MEROMORPHIC LIPSCHITZ FUNCTIONS

Shinji Yamashita

Let f be a function meromorphic in $D=\{|z|<1\}$ and let X be the chordal distance on the Riemann sphere. Then f satisfies the Lipschitz condition

$$
X(f(z), f(w)) \leqq K|z-w|^{\alpha} \quad(0<\alpha \leqq 1)
$$

in D if and only if $\left|f^{\prime}(z)\right| /\left(1+|f(z)|^{2}\right)=O\left((1-|z|)^{\alpha-1}\right)$ and $|z| \rightarrow 1$.

The chordal distance $X(z, w)$ in the Riemann sphere $S=\{|z| \leqq \infty\}$ is defined by

$$
X(z, w)=|z-w|\left(1+|z|^{2}\right)^{-1 / 2}\left(1+|w|^{2}\right)^{-1 / 2}
$$

with the obvious change in case z or $w=\infty$. This is invariant,

$$
X\left(T_{a}(z), T_{a}(w)\right)=X(z, w)
$$

for the transformations $T_{a}(\zeta)=(\zeta-a) /(1+\bar{a} \zeta), \zeta, a \in S$ with $T_{\infty}(\zeta)=1 / \zeta$. Let $D=\{|z|<1\}$ and let E be a nonempty subset of $D^{*}=\{|z| \leqq 1\}$. A map $f: E \rightarrow S$ is then said to satisfy the Lipschitz condition of order $\alpha, 0<\alpha \leqq 1$, in notation: $f \in L(\alpha, E)$, if there exists a constant $K>0$ such that

$$
\begin{equation*}
X(f(z), f(w)) \leqq K|z-w|^{\alpha}, \quad z, w \in E \tag{1}
\end{equation*}
$$

In the case $E=D^{*}$, for example, we are able to add a restriction: $|z-w|<A$ to variables in (1) with a constant $A>0$.

If $f: D \rightarrow S$ is meromorphic, then we set

$$
f^{\#}(z)=\lim _{w \rightarrow z} X(f(w), f(z)) /|w-z|
$$

Therefore, $f^{\#}(z)=\left|f^{\prime}(z)\right| /\left(1+|f(z)|^{2}\right)$ if $f(z) \neq \infty$, and $f^{\#}(z)=\left|(1 / f)^{\prime}(z)\right|$ if $f(z)=\infty$.

[^0]Theorem. For f meromorphic in D, and for $0<\alpha \leqq 1$, the following are equivalent:
(I) $f \in L(\alpha, D)$.
(II) f can be extended to D^{*}, and the resulting function f is in $L\left(\alpha, D^{*}\right)$.
(III) $f^{\#}(z)=O\left((1-|z|)^{\alpha-1}\right)$ as $|z| \rightarrow 1$.

First, (II) \Rightarrow (I) is trivial, and it is not difficult to prove directly (I) \Rightarrow (II). We shall prove (I) \Rightarrow (III) \Rightarrow (II).

The present theorem is a meromorphic version of the known result for holomorphic functions; see [1, Theorems 3 and 4, pp. 411 and 413], for example. Our proof of the theorem is essentially different from the holomorphic case in some parts.

Proof of the theorem: For the proof of (I) \Rightarrow (III) we suppose (1) for $E=D$ and we choose then $Q, 0<Q<1$, such that

$$
K(1-|z|)^{\alpha} \leqq 1 / 2 \text { for } Q<|z|<1 .
$$

In order to verify that

$$
\begin{equation*}
f^{\#}(z) \leqq K^{\prime}(1-|z|)^{\alpha-1} \text { for } Q<|z|<1 \tag{2}
\end{equation*}
$$

where $K^{\prime}=(2 / \sqrt{3}) K$, we fix z and we let $0<r<1-|z|$. We observe that the function of w,

$$
g(w)=T_{f(z)} \circ f(r w+z)=[f(r w+z)-f(z)] /[1+\overline{f(z)} f(r w+z)]
$$

is holomorphic and bounded on D^{*}. Actually, by (1) for $E=D$,

$$
\begin{equation*}
X(g(w), 0)=X(f(r w+z), f(z)) \leqq K(r|w|)^{\alpha} \leqq K(1-|z|)^{\alpha} \leqq 1 / 2 \tag{3}
\end{equation*}
$$

whence $|g| \leqq 1 / \sqrt{3}$ on D^{*}. Since $g(0)=0$, there exists a holomorphic function h on D^{*} such that $g(w)=w h(w), w \in D^{*}$. We thus obtain

$$
\begin{aligned}
r f^{\#}(z) & =\left|g^{\prime}(0)\right|=|h(0)| \leqq(2 \pi)^{-1} \int_{0}^{2 \pi}\left|h\left(e^{i t}\right)\right| d t \\
& =(2 \pi)^{-1} \int_{0}^{2 \pi}\left|g\left(e^{i t}\right)\right| d t \leqq K^{-1}(1-|z|)^{\alpha}
\end{aligned}
$$

because (3) yields

$$
|g(w)| \leqq\left(1+|g(w)|^{2}\right)^{1 / 2} K(1-|z|)^{\alpha} \leqq K^{\prime}(1-|z|)^{\alpha}
$$

for $w \in \partial D$. Letting $r \rightarrow 1-|z|$ in $r f^{\#}(z) \leqq K^{\prime}(1-|z|)^{\alpha}$, we now have (2).
For the proof of (III) \Rightarrow (II) we suppose that

$$
\begin{equation*}
f^{\#}(z) \leqq K_{1}(1-|z|)^{\alpha-1} \text { in } D \tag{4}
\end{equation*}
$$

and we begin with the existence of the radial limit

$$
F(\zeta)=\lim _{r \rightarrow 1} f(r \zeta) \text { at each } \zeta \in \partial D
$$

In view of (4) we have for $0 \leqq r<\rho<1$ and $\zeta \in \partial D$,

$$
\begin{aligned}
X(f(r \zeta), f(\rho \zeta)) & \leqq \int_{r}^{\rho} f^{\#}(t \zeta) d t \leqq \alpha^{-1} K_{1}\left[(1-r)^{\alpha}-(1-\rho)^{\alpha}\right] \\
& \leqq K_{2}(\rho-r)^{\alpha}
\end{aligned}
$$

by $(A+B)^{\alpha}-A^{\alpha} \leqq B^{\alpha}$ for $A, B \geqq 0$; hereafter $K_{j}, 1<j \leqq 7$, are constants depending on f. Therefore, f satisfies the Lipschitz condition on each radius of D, so that $F(\zeta)$ exists at each $\zeta \in \partial D$.

Suppose henceforth that

$$
\begin{aligned}
f(z) & =F(z) \quad \text { if } \quad z \in \partial D \\
& =f(z) \quad \text { if } \quad z \in D
\end{aligned}
$$

We then obtain after the "limiting" procedure that

$$
\begin{equation*}
X(f(r \zeta), f(\rho \zeta)) \leqq K_{2}|r-\rho|^{\alpha} \tag{5}
\end{equation*}
$$

for $\zeta \in \partial D, 0 \leqq r \leqq 1$, and $0 \leqq \rho \leqq 1$.
We shall show that there exists $A, 0<A<1$, such that

$$
\begin{equation*}
X(f(z), f(w)) \leqq K_{3}|z-w|^{\alpha} \tag{i}
\end{equation*}
$$

for $z, w \in D^{*}$ and $|z-w|<A$.
We can find $b, 0<b<1$, such that $X(f(b z), f(0)) \leqq 1 / 2$ for $z \in D$ by continuity. The desired A is then given by $A=b / 4$. We first prove

$$
\begin{equation*}
X(f(z), f(w)) \leqq K_{4}|z-w|^{\alpha}, \quad z, w \in B \tag{ii}
\end{equation*}
$$

where $B=\{|z|<b\}$; note that we impose no restriction $|z-w|<A$ in this case.
For $H(z)=T_{f(0)} \circ f(b z)$ we have $|H(z)| \leqq 1 / \sqrt{3}$ in D by

$$
X(H(z), 0)=X(f(b z), f(0)) \leqq 1 / 2
$$

Consequently, for $z \in D$,

$$
\begin{aligned}
& (3 / 4)(1-|z|)^{1-\alpha}\left|H^{\prime}(z)\right| \leqq(1-|z|)^{1-\alpha} H^{\#}(z) \\
& \quad=(1-|z|)^{1-\alpha} b f^{\#}(b z) \leqq b K_{1}[(1-|z|) /(1-b|z|)]^{1-\alpha} \\
& \quad \leqq b K_{1} .
\end{aligned}
$$

Therefore, H satisfies the (Euclidean) Lipschitz condition:

$$
|H(z)-H(w)| \leqq K_{5}|z-w|^{\alpha}, \quad z, w \in D .
$$

We thus have, for $z, w \in B$,

$$
\begin{aligned}
X(f(z), f(w)) & =X\left(H\left(b^{-1} z\right), H\left(b^{-1} w\right)\right) \\
& \leqq\left|H\left(b^{-1} z\right)-H\left(b^{-1} w\right)\right| \leqq b^{-\alpha} K_{5}|z-w|^{\alpha}
\end{aligned}
$$

which completes the proof of (ii).
To complete the proof of (i), now, it suffices to show that

$$
\begin{equation*}
X(f(z), f(w)) \leqq K_{6}|z-w|^{\alpha} \tag{iii}
\end{equation*}
$$

for $z, w \in B^{*}=\{b / 2 \leqq|z| \leqq 1\}$ with $|z-w|<A$.
We begin with the specified case $z=r e^{i \theta}$ and $w=r e^{i \phi}$ with $z \neq w$ in (iii). Then,

$$
\begin{equation*}
\mu=|\theta-\phi|<(\pi / 2) r^{-1}|z-w|<(\pi / b)|z-w|<1 \tag{6}
\end{equation*}
$$

Set $R=1-\mu$. If $r \leqq R$, then $1-r \geqq 1-R=\mu$, and

$$
\begin{aligned}
X(f(z), f(w)) & \leqq\left|\int_{\theta}^{\phi} f^{\#}\left(r e^{i t}\right) r d t\right| \leqq K_{1}(1-r)^{\alpha-1} r \mu \\
& \leqq K_{1} \mu^{\alpha} \leqq K_{1}(\pi / b)^{\alpha}|z-w|^{\alpha}
\end{aligned}
$$

On the other hand, if $r>R$, then it follows from (5), together with $r-R \leqq 1-R=\mu$, that

$$
\begin{equation*}
X\left(f(z), f\left(R e^{i \theta}\right)\right) \leqq K_{2}(r-R)^{\alpha} \leqq K_{2}(\pi / b)^{\alpha}|z-w|^{\alpha} \tag{7}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
X\left(f\left(R e^{i \phi}\right), f(w)\right) \leqq K_{2}(\pi / b)^{\alpha}|z-w|^{\alpha} \tag{8}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
X\left(f\left(R e^{i \theta}\right), f\left(R e^{i \phi}\right)\right) \leqq K_{1}(1-R)^{\alpha-1} R \mu \leqq K_{1}(\pi / b)^{\alpha}|z-w|^{\alpha} \tag{9}
\end{equation*}
$$

The triangle inequalities, together with (7), (8), and (9), now yield

$$
\begin{equation*}
X(f(z), f(w)) \leqq K_{7}|z-w|^{\alpha} \tag{10}
\end{equation*}
$$

For the general case in (iii), we may assume that $r<\rho$ for $z=r e^{i \theta}, w=\rho e^{i \phi}$. Then, (5) yields that

$$
X\left(f(w), f\left(r e^{i \phi}\right)\right) \leqq K_{2}(\rho-r)^{\alpha} \leqq K_{2}|z-w|^{\alpha}
$$

On the other hand, by (10) for the pair $r e^{i \phi}, z$, we have

$$
X\left(f\left(r e^{i \phi}\right), f(z)\right) \leqq K_{\tau}|z-w|^{\alpha} .
$$

The triangle inequality now yields (iii). The proof of (iii) is now complete with $K_{6}=$ $K_{2}+K_{7}$.

Remark 1. In contrast to the holomorphic case (see [1, Theorem 4, p. 413]) it is open to prove (IV) \Rightarrow (II), where
(IV) f can be extended continuously to D^{*}, and $f \in L(\alpha, \partial D)$.

Remark 2. A result on hyperbolic Lipschitz functions may be found in [2].

References

[1] G.M. Goluzin, Geometric theory of functions of a complex variable (Trans. Math. Monographs 26, Amer. Math. Soc., Providence, 1969).
[2] S. Yamashita, 'Smoothness of the boundary values of functions bounded and holomorphic in the disk', Trans. Amer. Math. Soc. 272 (1982), 539-544.

Department of Mathematics
Tokyo Metropolitan University
Fukasawa, Setagaya
Tokyo 158, Japan

[^0]: Received 24 February 1988

