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This study presents a buoyancy-driven stability analysis in a three-dimensional inclined
porous medium with a capillary transition zone that is formed between a non-wetting
and an underlying wetting phase. In this two-phase, two-component, partially miscible
system, a solute from a non-wetting phase diffuses into a porous layer saturated with
a wetting-phase fluid, creating a dense diffusive boundary layer beneath an established
capillary transition zone. Transient concentration and gravity-driven velocity fields are
derived for the wetting phase while the saturation field remains fixed. Linear stability
analysis with the quasi-steady-state approximation is employed to determine the onset of
solutal convective instability for buoyancy-dominant, in-transition and capillary-dominant
systems. The analysis of the problem leads to a differential eigenvalue problem composed
of a system of three complex-valued equations that are numerically solved to determine the
critical times, critical wavenumbers and neutral stability curves as a function of inclination
angle for different Bond numbers. The layer inclination is shown to play an essential role in
the stability of the problem, where the gravity-driven flow removes solute concentrations in
the diffusive boundary layer. The results indicate that the horizontal porous layer exhibits
the fastest onset of instability, and longitudinal rolls are always more unstable than oblique
and transverse rolls. The inclination angle has a more substantial impact on stabilizing
the diffusive boundary layer in the buoyancy-dominant than in the capillary-dominant
systems. Furthermore, for both buoyancy-dominant and capillary-dominant systems, the
critical times and wavenumbers vary exponentially with inclination angle ≤ 60° and follow
the Stirling model.
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1. Introduction

Buoyancy-driven convection of a diffusive boundary layer induced by concentration
gradients is a subject widely explored in the literature (Riaz et al. 2006; Slim 2014;
Emami-Meybodi et al. 2015). The typical set-up giving rise to unstable behaviour is
one where the vertical transient concentration gradient is directed downwards. Such
Darcy–Bénard-like configuration pertains to a diffusive boundary layer that grows with
time and becomes gravitationally unstable under certain circumstances. The evolution of
instabilities forms the fingers of a dense fluid penetrating into a lighter underlying fluid,
which results in natural convection. This convective mixing significantly enhances the rate
of mass transfer, rather than relying on slow mass transfer by diffusion.

Much research has been done to investigate the buoyancy-driven convection in
fluid-saturated porous media since the pioneering work of Horton & Rogers (1945)
and Lapwood (1948) for thermal convection. Most of the studies investigating
thermoconvective instability of a motionless base state are related to a horizontal layer
with impermeable and isothermal walls kept at different temperatures, which is known as
the Darcy–Bénard problem (Nield & Bejan 2017). The Darcy–Bénard problem has been
extended to an inclined porous layer in the pioneering studies by Bories & Combarnous
(1973) and Weber (1974). The main consequence of the layer inclination is that the base
state would have a stationary and parallel buoyant flow with a zero mass flow rate. Recent
studies have shed light on the instability of the Darcy–Bénard problem in inclined systems
(Rees & Bassom 2000; Rees, Storesletten & Postelnicu 2006; Barletta & Storesletten 2011;
Sphaier, Barletta & Celli 2015).

The solutal convective instability has received significant attention over the past two
decades due to its application to the storage of carbon dioxide (CO2) in deep saline aquifers
(Hassanzadeh, Pooladi-Darvish & Keith 2005; Bolster 2014; Emami-Meybodi et al.
2015). Most studies examined the process of solute convection in a Darcy–Bénard-like
configuration for a horizontal layer with a Dirichlet-type boundary condition for the
solute concentration while imposing zero flux at the top and assuming single-phase
flow. This simplification ignores the capillary transition zone that may exist between
two partially miscible fluids, i.e. the non-wetting CO2 phase and the wetting water
phase. The capillary transition zone allows the vertical flow of the diffusive boundary
layer, potentially decreasing the onset time of instability. The effects of the capillary
transition zone on solutal convective instabilities have been studied by using either a
permeable upper boundary condition in a single-phase system (Slim & Ramakrishnan
2010; Elenius, Nordbotten & Kalisch 2012; Kim 2015) or a transition zone in a
two-phase system (Emami-Meybodi & Hassanzadeh 2013; Emami-Meybodi 2017; Zhang
& Emami-Meybodi 2018). In all these studies, a perfectly horizontal porous layer
is considered to examine the solutal convection instability of a motionless base
state.

This study aims to go beyond the analysis of two-phase buoyancy-driven flow in a
horizontal porous layer by devising an inclined set-up where a capillary transition zone
is formed between a non-wetting and a denser wetting phase. In particular, the critical
role of the layer inclination on the onset of instability is examined for buoyancy-dominant,
in-transition and capillary-dominant systems. The diffusion of solute from the non-wetting
phase into the underlying wetting region may increase the density of the wetting phase and
create a gravitationally unstable diffusive boundary layer beneath the capillary transition
zone. While the dense diffusive boundary layer can potentially create solutal convective
instabilities, the gravity-driven flow that arises from the variation of wetting-phase density
across the inclined porous layer may delay the onset of natural convection. Hence, the base
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Figure 1. Geometry and coordinates of the inclined three-dimensional two-phase, two-component, partially
miscible system with a capillary transition zone h formed between the wetting and non-wetting phases. The
capillary transition zone and the underlying wetting-phase region (–h ≤ z ≤ H) are considered to conduct linear
stability analysis. At time zero, the wetting phase in the capillary transition zone is saturated with the diffusive
species cd = c∗

d (grey shaded area), while the wetting-phase domain is free of solute concentration cd = 0 (blue
shaded area). Solute gradually diffuses into the wetting-phase region and creates a diffusive boundary layer
with a penetration depth of δ(t). As the diffusive boundary layer grows with time, it becomes denser and may
result in natural convection.

state of the problem under consideration deals with transient concentration and through
flow profiles. Details about the system under consideration are described in § 2.1 (see
figure 1).

The analysis to be carried out is an extension of the work by Emami-Meybodi &
Hassanzadeh (2013) and Zhang & Emami-Meybodi (2018) with reference to the special
case of a two-dimensional horizontal layer. This analysis considers a three-dimensional,
two-phase (e.g. supercritical CO2 as non-wetting phase and brine as the wetting phase),
two-component (e.g. CO2 and H2O) system in an inclined saturated porous medium, which
is further described in § 2. In that section, the governing equations and the boundary
conditions are also discussed. The dimensional analysis presented therein demonstrates
that the two-phase, partially miscible, inclined system under consideration can be explored
with five parameters, namely: viscosity ratio, gravity number, material parameter, Bond
number and inclination angle. Section 3 provides the base state solutions for the saturation,
velocity and concentration fields, around which the model is linearized. This includes a
new time–space flow equation for the gravity-driven flow of the wetting phase through the
porous medium. Section 3 also presents the linear stability formulations and discusses the
quasi-steady-state approximation and the computational techniques that are used to solve a
differential eigenvalue problem composed of a system of three complex-valued equations.
Section 4 discusses the results of the linear stability analysis and shows the stabilizing
effect of the inclination angle for different systems with different Bond numbers. The
results obtained herein reveal the critical role of inclination angle on the stability of a
diffusive boundary layer in the presence of a capillary transition zone and cast new light
on future investigations concerning the stability of convective flow systems. Finally, § 5
summarizes the main conclusions of the present study.
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2. Mathematical model

2.1. Conceptual model
During the active phase of CO2 injection into a deep saline aquifer, CO2 is forced radially
outwards, assuming a vertical completion of injection wells. Away from the wells, CO2
rises due to buoyancy and spreads out to form a thin plume beneath the overlying caprock.
The plume then continues to migrate in horizontal directions (x- and y-directions). To make
theoretical progress, most previous theoretical studies (Ennis-King & Paterson 2005; Riaz
et al. 2006; Hassanzadeh, Pooladi-Darvish & Keith 2007; Ghesmat, Hassanzadeh & Abedi
2011; Slim 2014; Daniel, Riaz & Tchelepi 2015; Emami-Meybodi et al. 2015) make two
simplifications. The first simplification is to recognize that the time scales for diffusion
and free convection to become significant are typically much longer than the time for the
injection phase and the establishment of a plume beneath the caprock. Even for a plume
migrating updip, which could be slow for small updip angles, local CO2 saturation will
still be typically stabilized much more quickly than free convection can be established.
The second common simplification is to consider an infinite lateral extent for the CO2
plume because the length and width of the CO2 plume are significantly larger than the size
of natural convection cells. Thus, our analysis begins with CO2 distributed in a laterally
very extensive plume (i.e. the lateral extents in both x- and y-directions are infinite) of
constant thickness spread beneath the caprock, assuming that the processes that created
that distribution are faster than those examined in this study.

We considered an inclined three-dimensional, two-phase (i.e. wetting phase and
non-wetting phase), two-component system (solute in the non-wetting phase and solvent
in the wetting phase), as depicted figure 1. The inclined porous layer has an inclination
angle of β ∈ [0°, 90°] to the horizontal. We assumed that the saturated porous medium is
non-deformable, isotropic and homogeneous with a height of H + Hc, where Hc and H are
the heights of the gas cap and wetting-phase layer, respectively. A capillary transition zone
with a height of h was considered between the wetting and non-wetting phases because
of gravity–capillary equilibration. The solute in the gas cap diffuses into the underlying
porous layer saturated with the wetting phase. A Cartesian coordinate system was chosen,
in which the x-axis is along the porous medium and the z-axis is positive downwards.
The origin of the space coordinates is at the interface between Hc and H. The capillary
transition zone combined with the underlying wetting-phase region (−h ≤ z ≤ H) was
considered as the domain of study. In this domain, gravity is oriented downwards and
deviates from the z-axis by β. The lower boundary of the domain was considered to be
impermeable with zero mass flux and the upper boundary was maintained at constant
pressure (p = pi) and concentration (cd = c∗

d), where c∗
d is the maximum concentration of

the diffusive species in the wetting phase. At time zero, the wetting-phase domain was
free of solute concentration (cd = 0). We assumed that the Boussinesq approximation and
Darcy’s law are valid.

2.2. Governing equations
The governing equations to describe the two-phase system are given by the multiphase
extension of Darcy’s law, the convection–diffusion equation and the continuity equations
(Aziz & Settari 1979; Chen, Huan & Ma 2006):

vl = −kkrl

μl
(∇pl − ρlg∇z), l = n,w, (2.1a)
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φ
∂

∂t

∑
l=n,w

slρlcdl = −∇ ·
∑

l=n,w

(vlcdl − φslD0l∇cdl), (2.1b)

ϕ
∂

∂t

∑
l=n,w

slρl + ∇ ·
∑

l=n,w

ρlvl = 0. (2.1c)

These are constrained by the following relations:

sn + sw = 1, pc = pn − pw. (2.2a,b)

In the above equations, v = [u, v,w] is the Darcy velocity vector, u, v and w are the
velocity components in the x-, y- and z-directions, respectively, p is the fluid pressure, pc
is the capillary pressure, k is the absolute permeability, μ is the viscosity, ρ is the density,
s is the saturation, kr is the relative permeability, g is the gravitational acceleration, t is the
time, φ is the porosity, cd is the concentration of the diffusive species, D0 is the effective
diffusion coefficient, and subscripts w and n denote the wetting phase and non-wetting
phase, respectively.

We assumed that the wetting-phase density, ρw, is a linear function of the concentration
of the diffusive species, cdw:

ρw = ρw0(1 + bccdw), bc = 1
ρw

∂ρw

∂cdw
, (2.3a,b)

where ρw0 is the density of the wetting phase at cdw = 0 and bc can be obtained from an
equation of state.

The capillary pressure is a function of the phase saturations and can be obtained from
the Leverett J-function (Leverett 1941):

J(sw) = pc

(ρw0 − ρn)gh
=
√

k
φ

pc

℘ cos θ
, (2.4)

where ℘ is the surface tension between the non-wetting and wetting phase and θ is the
contact angle between the fluid interfaces and the rock surface.

We used the height of capillary pressure, h ∼ ℘ cos θ/(ρw0 − ρn)g
√

k/φ, as a measure
of the capillary force and adopted the van Genuchten–Mualem model for the relative
permeabilities and capillary pressure relations (Mualem 1976; van Genuchten 1980):

krn = (1 − S)1/3(1 − S1/m)2m, krw = S1/2(1 − (1 − S1/m)m)2, J = (S−1/m − 1)1/n,
(2.5a–c)

where S = (sw − swr)/(1 − swr), swr is the residual saturation of the wetting phase, m =
1 − 1/n and n> 1 is the material parameter.

2.3. Dimensionless formulation
For the stability analysis, the domain bottom boundary, and hence the domain thickness
H, has no effect on the initial development of instability because, at early times, when
the diffusive boundary layer is very thin, the domain behaves as a semi-infinite medium
in the z-direction. This allows us to use the ratio of diffusion to buoyancy velocity as an
internal length scale (Riaz et al. 2006; Slim & Ramakrishnan 2010; Andres & Cardoso
2011; Emami-Meybodi 2017) for the stability problem under consideration. Hence, we
chose Lc = D0ϕ/ub as the length scale, where ϕ = φ(1 − swr) and ub = kgbcρw0c∗

d/μw is
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the buoyancy velocity. The length scale Lc is a measure of the thickness of the diffusive
boundary layer at the time of instability, i.e. when the inhibiting effects of diffusion
balance the driving effect of buoyancy on the development of fluid motion, making the
solutal Rayleigh number of order unity. Thus, one can expect the onset of instability to be
independent of H when H/Lc � 1.

We normalized the governing equations by choosing D0ϕ/ub as the length scale and
D0/L2

c as the time scale. Accordingly, the dimensionless parameters are

tD = D0

L2
c

t, xD = x
Lc
, yD = y

Lc
, zD = z

Lc
, C = c

c∗
d
, U = u

ub
, V = v

ub
, W = w

ub
.

(2.6a–h)
As mentioned earlier, we considered a semi-infinite domain in the z-direction. The

perturbations responsible for the diffusive boundary layer’s instability are experimentally
observed to originate within the layer near the solute–wetting phase interface at zD = 0
(Spangenberg & Rowland 1961; Elder 1968; Blair & Quinn 1969; Wooding 1969; Green
& Foster 1975). Thus, many studies approximate the vertical domain as semi-infinite
and transform the vertical z-coordinate to the time-dependent variable ξ(z, t) = z/

√
Dt to

build initial perturbations that reflect experimental conditions (Ben, Demekhin & Chang
2002; Kim, Chung & Choi 2004; Riaz et al. 2006; Kim & Choi 2011; Meulenbroek,
Farajzadeh & Bruining 2013). This transformation allows the flow fields to be expressed
in terms of expansion functions localized within the diffusive boundary layer. Therefore,
we chose a self-similar coordinate by applying the transformation ξ = zD/

√
tD to localize

the diffusion operator around the diffusive front and achieve considerable improvement
in accuracy at early times. For the original layer geometry in a finite domain with a
thickness of H (see figure 1), the parameter range over which the results are valid is given
by δ(tD) ∼ √

tD � 1, where δ is the penetration depth of the diffusive boundary layer
within the wetting-phase region.

Using (2.6) and the ξ transformation, the dimensionless form of the governing equations
for flow, wetting-phase saturation and concentration can be expressed as

∂2W

∂x2
D

+ ∂2W

∂y2
D

+ 1
tD

∂2W
∂ξ2 − krw

(
cosβ

(
∂2C

∂x2
D

+ ∂2C

∂y2
D

)
+ sinβ

∂2C
∂xD∂zD

)

−k′
rw

(
cosβ

(
∂S
∂xD

∂C
∂xD

+ ∂S
∂yD

∂C
∂yD

)
+ sinβ

∂S
∂xD

∂C
∂zD

)

− k′
rw

krw

(
∂W
∂xD

∂S
∂xD

+ ∂W
∂yD

∂S
∂yD

+ W

(
∂2S

∂x2
D

+ ∂2S

∂y2
D

)
+ 1

tD

∂S
∂ξ

∂W
∂ξ

− 1√
tD

(
U

∂2S
∂xD∂ξ

+ V
∂2S
∂yD∂ξ

))

−
(

k′
rw

krw

)′ (
W

[(
∂S
∂yD

)2
+
(
∂S
∂xD

)2
]

− 1√
tD

∂S
∂ξ

(
U
∂S
∂xD

+ V
∂S
∂yD

))
= 0, (2.7a)

∂S
∂tD

− ξ

2tD

∂S
∂ξ

− f ′

f

(
U
∂S
∂xD

+ V
∂S
∂yD

+ W√
tD

∂S
∂ξ

)

+ G
Bo f

(
(krnJ′)′

((
∂S
∂xD

)2
+
(
∂S
∂yD

)2
+ 1

tD

(
∂S
∂ξ

)2
)

+ krnJ′
(
∂2S

∂x2
D

+ ∂2S

∂y2
D

+ 1
tD

∂2S
∂ξ2

))

+ cosβ
f
√

tD

(
krn
∂C
∂ξ

+ k′
rn(C + G)

∂S
∂ξ

)
− sinβ

f

(
krn

∂C
∂xD

+ (C + G)k′
rn
∂S
∂xD

)
= 0 (2.7b)
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and

S
∂C
∂tD

− S
ξ

2tD

∂C
∂ξ

− ∂S
∂xD

∂C
∂xD

− ∂S
∂yD

∂C
∂yD

− 1
tD

∂S
∂ξ

∂C
∂ξ

+ U
∂C
∂xD

+ V
∂C
∂yD

+ W√
tD

∂C
∂ξ

− S

(
∂2C

∂x2
D

+ ∂2C

∂y2
D

+ 1
tD

∂2C
∂ξ2

)
= 0, (2.7c)

where f = M + krn/krw, M =μn/μw is the viscosity ratio and primes denote derivatives
with respect to the saturation of the wetting phase.

As mentioned earlier, we considered the capillary transition zone combined with the
underlying wetting-phase region as the domain of study. Accordingly, (2.7) is subject to
the following conditions:

W(zD = −1/Bo) = W(zD = 0) = W(zD → ∞) = 0, (2.8a)

V(zD = −1/Bo) = V(zD = 0) = V(zD → ∞) = 0, (2.8b)

U(zD = −1/Bo) = U(zD → ∞) = 0, (2.8c)

S(zD = −1/Bo) = 0, S(zD = 0) = S(zD → ∞) = 1, (2.8d,e)

C(zD = −1/Bo) = C(zD = 0) = 1, C(zD → ∞) = 0. (2.8f,g)

According to (2.8), besides U at zD = 0, other variables are subject to three known
boundary conditions since the base state solutions for the capillary transition zone
(−1/Bo ≤ zD ≤ 0) and the wetting-phase region (0 ≤ zD → ∞)were obtained separately
using the same boundary conditions at zD = 0. Furthermore, U at zD = 0 was obtained
from the base state solution by applying the condition U = 0 when C = 0.

As noted from (2.7), the system under consideration can be explored with reference
to the Bond number, Bo = Lc/h, gravity number, G = k(ρw0 − ρn)g/ubμw, viscosity ratio,
M =μn/μw, material parameter, n, and inclination angle, β.

Based on the schematic of the CO2–water system shown in figure 1, the displacement
takes place in the z-direction, and the denser fluid with the higher viscosity (water as
the wetting phase) is located under the lighter fluid with the lower viscosity (CO2 as the
non-wetting phase). Such a two-phase system remains stable in the absence of solute
diffusion into the wetting phase because (μw/krw −μn/krn)(U0 − Uc) always remains
a negative value (Marle 1981), where Uc = k(ρw0 − ρn)g/(μw/krw −μn/krn) and U0 is
the base state advective velocity, which is zero for the problem under consideration.
Therefore, G and M do not affect the instability of the two-phase system because the
denser water with the higher viscosity is located under the lighter CO2 with the lower
viscosity (Emami-Meybodi 2017). In this study, we used fixed values of G = 10 and
M = 0.1, representing the CO2–water system.

The Bond number is a measure of the relative strength of gravitational forces to
capillary forces where the limit Bo → ∞ recovers the single-phase system in which
h → 0. The two-phase system can be divided into three categories based on the Bo value:
buoyancy-dominant systems for Bo> 102; in-transition systems for 10−3<Bo< 102; and
capillary-dominant systems for Bo< 10−3 (Emami-Meybodi & Hassanzadeh 2013; Zhang
& Emami-Meybodi 2018). We used a wide range of 10−3 ≤ Bo ≤ 103 in this study to
investigate the onset of instability for all three systems.

The material parameter n> 1 is a measure of the pore-size distribution, which
depends on the degree of sorting of the grains in a porous medium. For the
in-transition systems with 10−3<Bo< 102, the positive effect of the material
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parameter on the onset of convection has been demonstrated using linear stability
analysis (LSA; Zhang & Emami-Meybodi 2018) and direct numerical simulations
(Emami-Meybodi & Hassanzadeh 2015). Larger values of n for in-transition systems
reflect higher wetting-phase saturation just above the interface between the wetting and
non-wetting phases, which means higher crossflow across the interface. Nonetheless,
the material parameter has no significant influence on the onset of instability
for the buoyancy-dominant and the capillary-dominant systems (Emami-Meybodi &
Hassanzadeh 2013; Emami-Meybodi 2017; Zhang & Emami-Meybodi 2018). Considering
prior investigations and the insignificant impact of the material parameter on the stability
of buoyancy- and capillary-dominant systems, we used a fixed value of n = 3 (υ = 10) in
this study, where υ is a constant assigned according to the value of n that ensures sw = swr
at z = –h.

3. Formulation of the stability problem

3.1. Base state solutions
We used the definition of the J-function J = −(cosβ)Bo zD, (2.5c) and (2.8d,e) to obtain
the base state solution for the wetting-phase saturation, S0:

S0(zD) = 1 + H(−zD)[(1 + (−υ(cosβ)Bo zD)
n)(1−n)/n − 1], (3.1)

where H is the Heaviside step function with H (x) = 0 for x< 0 and H (x) = 1 for x ≥ 0.
The base state solution for concentration (C0) can be found from (2.7c) and (2.8f,g)

using the Laplace transform (Farlow 1993)

C0(zD, tD) = 1 − H(zD)erf
(

zD

2
√

tD

)
. (3.2)

According to (2.8a,b), the base state solutions for the velocity components of the wetting
phase in the y- (V0) and z-directions (W0) are W0 = V0 = 0 since the system is initially
subject to zero velocities in these directions. However, the velocity component in the
x-direction varies with time and along the z-direction because of the wetting-phase
saturation and density change in the capillary transition zone and the wetting-phase region,
respectively. Hence, we first used (2.1a) for the wetting phase and (2.3a) to obtain the
following differential equation for U0:

∂U0

∂zD
= k′

rw

krw

∂S0

∂zD
U0 − krw sinβ

∂C0

∂zD
. (3.3)

Equation (3.3) can be solved by applying (2.5) to get

U0(zD, tD) = H(zD)(d1 − (sinβ)C0)+ H(−zD)d2

(
ψ
(−ψzD)

n−1 − ((−ψzD)
n + 1)(n−1)/n

((−ψzD)
n + 1)5(n−1)/4n

)2

,

(3.4)
where ψ = υ(cosβ)Bo and d1 and d2 are constants that can be obtained by applying

(2.8c,g) and U0 = 0 at C0 = 0 to (3.4):

d1 = 0, d2 = −sinβ
ψ2 . (3.5a,b)
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Figure 2. Base state velocity profiles along the z-direction from (3.6), for two inclined porous media having
β = 15° and 45° at tD = 25, 150 and 500 with (a) Bo = 0.01 and (b) Bo = 0.001. Other parameters are fixed:
n = 3 and υ = 10.

Combining (3.4) and (3.5) gives

U0(zD, tD) = − sinβ

⎛
⎝H(zD)

(
erfc

(
zD

2
√

tD

))
+ H(−zD)

(
(−ψzD)

n−1 − ((−ψzD)
n + 1)(n−1)/n

((−ψzD)
n + 1)5(n−1)/4n

)2
⎞
⎠ .

(3.6)

As noted from (3.6), the base state solution U0 = 0 is recovered in the case of a
horizontal porous medium, β = 0° (Emami-Meybodi & Hassanzadeh 2013; Zhang &
Emami-Meybodi 2018). Moreover, it is evident from these equations that the base state
solution is left invariant by the transformation of β→π −β and x → –x.

Figure 2 illustrates, for Bo = 0.01 and 0.001, how the velocity profiles vary along the
z-direction for two inclined porous media having β = 15° and 45° at tD = 25, 150 and
500. The impact of inclination angle on the velocity values is evidenced in figure 2, where
the magnitude of maximum velocity, |U0,max|, increases from 0.25 to 0.7 by changing
the inclination angle from 15° to 45°. A comparison between figure 2(a) and 2(b) shows
that, while the U0,max and U0 profiles within the wetting-phase region (zD> 0) vary with
β, they remain fixed with respect to Bo. However, the U0 profile within the capillary
transition zone (zD< 0) is a function of both Bo and β. A good point is asking how such
velocity behaviour is likely to affect the onset of natural convection. Stability analysis of
the two-phase system is a valuable tool to find an answer.

3.2. Linear stability analysis
To conduct LSA, small disturbances of velocities U1, V1 and W1, saturation S1
and concentration C1 were introduced; therefore, U, V, W, S and C can be written
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as

{U,V,W, S,C}(xD, yD, ξ, tD)
= {U0,V0,W0, S0,C0}(ξ, tD)+ ε{U1,V1,W1, S1,C1}(ξ, tD) ei(axxD+ayyD) + c.c.,

(3.7)

where i = √−1 and ax and ay are the real-valued dimensionless components of the
wavevector (i.e. wavenumbers in the x- and y-directions, respectively), with a very small
amplitude ε. The subscripts 0 and 1 represent the base state and disturbance quantities,
respectively.

Note that, for the stability problem under consideration, in the early stages of
the diffusive boundary layer’s formation, perturbations to the layer are damped. But
eventually, a critical time for linear instability, τc, is reached, after which the vertical
density gradient drives the fluid motion. We used the quasi-steady-state approximation
(QSSA; Morton 1957; Lick 1965; Robinson 1976) to study such a linear regime and
determine the critical time τ c and its corresponding wavenumber αc. QSSA assumes that
the growth rate of perturbations is asymptotically faster than the evolution rate of the
base state solutions, i.e. the diffusive boundary layer (Riaz et al. 2006; Daniel, Tilton &
Riaz 2013). Thus, QSSA eliminates the time dependence of the base state by solving the
perturbed equations at a frozen time τ . QSSA based on the frozen time τ has been widely
applied to the solutal stability problem (Riaz et al. 2006; Selim & Rees 2007; Chan Kim &
Kyun Choi 2012; Daniel et al. 2013; Emami-Meybodi & Hassanzadeh 2013; Tilton, Daniel
& Riaz 2013; Kim 2015).

Accordingly, the concentration (3.2) and velocity (3.6) base state solutions are assumed
frozen at tD = τ , and the stability of the frozen profiles is defined by

{U1,V1,W1, S1,C1}(ξ, τ ) = {U∗,V∗,W∗, S∗,C∗}(ξ) eστ , (3.8)

where variables defined by asterisks represent the perturbation eigenfunctions and σ is the
growth rate.

Introducing the perturbed solutions (3.7) and then applying QSSA (3.8) to (2.7) and
retaining terms that are first-order in ε, the disturbance equations in the self-similar
coordinates can be written as(
∂2

∂ξ2 − k′
rw

krw

∂Sb

∂ξ

∂

∂ξ
− α̃2

)
W∗ + krw

(
α̃2 cosβ − iγ α̃ sinβ

∂

∂ξ

)
C∗ − iγ α̃(sinβ)k′

rw
∂C0

∂ξ
S∗ = 0,

(3.9a)

√
τ
∂S0

∂ξ

f ′

f
W∗ −

√
τ

f

(
cosβ

(
k′

rn
∂S0

∂ξ
+ krn

∂

∂ξ

)
− iγ α̃(sinβ)krn

)
C∗

+

⎡
⎢⎢⎢⎢⎣ ξ

2
∂
∂ξ

+ iγ α̃
√
τ

f k′
rn(sinβ)(G + C0)− G

Bo

⎛
⎜⎜⎜⎜⎝

krnJ′

f

(
∂2

∂ξ2 − α̃2

)
+ 2

(krnJ′)′

f
∂S0

∂ξ

∂

∂ξ

+
(

krnJ′

f

)′
∂2S0

∂ξ2 +
(
(krnJ′)′

f

)′(
∂S0

∂ξ

)2

⎞
⎟⎟⎟⎟⎠

−(cosβ)
√
τ

(
(G + C0)

(
k′

rn
f

∂
∂ξ

+
(

k′
rn
f

)′
∂S0
∂ξ

)
+
(

krn
f

)′
∂C0
∂ξ

)
⎤
⎥⎥⎥⎥⎦ S∗ − σ̃S∗ = 0

(3.9b)
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and

−
√
τ

S0

∂C0

∂ξ
W∗ + 1

S0

∂C0

∂ξ

∂S∗

∂ξ
+
(
∂2

∂ξ2 +
(
ξ

2
+ 1

S0

∂S0

∂ξ

)
∂

∂ξ
− α̃2

)
C∗ − σ̃C∗ = 0, (3.9c)

where σ̃ = στ , α̃ = α
√
τ and α =

√
a2

x + a2
y is the horizontal wavenumber. A new

parameter γ = ax/α is defined in (3.9) as γ ∈ [0, 1]. The special cases γ = 0 and γ = 1
lead to longitudinal and transverse rolls, respectively, while 0<γ < 1 defines oblique rolls.
Moreover, the relative permeabilities and capillary pressure in (2.7) were decomposed
using the first-order Taylor expansion {kr, J} = {kr, J}(S0)+ S1{kr, J}′.

System (3.9) may be regarded as an eigenvalue problem for complex growth rate,
σ = Re(σ ) + i Im(σ ), as a function of α, γ , β, τ and Bo, where Re and Im denote the real
and imaginary parts, respectively, of a complex number. The imaginary part of σ defines
the angular frequency, whereas the real part determines the unstable (if Re(σ )> 0) or
stable (if Re(σ )< 0) nature of the system. Since this study focuses on the neutral stability
analysis, one considers Re(σ ) = 0. Accordingly, σ is purely imaginary at onset and system
(3.9) may instead be regarded as an eigenvalue problem for both τ and Im(σ ) as a function
of α, γ , β and Bo.

3.3. Computational domain discretization
We discretized (3.9) using a finite-difference technique in which a three-point centred
Lagrange polynomial approximation was used for numerical differentiation (Singh &
Bhadauria 2009). A non-uniform grid system was employed to choose finer grids in
the vicinity ξ = 0. The non-uniform grid spacing was obtained by �ξj = χ j/

∑N
k=1 χ

k

where N = 1000 is the number of grid blocks, χ = 1.007 is the mesh increment rate and
j refers to the grid spacing index, which starts from 1 for the first grid interval at the
top boundary and ends with 1000 for the last grid interval at the bottom boundary. The
resulting discretized system of equations (3.9) can be expressed by a system of linear
equations:

q1W ∗ + q2S∗ + q3C∗ = 0, (3.10a)

q4W ∗ + (q5 − σ̃ I)S∗ + q6C∗ = 0, (3.10b)

q7W ∗ + q8S∗ + (q9 − σ̃ I)C∗ = 0, (3.10c)

where W *, S* and C* are the eigenvectors for the vertical components of velocity,
saturation and concentration, respectively, q1 − q9 are the discretization operators related
to the eigenfunctions, and I is the identity matrix. System (3.10) can be simplified by
substituting (3.10a) into (3.10b,3.10c) to give[

q5 − q4q−1
1 q2 − σ̃ I q6 − q4q−1

1 q3
q8 − q7q−1

1 q2 q9 − q7q−1
1 q3 − σ̃ I

] [
S∗
C∗
]

=
[

0
0

]
. (3.11)

System (3.11) constitutes a linear algebraic eigenvalue problem, which can be
numerically solved for σ̃ using standard techniques (Lin & Segel 1988) once α, γ , β,
τ and Bo are prescribed.

3.4. Calculation of τ and α
The previous section described how to obtain the growth rate σ , or the angular frequency
Im(σ ), by solving (3.11) from given values of α, γ , β, τ and Bo. But an additional step

926 A32-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

73
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.738


H. Emami-Meybodi and F. Zhang

must be incorporated to draw neutral stability curves. This involves calculating τ and α
from a given configuration with known γ , β and Bo. We carried out this step by enforcing a
condition that Re(σ ) = 0, thus satisfying the neutral stability requirement. In the MATLAB
code developed, this is accomplished by incorporating the secant method (Chapra &
Canale 2010) to find the values of τ and α that satisfy Re(σ ) = 0. Furthermore, the largest
eigenvalues and the corresponding eigenvectors of (3.11) were obtained to determine the
critical time τ c and its corresponding wavenumber αc. In other words, the evolution of the
maximum value of the concentration, the saturation or the velocity eigenfunction forms
the basis of the growth rate at given τ and α. The dynamical system is said to be stable if
Re(σ )< 0 and a critical time τ c (the onset of instability) is indicated when the growth rate
just becomes positive at a critical wavenumber αc.

4. Results and discussion

We performed LSA by solving (3.11) to parametrize the effect of inclination of a saturated
porous layer subject to a capillary transition zone on the growth rate of perturbations and,
consequently, the onset of natural convection. We conducted LSA for a wide range of
0 ≤ γ ≤ 1, 0° ≤β ≤ 90° and 10−3 ≤ Bo ≤ 103 but at fixed values of G = 10, M = 0.1 and
n = 3. In what follows, first, the neutral stability curves for the longitudinal (γ = 0), oblique
(γ = 0.5) and transverse (γ = 1) rolls are discussed. Then, critical values for the onset
of the instability (αc, τ c) are obtained by seeking the minimum of the neutral stability
function τ (α).

4.1. Neutral stability curves
The first results are focused on the neutral stability curves for the longitudinal (γ = 0),
oblique (γ = 0.5) and transverse (γ = 1) rolls. Figure 3 depicts the neutral stability curves
in the plane (α, τ ) with β from 0° to 45° for longitudinal rolls γ = 0. We considered
a buoyancy-dominant system with Bo = 103 (negligible capillary transition zone), a
capillary-dominant system with Bo = 10−3 (considerable capillary transition zone) and
two in-transition systems with Bo = 0.1 and 0.01. As shown in figure 4, at a given Bo,
the neutral stability curve is shrunken and shifted upwards as β increases from 0° to
45°, revealing the stabilizing effect of the inclination on the onset of instability. As one
can observe from comparing these curves at different Bo, when the Bond number is very
small, the neutral stability curves are less sensitive to the inclination angle. Conversely, for
a larger value of Bo, the neutral stability curves move upwards significantly as β increases,
thus describing the stronger impact of β in stabilizing the diffusive boundary layer in the
buoyancy-dominant systems than in the capillary-dominant systems. When β becomes
as small as 5°, the neutral stability curves behave very similarly to the horizontal case
(β = 0), particularly for the systems with significantly small Bond numbers, i.e. Bo → 0.
We note that the neutral stability curves of the longitudinal rolls (γ = 0) for the horizontal
cases are identical to the results presented by Emami-Meybodi (2017) and Zhang &
Emami-Meybodi (2018).

Figure 4 displays neutral stability curves for oblique rolls γ = 0.5 in the plane (α, τ )
with different inclination angles at Bo = 103, 10−1, 10−2 and 10−3. This figure shows that
the neutral stability curves shrink and move upwards as the inclination angle increases,
with larger changes for the oblique rolls than for the longitudinal rolls. This phenomenon
becomes significant in the buoyancy-dominant systems having high values of Bond
numbers.
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Figure 3. Neutral stability curves in the plane (α, τ ) with different Bond numbers Bo = 103, 10−1, 10−2 and
10−3, and for different inclination angles, β, from 0° to 45° in increments of 5° for longitudinal rolls γ = 0.
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Figure 4. Neutral stability curves in the plane (α, τ ) with different Bond numbers Bo = 103, 10−1, 10−2 and
10−3, and for different inclination angles, β, from 0° to 45° in increments of 5° for oblique rolls γ = 0.5.
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Figure 5. Neutral stability curves in the plane (α, τ ) with different Bond numbers Bo = 103, 10−1, 10−2 and
10−3, and for different inclination angles, β, from 0° to 45° in increments of 5° for transverse rolls γ = 1.

Figure 5 refers to transverse rolls and displays neutral stability curves in the plane (α,
τ ) with different inclination angles at Bo = 103, 10−1, 10−2 and 10−3. A comparison
between this figure and figures 3 and 4, within the shown vertical range, reveals that
the transverse rolls are the least unstable rolls, where the natural stability curves are
significantly shifted upwards. This occurrence is further intensified at high values of Bo,
so that, for sufficiently large Bond numbers and a sufficiently large inclination angle. If the
inclination is sufficiently high (e.g. β = 30 for the buoyancy-dominant systems and β = 50
for the capillary-dominant systems), the curves for larger values of β move upwards to
such an extent that they are no longer visible within the vertical range of the plots.

4.2. Critical values
After examining the neutral stability curves, the next results are focused on the critical
values of time and wavenumber. Figure 6 shows the critical time and its associated critical
wavenumber as functions of the inclination angle at different Bo = 103, 10−1, 10−2 and
10−3, which have been obtained by minimizing time over all wavenumbers as β increases.
This figure illustrates that, at a given Bo, the critical time increases with β, whereas
the critical wavenumber decreases with β. It is also interesting to note that, for small
inclination angles, the dependence on β is minor, which is further reduced for smaller
values of Bo. Conversely, for sufficiently large inclination angles, when β > 60°, the onset
of instability sharply increases with β. In fact, at very large inclination angles, and as
β→ 90°, there is no dependence on Bo and there are no unstable longitudinal rolls since
τ c → ∞ and αc → 0.
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Figure 6. Critical time τ c and its corresponding wavenumber αc curves versus β at different Bond numbers
Bo = 103, 10−1, 10−2 and 10−3 for longitudinal rolls γ = 0.

Further investigation of LSA results shows that, for β ≤ 60°, the critical dimensionless
time and corresponding wavenumber vary exponentially with β. After testing several
different exponential models, we found that for both buoyancy-dominant (Bo = 103) and
capillary-dominant (Bo = 10−3) systems, when β ≤ 60°, the critical values follow the
Stirling model for the onset of instability and its corresponding wavenumber:

τc = τc0[1 + 0.045(e0.07β − 1)], (4.1a)

αc = αc0[1 − 0.077(e0.034β − 1)], (4.1b)

where τ c0 and αc0 are the critical time and wavenumber for the horizontal case (β = 1).
For the buoyancy-dominant horizontal systems, the critical time and wavenumber are
τ c0 = 167.6 and αc0 = 0.0696, respectively; and, for the capillary-dominant horizontal
systems, the critical values are τ c0 = 25.1 and αc0 = 0.095. These results are consistent
with the results presented by Emami-Meybodi (2017) and Zhang & Emami-Meybodi
(2018).

We have analysed the stability of the diffusive boundary layer in a semi-infinite domain.
This analysis is applicable to a finite domain when the penetration depth of the diffusive
boundary layer is small relative to the domain thickness. Hence, the critical time and
wavenumber relationships (4.1) apply only when δ ∼ √

tD � 1.
Figure 7 displays the critical time and the associated wavenumber for oblique rolls,

ranging from longitudinal (γ = 0, red curves) to transverse (γ = 1, blue curves), under
different inclination angles of the porous medium for the buoyancy-dominant and
capillary-dominant systems. As one can infer from the critical time plots, the longitudinal
rolls are the most unstable, as the lowest curves are those with γ = 0. Accordingly,
the highest curves in the critical time plots represent the transverse rolls, which are
the most stable rolls. As expected, the critical wavenumber curves move downwards as the
inclination angle increases, which implies that the number of convective rolls decreases as
γ increases.

5. Summary and conclusions

We examined the effect of inclination on the stability of solutal convection in the
presence of a capillary transition zone by considering a three-dimensional, two-phase,
two-component, partially miscible system, where a non-wetting solute diffuses into
an underlying inclined porous layer that is initially saturated with a wetting phase.
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Figure 7. Critical time τ c and its corresponding wavenumber αc curves versus β at different γ = 0
(red curves), 0.1, 0.3, 0.5, 0.7, 0.9, 0.9, 1.0 (blue curves) for the buoyancy-dominant (Bo = 103) and
capillary-dominant (Bo = 10−3) systems.

We assumed that gravity–capillary equilibration establishes a capillary transition zone
between the wetting and non-wetting regions. The diffusion of solute into the wetting
phase creates a dense boundary layer beneath the capillary transition zone. While the
diffusive boundary layer becomes unstable, the gravity-driven flow that arises from
the variation of wetting-phase density across the layer may delay the onset of natural
convection. Accordingly, the base state of the problem under consideration deals with
transient concentration and velocity profiles. We derived a gravity-driven flow equation
for the transient velocity field of the wetting phase, which is a function of the material
parameter n, Bond number Bo and inclination angle β. After conducting LSA using
the QSSA, we obtained a differential eigenvalue problem composed of a system of
three complex-valued equations, which are a function of the dimensionless wavenumber
α, dimensionless time τ , wavenumber ratio γ , Bond number Bo and inclination angle
β. The differential equations were discretized using the three-point centred scheme of
finite-difference technique and solved numerically to determine the critical times, critical
wavenumbers and neutral stability curves as a function of β at different Bo.

We first analysed the neutral stability curves for different inclination angles and different
Bond numbers, as well as for longitudinal, oblique and transverse rolls. The results
have been presented for three two-phase systems: buoyancy-dominant when Bo> 102,
in-transition when 10−3<Bo< 102 and capillary-dominant when Bo< 10−3. The results
reveal the stabilizing effect of the inclination on the onset of instability. This stabilization
effect intensifies from capillary-dominant to buoyancy-dominant systems. Further, it was
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shown that the natural stability curves are the lowest in the plane (α, τ ) for longitudinal
rolls at any given β and Bo, indicating that they are the most unstable ones.

The analysis of stability carried out under the assumption of a perfectly horizontal
porous layer leads to the conclusion that instability takes place if τ exceeds its
critical value, which depends on Bo: for the buoyancy-dominant systems, τ c0 = 167.6
and αc0 = 0.0696, and for the capillary-dominant systems, τ c0 = 25.1 and αc0 = 0.095.
Relaxing the assumption of a perfectly horizontal porous medium implies that even
a small inclination could be sufficient to stabilize the diffusive boundary layer
and significantly delay the onset of instability, particularly in buoyancy-dominant
systems. For both buoyancy-dominant and capillary-dominant systems with β ≤ 60°,
the critical values follow the Stirling model τ c/τ c0 = 1 + 0.045(e0.07β − 1) and
αc/αc0 = 1–0.077(e0.034β − 1) for time and associated wavenumber, respectively. For
β > 60°, the onset of instability sharply increases with the inclination angle, and when
β→ 90°, there are no unstable longitudinal rolls as τ c → ∞ and αc → 0 independently of
the Bond number values.

The findings of this study have an important implication not only in various scientific
and engineering disciplines, such as carbon dioxide sequestration in deep saline aquifers,
but also for experimental research, as it shows that a perfect alignment must be
employed for horizontal natural convection experiments to avoid the stabilizing effect
of gravity-driven flow, in particular for buoyancy-dominant systems. While the focus of
this study was on the development of an LSA, it will be extended to nonlinear analysis
in future studies by conducting direct numerical simulations to examine the effect of
inclination angle combined with the capillary transition zone on the onset of convection
and subsequent convective mixing.
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