0P> (G) is abelian, K P Bv < K. 
Therefore K P Bp < iLBp ^ 2£S*' = G. Thus Bv = Sp> Vp, where Vv = 
K C\ Bp < G and the characterization in (2.5) completes the proof. 

COROLLARY 2.8. Le* G be a \[A-group. Then any two SCAR-subgroups of G 
are permutable. 

It should be noted that it is not sufficient in (2.8) to assume that G has 
^-length one for each prime p. Hawkes [13] constructs a finite soluble group 
with ^-length one for each prime p but in which the basis normalizers are not 
2-normally embedded. 

3. The complementation theorem and its consequences. 

Proof of Theorem B. Let Q/A = Op>(G/A) so that G/Q is finite. Let 5 be a 
Sylow ^'-subgroup of Q, so that Q = AS and A P 5 = 1. By a Frattini 
argument, G = QNG(S) and so there is a finite subgroup F of NG(S) such 
that G = QF. Choose F such that G = QF and \A P F| is minimal. A P F is 
normalized by 4 (since 4̂ is abelian) and by F (since 4̂ <\ G) and is centralized 
by 5 (since [A P F, S] S A P 5 = 1). Thus 4 H ^ AFS = G. 

If i4 P F ^ 1 then, since A P $(G) = 1, there is a maximal subgroup M of 
G such that AC\FnM<Ar\F. Since M is maximal in G, G = (A C\ F)M 
and so F = (AC\ F)M P F = U P F) (M P F) and G = QF = Q(M P F) 
contrary to the minimality of A P F. Thus i H F = 1 and hence 4̂ P FS — 
1, since yl P F5 is a normal p-subgroup of FS and so is contained in every 
Sylow ^-subgroup of FS, and in particular, is contained in F. 

It should be noted that a II P (L9ft)3I-group G may have a normal abelian 
subgroup A such that 4̂ P $(G) = 1 but A has no complement. This is shown 
by Example 4.1 of [10] which is a split extension of an elementary abelian 
p-group A by the group 

H = Dr Cçi, 

for suitably chosen primes qu such that A is not completely reducible as a 
Z^-module . Thus A contains a normal subgroup N of G which has no G-
admissible complement in A and hence has no complement in G. 

However, combining Theorem B with Theorem 1.2 we shall be able to prove 
results about complemented chief factors of U P (LSfl)21©*-groups which are 
sufficient for our purposes. Here and even more in the next section we shall 
require more information about complemented chief factors. The following 
lemma, which states exactly what the complements are, is essentially Theorem 
2.2 of [7], the additions all being straightforward. 

LEMMA 3.1. Let H/K be a chief factor of the U-group G complemented by M and 
let L = core G (M). Then 
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(i) G/L has a unique minimal normal subgroup C/L = Op(G/L) = p(G/L); 

(ii) C = CG(H/K) and H/Kçkc/L, 

(iii) if Q/C is a non-trivial normal p'-subgroup of G/C and M ^ Sp> then 
M = NG(Q r\ LSP.) = LNG(Q A Sp>). 

THEOREM 3.2. Let A be a normal psubgroup of the U C\ (L?t)2I©*-group G. 
If A C\ $(G) = 1 and H/K is a chief factor of G with H ^ A, then H/K has a 
complement in G. 

Proof. If M is a maximal subgroup of G not containing A, then M C\ A <3 A 
[7, Lemma 2.3] a n d s o M O i < AM = G. Thus 4 / ( 4 H M) is a chief factor 
of G and so is elementary abelian. Also, CG(A/(A P\ M)) è 0P>P(G) [3, 
Theorem 3.8] and since 4 P\ $(G) = 1 we see that 4 is elementary abelian 
and C = CG{A) ^ 0P>P(G). Hence G/C is a finite extension of a £'-group. 

Let M^ i G / , be the maximal subgroups of G not containing A. If C* = 
CG(A/(A r\ Mi)) then d ^ C and it follows from (3.1) that 

A/ (A n Mt) S c/(cn Afo £ Ct/iCtnMt). 
Let L = C r\ HitiMi so that L <\ G and 4 Pi L = 1. Using Theorem B, 
with C/L and G/L replacing A and G, we see that there is a subgroup U of G 
with C [ / = G a n d C n [ / = L 

G G 
Since 4 ^ 4 L / L , we have ff/X ^ HL/KL. Applying Theorem 1.2 to 

the ZP(G/C)-module C/L, we see that there is a subgroup N <\ G with N.HL = 
C and iV H HL = XL. Thus NH = C and N C\ H = KL C\ H = K. It is 
clear that IW.C = G and UN H C = N(U H C) = TV. Therefore J77V.LT = 
ÎWC = G and £/iV H # = N H i ï = K. Thus [/TV is a complement of H/K. 

Our discussion of prefrattini subgroups will depend on certain sets of maxi­
mal subgroups. We define a set<5T of maximal subgroups of the group G to be 
solid if it satisfies the following two conditions: 

(51) if M Ç 3C and g 6 G, then jlf' G #"; 
(52) if the chief factors H/K{, i £ / , each have a complement in «3T then 

every chief factor H/K, with i£ ^ H *<=/ i£*, is complemented and all the 
complements of H/K are m 2/. 

If H/K has a complement in 3£ then it is called an 2/ -complemented chief 
factor; otherwise H/K is called an !%~-Frattini chief factor. Taking Kt = K 
in (S2), we have 

(53) every complement of an ^-complemented chief factor is in X. 
If 3£ — 2/'(G) is a solid set of maximal subgroups of G and N < G then we 

shall also use <3T to denote the solid set of maximal subgroups of G/N of the 
form M/N with M G ^ ( G ) . Then a chief factor (H/N)/(K/N) of G/iV is 
^-complemented if and only if H/K is an ^-complemented chief factor of G. 

The set of all maximal subgroups of a group G clearly satisfies (SI) and 
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Theorem 3.2 shows that if G G U H (L^)2l@* then this set also satisfies (S2). 
Thus we have. 

COROLLARY 3.3. / / G Ç U H (1^)21©*, then the set of all maximal subgroups 
of G is solid. 

We show that there are other interesting solid sets of maximal subgroups. 

THEOREM 3.4. Let G 6 U H (L3î)Sl©* and let$/ denote a class of chief factors 
of G of rank ^ n such that & is closed under G-isomorphism. If 9C is the set of 
those maximal subgroups which complement a chief factor in &, then S£ is solid. 

Proof. Again it is clear that 3C satisfies (SI). So let H/Ku i Ç J, be 9t-
complemented chief factors and let H/K be a £-chief factor with K ^ C]iaKi. 
We may assume that each H/Kt is a ^-chief factor and that C\ieiKi = 1. If 
Ci = CG(H/Ki), then there is a finite bound on \G : C*| dependent only on n. 
Using the notation of Theorem 1.1, d ^ G2 and there is a normal subgroup of 
finite index in G3 contained in Cu for each i. Thus G/CG(H) is finite and so, 
by Theorem B of [10], H is completely reducible as a ZpG-module. Therefore 

H/K^H/KJorsomei 

and so H/K £ & and since i7/i£ has a complement (3.2) it must be <3T-
complemented. 

It seems unlikely that the condition bounding the ranks of the chief factors 
can be omitted from Theorem 3.4. Because of this it does not show that the 
sets of g-abnormal maximal subgroups and of g-normal maximal subgroups 
are solid. However, we can, in fact, prove rather more than this. 

THEOREM 3.5. Let $ be a QS-closed subclass of U and % a saturated ^-forma­
tion. If SF is any solid set of maximal subgroups of the St Pi (Lyt)$t&*-group 
G then 

2/% = {M G 3C\M is ^-abnormal in G) 

and 

&% = \M e 2/\M is %-normal in G) 

are both solid sets. 

Proof. Again it is clear thatc^T^ and <3Ts satisfy (SI). So let H/Ku i £ / , 
be ̂ -complemented chief factors of G and let H/K be a chief factor such that 
K ^ r\iei Kt = 1. If each H/Kt is ^^-complemented, then each H/Kf is 
g-eccentric. If D is an g-normalizer of G, then D avoids each H/Kt and so 
D r\H = 1. Therefore D avoids H/K and H/K is g-eccentric. H/K is SC-
complemented and since H/K is g-eccentric each complement must be %-
abnormal i.e., H/K is ^^-complemented. 
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If each H/Ki is^TVcomplemented, then each H/Kt is g-central.Therefore 
CG(H/K) ^ rUvCoiH/Kt) ^ Cp and so H/K is g-central. H/K is 3T-
complemented and since it is g-central, each complement must be ^-normal. 

Since ££% and &% are solid sets it is clear that, if gi, . . . , %n are saturated 
^-formations, we can construct solid sets of the form «âTe^...®,,, where ®* 
denotes either g f or %f. 

4. ^-prefratt ini subgroups. If J? is a solid set of maximal subgroups of 
the U-group G and S is a Sylow basis of G, then we define 

w/(S) = n {M£gr\M*sP'\. 
Clearly W^ (S) ^ SP> and so S reduces into WP^(S). The &-prefrattini sub­
group of G associated with S is defined to be 

w*(S) = n w/(S). 
V 

Since the Sylow bases of a U-group are conjugate [3, Theorem 2.10], this 
definition ensures that the ^-prefrattini subgroups form a characteristic con-
jugacy class of subgroups of G. To show that they satisfy the expected cover-
avoidance property we need to show that <WX = { Wp

x(S)} is a SC4i?-system 
and that Wp* (S) avoids a p-chief factor H/K if and only if H/K is ^ - c o m ­
plemented. 

It is sufficient to prove that if N <\ G, then W/(SN/N) = W/(S)N/N. 
For if H/N is an «^-complemented £>-chief factor of G, then H/N is avoided by 
WP^(S). If H/N is a p-chiei factor with no complement in 3£, then 
W/(SN/N) è H/N and so W/(S) covers H/N. 

By using induction on the length of a ^-series for TV, we may clearly assume 
that N is a £-group. We must therefore prove: 

THEOREM 4.1. Let N be a normal p-subgroup of the U C\ (Lîl)?l©*-group G 
and let & be a solid set of maximal subgroups of G. If WP = ^ ^ ( S ) and 
Wp/N = W/(SN/N), then NWP = Wp. 

The following stronger form of Theorem A will then follow: 

THEOREM 4.2. Let & be a solid set of maximal subgroups of the U C\ (L9i)3l©*-
group G. Then the 2/-prefrattini subgroups of G avoid the 2/ -complemented chief 
factors of G and cover the rest. 

With the notation of Lemma 3.1, we have seen that each complement M\ of 
H/K containing Sp> is of the form L\NG(Q C\ Sp>). We have to consider the 
intersection of these complements and will make use of the following: 

LEMMA 4.3. If Q and Lx, X Ç A, are normal subgroups, and Su is a Sylow 
U-subgroup of the U-group G, then 

n (UNG(QK Su)) = ( n ujNaiçn sn). 
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The proof of (4.3) is identical to that of Lemma 4.9 of [16]. 
If M is a maximal subgroup of G not containing TV, then TV P M <\ TV 

[7, Lemma 2.3] and so TV P M < NM = G. Thus TV P Wp < G and using 
(3.2) and the definition of a solid set of maximal subgroups we have: 

LEMMA 4.4. Each chief factor of G between TV and N C\WP is 2£-complemented. 

LEMMA 4.5. Let TVbe a normal p-subgroup of the U P (L9t)8l©*-group G such 
that N C\WP = \. If CG(H/K) = C for each chief factor H/K of G below TV, 
then NWP = Wv. 

Proof. Let MXj X G A, be the members of «ST containing Sp> but not TV. Then 
Wp = Wpr\ OxeA Mx. LetLx = coreG(Mx) = C H Mx and Q/C = Op>(G/C), 
so that Mx = LxNG(Qr\Sp>) (3.1). If L = PXGALX, then 

n ^ = n LMQn s,,) = LNG(QH s,o, by (4.3), 
X ç A X 6 A 

and so i\Wp = W^ P NLNG(Q P Sp,). 
C/L is a normal ^-subgroup of G/L and L is the intersection of C and 

certain members of 2£. Therefore each chief factor of G between C and L is 
^-complemented (4.4). Let HJKU i £ / , be the chief factors of G between C 
and L then there is a chief factor C/Li such that LtC\ Ht = Kt and C/Lt is 
complemented by LtNG(Q C\ Sp>). Thus L{NG(QnSpf) ^ 3T and so Wp ^ 
r)iaLiNG(Qr\Sp,) = NLNG(QC\ Sp>). Thus NWP = WPJ as required. 

Proof of Theorem 4.1. Let A = 0P>P{G) and 5 = 0P>PP>{G) so that G/^ is 
finite (1.1). We may assume that TV P W ,̂ = 1 so that each chief factor of G 
below TV is ^-complemented (4.4). There are only finitely many subgroups 
Ci, . . . , Ck containing B which occur as centralizers of chief factors of G below 
TV. The Ci, . . . , Ck can be ordered so that if Ct ^ C$, then i ^ j . For each 
r = 1, . . . , k, we define 

Nr = P {KX\N/KX is a chief factor of G and CG(N/KX) = C„ 

for some s = 1, . . . , r}. 
This gives a series 

TV = TV0 è TV, è . . . ^ TV, è 1 

of normal subgroups of G. Clearly no chief factor of G below Nk is centralized 
by 5 . Let H/K be a chief factor of G between TVr_i and Nr. By (3.2), there is 
a chief factor iV/Xx such that i7 P î x = KzndCG(H/K) = CG(N/KX). Since 
#x £ TVr-i, it is clear that CG(H/K) ^ C, for any/ < r. But also [Cr, TVr_i] g 
TVr and so CG(H/K) ^ Cr. It follows from the ordering of Cu . . . , Ck that 
CG(H/K) = Cr, for each chief factor i f /X of G between TVr_i and TVr. 

An induction argument using (4.5) shows that we may assume that Nk = TV 
so that no chief factor of G below TV is centralized by B. 

Let Mx, X G A, be the members of 2£ containing SP> but not TV, so that 
wp = wPr\ PX€AMX. 
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Write LA for A C\ M\ and L - HxeA L\. If A/L\ has distinct complements 
Mx, Afx containing Sp> and if C = CG(A/U), then C/(CC\ Mx H Mx) is the 
direct product of two minimal normal p-subgroups with centralizer C. There­
fore if D = A (Cr\ Mx H Mx) then CG(C/P) = C. But also [3 , C] S B D 
C S D since 5/M is a //-group and this is contrary to C = C0(N/(N P Lx)) 

Thus ^4/Lx has the unique complement Mx containing 5»'. By a Frattini 
argument AN G(B P Sp>) = G. Therefore A P LXNG(B H Sp>) < ANG(B C\ 
Sp>) = G and so AC\LXNG(B H 5 ^ ) is equal to 4 orLx . If 4 ^ LXNG(B r\Sp>), 
then[Ay B nSP>] ^ A r\ U(B r\ SP0 = U^ndso CG(A/U) ^ A(B C\ Sp^) = B. 
This contradiction shows that A P L\NG(B P SP0 = Lx and so L\NG(B P Sp>) 
is a complement of ^4/Lx. Hence Mx = L\NG(B C\ Sp>) and OXÇA MX = 
LNG(BC\SP.) (4.3). Therefore AWP = WpC\NLNG(Bf\Sp.). 

But as in the proof of (4.5) there are ^-complemented chief factors A/Ai} 

i G / , such that f) iaA t = NL and ^4/̂ 4 < has the complement A tNG(B P S„0-
Thus 

wp ^ nAtNG(B p 5,o = iVL^(^ p sPo 

and we have AWp = Wp, as required. 

Gaschiitz [5] showed that the prefrattini subgroups of finite soluble groups 
can be characterized as those subgroups which cover each Frattini chief factor 
and which are contained in a conjugate of each maximal subgroup. No similar 
result can be obtained for U-groups as B. Hartley [9] has constructed a locally 
finite p-group G with a proper subgroup U which supplements each non-trivial 
normal subgroup N of G. The Frattini subgroup <£ is the unique prefrattini 
subgroup of G. $ = Gv > 1 and so U$> = G and U £ $. Thus U P $ < <ï>. 
Since U P $ < $, it is contained in each maximal subgroup of G. 

If H/K is a Frattini chief factor of G, then $K è # and so ( U P $)i£ = 

(c/n $)(xn $)x = (u(Kr\ $) p $)x. H X P $ = ithen Z/(#P $) = 
G and [7 P (H P $) < *7(# P $) = G and so U P (tf P 3>) = 1 and U 
complements H P <£. But this would imply that U è $ and so we must have 
i £ P $ > 1. Therefore U{KC\ $) = G and ( [ / P $)i£ = (C / (KP 3>) P 3>)i£ 
= $K ^ 77. Thus U P $ also covers each Frattini chief factor of G. 

5. J?Vprefrattini subgroups. We saw in (3.5) that J£<% and Jg% are 
solid sets and so we have cover-avoidance properties for ^Vprefrat t ini sub­
groups and <âT§-prefrattini subgroups given by Theorem 4.2. If a chief factor 
has an g-abnormal complement it is g-eccentric and if it has an g-normal 
complement it is g-central. We therefore have the following result: 

THEOREM 5.1. Let $ be a QS-closed subclass of U, g a saturated ^-formation 
and 3C a solid set of maximal subgroups of the $ P (L9î)2l©*-group G. Then 

(i) the 2£ ^-prefrattini subgroups of G avoid the ^-eccentric 2£-complemented 
chief factors of G and cover the rest; 
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(ii) the 2£ %-prefrattini subgroups of G avoid the ^-central 2£-complemented 
chief factors of G and cover the rest. 

Our main aim in this section is to obtain the alternative characterization of 
a<ârVprefrattini subgroup as the product of an ^-prefratt ini subgroup W and 
g-normalizer D. We also consider the intersection D C\ W and the S£%-
prefrattini subgroups. We state our results in terms of the CA/^-systems 
introduced in Section Two. 

THEOREM 5.2. Let $ be a QS-closed subclass of U, % a saturated ^-formation 
and S£ a solid set of maximal subgroups of the J? P (L5ft)3l<S*-group G. Let 
Wp = W/(S) and Dp = NG(CpnSp>) so that W* = [Wp] and 9 = [Dp] 
are SCAR-systems of G. Then 

(i) { WpDp} is a SCAR-system of G and DP WVDP = WD is the£"$-prefrattini 
subgroup of G associated with S; 

(ii) {Wp P Dp) is a SCAR-system of G. W P D = C\v (Wp P Dp) covers 
the %-central^ -Frattini chief factors and avoids the rest. 

Proof. First note that the g-normal maximal subgroups of G contain G*, the 
g-residual of G, and the g-abnormal maximal subgroups which contain Sr> also 
contain Dv. (This result does not seem to have been recorded in this form but 
can be deduced from the proof of Theorem 4.1 of [7] or proved directly as in 
Lemma 6.3 of [16], using Lemma 3.1.) 

(i) Wp = H [M e T%\M è Sp>] r\ H{M e 3f%\M ^ Sp>) and so 
DPWP = n {M ^3T%\M^ sv.\ r\Dp{c\ {M tSir%\M^sp,\). 

Since DG = G [3, Theorem 4.6 (iv)] and Dv ^ D P Sp, we have 
DP(D {M t2tr%\M è Sp>}) = G and so DPWP = D {M ^2T%\M è Sp>} and 
Dp DPWP is the^ft-prefrattini subgroup of G associated with S. 

A similar argument shows that C\PDPWP — DW = WD. 
(ii) We have to show that Wp P Dp covers the ^-central <âT-Fratti ni ^-chief 

factors and avoids all other />-chief factors. It is clearly sufficient to prove that 
if N < G, then N(WP P Dp) = NWP P NDV. By induction on a p-series for N 
we may clearly assume that N is a £>-group. 

WVC\DV = O {M e Sf%\M è Sv>) P Dp. U N ^ G* then 

N(wp r\DP) = n{M e $T%\M ^ sp.\ P NDP = NWVP NDP 

and so by factoring out N P G*, we may assume that N P Gl = 1. But then 
N is a normal />-subgroup with every chief factor of G below TV being covered 
by D. Now D P N < D and [£> P iV, G*] g iV P GS = 1 so D P TV < £>G5 

= G. Therefore Z) P N = TV and N ^ D. N is contained in each Sylow 
^-subgroup of £> and so iV g Z>p. Thus N(WP P £>p) = 7V(P {M € ^ s | M è 

W ) n c , = Nwpr\NDv. 
THEOREM 5.3. With the above notation, {WPG } is a SCAR-system and 

Dp WPG = WG is the 3f %-normalizer of G associated with S. 
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Proof. As in the last result, 

G*WP = G*(n {M e ST%\M ^ sp>) n n ( i ^ SC%\M ^ sp>\. 

Now, if M € ^3f and M è S,* then M £ Z>andsoG*(n {M e3T$\M^ Sp>}) 
è G*D = G. Therefore G*WV = H {M € #"&|M à S,*}, as required. 

A similar argument shows that C\p WPG = VFG5. 

If Si» $* are saturated ^-formations, JDI and £>2 are the $1- and oVnormal-
izers of G associated with S and W = W^(S), then we see from (5.2) and the 
fact that 2£%x and ^ ^ 2 are solid sets (3.5) that the product WD1D2 can be 
written in any order even though D\ and D2 may not permute. This situation 
can be seen in the following example: 

Let H = (x, y, z\x7 = y7 = z1 = [x, z] = [y, z] = 1, [x, y] = z) and let G 
be the split extension of H by a cyclic subgroup (a ) of order 6 such that 
a~lxa = x2, a-13/a = yl, a~lza = s5. Let S be the Sylow basis { (a3 ), (a2 ), H). 
The prefrattini subgroup of G associated with S is W = (z ). If D\ and D2 are 
the -ÏÎ9I2- and SftJU-normalizers of G associated with S, then D\ = (x, a) and 
D2 = (y, a). (§tp denotes the class of abelian groups of exponent p.) Then 
(Du D2) = G 7̂  £>i£>2. But WX>i = (x, z, a ) so that WD1D2 = D2WD1 = G 
and similarly WD2D1 = D{WD2 = G. 

6. Distributivity conditions. Let V = C\p Sv> Vv be a strongly pronormal 
subgroup of the It-group G into which the Sylow basis S reduces. Also let 
B = C\PBP and C = DPCP be two SC^4i?-subgroups of G such that BC = CB. 
By (2.6), V permutes with both B and C and so V, B, C generate a modular 
sublattice of the subgroup lattice of G. 

It follows therefore that this sublattice is distributive if V(B H\ C) = 
VB C\ VC [1, Theorem 12 Chapter II (p. 37)]. V(B H C) has a Sylow p-sub-
group (Vp r\ SP)(BP C\ Cp C\ Sp) = VV{BP C\ Cp) C\ Sp. Also S reduces into 
VB C\ VC which has a Sylow ^-subgroup VV(BV C\ Sv) C\ VP(CP C\ Sp) C\ Sp = 
VPBP r\ VPCP Pi Sp. These two subgroups are equal if VP(BV C\ Cp) = VVBP C\ 
VPCP and so we have proved: 

THEOREM 6.1. Let V = C\p SP>VP be a strongly pronormal subgroup of the 
W-group G into which the Sylow basis S reduces. Let B = C\PBP and C = Dp Cv 

be two SCAR-sub group s of G satisfying the conditions: 
(i) BC = CB and 
(ii) N(BP r\ Cp) = NBP C\ NCP, for all N < G. 

Then V, B, C generate a distributive sublattice of the subgroup lattice of G. 

We have seen that these conditions are satisfied if B is an ^"-prefrattini 
subgroup and C an g-normalizer of the ($ C\ (JM)31©*)-group G (5.2). 

Makan [15] obtains a rather more general result for finite soluble groups. 
He defines a pair of SC^4i?-subgroups to be compatible if they permute and if 
their intersection covers those chief factors covered by both of them. This 
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condition is similar to the conditions (i) and (ii) in (6.1) but it seems unlikely 
that a condition on chief factors will be strong enough in U-groups. Makan is 
able to prove that if V, B, C are pairwise compatible SC4-R-subgroups then 
they generate a distributive lattice but we have been unable to weaken the 
condition that V is strongly pronormal. 

7. Finite soluble groups. Finally, we note that in the class of finite 
soluble groups a very much simpler proof can be given to show that ^ ^ is 
a S CAR -system. Using the notation of Section Four, we have to show that if 
N < G, then WPN = Wp. If G is finite then we may assume that N is a 
minimal normal subgroup of G. If Mi, . . . , Mn are the members of 3C which 
contain SP> but not N then 

WP = WVC\ C\Mt and so NWP = Wp H N\ f| Mt). 

LEMMA 7.1. (Hawkes [12, Lemma 2.4]). IfL{ = coreGMt, then N{Mt C\ Mj) 
is a maximal subgroup of G complementing the chief factor NLi/N(Lt C\ Lf). 
Hence N(Mt H Mj) 6 St and so N(Mt C\ Mj) ^ Wp. 

We have to show that iV(n"=i Mi) ^ WP and this follows from the following 
elementary result: 

LEMMA 7.2. Let N be a normal subgroup of the group G and let Mu i £ / , be 
subgroups of G such that Mt C\ N = 1. Then, for each j £ I, 

NX DM-) = DNiMiHMj). 

Proof. Let ntmi = nkmk 6 N(Mt H Mj) H N(Mk Pi Mj), with the obvious 
notation for elements. Then nk~

ln% = mkm{~Y € N P\ Mj = 1 and so mt = 
mk £ MiC\ MkC\ Mj. Hence if w,wf 6 n<6 / N(M< H M,), then w, G Dta Mt 

and the result follows. 
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