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Abstract

A close connection is uncovered between the lower central series of the free associative algebra of
countable rank and the descending Loewy series of the direct sum of all Solomon descent algebras A,,
n € No. Each irreducible An-module is shown to occur in at most one Loewy section of any principal
indecomposable An-module. A precise condition for this occurrence and formulae for the Cartan numbers
are obtained.
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Introduction

In [12], Solomon introduced a remarkable family of algebras associated with Coxeter
groups. In the special case of symmetric groups, these are called descent algebras
and have been studied since then by various authors. A surprising number of intricate
and fascinating results have been obtained during the last decade (see, for example,
[1, 6], [7, Section 5], [11, Chapter 9]). For any positive integer n, the descent algebra
An is a subalgebra of the group ring KSn and may be described as the ^f-linear span
of the elements SD := £ffe5n(D) a, D c { 1 , . . . , n - 1}, where Sn(D) is the set of all
permutations with descent set D. (Recall that the descent set of a € Sn consists of
all j < n such that j a > 0 + l)a-) We set Ao := K and A := 0 n > o An, the direct
^-algebra sum of all An. The ground ring K will throughout be assumed to be a field
of characteristic 0.
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318 Dieter Blessenohl and Hartmut Laue [2]

For every associative ^-algebra A we put y(0)(A) := A and define inductively
yu+l)(A) to be the ideal generated by all elements xy - yx (x <= yu\A), y e A).
Then (yy)(A))7>0 is called the lower central series of A.

In this paper we give a Af-linear isomorphism <o of the free associative algebra F
of countable rank onto A such that

(i) yU)(F) is mapped onto (Rad Ay for ally > 0;
(ii) the multihomogeneous components of F are mapped onto a direct decompo-

sition of A into indecomposable left ideals.

Our first main result (Theorem 2.1) may be interpreted as follows:

(j) (Rad A); is the j th term of the lower central series of (A , + , * ) ,

where * is the convolution product in the sense of Reutenauer [11, (1.5.3), 9.]. This is
due to the fact that <u is an algebra isomorphism of F onto (A , + , * ) , as was pointed
out to us by Jollenbeck.

In our second main result (Theorem 2.2), we describe the occurrence of the
irreducible An-modules in the Loewy sections of any principal indecomposable
An-module. Furthermore, if 93 is any Poincare-Birkhoff-Witt basis of F, then
Q3<w fl (Rad Ay is a basis of (RadA); , for every non-negative integer j . In par-
ticular, we obtain a complete description of the Cartan matrix of An (Corollary 2.1).

The results of [4], in particular [4, 1.5, 2.5], are of crucial importance for this paper.

1. Principal indecomposable A,,-modules and irreducible An-modules

Let N* be the free monoid over the alphabet N = {1, 2, 3 , . . . } . We put No :=
N U {0} and m, := {i \ i e N, i < m] for all m e 2. For every finite set A, we
write SA for the symmetric group on A and set 5m := S^. For every q, r e N*, we
write qr for the concatenation of q and r. The j th letter of the word q € N* will be
denoted by qj. If q — q\ • • • qt € N*, k e No, we set sum(g) := ^ ; € * Qj e ^o- If
sum(q) = n, then q is called a composition of n, k its length, for which we use the
notation q (= n, \q\ = k respectively. Putting Qj :— (q{ -\ + ^ _ i ) + q^ for all
j e kJ,v/e set yq := [a \ a e Sn, a\Qj is increasing, for ally € k,} and

:= {a | a e Sn, Q" = Qj,& \QJ has a unique local minimum, for all j e fcj.

The defect of any permutation a € Sn is defined by

d{a) := 11/ | j e n - 1,, jo > (j + l)a}| .

LetS« := J ^ 6 i S , , f f a n d « , := E ^ ^ - D ^ S * . Then {S* \q |= n) isa K-basis
of An ([12]). If q = qx • • • qk, r = rx- • • n (= n, then aq and S r are congruent modulo
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[3] Solomon's descent algebra 319

the Jacobson radical Rad An of An if and only if r is associate to q, that is, if and only
if k = I and there exists a permutation Q e Sk such that gq := qie • • • qke coincides
with r. In this case we write q % r. The set {coq \ q \= n] is also a K-basis of An, and
A9 := Ancoq is an indecomposable left ideal of An, for every q =̂ n ([4, 1.2, 1.3]). A
partition is a word p e N* such that px > pi > • • •, and if p is a partition such that
sum(/>) = n, we write p I- «. For later use, we record the following elementary fact:

(1) The number of all partitions p of length k such that

Pj < m for all j € k, is equal to (m+*~1)

for every m, & e No. For every word <? € N* there exists a unique partition p such
that p ^ q. We have

(2) A,=0A' forallneN.
q\-n

If ^ = qi...qk\= n, we set 9? := ]~],e i 9, F U „, (ay (?)!) where a, (9) := |{i | 1 €
kl,q,=j)\. Then

is an idempotent generator of the indecomposable left ideal A9 of An ([4, 1.3, (27)]).
Therefore it is a primitive idempotent, and (Rad An)v, = Rad(Anv9) is the unique
maximal element of the set of all left ideals of An which are properly contained in
A* ([5, 41.2, 45.7]). In general, we write Rad M for the intersection of all maximal
submodulesof a module M, and we set Rad(0) M := M,Rad0 ) M := RadtRad0"0 M)
for ally € N. By [4, 1.6], vq = vr mod Rad An if and only if q % r, for any q,r \=n.
It follows that {Rad An + vp | p I- njisthesetofprimitiveidempotentsof An/Rad An.
In particular, for all q, r ^ n

(3) vqvr € Rad An if and only if qr 56 r.

For all q |= n, we set Mi := (RadAn + (v,))/Rad An. Then [Mp \ p \- n) is a
complete set of irreducible A,,-modules. (As AM/Rad An is commutative, there is
no distinction between irreducible representations and anti-representations of An, that
is, between irreducible An-right modules and left modules.) By means of (3), the
following proposition is readily verified.

PROPOSITION 1.1. Let n be a positive integer, p \- n, and let r] be an idempotent
of An such that r\ == vp mod Rad An. Let N be a finite-dimensional {left or right)
An-module and N' the image ofN under TJ.
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320 Dieter Blessenohl and Hartmut Laue [4]

(a) A composition factor ofN is not annihilated by n if and only if it is isomorphic
toM".
(b) dim* N' is the multiplicity ofMp in a composition series ofN.

We shall need the following extension of the notion of composition. If r, s e N*,
k := \s\ and there exist elements r [ l ] , . . . , r[k] € N* such that r = r [ l ] • • • r[k]
and r\j] (= Sj for all j e fc,, then r is called a composition of s, for which we
also use the notation r \= s. Then r [ l ] , . . . , r[k] are uniquely determined, and we
set r(s)j := r\j] for all j € k,. (Here we have deliberately altered the notation
introduced in [4, (4)], which was pointed out as incorrect to us by careful readers.)
Moreover, we write r |~ s if there exists an element r' e N* such that r *» r' \= s.
Obviously, |~ induces a partial order on the set of all partitions. Writing <iex for the
usual lexicographic order of N*, we observe

(4) q [~ P = > q <iex P (q € N*, p partition).

From [4, 1.5] we conclude that

(5) vrvq = 0 for all q, r (= n such that q ty r

(where q \f- r means, as usual, that q |~ r does not hold). If £ i , . . . , sm are idempotents
of an associative algebra such that i > j implies £,£, = 0, then the elements e(*' :=
(1 — £i) • • • (1 — ek-i)Sk, k € «L, are a system of mutually orthogonal idempotents,
ande,(e(1)H h£(m)) = £, = (e(1)H |-£<m))£, for all i 6 m,. These observations
yield:

PROPOSITION 1.2. Let pu ..., pmbethe partitions of a positive integer n, in lexico-
graphically decreasing order. Put v(k) := (id — vPl) • • • (id —vPt_l)vPk for all k e m,.
Then {v ( 1 ) , . . . , v(m)] is a system of mutually orthogonal idempotents, the subalgebra
(v(i),..., v(m))K is a complement o/Rad AB in An, and y(1) H \- v(m) = id.

For every q =̂ n we set P* :— vq An. Then P* is a one-headed right ideal of AB [5,
41.2,45.7]. We remark:

(6) An

This is a consequence of (2) and the following

PROPOSITION 1.3. Let K be a field and A a finite-dimensional associative K-
algebra with unity such that A/RadA is commutative. Let e\,..., e^ be primitive
idempotents of A. Then

A — ^ f t Aej if and only if A — ^ y e}A.
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(Easy examples show that the conclusion does not necessarily hold if A/ Rad A is
not assumed to be commutative.)

PROOF. It suffices to prove only one implication. From A = ©*=1 Ae, we con-
clude that A = © J = 1 A~ej = ©•_, ~ejA, where the upper bar denotes the canon-
ical epimorphism of A onto the commutative quotient A/Rad A. We now have
RadA+£*=1 ejA = A. As£*= 1 ejA is a right ideal of A, this implies £*= 1 ejA = A.
But e}; A is a principal indecomposable A-module by [5, 41.2], for all j € &,, and
ejA p= e,A for i ^ j because e, A ^ e,A. Hence the sum of the right ideals e}A is a
direct sum. •

For every q (= n, we have v9 € A' D P*. (In fact, from [4, 1.5] it follows that
(Vq)ic = A9 n P9.) Hence the algebra (v,)* is a complement of Rad A* in Aq and of
RadF in F . Therefore we have

(7) AV Rad A" S M? = P9 / Rad F* (as An-modules).

Now [5, 45.7] implies that, for any g, r (= n,

(8) A* = Ar (as An-left modules) if and only if q « r

if and only if P* = Pr (as An-right modules).

In 1989, the first decomposition of An into principle indecomposable submodules
was discovered and analyzed by Garsia and Reutenauer [6]. In the following we shall
consider briefly its connection with the decomposition {A* | q h n}. For all q \= n,
let

» > V / r

Then the elements (\~[je n (as (q)l))~lIq are idempotents and form a ^-basis of An. If
q,s \=n, then Iq = Is mod Rad An if and only if q « s. Furthermore,

A" := (I«\q€ N*, q « q)K

is an indecomposable left ideal of An which is generated by the idempotent

and

(9) An = ff) Aq for all n € M.
qhn
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322 Dieter Blessenohl and Hartmut Laue [6]

These results were obtained in [6, Theorem 3.4, Theorem 4.2, Theorem 4.3]. (In
the context of [6], where products of permutations are read from right to left, Aq is,
of course, a right ideal.) By the Krull-Schmidt theorem there exists a permutation a
of the set of all partitions of n such that hqa = Aq as An-modules, for all q V- n.
By (8) and (2), a is uniquely determined. We shall prove that a = id, by means
of the combinatorial Proposition 1.4. If q, s e N* such that s \= q = q{ • • • qk and
c = (ci,..., ck) is a it-tuple of positive integers such that c, < \s(q)j | for all j e t , ,

we put IqiC(s) := Yije^^Wcj- Then V s ) := 7?.o n(s) i s t h e product of the
initial letters of the words s(q)j, and F^s) := Ig.^q^ M^DC*) is the product of the
final letters of the words s(q)j.

PROPOSITION 1.4. Let q,s € N* such that s \= q = q{ • • • qk. Let s(l\ ..., s(m) be

the compositions of q such that s('\q)j « s(q)j for all j € k,, i e m,. Let C be the

set of all k-tuples c = ( c j , . . . , ck) of positive integers such that Cj < \s(q)j\for all

j e t,. Then m ]"[,,* q, = Uje^ M<l)j I E , e , UA^) for all c e C.

PROOF. L e t / : C x m, -* N*. (c, i) ^ (sw(q)i)cl(s^(qh)c2 • • • (j(0(9)t)Cl. For
any c € C, w e N*, we put a(c, w) :— \{i | / 6 m,, / ( c , i) — w}\. If CT, e Sis^i
for all y e fc,, CT := ( o ^ , . . . , cr^), we put as1-0 := CTiJ(l)(g)i • • •oPti(l)(9)*- Then
( i ( 1 ) , . . . , 5<m)} = {CT5(1), . . . , as(m)], and therefore there exists a permutation cr* € 5m

such that as(0 — sUa"> for all i € m,. Thus we have

i , . . . , ctCT,t), /) = / (c, rcr*) for all c e C, i € m,.

This implies

(10) a(c, w) = a(c', w) for all c, d e C, w e N*,

as we may find permutations oj € S|j(,);| such that C;CT; = c^, and |{i | i e m,
/ (c , i) = w}\ = \{i \i e mJic, ia*) = w}\. It follows that

m n * = E n ««n(*(i)(^)=E E n<°mw>h = E E n /
= E E °(c'w) n ^ = E |c|a(c°'w) n ̂ -

j e t ,

for any c0 6 C. As | C| = Yljek K?)/1> t n i s P r o v e s o u r claim. •

PROPOSITION 1.5. Let n be a positive integer and q f= n.

(a) v, = £, = ( n ; e i (
(b) A" = A« as An-modules.
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[7] Solomon's descent algebra 323

PROOF. Let q = qx- • • qk. The number of all q \= n such that q s» q is (a * a .) .
This yields the second congruence in (a). By [4, (10)],

rhn

modulo Rad An. Let r h n such that r ^ q. For any 5 |= ^ such that r ^ s w e
put [5] := {r' \r' \=q, r\q)j « *(9)y for ally e *,}. Then [[s] | r « s \= q)
is a partition of the set of all compositions of q which are associate to r. Applying
Proposition 1.4 to each class [s] we obtain

F (>

from which we conclude the first congruence in (a). By (a), A* + Rad An = Aq +
RadAn, hence A«/RadA9 = A'/RadA9 as An-modules which implies (b) ([5,
45.7]). •

Two different descriptions of the irreducible representations of An may be found
in [1, 3.] and in [3, (50)]. If q, r \= n, we write C for the conjugacy class of all
permutations of cycle structure q, and %r(C) for the value of any element of C under
the Young character £r([9, 4.3]). Then the linear mappings cq : An -> K such that
cg(ar) — %r{C) for all r |= n constitute the set of all irreducible characters of An ([3,
(50)]). (Obviously, q ^ q implies that C = C9.) On the other hand, we conclude
from [4, 1.3] that, for all r, q (= n,

(11) Er&>9 = mr
qa>qmodRad An ,

where mr is the cardinality of the set ^ r of all matrices over Mo such that the sum
of all rows is q, the sum of all columns is r, and each column contains a unique
non-zero element. Hence the linear mappings c* : An -> K such that c*(Sr) = mr

for all r |= n also constitute the set of all irreducible characters of An. A closer look
shows that this second description is essentially a short version of that given in [1, 3.].
(Clearly, q «s q implies that cq

t = cq.) We show

PROPOSITION 1.6. Let n be a positive integer. Then cq = cq for all q ^ n.

PROOF. Let q — q\ • • • qk, r = r{ • • • rt \= n. We have to show that

(12) ^{Cq)=mr
q.
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Let Y be a Young subgroup of Sn of type Sn x ••• x Sn, and let Ru ..., /?, be the
orbits of Y in n, \Rt\ — rt for all i e I. Then y := {a | a e Sn, a\R: is increasing
for all i e Z,} is a right transversal of Y in Sn. Let n € C, and let Q\,..., Qk be the
orbits of JT in n,, | <2,| = <?; for all i e &,. If a 6 ^ , then Yon — Ya if and only
if a € Sf, where & is the set of all x e 5f such that ^?,r is a union of some of the
sets Qj. Hence £ r ( C ) = i-r(n) = | ^ | . We now define a bijection of Ztfr

q onto 5":
If A = (ay) € ~jfir

q, then | (JIG; I fly ^ 0}| = rh for all i 6 I . Therefore there
exists a unique permutation a 6 5? such that Rta = {J{Qj \ ay ^ 0} for all i € I .
The mapping A i—>- cr is the desired bijection. •

The foregoing proposition shows that (jnr
q)q^n is the table of the Young characters

of Sn. It is remarkable that the numbers mr
q are also given through the following

formula:

PROPOSITION 1.7. Let n be a positive integer, q,r \=n. Then

mr = l Y

where psp(iu) is the product of the successive partial sums wu Wi + w2, wt + w2 +
u>3,... of the initial segments of the word w e N*, and psp(^, r) is the product (in N)
of the numbers psp((jO),) (q (= r).

PROOF. By (3) and (11),

q\-n q\-n
(13) ar = ^2,mr

qvq = 5 ^

Furthermore, cos = ( - l ) | s | £,,^(-l)wF,(r)Sr for all s \= n, by [4, 1.2]. From [7,
Proposition 4.5] we may read off the inverse of the matrix of scalar coefficients of this
system of equations, and we conclude that

co. = y~* V^ (oo modRad An.

Comparing with (13), we obtain the asserted formula. •

By [12], there is an algebra epimorphism c of An onto the /^-algebra Cl(Sn) of
all class functions of Sn with the property that c(Sr) = £r for all r (= n. If rj is a
primitive idempotent of An, then c(n) is a primitive idempotent of Cl(Sn). Therefore,
there exists a conjugacy class C of Sn such that c(rj) is the characteristic function
charc of C. More precisely, we prove the following
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[9] Solomon's descent algebra 325

PROPOSITION 1.8. Let n be a positive integer, q\- n, and let r\ be an idempotent of
An such that r\ = vq modRad An. Then c(r]) = charc,.

PROOF. Without loss of generality we may assume that r] = vq. We know that there
exists a partition q of n such that c(vq) = charc«. We have to show that q = q. For
any r h / i w e have

mr. charC4 = ?r(Cq) charc* by (12)

== m cnaTr'o.

Therefore, mr~ = mq for all r h n. In particular, W- = mq
q ^ 0 and mq = m9- ^ 0.

Hence q |~ q |~ 9 . t n a t is, q = q- •

2. Lower Loewy factors and Poincare-Birkhoff-Witt bases

We now consider the free associative AT-algebra of countable rank KH*, the semi-
group algebra of N* over K. For every n e No let Dn be the AT-linear span in KH* of
all compositions of n. Then

(14)
n>0

The AT-linear mapping <o : KH* —• A such that ga> = &>,, for all g e N* is a vector
space isomorphism, and Dnu> = An for all n e Ho. (It should be noted that the
vector space isomorphism a : A —> ATN* considered in [7, 5.1] is not the inverse of
a.) For every q € N*, the multihomogeneous component (q | q € N*, ^ « ^ ) K of
ATN* is mapped onto A*. This shows that the statement (ii) in our introduction holds;
statement (i), however, is less obvious. We first give a description of the lower central
series of an arbitrary associative AT-algebra A in terms of a system of generators of A.

The standard Lie product o in A is defined by

a o b := ab — ba (a, b e A) .

Inductively, we set a[\] o • • • o a[m] :— (a[l] o • • • o a[m — 1]) o a[m] for all
a[\],..., a[m] 6 A, m > 2. The following proposition will be useful later on:

PROPOSITION 2.1. Let A be an associative K-algebra, j u ... ,jt e N, h := j \ +

\-ji, andlet u[i] € yiJ')(A)forall i e /, . Then

u[l]---u[l]-u[\a]---u[la] ey(h+l)(A) for all a € 5 , .

https://doi.org/10.1017/S1446788700036752 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036752


326 Dieter Blessenohl and Hartmut Laue [10]

PROOF. We may assume that a = (i, i + 1), j e / - 1, as 5/ is generated by
the transpositions of this kind. By [8, 3.4], u[i] O u[i + 1] 6 )/('i+-''+1+1)(A), hence
«[1] • • • u[l] - u[\a] • • • u[lo] = M(1) • • • u[i - l](«[i] o u[i + l])u[i + 2] • • • u[l] e
y(/ l+1)(A), by [8, 3.3]. •

For any subset X of A and j e No let RUhX be the AMinear span of the elements
(xi o • • • o x;,)(.x,1+1 o • • • o x,,+,2) • • • (xil+...+ik_.+l+i o • • • o xk), where x, e X and
y < k = i\ + • • • + ik-j. That is, the generators of R(J)'X arise from the products of
length > j over X by inserting j o's and bracketing accordingly. Then / ?^ ) X is an
ideal of the subalgebra of A generated by X, and R(j)-x c y^>(A) by [8, 3.3].

PROPOSITION 2.2. //"X w a system of generators of an associative K-algebra A,
then / ? 0 ) ' x = y(J)(A)forallj € No.

PROOF, by induction on j . The inclusion y^KA) c /?0'),x holds forj = 0 by our
hypothesis on X. Now lety > 0 and assume that ^ " " ( A ) c / ?^" 1 ) X . It suffices to
show the following:

(15) If v is a product of elements of X, then y y "(A) o D C

Let b € y<J~1)(A). By means of our inductive hypothesis we may assume that

b = (xi o • • • oxh)(xh+i o • • • oxh+h) • • • (x/|+...,,_1+1 o • • • o*,-1+...+l-,),

where /, + ••• + /, — / = y — 1. If v e X, the derivation rule

1 •••>'*-i(vt oz)y t + i •••)>„ for all >>!, . . . , y n , z e A

implies that 6 o v € / ? 0 ) X . If u , , . . . , vn e X and u = vx • • • vn, this in turn
yields bo v = J2l=\ vi' •" u*-i(^ ° ^)u*+i • • • vn e /?W)iX. This shows (15), and the
proposition is proved. •

We now apply Proposition 2.2 to the /(T-algebra A = KU* and put X := N. Then
for ally e No we obtain y^^KM*) = /?<»•" = © n e N o ( / ? o ) N n D J , and ^0)(£>n) =
^0 ).N n£>n j s m a pp e d by co onto (Rad Any', by the main result of [4]. (For the definition
of RV\Dn), see the introduction of [4]). Since (Rad Ay = 0n e N o(Rad Any for all
y 6 No, we have thus shown the following

THEOREM 2.1. (yO)(#N*))a> = (Rad A)j for all j e No.

For any composition q of a positive integer n, we now study the composition
structure of A* and P*. A composition s of r = rx • • • rt e N* is called power-free if
\s{r)i\ > 1 implies that s(r)j has at least two different letters, for every i e j , .
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THEOREM 2.2. Let n be a positive integer and q,r h n. For every j € No, the
following statements are equivalent:

(i) Mr is isomorphic to a composition factor of the An-module RadW)A9/
Rad(/+D A,_

(ii) j = \q | — | r\, and there exists a power-free composition ofr which is associate
toq,

(iii) Mq is isomorphic to a composition factor of the An-module Rady) Pr /
Rad°+1)Pr.

As a first step of the proof, we shall show that (i) implies the first and part of the
second condition in (ii). For any q, r |= n we show

(16) (i) implies that; = \q\ — \r\ and q |~ r.

For; = 0, this follows from (7). Let; > 0. By [4, 2.4],

RadW) A'/Radtf+I) A' = I £ Rad0"1' As L , / I £ Rad0) As I o», .
I \

/ \ |
qt~shn I \ q\r~sV-n

|?|-|J|=1 / \|?|-|»l=l

Hence there exists s \- n such that q |~ s, \q\ — \s\ = 1, and Mr is a composition
factor of the An-module Rad0"0 A1/ Rad0' As. Inductively we have; - 1 = |*| - \r\
and s |~ r. The claim follows.

We will continue the proof of Theorem 2.2 at a later stage as we need some more
preparations.

PROPOSITION 2.3. Let n be a positive integer, q, r (= n, \q\ > \r\, h := \q\ — \r\.
Let x) be an idempotent of An such that rj = vr mod Rad An, and let Abe a left ideal
of An isomorphic to Aq. Then

(a) neither Rad</|+1) A nor A/ Rad(/l) A has a composition factor isomorphic to Mr,
(b) r)A n Rad<A+1) A = 0 and r)A c Rad**' A,
(c) t]A + Rad(*+1) A/ Rad(A+1) A is the homogeneous M'-component o/Rad(/l) A/

Rad(A+I) A,
(d) dim* ^A is the multiplicity ofhfr in a composition series of A.

Rad(/° A

Rad(A+1) A
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PROOF, (a) is an immediate consequence of (16). By (a) and Proposition 1.1 (a),
every composition factor of Rad<A+1) A and of A/ Rad^' A, and therefore these mod-
ules themselves, are annihilated by the idempotent r) = vr mod Rad An. It fol-
lows (b) as rjA n Rad(A+1) A = ?jRad(fc+1) A. By the second part of (b), r)A +
Rad(/I+1) A / Rad(*+1) A = jj(Radw A / Rad<;i+1) A), hence (c). Finally, (d) is a special
case of Proposition 1.1 (b). •

In particular (17 := vr, A := Aq), we set

Ar'« := ArA« + Rad(/I+1) A" (= vrA" + Rad(A+1) A").

A preliminary consequence of Proposition 2.3 (c) is the equation

(17) A«
rhn

Our next aim is to exhibit a basis of a vector space complement of Rad(;"+1) Aq

in Arq. In this manner we shall obtain bases of An which are compatible with the
Loewy series of every left ideal Aq (see Theorem 2.3 (b)). Moreover, thanks to
Proposition 2.3 (d), this will lead to an explicit formula for the Cartan invariant crq,
that is, for the multiplicity of Mr in a composition series of A*. With respect to the
lexicographically decreasing order of the set of all partitions of n, we obtain from (16)
and (4) the following:

(18) The Cartan matrix (cnq)r^n is upper triangular, and cq<q = 1 for all q h- n.

Let N(*} be the free magma over the set N and KM(t) the free K-algebra generated
by N. Then the identity mapping of N extends uniquely to a magma epimorphism
a of N(<0 onto N* and to an algebra homomorphism X of KHM into the Lie algebra
(KU*, + , o). The image L := (KM{t))X is a free Lie algebra of countable rank,
by [2, 2.3.3]. A bracketing of a subset B of N* is a mapping £ of B in N(*>
such that wfla = w for all w e B. The special bracketing fa of N* defined by
wfa := ( ( . . . ( ( U J I U ^ U ^ ) • • • )wm) (where m = \w\) is called left-normed. We put

w°:=wPiX for all u; € N*.

The linear extension of frX to KM* is known as the Dynkin mapping. It is easily seen
that L is generated as a AT-vector space by the set H*ptX, but no subset B of N* is
known for which BfrX is a ^T-basis of L.

A pair (B, fi) is called basic if /J is a bracketing of B c N* such that (5X is a
bijective mapping of B onto a AT-basis of L. For example, B may be chosen as the
set of all Lyndon words in N*, and p be defined via the standard Lyndon factorization
(see [10, 5.3]). If (B, fl) is any basic pair, we set

vP := wfiX foraliweB.
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Obviously, nP is contained in the AT-linear span of {u>°|u> « w). In particular,

(19) w° € y{m-l)(KU*) for all w 6 B such that |u>| = m.

If < is any linear order of B, the set

< B ( B , p , < ) : = { w [ l ] a - - w [ j ] a \ j 6 N o , w [ i ] e B , w[l] > • • • >

is a AT-basis of KM*, by the Poincare-Birkhoff-Witt theorem [2, 2.5.2]. A AT-basis of
ATN* of this kind is called a Poincare-Birkhoff-Witt basis.

Now let 53 = 03(fl, B, <) be a Poincare-Birkhoff-Witt basis of KM*. Then

® £ L L N . A., s o t h a t (14> implies

(20) 05 n Dn is a AT-basis of Dn,

(21) (53 n Dn)w is a ^T-basis of An,

for any n e Ho. For all q e M* put

539 := {^[1]D • • • w[jf \J e No, itf[i] € B, w[l] >--->w\j], w[l] • • • w[j]^q}.

For any n e N we have, by (21),

(22) Q3,o> is a AT-basis of A9, for all q |= n.

Let ^, ^' € N \ Then 53, = 03,- if ? w 9 ' , and 03, n 03,- = 0 if ^ 76 9 ' . If r e M*
and / := \r\, put

2lr := {w[l]a • • • w[l]a I w[i] € B, u;[i] (= r,, iy[l] > • • • > iu[/]},

03r:=lj2lr', 03;:=03rn03,.

Let r, r' e M*. Then 03' = Q3r' if r % r', and 03r D 03r' = 0 if r 56 r ' . Thus for every
n € N we have

(23) OSnD^U

and these unions are disjoint. Furthermore, it is easily seen that

(24) if 03^ ^ 0, then 4 |~ r.

Moreover, if q s» r, then |03^| = 1. If < extends the usual order of N and q « r, then
03' = {p}, where /? is the unique partition such that q ^ p ^ r.
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THEOREM 2.3 . Let n be a positive integer, q,r (= n, \q\ > \r\, h : = \q\ - \r\.

Then

(a) fi$r
q)K (>> is a vector space complement of Rad(h+l) Aq in Arq,

(b) M ,M-. *Bs
o<o is a K-basis of RadU) Aq,forallj € No-

PROOF. Let / := \r\. We first show

(25) corA" C H(r ) . . . . i ( r ) f | ? « 9 (= r)K c Rad(;i+I) A ' + ( » ; > , « .

The first inclusion follows directly from [4, 1.5]. As for the second, let q \= r such
that q % q. For any i e /, let c,> e £ such that ?(r)° = £u,eB. . ^ ^ c,ilBu;D. Then

where the sum ranges over all /-tuples (u>[l] , . . . , w[l]) over B such that w[i] ^ q(r)j.
Clearly, for all these and for all <reS, we have w[la]a • • • w[la]D€{q' \ q'^q)K^Dn.
Hence w[l]a • • • w[l]a - w[la]a • • • w[la]n e y(h+1)(KN*) n Dn = R(h+1)(Dn) by
Proposition 2.1, (19), and Proposition 2.2. We may choose a such that IU[1CT] >
• • • > w[la], and therefore we have w[l]D • • • w[l]a e R(h+l)(Dn) + {<Br

q)K-
Applying [4, 2.5 Main Theorem], we conclude that

o>4(r)....i(r)f € (Rad(/1+1) An + (» ;>*«) n A* = Rad(A+1) A ' + (Wq)K<o.

This proves (25). As a consequence, we note that

(26) ;

because (orA
q n Rad<A+l) A« = vr A

9 n Rad(*+1) A« = 0 by Proposition 2.3 (b).
From (2) and (17) we conclude that An = £ , rl_n <wr A

9. Hence, by (26), (23),
and (20),

2""1 =dimj, An < J^ dim^ovA') < J^ I^JI = I® n D"l = 1

q,r\-n q,r\-n

Therefore, the inequality in (26) is an equality:

(27) dim^(ft)rA«) = |«8;| .

By Proposition 2.3(b) and (25), we have

Ar-q = Rad</1+1) A" 0 vrA
q c Rad(A+l) A" + ^

from which we obtain (a), by means of (27).
Using Proposition 2.3 (b), (c), we conclude from (a) that

Rady )A« = R a d 0 + 1 ) A 9 e £ R ( » » * , for a l l ; g No.

Clearly, this implies (b). D
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If x] is an idempotent ^ 0 of Ar, it is not true that one has rjA* = (*&r
q)Ka> for an

appropriate choice of 53. For example, r\ = v33 is the only idempotent ^ 0 of A33,
and v33A

321 = (a>3(2oi) + <W(2oi)3>*: 2 2$32iw> f° r any Poincare-Birkhoff-Witt basis 53.
In view of Proposition 1.5 (b) and Proposition 1.1 (b), the statement (27) could

also be derived from [6, Theorem 5.4]. We observe that |53£| is a necklace number
([11, (7.1.2)]), because 53£ = {w° | q « w e B) is a A"-basis of the homogeneous
component (q° \ q ^ q)ic of the free Lie algebra L over N. By Witt's formula [13,
Satz 3], its dimension is

M !

where the sum is taken over all common divisors d of the numbers a, (q) = \{i: | i: <
l<7l. <?; = 7'}I. 7 e N- The numbers /!„ (u> e N*) coincide with the special Cartan
invariants csum(m)iU). They will occur in a purely combinatorial formula for the Cartan
invariants of An in general which we shall now obtain.

If r e N*, / := \r\, s \= r, we put aw(s(r)) := \{i | i € /,, s(r),- = io}| for all
u> € N*. If, moreover, r is a partition, then 5 is called a partition ofr(s h r) if the
following two conditions hold:

for every i e /, s(r), h r,,
for every i € / - 1, : r, = r,+1 =>• 5(r),-+1 <iex ^(r);

(where <icx is the lexicographic order of N*).

COROLLARY 2 . 1 . Let n be a positive integer, q,r\-n.

(a) The Cartan invariant cr,q is equal to £ , ** . , Y\weW (hw+
a

a$(%
)~1). (Each of the

products has only a finite number of factors ^ 1, because aw(q(r)) = 0ifw is not
one of the partitions q(r)t.)
(b) Mr is isomorphic to a composition factor of Aq if and only if there exists a

power-free composition ofr which is associate to q.

PROOF, (a) For all w e N*, we write w for the partition associate to w. By
Proposition 2.3 (d) and (27), we have

(28) cr,, = i s ; i

for every Poincare-Birkhoff-Witt basis 53 = 53(B, /3, <). We choose an order < of
B with the property that

(i) sum(v) < sum(ui) => v < w,
(ii) sum(v) = sum(w), v <iex w =• v < w,
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for all v, w e B, and prove (a) by counting Wq. Let/ :— \r\, Bq := {(iu[l] , . . . , w[l]) \
w[i] e B , w[i] h n, w[\] >•••> w[l], w[l]--_-w[f] «*_£}. By (i), <Br = 2T,
hence |<B;| = \Br

q\. By( i i ) , / : (w[l],..., w[l]) h+ U[T] • • • W] is a mapping of Br
q

into [q | q e N*, q^q\- r}=: P.
For every partition p e N* we have \{w \ w e B, w = p}\ = hp. Exploiting (i),

(ii), and (1), a moment's reflection reveals that, for any q e P,

where p ranges over the set [q(r)u ..., q(r)i). Now (a) follows. Furthermore,
\f~l(q)\ = 0 if and only if there exists a partition p such that ap(q(r)) ^ 0 and
hp = 0. This means that q(r) is not power-free. Therefore (a) shows that cT<q ^ 0 if
and only if there exists a power-free element q e P. This proves (b). •

Now it is easy to obtain the statements corresponding to Corollary 2.1 for the right
ideals Pr.

COROLLARY 2.2. Let n be a positive integer, q,r\-n.

(a) The multiplicity of Mq in a composition series ofV is equal to cr<q.
(b) Mq is isomorphic to a composition factor of Pr if and only if there exists a

power-free composition ofr which is associate to q.

PROOF, (a) follows from Proposition 1.1 (b) and the equation P"7 vq=vrAnvq=vrA
q.

By (a) and by Corollary 2.1 (b), both conditions in (b) are equivalent to crq ^ 0. •

COROLLARY 2.3. Let n be a positive integer. Then

\q\

for all q\=n,

for all r\-n, where ld is the number of all compositions ofd which are Lyndon words
over the alphabet N, that is, ld = £p H r f hp = dim*: L D Dd.

PROOF. AS all irreducible An-modules are one-dimensional, we have ^2rhn crq =
dim*- A* for all q (= n, and also ^ hn crq = dim* Pr for all r h n, by Corollary 2.2 (a).
Since [coq \ q « q] is a /if-basis of Aq ([4, 1.3]), the second equation in (a) follows. It
remains to show the second equation in (b). We have Pr = vr An = 0 ? h n vrA

q, hence
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dim Pr = E ^ d i m * vr^q = T,qhn 1^1 = W\ for every Poincare-Birkhoff-Witt
basis 93, by (27). We now choose the same basis 55 as in the proof of Corollary 2.1 (a).
Then there exists a bijection of 23r onto the set {(if [1] , . . . , w[l]) | w[i] € B, w[i] |=
H, w[l] > • • • > w[l]}, where / := \r\. An application of (1) yields the claim. •

PROOF OF THEOREM 2.2. The equivalence of (i) and (ii) follows from (16) and
Corollary 2.1 (b). To prove the equivalence with (iii), we show first:

(29) (iii) implies that j = \q\ - \r\ .

If(iii)holds,thenO^Pr«;, = a)rh
q,hence \q\ > \r\. Weput/i := \q\-\r\ andobtain

Rad(fc+1> Pr n P r w , c Rad(/1+1) Anno>rA« = 0, Prcoq c Rad(/I) A«nPr c Rad(;o Pr, by
Proposition 2.3 (b). Therefore neither Rad'*"1"" Pr nor Pr / Rad(/l) Pr has a composition
factor isomorphic to Mq. Hence h = j , proving (29). Now the equivalence of (iii)
and (ii) follows from (29) and Corollary 2.2 (b). •
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