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PREFRATTINI SUBGROUPS AND COVER-AVOIDANCE
PROPERTIES IN u-GROUPS

M. J. TOMKINSON

1. Introduction. W. Gaschiitz [5] introduced a conjugacy class of subgroups
of a finite soluble group called the prefrattini subgroups. These subgroups
have the property that they avoid the complemented chief factors of G and
cover the rest. Subsequently, these results were generalized by Hawkes [12],
Makan [14; 15] and Chambers [2]. Hawkes [12] and Makan [14] obtained
conjugacy classes of subgroups which avoid certain complemented chief factors
associated with a saturated formation or a Fischer class. Makan [15] and
Chambers [2] showed that if W, D and V are the prefrattini subgroup, -
normalizer and a strongly pronormal subgroup associated with a Sylow basis S,
then any two of W, D and V permute and the products and intersections of
these subgroups have an explicit cover-avoidance property. It was also shown
by Makan [15] that W, D and V generate a distributive sublattice of the sub-
group lattice of G.

Our aim here is to present these ideas in a more unified setting and also to
consider the extension of the results to the class 1l of locally finite groups with
a satisfactory Sylow structure. The class Il was introduced in [3], in which a
theory of saturated formations was developed for each QS-closed subclass &
of U. Further results from the theory of finite soluble groups have also been
extended to the class U (see e.g. [6; 7; 10]) and this paper may be considered
as a continuation of this programme.

The main results concern the prefrattini subgroups of U-groups. The difh-
culties which one expects in dealing with maximal subgroups in infinite groups
are largely surmounted by using two results of B. Hartley. The first of these
(Theorem E and Lemma 4.2 of [8]) reduces the definition of 11 to being the
class of locally finite groups in which each subgroup has conjugate Sylow
II-subgroups for each set of primes II and also shows that:

THEOREM 1.1. 4 U-group G has a series
1=G6Gi=G6G:=2G3 =G,

where G; < G, Gy 1s locally nilpotent, G2/G, s divisible abelian of finite rank,
G3/Gs is abelian with a finite Sylow p-subgroup for each prime p, and G/G; is
Sfinite.

We shall mainly use the corollary of this result that G/Op,y (G) is finite.
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The second result of Hartley on which our results depend heavily is the
following [11]:

THEOREM 1.2. Let G be a periodic abelian-by-finite group and V an M ~module
over L,G. If ®(V) = 0, then every composition factor of V is complemented.

We follow Hawkes' approach in defining the prefrattini subgroups. If S is
a Sylow basis of G and S, is the associated Sylow p’-subgroup of G, then we
define

W,(S) = N {M|M is maximal in G and M = S,}.
The prefrattini subgroup of G associated with S is defined to be
W) = N, W,(8).

Since the Sylow bases of a U-group are conjugate [3, Theorem 2.10], this
definition ensures that the prefrattini subgroups form a characteristic con-
jugacy class of subgroups of G. Our main result is:

THEOREM A. Let G € U N (LN)AS*. Then a prefratting subgroup of G avoids

every complemented chief factor of G and covers the rest.

Here L) denotes the class of locally nilpotent groups, U the class of abelian
groups and &* the class of finite soluble groups. The above result cannot be
extended to apply to the whole of U © (LN)A2S* but the class of groups
considered does contain the more well-known subclasses of U, in particular
(LN)S* and €, the class of homomorphic images of periodic soluble linear
groups.

Our application of Theorem 1.2 in the proof of Theorem A will depend on
the following extension of a theorem of Gaschiitz [4] which we prove in Section
Three.

THEOREM B. Let 4 be an abelian normal p-subgroup of the U-group G such that
G/A 1is a finite extension of a p’-group. If A M ®(G) = 1, then A has a com-
plement in G.

In order to present the permutability results more systematically, we make
the following definition:

Let S be a Sylow basis of the Ul-group G. A set & = {B,} of subgroups of
G, one for each prime p, is called a CAR-system associated with S (or a
SCAR-system) if

(i) B, z S, for each prime p,

(ii) B, either covers or avoids each chief factor of G.
(CAR = cover-avoidance, reducing.)

The intersection B = N, B, is called a CA R-subgroup associated with S (or
a SCAR-subgroup).
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If D is an {-normalizer of a R-group G, then D = N, D, where D, =
Neg(Co M Sy) if p € w(F) and D, = S, if p ¢ =(F). (See [3] for notation.)
We see that D is an example of a CAR-subgroup. Theorem A shows that a
prefrattini subgroup W = N, W, is a CAR-subgroup if G € (LN)AS*.

Chambers [2] calls a subgroup V strongly promormal if, for each prime p,
V has a Sylow p-subgroup P which is a Sylow p-subgroup of its normal
closure P¢ We see in Section Two that these subgroups are a very special
example of CAR-subgroups and will have a natural position in any general
discussion of these subgroups.

We also show that the strongly pronormal subgroups into which S reduces
permute with every SCAR-subgroup (2.5) and that in a U,-group (i.e. a
U-group in which every p-subgroup is abelian) every CA R-subgroup is strongly
pronormal (2.8).

Our results for prefrattini subgroups are, in fact, given in a more general
form in Section Four than has been stated in Theorem A. We consider Z -
prefrattini subgroups, which are the intersection of the maximal subgroups in
a suitable set Z which contain S,.. Theorem B is used to show that the set of
all maximal subgroups and also certain other sets can be used for Z .

We then show that if D is an {-normalizer of G then we can define associated
sets Z 5 and Z 5. The Z g-prefrattini subgroup is shown to be the product of
D and the & -prefrattini subgroup.

The result of Makan |15] concerning the distributivity of the lattice gener-
ated by V, W and D is obtained as a special case of a general result which
again depends heavily on a strongly pronormal subgroup being a very special
type of CA R-subgroup.

Finally in Section Seven we observe that the proof that the prefrattini sub-
groups of a finite soluble group are CAR-subgroups can be shortened by using
a very elementary lemma. Unfortunately this method involves the considera-
tion of a minimal normal subgroup and cannot be used in the class U.

2. CAR-subgroups.

ProPosITION 2.1. Let & = {B,} be a SCAR-system of the U-group G and
B = N, B, the corresponding SCAR-subgroup. Then

(i) S reduces into B and BN S, = B, M S,

(ii) B covers those p-chief factors covered by B, and avoids those which are
avoided by B,.

LemMa 2.2. If & = {B,} is a SCAR-system of the U-group G and N < G,
then BN/N = {B,N/N} is a (SN/N)CAR-system of G/N. If B and B are the
corresponding CAR-subgroups, then B = BN/N.

Proof. The first part of the lemma is clear. By (2.1), (B,N N\ S,N)/N is a
Sylow p-subgroup of B. But (B,N N\ S,N)/N and (B, N\ S,)N/N are both
Sylow p-subgroups of B,N/N and so (B,N N\ S,N)/N = (B,N\S,)N/Nisa
Sylow p-subgroup of BN/N. Hence B = BN/N.
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We now observe that new SCA4 R-systems can be constructed from a given
SCAR-system & and an arbitrary collection of normal subgroups V.

THEOREM 2.3. Let & = {B,} be a SCAR-system of the U-group G and, for
each prime p, let V, be a normal subgroup of G. Then
() # = {B,V,} is a SCAR-system of G; in particular ¥~ = {S, V,} is a
SCAR-system of G;
() if J = NpB,Vyand V.= N, Sy V,, then J = BV;
(iii) J avoids the p-chief factor H/K of G if and only if V avoids H/K and
B avoids HV,/KV,,
(iv) J = {B,N\ S, V,} is a SCAR-system of G;
W) if I =Npy(B, NS, V,) = BNV, then I covers the p-chief factor H/K
if and only if V covers H/K and B covers (H M\ V,)/ (KM V).

Proof. It is clear that ,# and £ are SCAR-systems. We must therefore
prove that J = BV and the cover-avoidance properties (iii) and (v).

Sp-(By (NSp) (VM Sy) = Bp(V, M Sy) = B,(V, N Sp) (V, N S,y) =B,V

and so (B, N S,)(V, M S,) is a Sylow p-subgroup of B,V,. Hence J has a
Sylow p-subgroup

BpVPmSp = (Bpmsp)(vpm Sz)) = (Bzrmsp)(VpSp’ f\S,,)
= (BN S)(VNS,).

(Bp Vp a Sp) (BqVq N Sq) = (Bp M S:n) (VpSp’ M Sp) (Bq N S:]) (Van’ N Sq)
= (BmSp)(VpSp'nSP(quSq))(Vqu)
= (B N Sp)(VpSp’ N qu Squ)(Vm Sq)
= (BN S) (BN S (VS M S,))(VNS)
= BN S) (BN S)(VpSy M S,)(VNS,)
= BNS)BNS)VNS)VNS,).

Therefore J = (B,V, N\ S,|paprime) £ BV £ (B, V) < JandsoJ = BV.

If V or B covers H/K, then clearly J covers H/K. So let H/K be a p-chief
factor avoided by both V and B. Then H N\ KV, = K and HKV, = HV,.
If B avoids HV,/KV,, then KV,B, N\ HV, = KV, and so K.V,B, "\ H =
KV,NH =K, ie., BV avoids H/K. If B covers HV,/KV,, then KV,B, =
HV, 2 H and so BV covers H/K. This proves (iii).

If V or B avoid H/K, then clearly I avoids H/K. So let H/K be a p-chief
factor covered by both V and B. Then K(V, "\ H) = Hand KN (V, N\ H)
=V,N\K. If Bcovers (HNV,)/(KMNV,), then B,(KNV,)=2HNYV,
and so B,NSyV,)(KNV,) 2HNV,N\S,V,=HMNV, Therefore
B, NSy V) K2 (HNV,)K = H and I covers H/K. If B avoids
HNVY/(KENV,),then BLNHNV, < KNV, =K. Thus B,N S, V,
N H £ K and I avoids H/K.
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The cover-avoidance properties of J and I can be given in a clearer form
if we impose a fairly natural condition on B. A CAR-subgroup B is called
perspective if whenever H/K and H,;/K,; are chief factors of G such that
HNK; = K, HK, = H; and B covers H;/K;, then B covers H/K.

An §-normalizer is an example of a perspective CA R-subgroup.

COROLLARY 2.4. Let Z be a perspective SCAR-system of the U-group G and
letV" = {S,V,} where V, < G. Then

(i) J = BV avoids those chief factors which are avoided by both V and B and
covers the rest;

(ii) I = B M V covers those chief factors which are covered by both V and B and
avoids the rest.

We now show that these CAR-subgroups V are just the strongly pronormal
subgroups considered by Chambers [2].

THEOREM 2.5. 4 subgroup V of the U-group is strongly pronormal in G if and
only if V is a SCAR-subgroup of the form (M, Sy V,, where S is a Sylow basis
reducing into V and each V, is a normal subgroup of G.

Proof. Let V be strongly pronormal in G and let S be a Sylow basis of G
reducing into V. Let V, = (S, N\ V)¢, then V £ N, Sy, V,. But N, S,/ V, has
a Sylow p-subgroup (S, VNS, V,) =S, NV, =85, N VandsoV = N, SV,

Conversely, let V = N, S, V, be a SCAR-subgroup with V, < G. Then
SNV =85NS,V,=5MN7V,is a Sylow p-subgroup of the normal sub-
group V, and so V is p-normally embedded for each prime p.

COROLLARY 2.6. Let V be a strongly pronormal subgroup of the W-group G and
let S be a Sylow basis of G reducing into V. Then V permutes with every SCAR-
subgroup of G.

Using the characterization given in (2.5) together with (2.4) for the special
case of an {-normalizer we have:

COROLLARY 2.7. Let & be a QS-closed subclass of 1 and let § be a saturated
K-formation. If G is a R-group, V is a strongly pronormal subgroup of G, S s
a Sylow basis of G reducing into V and D 1s the §F-normalizer of G associated
with S, then:

(1) DYV avoids the F-eccentric chief factors avoided by V and covers the rest;

(11) D M V covers the §-central chief factors covered by V and avoids the rest.

In view of the following result, the permutability of strongly pronormal
subgroups is particularly useful in U 4-groups.

THEOREM 2.8. Let G be a U 4-group. Then every CAR-subgroup of G is strongly
pronormal.

Proof. G has p-length one for each prime p [6, Lemma 2.2]. Let K = 0,,(G)
and let B = N, B, be a SCAR-subgroup of G. Then B, = S, (K M B,) and
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K M B, Q B,. Also, since B, = 0, (G) and K/0, (G) is abelian, K N B, < K.
Therefore KN B, < KB, 2 KS,, = G. Thus B, =S, V,, where V, =
K M B, < G and the characterization in (2.5) completes the proof.

COROLLARY 2.8. Let G be a W 4-group. Then any two SCAR-subgroups of G
are permutable.

It should be noted that it is not sufficient in (2.8) to assume that G has
p-length one for each prime p. Hawkes [13] constructs a finite soluble group
with p-length one for each prime p but in which the basis normalizers are not
2-normally embedded.

3. The complementation theorem and its consequences.

Proof of Theorem B. Let Q/A = 0, (G/A4) so that G/Q is finite. Let .S be a
Sylow p’-subgroup of Q, so that Q = A4S and 4 NS = 1. By a Frattini
argument, G = QN4(S) and so there is a finite subgroup F of N¢(S) such
that G = QF. Choose F such that G = QF and |4 M F| is minimal. 4 N Fis
normalized by 4 (since 4 isabelian) and by F (since A <1 G) and is centralized
by S (since [ANF, S]£ANS=1). Thus AN F Q AFS = G.

If AN F 5 1 then, since 4 N &(G) = 1, there is a maximal subgroup M of
Gsuchthat AN FN\ M < AN F.Since M is maximalinG,G = (A N\ F)M
andso F = (AN F)MNF = (AN F)(MN F)and G = QF = Q(M N F)
contrary to the minimality of A M F. Thus 4 M F = 1 and hence 4 N FS =
1, since 4 M FS is a normal p-subgroup of FS and so is contained in every
Sylow p-subgroup of FS, and in particular, is contained in F.

It should be noted that a 1 M (LN)WA-group G may have a normal abelian
subgroup 4 such that 4 M ®(G) = 1 but 4 has no complement. This is shown
by Example 4.1 of [10] which is a split extension of an elementary abelian
p-group A by the group

H = Dr C,,
=1

for suitably chosen primes ¢;, such that 4 is not completely reducible as a
Z,H-module. Thus 4 contains a normal subgroup N of G which has no G-
admissible complement in 4 and hence has no complement in G.

However, combining Theorem B with Theorem 1.2 we shall be able to prove
results about complemented chief factors of U M (LN)AS*-groups which are
sufficient for our purposes. Here and even more in the next section we shall
require more information about complemented chief factors. The following
lemma, which states exactly what the complements are, is essentially Theorem
2.2 of [7], the additions all being straightforward.

LemMA 3.1. Let H/K be a chief factor of the U-group G complemented by M and
let L = coreg(M). Then
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(i) G/L has a unique minimal normal subgroup C/L = 0,(G/L) = p(G/L);

(i) C = Co(H/K) and H/KZ C/L,

(iii) if Q/C is a nom-trivial normal p'-subgroup of G/C and M Z S, then
M = Ne(QM LSy) = LN(Q N S,).

THEOREM 3.2. Let A be a normal p-subgroup of the U1 M (LN)AS*-group G.
If AN ®(G) = 1 and H/K s a chief factor of G with H £ A, then H/K has a
complement in G.

Proof. If M is a maximal subgroup of G not containing 4, then ¥ M 4 < A4
[7, Lemma 2.3]andso M M A < AM = G. Thus A/ (4 M M) is a chief factor
of G and so is elementary abelian. Also, C¢(4/(4 N M)) = 0,,(G) [3,
Theorem 3.8] and since 4 M ®(G) = 1 we see that 4 is elementary abelian
and C = C¢(4) = 0,,(G). Hence G/C is a finite extension of a p’-group.

Let M, © € I, be the maximal subgroups of G not containing 4. If C; =
Ce(4/(A M M,)) then C; = C and it follows from (3.1) that

A/(Af\M,)_ﬁG’—_C/(Cf\ M,)'_g’_Ci/(C,f\ M,).

Let L =CMN Ny M;so that L << G and 4 N\ L = 1. Using Theorem B,
with C/L and G/L replacing 4 and G, we see that there is a subgroup U of G
with CU = Gand CN\ U = L.
G G

Since A = AL/L, we have H/K = HL/KL. Applying Theorem 1.2 to
the Z,(G/C)-module C/L, we see that there is a subgroup N < G with N.HL =
Cand NN HL = KL. Thus NH=Cand NN H=KLNH=K. Itis
clear that UN.C = G and UNMN C = N(UN C) = N. Therefore UN.H =
UNC =Gand UNNH = NN H = K. Thus UN is a complement of H/K.

Our discussion of prefrattini subgroups will depend on certain sets of maxi-
mal subgroups. We define a set 2 of maximal subgroups of the group G to be
solid if it satisfies the following two conditions:

(S1) if M €% and g € G, then M? € Z;

(S2) if the chief factors H/K,, © € I, each have a complement in 2  then
every chief factor H/K, with K = Ny Ky, is complemented and all the
complements of H/K are in % .

If H/K has a complement in 2~ then it is called an % -complemented chief
factor; otherwise H/K is called an & -Frattini chief factor. Taking K; = K
in (S2), we have

(S3) every complement of an Z -complemented chief factor is in X.

HZ =% (G) is a solid set of maximal subgroups of G and N < G then we
shall also use Z  to denote the solid set of maximal subgroups of G/N of the
form M/N with M € Z (G). Then a chief factor (H/N)/(K/N) of G/N is
Z -complemented if and only if H/K is an % -complemented chief factor of G.

The set of all maximal subgroups of a group G clearly satisfies (S1) and
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Theorem 3.2 shows that if G € U N (LN)AS* then this set also satisfies (S2).
Thus we have.

CoROLLARY 3.3. If G € UM (LN)US*, then the set of all maximal subgroups
of G 1s solid.

We show that there are other interesting solid sets of maximal subgroups.

THEOREM 3.4. Let G € U N (LN)AS* and let % denote a class of chief factors
of G of rank < n such that % is closed under G-isomorphism. If & is the set of
those maximal subgroups which complement a chief factor in %/, then & is solid.

Proof. Again it is clear that Z satisfies (S1). So let H/K,, i € I, be Z -
complemented chief factors and let H/K be a p-chief factor with K = N ;K.
We may assume that each H/K; is a p-chief factor and that N K; = 1. If
Cy = C¢(H/K,), then there is a finite bound on |G : C,| dependent only on n.
Using the notation of Theorem 1.1, C; 2 G, and there is a normal subgroup of

finite index in G; contained in C;, for each 4. Thus G/Cq(H) is finite and so,
by Theorem B of [10], H is completely reducible as a Z,G-module. Therefore

G
H/K = H/K, for some ¢

and so H/K € % and since H/K has a complement (3.2) it must be Z -
complemented.

It seems unlikely that the condition bounding the ranks of the chief factors
can be omitted from Theorem 3.4. Because of this it does not show that the
sets of {-abnormal maximal subgroups and of F-normal maximal subgroups
are solid. However, we can, in fact, prove rather more than this.

THEOREM 3.5. Let & be a QS-closed subclass of U and § a saturated K-forma-
tion. If & is any solid set of maximal subgroups of the & M (LN)AS*-group
G then

X5 ={MecZ|Mis F-abnormal in G}
and

X5 ={MeZM s F-normal in G}
are both solid sets.

Proof. Again it is clear that Z 5 and 2§ satisfy (S1). So let H/K,, i € I,
be Z -complemented chief factors of G and let H/K be a chief factor such that
K = Ny K, = 1. If each H/K, is # g-complemented, then each H/K, is
F-eccentric. If D is an §-normalizer of G, then D avoids each H/K; and so
D N H = 1. Therefore D avoids H/K and H/K is §-eccentric. H/K is 4 -

complemented and since H/K is {-eccentric each complement must be -
abnormal i.e., H/K is # g-complemented.
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If each H/K ; is # g-complemented, then each H/K; is §-central. Therefore
Ce(H/K) 2 Nier Ce(H/K;) 2 C, and so H/K is §-central. H/K is & -
complemented and since it is §-central, each complement must be {-normal.

Since Z 5 and Z'§ are solid sets it is clear that, if §i, ..., §, are saturated
fR-formations, we can construct solid sets of the form % ¢,6,...6,, where G,
denotes either §; or ..

4. _F-prefrattini subgroups. If _# is a solid set of maximal subgroups of
the U-group G and S is a Sylow basis of G, then we define

W,*S) = N{McZ|M = S,}.

Clearly W,”(S) = S, and so S reduces into W,*(S). The 2 -prefratting sub-
group of G associated with S is defined to be

w*S) = N W,*(S).

Since the Sylow bases of a U-group are conjugate [3, Theorem 2.10], this
definition ensures that the # -prefrattini subgroups form a characteristic con-
jugacy class of subgroups of G. To show that they satisfy the expected cover-
avoidance property we need to show that #% = {W,”(S)} is a SCAR-system
and that W,” (S) avoids a p-chief factor H/K if and only if H/K is & -com-
plemented.

It is sufficient to prove that if N < G, then W,*(SN/N) = W,*(S)N/N.
For if H/N is an%Z -complemented p-chief factor of G, then H/N is avoided by
W,*(S). If H/N is a p-chief factor with no complement in %, then
W,*(SN/N) = H/N and so W,”(S) covers H/N.

By using induction on the length of a p-series for NV, we may clearly assume
that NV is a p-group. We must therefore prove:

THEOREM 4.1. Let N be a normal p-subgroup of the W M (LN)AS*-group G
and let " be a solid set of maximal subgroups of G. If W, = W,*(S) and
W,/N = W,"(SN/N), then NW, = W,.

The following stronger form of Theorem A will then follow:

THEOREM 4.2. Let Z be a solid set of maximal subgroups of the 1M (LN) AS*-
group G. Then the Z -prefrattini subgroups of G avoid the Z -complemented chief
factors of G and cover the rest.

With the notation of Lemma 3.1, we have seen that each complement M, of
H/K containing S,/ is of the form LiNs(Q M S,/). We have to consider the
intersection of these complements and will make use of the following:

LemMa 4.3. If Q and Ly, N € A, are normal subgroups, and Sp is a Sylow
II-subgroup of the U-group G, then

QA (IaNg(Q M Sn)) = (@A Lx)Nc(Qm Sn).
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The proof of (4.3) is identical to that of Lemma 4.9 of [16].

If M is a maximal subgroup of G not containing N, then NN\ M 4 N
[7, Lemma 2.3] and so NN M <« NM = G. Thus NN\ W, < G and using
(3.2) and the definition of a solid set of maximal subgroups we have:

LEMMA 4.4. Each chief factor of G between N and N M W, 1s Z -complemented.

LEMMA 4.5. Let N be a normal p-subgroup of the W M (LN)AS*-group G such
that NN\ W, = 1. If Co(H/K) = C for each chief factor H/K of G below N,
then NW, = W,.

Proof. Let M\, X\ € A, be the members of & containing S,» but not N. Then
W, = W, N\ Mea My. Let Ly = coreg(My) = CMN\ Myand Q/C = 0, (G/C),
so that My = LiNo(Q M S,) (3.1). If L = Neala, then

)QA My = )QA L\Ne(QM Sp) = LNg(Q N Sp), by (4.3),
and so NW, = W, \ NLN;(Q N S,).

C/L is a normal p-subgroup of G/L and L is the intersection of C and
certain members of 2. Therefore each chief factor of G between C and L is
A -complemented (4.4). Let H;/K,, i € I, be the chief factors of G between C
and L then there is a chief factor C/L,; such that L, H; = K, and C/L, is
complemented by L;Ng(Q M S,). Thus L;Ns(QMN S,) € Z and so W, <
Nier LiNg(Q N Sy) = NLNg(QN S,)). Thus NW, = W,, as required.

Proof of Theorem 4.1. Let A = 0,,(G) and B = O,,,(G) so that G/B is
finite (1.1). We may assume that N /M W, = 1 so that each chief factor of G
below N is Z -complemented (4.4). There are only finitely many subgroups

Ci, . .., Cy containing B which occur as centralizers of chief factors of G below
N. The Cy, ..., C; can be ordered so that if C; = Cj, then 7 < j. For each
r=1,...,k, we define
N, = N {K,\|N/K, is a chief factor of G and C4(N/K,) = C,,
forsome s = 1,...,r}.

This gives a series

N=N02N122N/>1

of normal subgroups of G. Clearly no chief factor of G below N, is centralized
by B. Let H/K be a chief factor of G between N,_; and N,. By (3.2), there is
a chief factor N/ K, such that H M K\ = Kand C4;(H/K) = Cz(N/K,). Since
Ky % N,y itisclear that C4(H/K) # C,foranyt < r. Butalso [C,, N,_;] £
N, and so Cx(H/K) = C,. It follows from the ordering of Ci, ..., C, that
C¢(H/K) = C,, for each chief factor H/K of G between N,_; and N,.

An induction argument using (4.5) shows that we may assume that N, = N
so that no chief factor of G below N is centralized by B.

Let My, M\ € A, be the members of Z containing S,. but not N, so that
Wp = W,,m m)‘gA M)\'
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Write Ly for A M My and L = NMyea Ln. If A4/, has distinct complements
My, M containing S, and if C = C4(A/Ly), then C/(C N My N M,) is the
direct product of two minimal normal p-subgroups with centralizer C. There-
fore if D = A(CN My N M,) then C¢(C/D) = C. But also [B, (] £ BN
C = D since B/A is a p'-group and this is contrary to C = C¢(N/(N N Ly))
% B.

Thus 4/L, has the unique complement M) containing S,.. By a Frattini
argument ANg(B M S,/) = G. Therefore A M Ly\Ng(B N S,)) A< ANg(B N
Sp) =Gandso AN LNBNS,) isequaltod or Ly. If A < LhaNs(B NS, ),
then[4A,BNS, ] ANL(BNS,)=Liandso Cx(4/L\) 2 A(BNS,)=B8.
This contradiction shows that A N I\Ng(BNS,') = Ly and so I\N4(BMNS,/)
is a complement of A/L,. Hence My = IhaNg(BMN S,)) and Miea My =
LNg(BNS,)(4.3). Therefore NW, = W, N\ NLN (BN S,).

But as in the proof of (4.5) there are Z -complemented chief factors 4/4,,
© € I,such that M4, = NLand A/A ;has the complement 4 ;N;(BMN.S,).
Thus

W, < NANBNS,) = NLNg(BN S,)
i€r

and we have NW, = W,, as required.

Gaschiitz [5] showed that the prefrattini subgroups of finite soluble groups
can be characterized as those subgroups which cover each Frattini chief factor
and which are contained in a conjugate of each maximal subgroup. No similar
result can be obtained for ll-groups as B. Hartley [9] has constructed a locally
finite p-group G with a proper subgroup U which supplements each non-trivial
normal subgroup N of G. The Frattini subgroup ® is the unique prefrattini
subgroup of G. ® = G > landso U® = Gand U % & Thus UN & < &.
Since UM & < &, it is contained in each maximal subgroup of G.

If H/K is a Frattini chief factor of G, then ®K = H and so (UM $)K =
(UN®OKNPHK = (UKNINIK.IITKN® =1then UHN ®) =
Gand UN(HN ®) Q UHN &) = Gandso UN (HMN &) =1and U
complements H (M $. But this would imply that U 2 $ and so we must have
KM &> 1. Therefore U(KN &) = Gand (UN ®)K = (UK N &) N $)K
= ®K = H. Thus U M & also covers each Frattini chief factor of G.

5. {s-prefrattini subgroups. We saw in (3.5) that 5 and %5 are
solid sets and so we have cover-avoidance properties for Z g-prefrattini sub-
groups and 4 §-prefrattini subgroups given by Theorem 4.2. If a chief factor
has an {F-abnormal complement it is {§-eccentric and if it has an §-normal
complement it is F-central. We therefore have the following result:

THEOREM 5.1. Let & be a QS-closed subclass of W, § a saturated R-formation
and & a solid set of maximal subgroups of the R M (LR)UAS*-group G. Then

(i) the & g-prefrattini subgroups of G avoid the §-eccentric X -complemented
chief factors of G and cover the rest;
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(i) the X 5-prefrattini subgroups of G avoid the F-central X -complemented
chief fuctors of G and cover the rest.

Our main aim in this section is to obtain the alternative characterization of
a % g-prefrattini subgroup as the product of an Z -prefrattini subgroup W and
§-normalizer D. We also consider the intersection D M\ W and the Z 3-
prefrattini subgroups. We state our results in terms of the CAR-systems
introduced in Section Two.

THEOREM 5.2. Let R be a QS-closed subclass of W, § « saturated K-formation
and X« solid set of maximal subgroups of the & M (LN)AS*-group G. Let
W, = W,"(S) and D, = Nu(C, N\ S,) so that W* = (W,} and D = {D,)}
are SCAR-systems of G. Then

(i) {W,D,} is a SCAR-system of G and N, W,D, = WD is theZ 5-prefrattini
subgroup of G associated with S;

(it) {W, N\ D,} is a SCAR-system of G. W M\ D = N, (W, "\ D,) covers

the F-central & - Frattini chief factors and avoids the rest.

Proof. First note that the §-normal maximal subgroups of G contain G%, the
g-residual of G, and the §-abnormal maximal subgroups which contain S, also
contain D,. (This result does not seem to have been recorded in this form but
can be deduced from the proof of Theorem 4.1 of [7] or proved directly as in
Lemma 6.3 of [16], using Lemma 3.1.)

HW,=N{MecZsM=S,} "NN{McZFM=S,} and so
D,W, =N {M GQ/%IM = Sz/’} N D,(N{M GQ/;‘?‘M = S, 4).

Since DG® = G [3, Theorem 4.6 (iv)] and D, = D M S, we have
D,(N{MeZFM=S,}) =GandsoD,W, = N {M € Z5|M=S,} and
N, D, W, is the 2 3-prefrattini subgroup of G associated with S.

A similar argument shows that N, D,W, = DW = WD.

(ii) We have to show that W, M D, covers the §-central Z -Frattini p-chief
factors and avoids all other p-chief factors. It is clearly sufficient to prove that
if N <G, then N(W,\D,) = NW, N ND,. By induction on a p-series for N
we may clearly assume that N is a p-group.

W,N\D,=N{McZFM=S,} \D, If N <G then

NW,N\D,) = N\ {McZ5MzS,} \ND, = NW, N\ ND,

and so by factoring out N /N G®, we may assume that N M G® = 1. But then
N is a normal p-subgroup with every chief factor of G below N being covered
by D. Now DAYN QD and [DN\N,G ] < NNG® =1so DN N < DG®
= G. Therefore D/NYN = N and N =< D. N is contained in each Sylow
p-subgroup of D and so N £ D,. Thus N(W, N\ D,) = NN {M ¢ ZFM=
Sy}) YD, = NW, N\ ND,,.

THEOREM 5.3. With the above notation, {W,G°} is « SCAR-system and
N, W,G® = WGP is the X 5-normalizer of G associated with S.
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Proof. As in the last result,
GW, =G (N{MeXs|M=S,)N\NN{McTFHM=S,).

Now,if M € Zsand M 2 Sy then M = DandsoGS (N {M € X 5| M = S,))
= G®D = G. Therefore G¥W, = N {M € X5 M = S,}, as required.
A similar argument shows that M, W,,G% = WGS.

If §1, {2 are saturated R-formations, D, and D are the §i- and Fs-normal-
izers of G associated with S and W = W?*(S), then we see from (5.2) and the
fact that Z g, and £, are solid sets (3.5) that the product WD,D, can be
written in any order even though D; and D, may not permute. This situation
can be seen in the following example:

Let H= (x,y,2x"=9"=3"=[x,2] =[y,2] =1, [x,y] =2)and let G
be the split extension of H by a cyclic subgroup (a) of order 6 such that
a'xa = x?, a"lya = y71, a'za = 2% Let S be the Sylow basis { (a?), {a?), H}.
The prefrattini subgroup of G associated with S is W = (z). If D, and D, are
the NAs- and NA;z-normalizers of G associated with S, then Dy, = (x, a) and
D, = (v, a). (U, denotes the class of abelian groups of exponent p.) Then
<D1, D2> = G # D1D2. But WD1 = (x, 2, (l> SO that WD1D2 = D2WD1 =G
and similarly WD.D, = D\WD, = G.

6. Distributivity conditions. Let V' = M, .S, V, be a strongly pronormal
subgroup of the U-group G into which the Sylow basis S reduces. Also let
B = NpB,and C = N, C, be two SCAR-subgroups of G such that BC = CB.
By (2.6), V permutes with both B and C and so V, B, C generate a modular
sublattice of the subgroup lattice of G.

It follows therefore that this sublattice is distributive if V(B N C) =
VB N VC [1, Theorem 12 Chapter II (p. 37)]. V(B M C) has a Sylow p-sub-
group (V, N S)) (B, N C, M S,) = Vo (B, N\ C,) M S,. Also S reduces into
VB M VC which has a Sylow p-subgroup V,(B, M S,) N\ V,(C, N\ S,) NS, =
VB, N V,Cp M S,. These two subgroups are equal if V,(B, N C,) = V,B, N
V,C, and so we have proved:

THEOREM 6.1. Let V = N, Sy V, be a strongly pronormal subgroup of the
U-group G into which the Sylow basis S reduces. Let B = (N, B, and C =N, C,
be two SCAR-subgroups of G satisfying the conditions:

(i) BC = CB and

(i) N(B, "\ Cp) = NB, N\ NC,, for all N < G.

Then V, B, C generate a distributive sublattice of the subgroup lattice of G.

We have seen that these conditions are satisfied if B is an % -prefrattini
subgroup and C an §-normalizer of the (§ N (LN)AS*)-group G (5.2).

Makan [15] obtains a rather more general result for finite soluble groups.
He defines a pair of SCA R-subgroups to be compatible if they permute and if
their intersection covers those chief factors covered by both of them. This
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condition is similar to the conditions (i) and (ii) in (6.1) but it seems unlikely
that a condition on chief factors will be strong enough in U-groups. Makan is
able to prove that if V, B, C are pairwise compatible SC4R-subgroups then
they generate a distributive lattice but we have been unable to weaken the
condition that V is strongly pronormal.

7. Finite soluble groups. Finally, we note that in the class of finite
soluble groups a very much simpler proof can be given to show that # ¥ is
a SCAR-system. Using the notation of Section Four, we have to show that if
N Q G, then W,N = W,. If G is finite then we may assume that N is a
minimal normal subgroup of G. If M, ..., M, are the members of Z which
contain .S,» but not N then

W,=W,N\ N M; andso NW, = W,f\N(ﬂM,).
i=1 1=1

LemmA 7.1. (Hawkes [12, Lemma 2.4)). If L, = coregM, then N(M; M M;)
is a maximal subgroup of G complementing the chief factor NL;/N(L;M L;).
Hence N(M; N\ M,) € Z and so N(M, N\ M;) = W,.

We have to show that N(N}—1 M) = W, and this follows from the following
elementary result:

LEMMA 7.2. Let N be a normal subgroup of the group G and let M, 1 € I, be
subgroups of G such that M; M\ N = 1. Then, for each j € I,

N( N Mz) = NNM.N M,).
i€r i€r

Proof. Let ngm; = mmy, € N(M; M M,;) N\ N(M, M M;), with the obvious
notation for elements. Then n,~'n; = mm;"* € NN\ M, =1 and so m; =
my € My My M;. Henceifnm; € Niuey N(M; M M;), thenm; € Nier M,
and the result follows.
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