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ORTHOGONALITY IN NORMED SPACES

J.R. PARTINGTON

Some properties which different definitions or orthogonality in

a normed space can possess are considered. It is shown that

orthogonality can be defined on any separable space with many

of the properties possessed by the usual orthogonality in an

inner-product space, but that the possession of a further property

forces the space to be isomorphic to a Euclidean space.

The orthogonality of two vectors in a Euclidean normed space can be

characterized in numerous different ways. Several of these definitions of

orthogonality have been applied in general normed spaces, giving, in

general, distinct notions of orthogonality each with various convenient

properties. However, no obviously "best possible" notion of orthogonality

has been produced so far: it is our intention here to investigate what

properties orthogonality relations may have in a general normed space which

is not necessarily Euclidean. All our normed spaces will be over the reals.

The most commonly used definition of orthogonality is Birkhoff'-James

orthogonality: if x and y are elements of a normed space X , we say

that x l y (BJ) if and only if ix + Xz/H S UxO for all scalars \ (see

Diestel [2].)

A more recent definition is due to Diminnie [3]: x 1 y (D) if and

only if

sup{ fix) f(y)
g(x) g(y) : / , g, e X*, 0/fl, 0̂ 0 < 1} = 0x0 Ot/1
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Two older notions given by James [5] are Isosceles Orthogonality:

x ± y (I) if and only if Bx + i/O = Ox - yll , and Pythagorean Orthogonality-,

x X y (P) if and only if IIx2^ + lyi2 = Dx - j/0 2 .

We shall be interested in the following properties that a definition

of orthogonality may possess in a normed linear space, properties that are

always possessed by the usual notion of orthogonality in a Euclidean space.

(1) (Nondegeneraay): if x i x , then x = 0 ,-

(2) (Symmetry): if x I y , then y i x ,-

(3) (Homogeneity): If x I y then ax l by(a,b€JR) •,

(4) ((Right-)Additivity): If x 1 z/ and x ± 3 then x ± (y+z) ;

(5) (Resolvability): If x , y e X then there exists a e It such

that x 1 (ax+z/) ;

(6) (Continuity): If x -»• x , z/ ->• y , and x 1 y for a l l n ,

then x ± y ;

I t has been observed [3] tha t i f an orthogonali ty r e l a t ion 1 i s

nondegenerate, homogeneous and addi t ive , then i f x ^ 0 the number a in

(5) i s unique when i t e x i s t s . I f an orthogonality i s homogeneous and

a d d i t i v e , then the s e t of vectors y such tha t x 1 y forms a l inear

subspace. Moreover, for an orthogonality sa t i s fy ing (1) , (3) , (4) and (5),

given x e X of norm 1 we may define l inea r functional f^eX* , by

f (y) = a , where y = ax + z and x l s .
x

Thus Ker(/ ) = {z : xlz] and f (x) = 1 . One may naturally extend
X X

the definition to define / = Xf for general scalars X , when

IIxll = 1 , since / = -f already.
-X X

LEMMA 1. If j . is an orthogonality relation satisfying (l) , (3),

(4), (5) and (6) , and BxS = 1 , then f is continuous and the map taking

x to fx is norm-weak* continuous on the unit sphere of X .

Proof. If f is discontinuous, then there exist vectors (y ) ofx n

norm 1 with y = X̂ x + x , where the X are scalars tending to infinity

in modulus and x 1 x^ for each n . But that implies that

x J. xn/^n
 = yy/^n ~ x "*• ~ x • H e n c e x 1 - x , a contradiction since

x ?t 0 .
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Suppose now tha t x •*• x and / (y) = a , where x and each x
n x n ft

n

have norm 1. Then xn 1 (y-a x ) for each n . If (an> (or a

subsequence) tend to in f in i ty in modulus, then we have x J. y/a
n ~ x

n •

and hence, l e t t i n g n •*• °° and using (6), tha t x 1 - x , a contradict ion.

If a accumulates a t a , we have x ± y - a x , so tha t x 1 y - ax

and / (2/) = a '• thus , since (a ) can only accumulate a t one point

the r e s u l t follows and a •*• a = f (y) .
rt X

Although BJ-orthogonality and D-orthogonality satisfy several of the

conditions above, one cannot expect all to be satisfied in general, as the

following result (given by Diminnie [3]) shows.

PROPOSITION 2. Let X be a space of dimension at least 3. Then the

following conditions are equivalent.

(i) X is an inner-product space;

(ii) BJ-orthogonality is symmetric;

(iii) BJ-orthogonality is equivalent to D-orthogonality;

(iv) D-orthogonality is additive.

Despite the above result, i t is often s t i l l possible to give a

definition of orthogonality satisfying all the above conditions.

THEOREM 3. In any Banach space X with a countable total sequence

(f ) e X* it is possible to define an orthogonality relation

satisfying (1)3 ..., (6) above.

Proof. We may assume, without loss of generality, that each / has

norm 1. The orthogonality is defined by saying that x 1 y if and only if

Conditions (1) to (6) are easily verified for this relation.

If X i s separable, a result of Ovsepian and Pelczynski [9] (see also

Lindenstrauss and Tzafriri [£]) states that X has a bounded fundamental

and total biorthogonal sequence (x , / ) . In this case the orthogonality

given by the above formula has the additional property that the (x ) are

mutually orthogonal. I t is not clear whether one can define an orthogonality

relation with the above properties in a general Banach space. However, as
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Diminnie has observed, the existence of a continuous Euclidean norm II -B

on X is another sufficient condition.

Given that each / is bounded and the map taking x to f is norm-
X X

weak* continuous when an orthogonality relation satisfies (1) , . . . / (6) , one
might hope that there would be a uniform bound on the norm of f as x

ranges over the unit sphere. Thus 1 might satisfy

(7) (Boundedness): There is a constant C > 0 such that if x l z

then Hax+sH 5 II xll whenever \a\ S C .

If 1 satisfies (1), . . . , (6) then boundedness is equivalent to the

following condition.

(7'): There is a constant C > 0 such that IIf II i C whenever Hxll = 1 .
x

Both (BJ)-orthogonality and D-orthogonality satisfy (7), although

neither satisfies al l of the earlier conditions, in general. Unfortunately,

the addition of (7) to conditions (1) to (6) restricts the underlying normed

space dramatically.

THEOREM 4. If X is a Banach space and l an orthogonality relation

satisfying (1) , ••-, (7) , then X is isomorphic to an inner-product space.

Proof. We shall adapt the proof of Theorem 2 of James [6], which

states that if BJ-orthogonality is left additive and dim X ^ 3 , then X

is an inner-product space.

Let Y be a finite-dimensional subspace of X with a normalized

basis x, , . .. ,x and let M = Ker / n . . . n Ker f . Any element of Yi n xx xn

is orthogonal to the whole of M and given x e X we may write

x = P(x) + z with P(x) e 1 and z e M . Condition (7) implies that

IIC(P(x)+xs) II > IIPte)D and hence DP(x)i < Cflxll . Therefore every finite-

dimensional subspace of X is uniformly complemented in X . i t now

follows from results of Lindenstrauss and Tzafriri [7] that X is

isomorphic to an inner-product space.

Another natural condition to impose turns out to be even stronger and

implies that X is automatically an inner-product space.

(8) (Strong syrrmetry): If llxll = Uyll = 1 and y-ax 1 x , fora scalar a,

then x - ay 1 y .
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Conditions (1) to (5) together with (8) imply that f\y) = f,,(x) for
x y

a l l a; and y .

THEOREM 5. For an orthogonality relation J. satisfying (1) to (5) the
following conditions are equivalent.

( i) i is strongly symmetric;
(ii) the map taking x to f is linear;

(iii) X is isometrically an inner-product space.

Proof. (i) =* (ii) : since (i) implies that f (y) = f (x) and the map
x y

taking x to f (x) is linear, the result follows.
•3

(ii) =* (iii): Let X and y be any two nonzero vectors. Then

and

Therefore Brx+sj/B2 = r2Os;ll2 + s2lz/ll2 + rs (f (y)+f (x)) . Hence the

x y

in te rsec t ion of the uni t sphere of x with any two-dimensional subspace i s

an e l l i p s e , which implies t h a t X i s i sometr ica l ly an inner-product space

(see, for example. Day [ ? ] ) .

( i i i ) =» (i) : immediate.

The equivalence of conditions (i) and ( i i i ) i s a lso contained in

Lemma 1.4 of Freese, Diminnie and Andalafte [ 4 ] , phrased there in terms of

a function v(x,y) , which equals -f (y) when 11x0 = Uyfl = 1 .
x

To conclude, we sha l l characterize a l l possible orthogonali ty

re la t ions on 2R sa t i s fy ing (1) to (6) (and hence automatically (7)) .

THEOREM 6 . Let x be an orthogonality relation on Jf satisfying

conditions (1) to ( 7 ) . Then there exists a number t , 0 < t < i r , and a

monotonic function f-.Lo, t~\ -*• It, TT] such that two nonzero vectors

x = r (cos 6, sin 6) and y = s(cos $, s in <(>) (r,scM, 0 < 6, 4> < TT) are

orthogonal if and only if either
(i) 0 < 6 <. t and. fflJ) = $ , or

(ii) 0 < <j> < t and /($) = 9 .
Moreover every such function gives a well-defined orthogonality.
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Proof. Let us write e = (cos a, sin a) . Clearly the orthogonality

relation is determined by which e are orthogonal. For each 0 < x ^ TT

there is an s e [0, TT) such that e 1 e . Let t e [0, TT) be such
3? S

tha t e_ 1 e. • Then the function s (x) (mod ir) i s continuous on [0, TT)

and six) ? x for a l l x . Hence, since six) -*• 0 or ir as x -»• t and

8 (a;) i s also one-one on [0, TT) ., we have that six) i s monotonically

increasing on [0, t) , mapping i t to [ t , IT) , and then maps [ t , TT]

monotonically onto [ 0 , i ] , since sisix)) = X . The definition of f i s

now apparent, and the resu l t follows. Conversely, given f , i t i s clear

how to define 1 sat isfying (1), . . . , (7).
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