EQUICARDINALITY OF BASES IN B-MATROIDS

Denis Higgs

It is very well known that any two bases of a finitary matroid (see [2] for definitions) have the same cardinality. As Dlab has shown in [1], the same does not hold for arbitrary transitive exchange spaces; indeed, since the examples Dlab constructs in [1] are matroids, it does not even hold for arbitrary matroids. Nevertheless with the aid of the generalized continuum hypothesis (G.C.H.) we are able to prove the result for B-matroids.

THEOREM 1. Let \mathbb{B} be a set of subsets of a set E satisfying
(i) no one member of \mathbb{B} is properly contained in another, and
(ii) if B_{1} and B_{2} are in \mathbb{B} and A, C are subsets of E such that $\mathrm{A} \subseteq \mathrm{B}_{1}, \mathrm{~B}_{2} \subseteq \mathrm{C}$, and $\mathrm{A} \subseteq \mathrm{C}$ then there exists B in B such that $A \subseteq B \subseteq C$.

Then if the G.C.H. is true the members of \mathcal{B} all have the same cardinality.
Proof. Let B_{1} and B_{2} be in $\mathbb{B}_{\text {. . If }} B_{1}$ is infinite then, using Sierpinski's construction [3] and the G. C. H. (see also Wolk [4]), we obtain a chain C of subsets of B_{1} such that $|C|=2\left|B_{1}\right|$. For each C in C, (ii) shows that there exists a subset D of B_{2} such that $C \cup D$ is in B and $C \cap D=\phi$. If we select exactly one D for each C then by (i) the resulting D 's will be distinct and B_{2} must have at least $2\left|B_{1}\right|$ subsets. From ${ }_{2}\left|B_{1}\right| \leq 2^{\left|B_{2}\right|}$ and the G.C.H. we obtain $\left|B_{1}\right| \leq\left|B_{2}\right|$. If B_{1} is finite then a similar (and in this case familiar) argument leads to the same conclusion: take $|C|=\left|B_{1}\right|+1$ and choose the $D^{\prime} s$ to form a chain themselves, as is clearly possible when C is finite. Likewise, we may show that $\left|B_{2}\right| \leq\left|B_{1}\right|$. Q.E.D.

Since the set \mathbb{B} of all bases of a B-matroid is easily seen to satisfy (i) and (ii), we have the following theorem.

THEOREM 2. The bases of a B-matroid all have the same cardinality.

Two questions. Is any $B \neq \phi$ satisfying (i) and (ii) the set of bases of some B-matroid? Does Theorem 1 (or Theorem 2) imply the G.C.H.?

REFERENCES

1. V. Dlab, The role of the "finite character property" in the theory of dependence. Comment. Math. Univ. Carolinae 6 (1965) 97-104.
2. D.A. Higgs, Matroids and duality. Colloq. Math. 20 (1969) 215-220.
3. W. Sierpinski, Sur un problème concernant les sous-ensembles croissant du continu. Fund. Math. 3 (1922) 109-112.
4. E.S. Wolk, A theorem on power sets. Amer. Math. Monthly 72 (1965) 397-398.

University of Waterloo

