EQUICARDINALITY OF BASES IN B-MATROIDS

Denis Higgs

It is very well known that any two bases of a finitary matroid (see [2] for definitions) have the same cardinality. As Dlab has shown in [1], the same does not hold for arbitrary transitive exchange spaces; indeed, since the examples Dlab constructs in [1] are matroids, it does not even hold for arbitrary matroids. Nevertheless with the aid of the generalized continuum hypothesis (G. C. H.) we are able to prove the result for B-matroids.

THEOREM 1. Let & be a set of subsets of a set E satisfying

(i) no one member of B is properly contained in another, and

(ii) if B_1 and B_2 are in \emptyset and A, C are subsets of E such that $A \subseteq B_1, B_2 \subseteq C$, and $A \subseteq C$ then there exists B in \emptyset such that $A \subseteq B \subseteq C$.

Then if the G.C.H. is true the members of ß all have the same cardinality.

<u>Proof.</u> Let B_1 and B_2 be in \mathfrak{R} . If B_1 is infinite then, using Sierpinski's construction [3] and the G. C. H. (see also Wolk [4]), we obtain a chain C of subsets of B_1 such that $|C| = 2^{|B_1|}$. For each C in C, (ii) shows that there exists a subset D of B_2 such that $C \cup D$ is in \mathfrak{R} and $C \cap D = \phi$. If we select exactly one D for each C then by (i) the resulting D's will be distinct and B_2 must have at least $2^{|B_1|}$ subsets. From $2^{|B_1|} \leq 2^{|B_2|}$ and the G. C. H. we obtain $|B_1| \leq |B_2|$. If B_1 is finite then a similar (and in this case familiar) argument leads to the same conclusion: take $|C| = |B_1| + 1$ and choose the D's to form a chain themselves, as is clearly possible when C is finite. Likewise, we may show that $|B_2| \leq |B_1|$. Q.E. D.

Since the set $\[mathbb{B}$ of all bases of a B-matroid is easily seen to satisfy (i) and (ii), we have the following theorem.

THEOREM 2. The bases of a B-matroid all have the same cardinality.

<u>Two questions</u>. Is any $B \neq \phi$ satisfying (i) and (ii) the set of bases of some B-matroid? Does Theorem 1 (or Theorem 2) imply the G.C.H.?

861

REFERENCES

- V. Dlab, The role of the "finite character property" in the theory of dependence. Comment. Math. Univ. Carolinae 6 (1965) 97-104.
- 2. D.A. Higgs, Matroids and duality. Colloq. Math. 20 (1969) 215-220.
- 3. W. Sierpinski, Sur un problème concernant les sous-ensembles croissant du continu. Fund. Math. 3 (1922) 109-112.
- 4. E.S. Wolk, A theorem on power sets. Amer. Math. Monthly 72 (1965) 397-398.

University of Waterloo