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We present a local stability analysis of an idealized model of the stratified vortices that
appear in geophysical settings. The base flow comprises an axisymmetric vortex with
background rotation and an out-of-plane stable stratification, and a radial stratification
in the thermal wind balance with the out-of-plane momentum gradient. Solving the local
stability equations along fluid particle trajectories in the base flow, the dependence of
short-wavelength instabilities on the Schmidt number Sc (ratio between momentum and
mass diffusivities) is studied, in the presence of curvature effects. In the diffusion-free
limit, the well-known symmetric instability is recovered. In the viscous, double-diffusive
regime, instability characteristics are shown to depend on three non-dimensional
parameters (including Sc), and two different instabilities are identified: (i) a monotonic
instability (same as symmetric instability at Sc = 1), and (ii) an oscillatory instability
(absent at Sc = 1). Separating the base flow and perturbation characteristics, two each
of base flow and perturbation parameters (apart from Sc) are identified, and the entire
parameter space is explored for the aforementioned instabilities. In comparison with
Sc =1, monotonic and oscillatory instabilities are shown to significantly expand the
instability region in the space of base flow parameters as Sc moves away from unity.
Neutral stability boundaries on the plane of Sc and a modified gradient Richardson number
are then identified for both these instabilities. In the absence of curvature effects, our
results are shown to be consistent with previous studies based on normal mode analysis,
thus establishing that the local stability approach is well suited to capturing symmetric and
double-diffusive instabilities. The paper concludes with a discussion of curvature effects,
and the likelihood of monotonic and oscillatory instabilities in typical oceanic settings.
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1. Introduction

Eddies, along with fronts, i.e. regions of relatively sharp horizontal density gradients,
are common occurrences in the atmosphere and the ocean. In the atmosphere, baroclinic
and barotropic instabilities result in the formation of cyclones and anticyclones (Emanuel,
Fantini & Thorpe 1987), and the resulting advection of temperature leads to the formation
of fronts (Hoskins & Bretherton 1972). Similar processes occur in the ocean too. For
example, tropical instability near the equator can result in the formation of tropical
instability vortices which are associated with strong equatorial sea surface temperature
fronts (Holmes et al. 2014). Alternatively, processes such as wind and topographical
variations can lead to the development of submesoscale eddies such as the structures which
are associated with frontal regions (Mahadevan 2006). In addition, stirring by mesoscale
(around 100 km or more, corresponding to a Rossby number much smaller than unity) and
submesoscale (1-100 km, corresponding to a Rossby number around unity) eddies can
form frontal regions too (Shcherbina et al. 2015; Sarkar et al. 2016). The dynamics of these
eddies, apart from significantly influencing the transport of various quantities such as heat,
salinity and nutrients (Zhang, Wang & Qiu 2014), can also have significant implications for
large-scale phenomena like the El Niflo southern oscillation and the equatorial heat budget
(Holmes et al. 2014). Furthermore, the dynamics of submesoscale coherent vortices is an
important consideration to understand transport and mixing in many parts of the ocean
(McWilliams 1985).

Large-scale geophysical eddies, apart from their vortical structure, often have a vertical
(out of plane) gradient of momentum which is in thermal wind balance with the horizontal
density variation (Pedlosky 1987). Factors such as background rotation and vertical
stratification also affect the dynamics of these vortices. In addition, curvature effects
have also been shown to have an effect on frontogenesis and the adjustment of fronts
near vortices (Shakespeare 2016). Instabilities in these vortices represent an important
pathway towards small-scale turbulence and mixing (Thomas, Tandon & Mahadevan
2008), thus playing a key role in parameterization of small-scale processes in large-scale
climate models (Fox-Kemper, Ferrari & Hallberg 2008; Bachman et al. 2017). In addition,
their instability characteristics can also help in interpreting field observations (Ruddick
1992; D’ Asaro et al. 2011; Thompson et al. 2016) and large-scale climate model outputs
(Fox-Kemper et al. 2011), which in turn motivate fine-scale process studies (Mahadevan
& Tandon 2006).

Instabilities in geophysical vortices could range from purely inertial, such as the
centrifugal instability in unstratified planar vortices (Kloosterziel & Van Heijst 1991), to
purely convective, resulting from statically unstable vertical stratification (Chandrasekhar
1961). The intermediate regimes, where both inertial and buoyancy effects are present,
can be conducive to what is called the symmetric instability (Hoskins 1974; Xui & Clark
1985; Thomas et al. 2013). Purely centrifugal instabilities are generally suppressed by
Coriolis forces (Godeferd, Cambon & Leblanc 2001) but could play an important role in
regions with anticyclonic vorticity and near the equator, where Rossby numbers are near
unity (Haine & Marshall 1998). Symmetric instability can result in slantwise convection
along tilted constant angular momentum surfaces when the potential vorticity is negative
in an inviscid, adiabatic environment (Hoskins 1974). Recently, curvature effects on the
symmetric instability have been studied, and their importance in oceanic eddies has been
highlighted (Buckingham, Gula & Carton 2021a,b). In addition, hyperbolic instabilities
could also manifest in regions of high strain near the edges of vortices with hyperbolic
stagnation points (Leblanc 1997). Apart from the aforementioned local instabilities, global
instabilities such as the Kelvin—Helmholtz (Peltier & Caulfield 2003) and baroclinic
instabilities (Pierrehumbert & Swanson 1995) are also a consideration in stratified eddies.

928 Al4-2


https://doi.org/10.1017/jfm.2021.793

https://doi.org/10.1017/jfm.2021.793 Published online by Cambridge University Press

Diffusive effects in a baroclinic axisymmetric vortex

Vortices in thermal wind balance can also become unstable due to unequal mass
and momentum diffusivities. McIntyre (1970), using normal mode theory in a locally
Cartesian region of an eddy in thermal wind balance, showed that a Prandtl number
away from unity modifies the symmetric instability criterion, and also introduces a local
oscillatory instability. Laboratory experiments have demonstrated the occurrence of such
an oscillatory instability, and resulting density layers (Baker 1971; Meunier et al. 2014).
Studies regarding instabilities in long-lived mesoscale oceanic eddies have considered this
diffusive instability mechanism to explain intrusions found in density profiles (Ruddick
1992; Kuzmina & Zhurbas 2000). Experimental studies have also observed the formation
of density layers at a Prandtl number less than unity, which was further suggested to
explain the layers on the scale of 1 m seen in certain parts of the ocean. (Calman 1977,
Weber 1980). An energetics-based approach to derive the results of McIntyre (1970) in a
parallel shear flow was presented by Kloosterziel & Carnevale (2007). Here, we use the
local stability approach (Lifschitz & Hameiri 1991) with small diffusivities in momentum
and density to investigate short-wavelength instabilities in stratified eddies in thermal wind
balance. Previous studies using the local stability approach have captured the effects of
differential diffusion (in mass and momentum) on local instabilities in radially stratified
circular Couette flow (Kirillov & Mutabazi 2017) and vertically stratified planar vortices
(Singh & Mathur 2019).

In this study, we explore local instabilities in horizontally and vertically stratified
vortices in thermal wind balance, including the effects of differential diffusion in mass
and momentum. The local stability approach is first demonstrated to be efficient in
capturing symmetric and double-diffusive instabilities. Apart from being based on a
different approach compared with Mclntyre (1970), our study is also wider in scope
compared with that of Mclntyre (1970) in three significant aspects: (i) exploration in the
centrifugally unstable regime, (ii) viscous instability characteristics away from the neutral
stability boundaries in both the centrifugally stable and unstable regimes and (iii) curvature
effects. The local stability framework and the base flow configuration are described in § 2
followed by our results on the instability characteristics in § 3. The importance of our
results, particularly the curvature effects, are discussed in three different contexts in § 4,
following which the conclusions are presented in § 5.

2. Theory

The governing equations of motion for an incompressible flow with background rotation
$2e, (e, is the unit vector along the positive z-axis), within the Boussinesq approximation,
are

V.-u=0, 2.1)
D Vv
tad +282e, X u= P gﬁeZ + vV, 2.2)
Dt o 00
Dp 5
— =«kV-p, 2.3
D — VP (2.3)

where ¢ is time, p, u and p the density, velocity and pressure, respectively, and gravity g =
—ge; with g > 0; po, v and « are the reference density, kinematic viscosity and diffusion
coefficient associated with density, respectively.
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(b)

Figure 1. (a) A schematic of the axisymmetric base flow (up = V(r, z)e,) considered in this study. The
colour indicates density, and the black curves denote streamlines. The radial spacing between neighbouring
streamlines is inversely proportional to the magnitude of the local azimuthal velocity. The flow is stably
stratified along z. The radial density gradient and the vertical (along z) gradient of the azimuthal velocity
are in thermal wind balance (2.5). (b) Schematic showing the perturbation wave vector k and the angle 6 it
makes with the z-axis.

2.1. Base flow

We consider a base flow field that describes an axisymmetric vortex in stratified
surroundings. Specifically, the velocity field is given by

up = V(r, z)ea,, (24)

where (7, w, z) represent the cylindrical polar coordinates, and the subscript B denotes base
flow quantities. The corresponding density field is given by pp(r, z), with its vertical and
radial gradients characterized by the Brunt Viisilid frequency N, = /—(0p5/92)(g/p0)
(NZ2 > 0 throughout the current study), and N, = /—(9pp/dr)(g/po). Finally, the
pressure associated with the base flow is denoted as pp(r, 7). The base flow field satisfies
the mass conservation (2.1), the azimuthal component of the inviscid momentum equation
((2.2) with v = 0) and the diffusion-free incompressibility condition ((2.3) with « = 0).
Furthermore, requiring the base flow to satisfy the radial component of (2.2) gives

vyav g9
2(2+= _ 80P _ N2, (2.5)
8z po Or

where it has been assumed that the vertical component of (2.2) is described by hydrostatic
balance. In other words, (2.5) represents a modified thermal wind relation (Shakespeare
2016), where the centripetal, Coriolis and pressure gradient forces are in balance. In the
limit of V/r — 0, (2.5) recovers the well-known geostrophic balance (Vallis 2017). In
this study, however, the curvature effects are retained in the relation between the vertical
gradient of momentum and the horizontal stratification. A schematic of the base flow in
thermal wind balance is shown in figure 1.

2.2. Local stability equations

To study the stability properties of the base flow in §2.1, we superimpose small
perturbations to write the net flow field as

u=up+u, p=pp+p. p=ps+r, (2.6a—c)
928 Al4-4
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where the prime denotes perturbation quantities. The linearized, viscous governing
equations for the perturbation flow field are

V.d =0, 2.7)
d /
d—l; Vg -u +22e, x i +Vp = vV2i — Ve, 2.8)
b’
S vapi = 1V2l, 2.9)
(0]

where b’ = gp’/po, and the base flow has been assumed to satisfy the inviscid governing
equations. In other words, (2.7)—(2.9) represent the governing equations for small, viscous
perturbations superimposed on the inviscid base flow described in § 2.1. Here, d/df =
d/0t + up - V is the material time derivative in the base flow up.

In accordance with the local stability approach (Lifschitz & Hameiri 1991), we assume
short-wavelength perturbations of the form

u = exp(ig (x, t)/8)[a(x, t) + Sas(x, 1) + ...], (2.10)
P =exp(ig(x,1)/8)[n(x, 1) + dng(x, 1) +...], (2.11)
b = exp(ig(x, 1)/8)[b(x, 1) + Sbs(x, 1) + ...], (2.12)

where § is a small ‘short-wavelength’ parameter, and ¢ (x, 7) is a real scalar field that
contains the wave-like behaviour in the perturbations. The perturbation wave vector k’
is given by kK’ = V¢ /8 = k/3, thus rendering the perturbation to be of short wavelength
since § is a small parameter; (a, 7, b) are the complex leading-order amplitudes of the
velocity, pressure and buoyancy perturbations, respectively. Similarly, (as, s, bs) are the
complex perturbation amplitudes at O(§).

Assuming the two diffusivities v and « to be of O(8?), and substituting the perturbation
forms in (2.10)—(2.12) in the governing equations (2.7)—(2.9), results at 0(8°) in the local
stability equations

dk

= vahk 2.13)
da k
i —Vup.-a—2e, x a— be, + W[Z(Vug ca) - k+2(8e, x a) - k+ bk,]
—cvlkl’a, (2.14)
db
& o _a-Vop L — |k, (2.15)
dr £0

In (2.13)-(2.15), d/dt = 9/0t + up - V is the material time derivative in the base flow up,
k, the z-component of k, and (c,, ¢,) = (v, k)/8%. The assumptions of v and « being of
O(8?) are motivated by the second-order spatial gradients in the viscous terms, which then
contribute at 0(8°) in (2.8)—(2.9). Previous studies on local instabilities have incorporated
viscous effects in this manner. For example, (2.13)—(2.14) without background rotation
and buoyancy were considered by Landman & Saffman (1987), who showed that viscous
terms suppress the growth rates associated with elliptic instability in an unstratified, planar
elliptical vortex. In addition to elucidating viscous damping of inviscid instabilities, the
0(8?) scaling of momentum and mass diffusivities have helped the local approach unearth
double-diffusive instabilities in stratified vortices as well (Kirillov & Mutabazi 2017; Singh

928 Al4-5


https://doi.org/10.1017/jfm.2021.793

https://doi.org/10.1017/jfm.2021.793 Published online by Cambridge University Press

S. Singh and M. Mathur

& Mathur 2019). Finally, the O(6?) scaling for temperature and salinity diffusivities also
leads to the reduction of local stability equations to the classical salt fingering instability
equation for a quiescent base flow (Appendix A).

In the absence of diffusive effects (¢, = ¢, = 0), (2.13)—(2.15) coincide with the
equations considered by Miyazaki (1993) for a stably stratified elliptical vortex with no
in-plane stratification; further, if background rotation is also absent, (2.13)—(2.15) reduce
to those considered by Miyazaki & Fukumoto (1992). Finally, if background rotation
and buoyancy are both absent, (2.13)—(2.14) coincide with those derived by Lifschitz &
Hameiri (1991). The equations governing the evolution of a and b are solved on closed
fluid particle trajectories in the base flow for periodic wave vectors, to subsequently obtain
corresponding growth rates. We proceed to obtain the conditions under which perturbation
wave vectors are periodic upon integrating the wave vector evolution equation (2.13) over a
closed trajectory in the base flow given by (2.4). For a wave vector k = ke, + kye, + ke,
(2.13) can be written in component form as

dk, V. oV

— =k,— — —k,, 2.16
dr @y ar ¢ ( )
dk,,
—“ —0, 2.17
” (2.17)
dk, A%
— = ——k,. 2.18
dr az * (2.18)

Equation (2.17) indicates that k, is a constant along the trajectory, and a non-zero value for
the constant would lead to a monotonically changing k, and k,. Therefore, for each of &,
k., and k; to be periodic upon integration over one closed trajectory, k,, has to necessarily
be zero. With k, = 0, k, and k, become constant along the trajectory. It is noteworthy
that k,, = O represents zero azimuthal wavenumber, i.e. axisymmetric perturbations in the
normal mode approach, although the perturbation amplitudes are still allowed to evolve
along the circular base flow trajectory in the local stability approach. In summary, any
wave vector given by k = ke, + k;e, represents a periodic wave vector; the amplitude
evolution equations (2.14)—(2.15) are solved for such periodic wave vectors. The periodicity
of the wave vector enables the use of Floquet theory to obtain growth rates, and ensures
uniqueness of the perturbation wave vector at a given spatial location. The latter aspect
is potentially relevant for establishing a connection between local and global stability
approaches.

For the base flow in (2.4), considering periodic wave vectors, (2.14)—(2.15) can be
written in cylindrical polar coordinates as

d(alb)
dr

where (al|b) = [a;, a,, a, b and A is a 4 x 4 matrix. Substituting a = aye, + ayey, +
aze; and a periodic wave vector k = ke, + k;e; in (2.14)—(2.15), we obtain

= A(alb), (2.19)

TS
-l @l o 29) o = ’ . @20
| S (Yee) awe - (1 _ IIIjZ)
- v 0 N? —clkl?
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where de,/dt = e,V /r and de,,/dt = —e,V /r have been used to account for circular fluid
particle trajectories with an angular speed V/r. Owing to the constancy of r and V on a
streamline, and &, k;, |k| also being invariant along a streamline for periodic wave vectors,
the coefficient matrix 4 in (2.20) is time independent.

3. Results
The eigenvalues (1) of A (2.20) represent the growth rates, and are governed by

k? kk
(colkl® + ) {<cv|k|2 + D (e lk? + ) + (colk? 4+ 2) [Nf (1 - —Z) ~N? }

k2 ) k2
ekl + | 22 (L4 o) bk
‘ dz \ r k|

2 v v 282 v 2 1 kf =0 3.1
* (5*7* )(7* )( ‘w)}}—' G-

The growth rate o is given by the maximum real part of A, which we analyse in detail in the
rest of this paper. Instabilities with zero or non-zero imaginary part in the corresponding
eigenvalues are henceforth referred to as monotonic or oscillatory, respectively. In the
presence of diffusion terms (¢, > 0, ¢, > 0), one of the eigenvalues of 4 is —c, |k|2, while
the other three eigenvalues of 4 can be given by a cubic equation. Dividing by | /2|3/2,
(3.1) is non-dimensionalized to give the governing equation for the other three eigenvalues
as

— Sc

- 1 ~ ~
(/H—Z‘)3+Z‘( )(/1+E)2+2®(c0529+tan@tanFsin29

. ~ . _[(1—=Sc A 2 tan " .
—tan I"sin20)(A +¢) + ¢ S 20 | cos 0 — > sin20 | =0, (3.2)
c

where
Vv v v
@:2(_+9)(_+_+29), 63)
r ar r
where 1= 1//]®/2], ¢ = @/|®| and Sc = v/k = ¢, /¢, is the Schmidt number. As
shown in §3.2, & = —1 corresponds to centrifugal instability in the inviscid limit. With

this choice of non-dimensionalization, the important limit of weak (but finite) viscous
effects is easily recovered without the divergence of non-dimensionalized growth rate.
The non-dimensional parameters that appear in (3.2) are

NZ N2

tan]" = -, tan® = —=, (3.4a,b)
@ N2
k k|?

6 —cos—! Ko s Ok (3.5a,b)

k|’ Vien

where (I, ®) in (3.4a,b) describe the base flow, and (0, ¢) in (3.5a,b) describe the
perturbation wave vector. @, as defined in (3.3), is the Rayleigh discriminant, i.e. twice
the product between the total angular velocity and the absolute vertical vorticity in the
base flow. Specifically, I" is a measure of the vertical velocity gradient (recall that
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er =2(2 + V/r)oV/dz due to thermal wind balance) with respect to the strength of
centrifugal instability in the inviscid, unstratified limit (see § 3.2), and ® is the inclination
of the isopycnals with respect to the z-axis in the base flow. In (3.5a,b), 6 is the inclination
of the perturbation wave vector with respect to the z-axis, and ¢ is the inverse of a
perturbation Reynolds number, which quantifies the viscous effects in the perturbation
with respect to the inertia in the base flow. It is worth noting that the non-dimensional
parameters in (3.4a,b)—(3.5a,b) are defined such that the inviscid limit can be recovered
without any singularities. In addition to the four parameters in (3.4a,b)—(3.5a,b), Sc is also
a parameter that appears in (3.2), thus influencing the instability characteristics. As shown
in § 3.4, for given values of (tan I', tan ®, 0, ¢, Sc), monotonic and oscillatory instabilities
cannot occur simultaneously.

3.1. Comparison with McIntyre (1970)

Mclntyre (1970) considered a base flow similar to the current study, described by a purely
azimuthal velocity field Vy,(r, 7)e,, and a potential temperature field Ty; (7, z), under the
influence of background rotation §2e;, gravity —ge, and in thermal wind balance. Defining
Cy(r,z) =282r + Vy(r, z), McIntyre (1970) identified the following non-dimensional
base flow parameters:

C T
tan [y = CM’Z, tan @y = M’Z, (3.6a,b)

M,r TM,r
with the Schmidt number being given by Sc = v/k. In (3.6a,b), the subscripts z and r
denote differentiation with respect to z and r, respectively.

Operating in the regime sz =gaTy ;> 0 (statically stable, with o being the
thermal expansion coefficient), 2§2Cys , > 0 (centrifugally stable in locally Cartesian
coordinates), McIntyre (1970) considered a locally Cartesian (curvature effects ignored)
unbounded normal mode theory (Wentzel-Kramers—Brillouin—Jeffreys, i.e. WKBIJ-type
approximation where spatial gradients of the base flow are assumed constant). Considering
perturbations of the form expliky(rsinf + zcos6) + wyt], with 6 being the angle
between the wave vector and the z-axis, the author derived the governing equation for
the non-dimensional growth rate as

(oM + ki) @y + Sc ) + (G + Doy + (G + Sc™ Dk, = 0, (3.7)
where Re(wys) is the growth rate, ky; is the magnitude of the wave vector, G =
s(tan Oy sin @ — sin 6 cos 0), J = s(cot Iy cos>6 — sin6 cosH) and s = sgn(tan Iyy) =
sgn(tan ®yy). The criteria for monotonic and oscillatory instabilities were then shown
to be tan Oy /tan [ < (1 + Sc)2/4Sc and tan ®y;/tan Iy < (3Sc + 1)2/8Sc(Sc + 1),
respectively. These criteria can be recovered as the zero curvature limit of our results in
§3.3.3.

To explore the relation between our local stability framework, and Mclntyre’s theory,
we re-write (3.2) in the limit of zero curvature and non-dimensionalization using the
length and time scales of McIntyre (1970). Specifically, defining L = (v?/[N?[)!/* and
T = (|Nr2|)*1/ 2 as the length and time scales, (3.2) can be written as

2

~2 ~2
~ k N k A
(xl + 5—2> </l + Scla—z> + s[tan ®y sin® 6 + cot Ty cos?f — 2sinf cos 614

~2
k
+ s[tan Oy, sin 6 — sin® cos O + S~ (cot Iy cos? 6 — sin 6 cos 0)]8_2 =0, (3.8
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where 1 = AT, k=kLandv = c,82 is the kinematic viscosity as defined in § 2.2; b =1
has been assumed. We note that & = 1 is equivalent to 2£2Cys , > 0, i.e. the study of
Mclntyre (1970) is restricted to the first and third quadrants of the (tan I, tan ®) plane.
Equation (3.8) is the same as (3.7), with ky; = IA</8. Thus, we have shown that, in the
limit of zero curvature, the local stability equation for the growth rate concurs with the
locally Cartesian unbounded normal mode theory. This connection between local stability
and normal mode approaches builds on previous such connections demonstrated for other
flows: inviscid, unstratified axisymmetric vortices with an axial flow (Le Duc & Leblanc
1999; Mathur et al. 2014), viscous unstratified elliptical vortex (Landman & Saffman
1987) and viscous, in-plane stratified axisymmetric flow with an arbitrary Prandtl number
(Kirillov & Mutabazi 2017).

Apart from our study being based on a different approach compared with Mclntyre
(1970), our results are also wider in scope compared with the results of Mclntyre (1970)
in three significant aspects: (i) exploration in the centrifugally unstable regime (second
and fourth quadrants of (tan I, tan ®) plane), (ii) viscous instability characteristics away
from the neutral stability boundaries in both the centrifugally stable and unstable regimes
and (iii) curvature effects. With respect to point (ii), we note that the length scale L used
by Mclntyre (1970) for non-dimensionalization makes it difficult to explore the regime
of small but finite viscous effects. As discussed in § 3.3, significant growth rates of both
monotonic and oscillatory instabilities can occur in the weakly viscous regime, where even
the most unstable perturbations can lie. The curvature effects are discussed more in detail
in §4.1.

3.2. Inviscid limit
Substituting the inviscid limit of ¢, = ¢, = 01in (3.1), the non-trivial roots are obtained as

1 1 N2 3V [V
2= —E(Nf + @)+ 5(NZ2 — ®)cos26 + (7 + (— + .Q)) sin20,  (3.9)
, : e

where 6 € [0, 1] is the angle made by the wave vector k with the z-axis, such that k. /|k| =
cos 6 and k,/|k| = sin . Maximizing A% with respect to 6, and requiring it to be positive
results in the following inviscid instability criterion:

1% A%
N?® <2N? (— + 9) (= N¥. (3.10)
r Z

As aresult, ® < 0 (in other words, b = —1) guarantees instability (recall that sz > 01is
assumed). The maximum growth rate occurs at

T .
i stan~! (N2 — @)/2N2,  ifN? >0

g* = (3.11)
3 2 oA
T — jtan (NZ — (p)/ZNr, 1fNr < O,

where the range of tan—! is taken to be [—T /2, /2]. We recall from (2.5) that thermal
wind balance requires er =2(V/r+ §2)(0V/09z). The ranges of unstable 6 are given by

(61,61, if N2, @ >0, [0,0,]U[6+m, 7], if N> >0, <0, (3.12)

[0, 4+ 7,601 + 7], if N> <0,® >0, [0,6,]U[0; + 7, 7], if N2, & <0, (3.13)
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where

N? N2
61, = tan”! m 15 [1--2 , (3.14)
Z

Ny
where we have again taken the range of tan~! as [—1/2, 7t/2].

The results in (3.10) and (3.11), in the limit of no curvature effects, i.e. V/r = 0, are
in agreement with the previously known two-dimensional inviscid symmetric instability
criteria derived based on the normal mode approach (Ooyama 1966; Hoskins 1974). To the
best of our knowledge, recovery of the symmetric instability criteria in the local stability
framework has not been pointed out before. Furthermore, (3.10)—(3.14) provide corrections
due to finite curvature effects, which are difficult to capture in the normal mode approach
(Buckingham et al. 2021a) although they are negligible only in the limit of |V /r| < |£2].
Equation (3.10), which is in agreement with the symmetric instability criterion based
on Lagrangian parcel arguments (Solberg 1936; Emanuel 1979) and the recent studies
of Buckingham et al. (2021a,b), also establishes the local stability framework as an
alternative approach to understand curvature effects. Finally, an insightful interpretation of
(3.10) is that the square of the absolute circulation (27t (S2 r* + Vr)) decreases with radius
when moving along iso-density surfaces (Emanuel 1979); this form of the symmetric
instability criterion has been previously used to interpret instabilities in pancake vortices
(Negretti & Billant 2013; Yim & Billant 2016; Yim, Billant & Ménesguen 2016).

In the limit of no radial stratification, i.e. N, = 0, the instability criterion in (3.10)
reduces to @ < 0, with the maximum growth rate being given by 4* = 4/—® occurring at
6* = 0. This no-radial-stratification inviscid limit was highlighted using the local stability
approach by Singh & Mathur (2019), and is consistent with the large axial wavenumber
limit of Billant & Gallaire (2005). In this unstable regime of @ < 0, the range of unstable 0
reduces from [0, 7t/2] for N, = 0 to [0, tan~! \/ —@/NZZ] for a finite NV,. Finally, in the limit
of a homogeneous fluid, i.e. N, = N; = 0, (3.9) gives the classical inviscid centrifugal
instability criterion (Kloosterziel & Van Heijst 1991). This limit of centrifugal instability
in unstratified vortices with background rotation has been considered in previous local
stability studies too (Sipp & Jacquin 2000; Nagarathinam, Sameen & Mathur 2015).

In terms of the non-dimensional base flow parameters in (3.4a,b), the inviscid instability
criterion in (3.10) can be written as

tan ®

1, 3.15
tan I’ = ( )

with the most unstable 6 given by

Z Lan~!{tan©/2 — 1/Qtan )},  if N2 > 0
6* — (3.16)

3
T“ —ltan ' {tan©/2 — 1/Qtan )}, if N? < 0.

It is worth highlighting that

tan® ®NZ NI (3V/dr+V/r+28)

tan" N4~ (3V/dz2)2 22+ VD (3.17)

represents a modified gradient Richardson number. The inviscid instability regimes on the
(tan I, tan @) plane are shown in figure 2. In the first and third quadrants, tan ® = tan I
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Figure 2. Inviscidly stable (white background) and unstable (grey background) regions on the (tan I, tan ®)
plane. The origin O is at (tan I, tan ®) = (0, 0).

separates the stable and unstable regions, whereas the entire second and fourth quadrants
(® < 0= @ = —1 in these quadrants) are unstable. It is worth recalling that all inviscid
instabilities are monotonic in nature (zero imaginary part for the growth rate).

3.3. Viscous regime

In the limit of S¢c = 1, the solutions of (3.2) are 1= —¢, :i:[—qs{(l +tan®tan ") + (1 —
tan @ tan I") cos 260 — 2 tan I" sin 20}]'/? — . The corresponding dimensional values of A
are 1 = —cy|k|?, 1 = A; — ¢y |k|?, where A; are the inviscid eigenvalues given by (3.9).
In other words, for Sc = 1, all the eigenvalues from the inviscid limit get reduced by
cy|k|?, thus resulting in the inviscid growth rates being reduced by viscous effects, and
the occurrence of two stable eigenvalues (= —c, k). As a consequence, the eigenvalues
for Sc =1 and |k|] =0 coincide with the inviscid eigenvalues, thus establishing an
equivalence between inviscid instabilities and instabilities at Sc = 1.

For Sc #1, three non-trivial eigenvalues governed by (3.2) occur. While two of
them could possibly be a continuous extension of the two non-trivial eigenvalues from
the inviscid limit, the counterpart of the third eigenvalue was trivial and stable in
the inviscid limit. For Sc #1, we proceed to plot the non-dimensionalized growth
rate (6 = o/+/|®/2]) as a function of the perturbation parameters (3.5a,b) for given
base flow parameters (3.4a,b). As highlighted earlier in this section, our choice of
non-dimensionalization allows us to easily explore the important regime of weak but finite
viscous effects.

Figure 3 shows the growth rate (in log scale) plotted as a function of # and ¢ for
tan I" = 1, and three different values of tan ® (1.2, 1 and 0.4), which progressively takes
the system from stable to neutrally stable to unstable in the inviscid limit (see first quadrant
of figure 2). We recall from (3.15) thattan &/ tan I" < 1 is the inviscid instability criterion,
which also holds for S¢ = 1. It is also worth noting that for Sc = 1, the instability is always
monotonic in nature. In figure 3, panels (a,b,c) and (d,e,f) correspond to Sc¢c = 0.1 and 5,
respectively.

For tan ® = 1.2 (figure 3a), i.e. the inviscidly stable regime, we observe unstable growth
rates at Sc = 0.1 though no instabilities occur for Sc = 1. The monotonic and oscillatory
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Figure 3. Growth rate (6, on a log scale) as a function of 6 and ¢ for Sc = 0.1 (a—) and Sc =5 (d—f),
with tan® = 1.2, 1 and 0.4 in (a,d), (b,e) and (c,f), respectively. All the plots correspond to tan " = 1,
thus belonging to the first quadrant of figure 2. The green and brown regions correspond to zero (monotonic
instability) and non-zero (oscillatory instability) imaginary part for the growth rate. In each plot, the unfilled
circle corresponds to the location of maximum growth rate on the entire (0, ¢) plane, with the red colour
indicating a location away from ¢ = 0 axis. No instabilities occur for 6 > 7/2 in all the plots in this figure.
The values of tan ®@/ tan I" for (a,b.d.e) correspond to the inviscidly stable regime, and hence the growth rate
is zero on the ¢ = 0 axis.

(non-zero imaginary part for the growth rate) instability regions are shown in green
and brown, respectively. The monotonic instability dominates the oscillatory instability
on the (6,¢) plane, with the overall maximum growth rate occurring at (8%, c*) =
(1.05 rad, 0.14) within the monotonic instability region. The monotonic instability is
completely suppressed at a threshold value of ¢ = 0.54. For the oscillatory instability,
the maximum growth rate occurs at (6%, ¢*) = (0.49 rad, 0.035), and it is completely
suppressed beyond ¢ = 0.09. In terms of the range of €, monotonic and oscillatory
instabilities occur within [0.8,1.45] rad and [0.19,0.67] rad, respectively. The width of
these unstable 6 ranges are used later (§ 3.3.2) to characterize the instability region on
the (@, ¢) plane.

For tan® =1 (figure 3b), i.e. on the inviscid neutral stability boundary, monotonic
and oscillatory instabilities are again observed at Sc = 0.1, with an overall increase in
the growth rates compared with tan ® = 1.2. The monotonic and oscillatory instability
regions are also slightly larger for tan ® = 1 than for tan ® = 1.2. For tan ® = 0.4 and
Sc = 0.1 (figure 3c¢), i.e. the inviscidly unstable regime, the regions of instability and the
associated growth rates are noticeably larger. Furthermore, the maximum growth rate on
the entire (@, ¢) plane now occurs at (0%, ¢*) = (0.93 rad, 0), still within the monotonic
instability region. For reference, the monotonic instability for (tan I', tan ®) = (1, 0.4) at
Sc = 1 is also strongest at the same (6%, ¢*) location (see (3.16)).

Figure 3(d—f) corresponds to the same parameters as panels (a,b,c), except for Sc, which
is now set at 5. In the inviscidly stable regime of tan ® = 1.2 (figure 3d), monotonic
instability is observed while oscillatory instability is absent. The overall growth rates
are smaller in magnitude than for Sc = 0.1, and the maximum growth rate occurs at
(6%, ¢*) = (0.5 rad, 0.35). With an increase in tan ® to unity (figure 3¢), the growth
rate magnitudes increase, and oscillatory instability appears. In contrast to Sc = 0.1,
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Figure 4. Growth rate (6, on a log scale) as a function of € and ¢ for (a) Sc = 0.01, (b) Sc =1, (¢) Sc =5,
with (tan I, tan @) = (1, —1), and thus belonging to the fourth quadrant in figure 2. The green and brown
regions correspond to zero (monotonic instability) and non-zero (oscillatory instability) imaginary part for the
growth rate. In each plot, the unfilled circle corresponds to the location of maximum growth rate on the entire
(@, ¢) plane. In (¢), the growth rate corresponding to oscillatory instability vanishes on the ¢ = 0 axis.

oscillatory instability occurs at larger 6 than that for the monotonic instability at Sc¢ = 5.
Finally, in the inviscidly unstable regime of tan ® = 0.4 (figure 3f), oscillatory instability
again appears alongside the monotonic instability, the region of instability on the (6, ¢)
plane is substantially larger than for smaller tan @, and the maximum growth rate occurs
at the same (0™, ¢*) = (0.93 rad, 0) as that for the monotonic instability at Sc = 1.

In summary of figure 3, for Sc # 1, monotonic instability appears in the inviscidly
stable regime too, while a new oscillatory instability appears in inviscidly stable as well
as unstable regimes. The maximum growth rate on the (6, ¢) plane, however, always lies
in the monotonic instability region, irrespective of Sc, tan I and tan ®. We show later
in §§3.3.3 and 3.4 that the monotonic instability observed for Sc #1 is a continuous
extension of the monotonic symmetric instability that occurs at both Sc =1 and the
inviscid limit. We proceed to investigate (in figure 4) the instabilities for Sc #1 in the
fourth quadrant of figure 2, the entirety of which is inviscidly unstable due to @ < 0.

Figure 4(a,b) shows that only monotonic instability occurs at Sc = 0.1 and Sc =1
for (tan I, tan ®) = (1, —1). The range of unstable 6 is noticeably larger for Sc = 0.1
compared with Sc = 1. At Sc = 5 (figure 4c), oscillatory instability appears along with
the monotonic instability. Finally, we note that the most unstable (0, ¢) is (2.75 rad, 0) ,
which lies within the monotonic instability region, for all three Sc in figure 4. Furthermore,
we find that the largest growth rate is always associated with the monotonic instability for
every unstable (tan I, tan &, Sc). Towards obtaining neutral stability boundaries in terms
of the base flow parameters and Sc, we proceed to plot the most unstable growth rate in
the monotonic and oscillatory instability regions of plots such as in figures 3 and 4, on the
(tan I', tan ®) plane.

3.3.1. Dominant instability characteristics

The maximum growth rate on the (0, ¢) plane, and the corresponding location at which
it occurs, are plotted as a function of tan I and tan6 for Sc = 0.1 and 5 in the panels
(a,b,c) and (g,h,i) of figure 5, respectively. We recall that the maximum growth rate always
corresponds to the monotonic instability. For reference, the equivalent plots for Sc = 1
are shown in panels (d,e,f), with the black lines in (a,b,d, g,h,i) representing the boundary
separating stable and unstable regions for Sc = 1. The panels (a,d,g), (b,e,h) and (c,f;i)
show the distributions of maximum growth rate 6”"** (on a log scale), and the most
unstable (0, ¢) = (6%, ¢*), respectively.
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Figure 5. Maximum growth rate (log 6""“) on the (6, ¢) plane, plotted as a function of tan I" and tan & for (a)
Sc = 0.1, (d) Sc = 1 and (g) Sc = 5. Corresponding locations on the (6, ¢) plane where the maximum growth
rate occurs are plotted as 0* (b,e,h) and ¢* (c, fi). The black line in all the plots represents the neutral stability
(6" = 0) boundary for Sc¢ = 1.

For S¢ = 0.1, monotonic instability is observed in the inviscidly stable region of the first
quadrant of the (tan I', tan &) plane, with the neutral stability boundary being steeper than
that for Sc = 1 (figure 5a). In contrast to Sc¢ = 1, some part of the monotonic instability
region for Sc = 0.1 has the maximum growth rate occurring at finite viscous effects,
i.e. ¢® > 0 (figure 5¢). Interestingly, ¢* > 0 occurs for the whole of the unstable region
that was inviscidly stable, and some part of the inviscidly unstable region as well. The
¢* = 0 boundary is coincident with a distinct * contour (figure 5b), on which the value
of 6* is equal to the inviscid value. The value of 6* seems to abruptly increase as we
enter the ¢* > 0 region. In the third quadrant of the (tan I", tan ®) plane, we observe
similar characteristics as in the first quadrant, but with the 6* variations occurring in
the neighbourhood of 0* = 7 instead of 6* = 0. Finally, the characteristics of dominant
instability in the second and fourth quadrants of the (tan I, tan &) plane for Sc = 0.1 are
similar to those for Sc = 1.

For Sc = 5, some part of the inviscidly stable regions in the first and third quadrants of
the (tan I", tan @) plane becomes unstable (figure 5g), as observed for Sc = 0.1. In contrast
to Sc = 0.1, however, ¢* > 0 seems to occur predominantly in the inviscidly stable region
for Sc¢ = 5. Also, in the first quadrant of the (tan @, tan I") plane for S¢c = 5, 6* decreases
as we move into the ¢* > 0 region. As observed for Sc = 0.1, the dominant instability
characteristics in the second and fourth quadrants seem similar to Sc =1 for Sc = 5.
In summary of figure 5, some parts of inviscidly stable regions become monotonically
unstable for Sc # 1, with the extent of instability depending on the value of Sc. Sc¢ #1
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Figure 6. Maximum growth rate (log 5"**) in the oscillatory instability region on the (6, ¢) plane, plotted as a
function of tan I" and tan ® for (a) Sc = 0.1 and (d) Sc = 5. Corresponding locations on the (0, ¢) plane where
the maximum oscillatory instability growth rate occurs are plotted as 6 (b,e) and & (c, f). The solid black line
in all the plots represents the 6" = 0 boundary for Sc = 1. The black dashed line in all the plots indicates
the neutral stability boundary (6" = 0, see figure 6) for the respective Sc.

also introduces the occurrence of the maximum growth rate at finite viscous effects, i.e.
¢* > 0, with such regions showing 6* distributions that are different from the inviscid
limit, i.e. Sc = 1.

Figure 6 shows the dominant instability characteristics from within the oscillatory
instability regions (brown regions in figures 3 and 4), plotted on the (tan /", tan ®)
plane for Sc = 0.1 (a—c) and 5 (d—f). We recall that oscillatory instability (non-zero
imaginary part for the growth rate) does not occur for Sc = 1, and monotonic instability
dominates oscillatory instability for each (tan I', tan &, Sc). Figure 6(a) shows that the
entire inviscidly unstable region in the first quadrant is susceptible to oscillatory instability
for Sc = 0.1, with the corresponding 6 being around m/2 close to the origin, and
approaching zero for large (tan I, tan ®) (figure 6b). Figure 6(c) shows that oscillatory
instability occurs at finite viscous effects (¢} > 0), with rapid variations observed within
the inviscidly unstable region. Some part of the inviscidly stable region is also seen to
be susceptible to oscillatory instability, with a growth rate that is much smaller than that
for monotonic instability. The extent of oscillatory instability is also smaller than that
of monotonic instability, as indicated by the neutral stability boundary (dashed line) in
figure 6(a). The oscillatory instability features in the third quadrant are similar to those
in the first quadrant, with the 6 variations occurring around 7 rather than 0. Finally, the
inviscidly unstable second and fourth quadrants are not affected by oscillatory instability
for Sc = 0.1.

For Sc =35, the inviscidly unstable region in the first quadrant is again entirely
susceptible to the oscillatory instability (figure 6d), with ¢"**, 6 and ¢} all being
relatively large close to the tan ® = 0 axis. In addition, there is also a small portion of the
inviscidly stable region where oscillatory instability is observed, with the corresponding
0% and ¢} being close to zero. Finally, in contrast to Sc = 0.1, the inviscidly unstable
second and fourth quadrants are entirely susceptible to the oscillatory instability for
Sc = 5. The abrupt changes in 6, close to the tan ® = 0 axis in the second and fourth
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Figure 7. Width of the unstable # range in the monotonic instability (a—c) and oscillatory instability (d—f)
regions on the (0, ¢) plane, plotted as a function of tan I" and tan ® for (a,d) Sc = 0.1, (b,e) Sc = 1 and (c,f)
Sc = 5. The solid black line in all the plots represents the neutral stability boundary (6" = 0) for Sc = 1.

quadrants of figure 6(e) are attributed to the switch of the location of maximum oscillatory
instability growth rate from one unstable region to another on the (6, ¢) plane (see brown
regions in figure 4(c) for an example of two disconnected oscillatory instability regions
on the (0, ¢) plane). For each (tan I, tan ®), we proceed to identify the range of unstable
6 on the (0, ¢) plane for each of the monotonic and oscillatory instabilities. The width
of such an unstable range, indicative of the range of perturbation wave vectors that are
unstable, is then plotted as a function of tan /" and tan ® for various Sc, as discussed
in §3.3.2.

3.3.2. Range of unstable perturbations

Figure 7 shows the width of unstable 6 range on the (tan I', tan @) plane for the monotonic
(a—c) and oscillatory (d—f) instabilities. The panels (a,d), (b,e) and (c,f) correspond to
Sc =0.1, 1 and 5, respectively. For Sc = 1 (figure 7b), monotonic instability occurs in a
small range around 6* (previously shown in figure 5¢) in the region close to the neutral
stability boundary (black line) in the first and third quadrants. The unstable 6 width
increases as we move away from the neutral stability boundary towards the tan ® = 0
axis. In the second and fourth quadrants, a significant range of 6 is monotonically unstable
near the tan ® = 0 and tan I" = 0 axes. In regard to oscillatory instability, as expected, the
entire plane of (tan I, tan @) is stable for Sc = 1 (figure 7¢).

In comparison with Sc = 1, the width of unstable 6 range for monotonic instability is
noticeably larger throughout the (tan I, tan @) plane for Sc = 0.1 (figure 7a). A similar
conclusion holds for Sc = 5 too (figure 7c¢), with the extent of increase in the width of
the unstable 6 range being relatively smaller compared with Sc = 0.1. For oscillatory
instability, the width of unstable 6 is, in general, smaller than that for monotonic instability
for both Sc = 0.1 (figure 7d) and 5 (figure 7f). For Sc = 0.1, the width of the unstable 0
range decreases as we move away from the origin (figure 7d). For Sc =5, oscillatory
instability appears in all the four quadrants of the (tan I, tan ®) plane (figure 7f), with
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Figure 8. (a) Neutral stability boundaries on the (Sc, (tan ®/tan I")) plane for the overall instability (blue
dashed line) and the oscillatory instability (red dashed and solid lines). The blue background indicates region
with monotonic instability only, and magenta background indicates regions with monotonic and oscillatory
instabilities. (b) The wave vector orientation 6™ at which the maximum growth rate occurs on the neutral
stability boundaries shown in (a). The cyan dashed and the cyan solid lines indicate the 6 corresponding to
monotonic instability along the neutral stability boundaries (red dashed and red solid lines, respectively) for
the oscillatory instability.

relatively large width for the unstable 6 range occurring in a region slightly shifted away
from the tan ® = 0 axis. The regions close to tan I = 0 in the second and fourth quadrants
correspond to relatively large width for the unstable 0 range of the oscillatory instability,
which is similar to what we observed for the monotonic instability in figure 7(c).

The neutral stability boundaries in figure 5 (6"** = 0) and the ¢"** = 0 boundaries
for the oscillatory instability in figure 6 are all observed to be stralght lines passing
through the origin on the (tan I', tan @) plane, indicating their dependence only on the
ratio tan ®/tan I". As highlighted in § 3.3, tan ®/ tan I represents a modified gradient
Richardson number. We proceed to investigate the variation (with Sc) of the critical value
of tan ®/ tan I" that separates stable and unstable regions.

3.3.3. Neutral stability boundaries

Figure 8(a) shows the regions of monotonic and oscillatory instabilities on the plane
of Sc on the x-axis and tan®/tan I on the y-axis, with the corresponding neutral
stability boundaries shown in blue and red, respectively. The neutral stability boundary
for the monotonic instability (blue dashed line) also represents the overall neutral stability
boundary, thus rendering the region above the blue dashed line stable. The threshold
tan @/ tan I above which the flow is stable increases as Sc goes away from unity. At
Sc = 0.1 or 10, the threshold tan ®/tan I" is around 3.1 times larger than the value at
Sc = 1. The neutral stability boundary for the oscillatory instability (red dashed line) lies
below the overall neutral stability boundary at all Sc # 1. In contrast to Sc < 1. the red
dashed line for Sc¢ > 1 always remains close to (but above) tan ®/tan I" = 1, reaching a
value of 9/8 (see Appendix D) as Sc — oo. The red solid line captures the lower threshold
of tan ®/tan I" below which oscillatory instability does not occur. For all Sc < 1, the
red solid boundary occurs below the red dashed boundary, and there exists no red solid
boundary for Sc > 1, indicating that oscillatory instability occurs for all Sc¢ # 1. For
Sc < 1, oscillatory instability occurs between tan @ /tan I" = 0 and the red dashed line,
whereas the entire region below the red dashed line is susceptible to oscillatory instability
for Sc¢ > 1. In other words, a finite (Sc¢ < 1) or an infinite (Sc¢ > 1) range of tan ®/tan I”
becomes susceptible to oscillatory instability as soon as Sc becomes different from unity.
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In the centrifugally unstable regime in the limit of no radial stratification (& < 0, N? = 0),
oscillatory instability was previously reported only for Sc > 1 (Singh & Mathur 2019),
which is consistent with the tan &/ tan I" — —oo limit in figure 8(a).

In figure 8(b), the blue line shows the variation of 6*, the location of maximum
growth rate, along the overall neutral stability boundary, which is the same as that for
the monotonic instability. For Sc « 1, it is around 1.1 rad, and it decreases towards the
inviscid value (3.11) of mw/4 at Sc = 1, before decreasing further towards 0.03 rad for
Sc > 1. In contrast, along the neutral stability boundary (red dashed line in figure 8a)
for the oscillatory instability, 6, increases from around 0.1 rad for S¢ < 1 towards 0.9 rad
for Sc > 1. On the lower neutral stability boundary (red solid line in figure 8a) for the
oscillatory instability, 6 is around 0.68 rad for Sc < 1. The variation of 6* corresponding
to monotonic instability (cyan dashed and cyan solid lines in figure 8b) along the neutral
stability boundaries for the oscillatory instability (red dashed and red solid lines in
figure 8a) indicate that the monotonic and oscillatory instabilities are separated in & when
they occur simultaneously. While not shown in figure 8, the separation in 6 between
monotonic and oscillatory instabilities has been verified in all the regions where they
occur simultaneously. Finally, with respect to ¢* and ¢}, they are found to be zero along
the neutral stability boundaries for the monotonic (blue dashed line in figure 8a) and
oscillatory (red dashed line in figure 8a) instabilities, respectively. Along the lower neutral
stability boundary for the oscillatory instability (red solid line in figure 8a), however, ¢}, is
finite and varies significantly.

As shown in Appendix D, it is possible to derive closed form expressions for the neutral
stability boundaries on the (Sc, (tan ®/ tan I")) plane. The resulting unstable regions are

tan® (1 + Sc)?
<

3.18
tan I” 4Sc (>-18)
for the monotonic instability, and
tan®  (3Sc+ 1)?
0 < tanr < S(SS(CS++)1), if Sc < 1
an c(Sc
3 2 (3.19)
tan ® S
no B+ D” g

anl”  8Sc(Sc+ 1)

for the oscillatory instability. In the centrifugally stable regime (tan ®/tan I" > 0) with
zero curvature effects, (3.18)—(3.19) coincide with the neutral stability boundaries of
Mclntyre (1970).

3.4. Reduction of parameters

We have thus far presented our results in terms of five different non-dimensional
parameters: two of them describing the base flow (3.4a,b), two more describing
the perturbations (3.5a,b) and Sc. It is, however, possible to choose an alternate
non-dimensionalization of (3.1) to further reduce the number of governing non-
dimensional parameters, albeit at the cost of not separating the base flow and perturbation
characteristics. Specifically, (3.2) can be re-written as

*3 1 - SC *2 % 1 _— SC
A+ o A" Flor+tar =B =Bl + | ——— | [e1 — 1] =0, (3.20)
c Sc
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where 1* = (14 ¢, |k|%)/(cy|k|?), and

® cos? 6 Ng sin% @
NT kD T k) G
AV (2 + V/r)sin26 NZsin20 '
T @k T 2k

In terms of A%, instability occurs if Re(1*) > 1. We also define a non-dimensional
growth rate 0 = o/ (cy|k|?) = max(Re(1*) — 1), where o is the maximum real part of
the eigenvalues A. Unlike the non-dimensionalization used in (3.2), the inviscid limit of
¢y = 0 represents a singularity in (3.20), and hence the weakly viscous limit of v — 0 is
not easily recovered. Additionally, the thermal wind relation in (2.5) requires 81 = 8> = B.

Equation (3.20) shows that instability characteristics are dependent only on three
different parameters, namely oy — 8, a2 — 8 and Sc. As shown in Appendix B, the neutral
stability boundaries for (3.20) are

a; — f 1 14 Sc

— — = if — 22

Lrwm =0 i@ —p) <5 (3.22)

s -+t (14 L) 12(1+ 2+ LY=o, ifs@ —p) = s T3¢
— — — — — | = 1 —

“ @ Sc Sc ' s2 R “ T e

(3.23)

where s = sgn(l — Sc). In the limit of Sc = 1, the neutral stability boundaries are
governed by (3.22) only.

In the unstable neighbourhood ((a; — B)/Sc+ ar — B+ 1/Sc < 0) of the neutral
stability boundary in (3.22), the unstable eigenvalue is real, and represents a continuous
extension of the inviscid symmetric instability that occurs for o1 + a2 —28 +1 < 0.
The other two eigenvalues (stable) are either (i) real, if s(o; — 8) > s/(4Sc(Sc — 1)) or
(i1) complex conjugates, if s(a; — B) < s5/(4Sc(Sc — 1)). In the unstable neighbourhood
Qo —B)+ (2 —B)A +1/Sc) +2(1 +2/Sc+ 1/Sc2) < 0) of the neutral stability
boundary in (3.23), the unstable eigenvalues are complex conjugates, and do not represent
a continuous extension of the inviscid or Sc = 1 instability; the corresponding instability
is an oscillatory instability, based on the non-zero imaginary parts for the unstable
eigenvalues. The third eigenvalue is real and stable. Finally, as shown in Appendix C,
monotonic and oscillatory instabilities cannot simultaneously occur for given values of
a1 — B, a2 — B and Sc. As a consequence, even for given values of (tan I, tan ©®, 6, ¢, Sc),
since o1, op and B are uniquely specified (NZ2 > (0 assumed), monotonic and oscillatory
instabilities cannot occur simultaneously.

Figure 9 shows the neutral stability boundaries on the ((o; — B), (a2 — B)) plane
for Sc = 0.1 (figure 9a) and Sc =5 (figure 9b). For reference, the neutral stability
boundary for Sc =1 (or inviscid instability) is shown in black in figure 9(a,b). For
a given Sc, the neutral stability boundary switches from the monotonic instability
(magenta boundary) to the oscillatory instability (red boundary) at oy — 8 = (1+
Sc)/(1 — Sc). The normalized growth rate associated with the monotonic instability
(o, calculated numerically from (3.20)) increases somewhat rapidly as we move
way from its corresponding neutral stability boundary. In contrast, the normalized
growth rate associated with the oscillatory instability (o,, calculated numerically from
(3.20)) remains relatively small even as we move away from the corresponding neutral
stability boundary. Inviscidly stable regions (to the right of the black boundary)
(1s) can succumb to the monotonic instability if s(a; — B) < —s, or (2s) will
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(b) 3

Figure 9. Neutral stability boundaries (3.22)—(3.23) on the ((a1 — B), (@2 — f)) plane for (a) Sc =0.1,
(b) Sc = 5. The magenta solid lines separate the stable region from the monotonic instability region (growth
rate 0, shown using the green colour map). The red dashed lines separate the stable region from the oscillatory
instability region (growth rate &, shown using the brown colour map). In both the plots, the magenta circle
denotes the location where the neutral stability boundary switches from monotonic to oscillatory instability,
and the black line denotes the neutral stability boundary for Sc¢ = 1. In (a), labels (1s, 2s, 3s) correspond to
inviscidly stable regions and (1u, 2u, 3u) correspond to inviscidly unstable regions.

remain stable if —s < (¢ — B) < s(Sc? +3Sc + 1)/(Sc(1 — Sc)), or (3s) can succumb
to the oscillatory instability if s(e; — ) > s(Sc? +3Sc + 1)/(Sc(1 — Sc)). In the
inviscidly unstable regions, we observe qualitatively three different behaviours: (1lu)
monotonic instability only, (2u#) both monotonic and oscillatory instabilities being
absent and (3u) oscillatory instability only. The stable triangular region (region
2u) is bounded by [a] — B, a0 — B] = [—1, 0], [(Sc? 4+ 3Sc + 1)/(Sc(1 — Sc)), (4Sc +
1)/(Sc(Sc — 1)1, [(A+Sc)/(1 —Sc),2/(Sc(Sc — 1))]. The equation describing the
boundary between regions (1u) and (3u) is derived in Appendix C (see (C5)).

In summary of this section, we identified new parameters («; — 8, ap — 8, Sc) based
on an alternate non-dimensionalization, which allowed us to derive analytical expressions
for various instability characteristics. Specifically, expressions for the neutral stability
boundaries and the interface between monotonic and oscillatory instabilities on the
(a1 — B), (g — B)) plane were derived; in addition, it was also shown that monotonic and
oscillatory instabilities cannot simultaneously occur for the same values of the parameters.
It is, however, noteworthy that the parameters a1, o and 8 are a combination of base flow
and perturbation characteristics. The instability characteristics in terms of physically more
relevant parameters, which also separate the effects of base flow and perturbations, were
earlier presented in §§ 3.2-3.3.

4. Discussion

In this section, we address two different goals, namely (i) to highlight the effects of
curvature, an aspect that is relatively less understood, and (ii) to explore typical oceanic
regimes and comment on the possibility of the instabilities discussed in § 3.

4.1. Effects of curvature

As shown in § 3.3.3, the neutral stability boundaries for the monotonic and oscillatory
instabilities are given by (3.18) and (3.19), respectively. In the absence of curvature effects,
the neutral stability boundaries are obtained by replacing I" and & by Iy and &)y, where
I'yr and ®y; are as defined in (3.6a,b). We recall that the subscript M refers to the variables
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defined in the study of Mclntyre (1970), which did not account for curvature effects (see
§3.1); (I'y7, Op) are related to (17, @) by

tanly =tanI'(1 + R,), tan®y =tan®, (4.1a,b)

where R. = (V/r)/(@V/dr + 2§2) is a non-dimensional parameter that quantifies the
curvature effects. The unstable region (on the (Sc, (tan ®y,/ tan I'y)) plane) corresponding
to monotonic instability (3.18) can now be written in terms of tan Iy, tan &y; and R, as

tan Oy (1 +R.) (1 + Sc)?
< .
tan Iy 4Sc
Correspondingly, the unstable region for oscillatory instability (3.19) can be written as

tan @y (1 +R.)  (3Sc+ 1)2
0 < < ,
tan Iy 8Sc(Sc+ 1)

tan Oy (1 +R;)  (3Sc+ 1)?
anly 8Sc(Sc+ 1)

Setting R, = 0 in (4.2)—(4.3) recovers the limit of zero curvature exactly. For R, —
oo, the unstable regions asymptotically approach tan ®y;/tan I}y < O for monotonic
instability at all Sc and oscillatory instability for Sc > 1; oscillatory instability does
not occur for Sc¢c < 1 at R, = 0o. For R, — —o0, the unstable regions asymptotically
approach tan @,/ tan Iy > 0 for monotonic instability at all Sc and oscillatory instability
for Sc > 1; oscillatory instability again does not occur for Sc <1 at R, = —o0. In
other words, for strongly negative R., ignoring the curvature effects can result in
qualitatively and quantitatively misleading conclusions in terms of which regions on the
(Sc, (tan I'y;/ tan ®yy)) plane are unstable. Such misleading conclusions are a result of
a change in the sign of (1 4+ R.) at R, = —1. To quantitatively visualize the effects of
curvature, we proceed to plot the neutral stability boundaries on the (Sc, (tan ®y;/ tan I'y))
plane for various values of R,.

Figure 10 shows the neutral stability boundaries on the plane of Sc and tan ®y,/ tan 'y,
for different values of R.. While the region below the boundaries is unstable for R, > —1,
the region above the corresponding neutral stability boundary is unstable for R, < —1.
In addition, for all R., there is a neutral stability boundary for oscillatory instability at
tan @)/ tan Iy = 0 for Sc < 1 in figure 10(b). In the absence of curvature effects, i.e.
R. = 0, the black neutral stability boundaries in figure 10(a,b) are exact. For R, #0,
the neutral stability boundaries move away from the black boundaries; however, a theory
that ignores curvature effects (Mclntyre (1970), for example) always predicts the black
boundaries as the neutral stability boundaries. For R. > 0 (red boundaries), the regions
of both monotonic and oscillatory instabilities are smaller than what a theory with no
curvature effects would predict. On the other hand, for —1 < R, < 0 (blue boundaries),
the actual regions of instability are larger than at R, = 0. For a given R, > —1, the distance
between the exact and the curvature-effect-free neutral stability boundaries increases
as Sc¢ moves away from unity. For R, < —1, the regions of instability are above the
corresponding neutral stability boundaries (shown in green for R, = —2), which now lie
in the negative half of the plane. Therefore, as mentioned earlier, a curvature-free theory
would be completely misleading if R, < —1.

4.2)

if Se < 1

(4.3)

if Sc¢ > 1.

4.2. Relevant ocean regimes

In this subsection, we discuss representative ocean regimes to explore the likelihood of
occurrence of the instabilities described in this study. As shown in figure 8(a), the values of
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Figure 10. Neutral stability boundaries on the (Sc, (tan @/ tan I'yr)) plane (see (3.6a,b) for the definitions of
tan @), and tan I')y) for (¢) monotonic instability (4.2), and (b) oscillatory instability (4.3). The green, blue,
black and red colours correspond to R, = —2, —0.5, 0, 1, respectively, where R, is as defined in (4.1a,b).

Sc and tan @/ tan I" determine if an eddy is susceptible to any short-wavelength instability,
be it inviscid or due to differential diffusion between momentum and mass. With respect
to Sc, molecular diffusion gives Sc ~ 7 for temperature in water, and Sc ~ 700 for salinity
in water. In highly turbulent flows, the effective diffusion rates for momentum and scalar
fields are often assumed to be nearly equal, resulting in a turbulent Schmidt number value
near unity (Kays & Crawford 1993; Kays 1994). The turbulent Schmidt number being close
to unity, however, is not necessarily valid in stably stratified turbulent flows, as highlighted
by numerical simulations (Venayagamoorthy & Stretch 2010) and field data (Salehipour
et al. 2016). Specifically, Sc can vary from around 0.7 at small Richardson numbers, to
around 20 at large Richardson numbers (Elliott & Venayagamoorthy 2011). In addition,
the buoyancy Reynolds number also plays a role in determining the value of turbulent Sc
(Salehipour & Peltier 2015).

Based on the definition in (3.3), & can be physically interpreted as the orientation
of isopycnals with respect to the vertical direction. Therefore, its value can range from
being very small at front locations (steep isopycnals) to being very large far from fronts
(horizontal isopycnals). As a consequence, the magnitude of tan ®/tan I" is close to zero
at sharp fronts, and is infinitely large when horizontal stratification is not present, i.e. far
from the fronts. Further, in a stable stratification (NZ2 > (), the sign of tan @/ tan I" would
be the same as the sign of @. Given the possibility of tan ®/tan I" taking any value in
(—o00, 00), it is important to accurately estimate the effective Sc in various settings. As
noted in figure 8(a), the departure of Sc from unity can both increase the range of unstable
tan ®/tan I" and introduce the possibility of oscillatory instability.

It is also worthwhile to discuss the importance of curvature effects in various oceanic
settings. In mesoscale eddies, for example, the current speed and radius are, respectively,
of the order of 1 m s~! and 100 km. These values give estimates for V/r and 3V /dr as
10~3 s~ !, For cyclonic eddies, as the latitude varies from 0 (equator) to 90° (poles), the
curvature parameter in (4.1a,b) varies from 1 to 0.064. Correspondingly, for anticyclonic
eddies, it varies from 1 at the equator to oo at a latitude of around 4°N, and then becomes
strongly negative slightly northward; R, then reaches a value of —1 at around 8°N, before
asymptotically increasing towards —0.074 at 90°N. The latitude at which R, reverses sign
will be larger for stronger current speeds or smaller eddies. As shown in figure 10, R,
can significantly affect the stability criterion, and a curvature-effect-free theory would

therefore be error prone.
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Another feature of importance in sub-mesoscale oceanic eddies is their finite extent in
both the horizontal and vertical directions. Specifically, intra-thermocline eddies tend to be
around 10-20 km and 200-600 m in horizontal and vertical extents, respectively (Nguyen
et al. 2012), and are often modelled as pancake vortices. Depending on the vorticity
distribution, Reynolds number, Froude number, Burger number and Schmidt number, these
pancake vortices can be in different instability regimes, including barotropic and baroclinic
instabilities (Yim et al. 2016; Storer, Poulin & Ménesguen 2018), short-wavelength
instabilities such as symmetric and double-diffusive instabilities (Negretti & Billant 2013;
Yim & Billant 2016). Some of these instabilities are recognized as driving mechanisms
for density layering observed in oceanic eddies (Hua ef al. 2013). Of specific relevance to
our study are the results of Yim & Billant (2016), who performed global stability analysis
to investigate short-wavelength and other instabilities in Gaussian pancake vortices. Yim
& Billant (2016) also presented results for Sc £ 1, to show that oscillatory instability
(MclIntyre 1970) occurs at Sc = 700 but not at Sc = 7. To recall from our results (figure 8),
for Sc > 1, the entire centrifugally unstable regime is conducive to the oscillatory
instability as well; the Gaussian pancake vortex, however, contains centrifugally stable
and unstable regions. It would therefore be insightful to evaluate the local stability criteria
(and identify the most unstable perturbations corresponding to monotonic and oscillatory
instabilities) on all the streamlines in the Gaussian pancake vortex considered by Yim &
Billant (2016), to subsequently establish a relation between the local and global stability
results.

5. Conclusions

In this study, we performed a local stability analysis of a stratified, axisymmetric vortex in
thermal wind balance, which represents a model for large-scale vortices in the ocean and
atmosphere. The results are also relevant for fronts that appear in the vicinity of eddies.
Using the local stability approach, which is alternate to the conventional normal mode
approach of Mclntyre (1970), our results extend those of McIntyre (1970) to include both
curvature effects and centrifugally unstable regimes. In addition, the limit of small but
finite viscous effects are easily recovered with the non-dimensionalization used in our
study; this allowed us to explore the entire plane of perturbation characteristics at base
flow conditions that were far from the neutral stability boundaries. The local stability
framework was first shown to recover the well-known symmetric instability in the inviscid
limit (§ 3.2). The study then focused on the effects of Schmidt number, which represents
the ratio between momentum and mass diffusivities.

In the viscous, double-diffusive regime, the instability characteristics were shown to
depend on five non-dimensional parameters: two base flow parameters, two perturbation
parameters and Sc (§ 3.3). Two different instabilities, monotonic and oscillatory, were
shown to occur for Sc #1. Monotonic instability, which is the same as symmetric
instability at Sc = 1, can occur for inviscidly stable (absence of symmetric instability)
parameter values if Sc # 1; correspondingly, inviscidly unstable parameter values can
become stable for Sc # 1. Oscillatory instability, characterized by a non-zero imaginary
part in the growth rate, occurs only for Sc # 1. The modification of monotonic and
oscillatory instability regimes due to Sc # 1 were then discussed in detail in the entire
parameter space, including the centrifugally unstable regime (§§ 3.3.1-3.3.2). For a given
base flow and Sc, the monotonic instability dominates the oscillatory instability in terms
of the growth rate, although both instabilities cannot occur simultaneously for the same
perturbations. Neutral stability boundaries on the plane of Sc and a modified gradient
Richardson number (tan @/ tan I") were then identified for both monotonic and oscillatory
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instabilities (§ 3.3.3). The monotonic instability was shown to significantly extend into the
tan ®/tan I" > 1 region when Sc moves away from unity (for both Sc¢ < 1 and Sc > 1).
The oscillatory instability, which does not occur at Sc = 1, was shown to occupy a
significant portion of the monotonically unstable region in tan ®/tan I" > 0 for Sc < 1.
For Sc > 1, oscillatory instability extends into the entirety of inviscidly unstable (—oo <
tan ®@/tan I < 1) region, with a small excursion to the tan ®/tan I" > 1 region.

In § 3.4, it was shown that it is possible to further reduce the number of governing
non-dimensional parameters to three by choosing an alternate non-dimensionalization of
(3.1), albeit at the cost of not separating the base flow and perturbation characteristics
(§ 3.4). Each of the two newly identified parameters other than Sc represent a combination
of base flow and perturbation characteristics. Neutral stability boundaries for both
monotonic and oscillatory instabilities were then analytically derived in terms of the
aforementioned three parameters. Additionally, it was also shown that monotonic and
oscillatory instabilities cannot simultaneously occur for the same values of the parameters.
Finally, in §§4.1-4.2, the implications of our overall results were discussed from two
different view points. Specifically, the curvature effects were quantified in terms of a
non-dimensional parameter, and it was shown that ignoring curvature effects can be
misleading in typical oceanic settings. In addition to curvature effects, non-traditional
effects (inclusion of the complete Coriolis force, Gerkema et al. 2008) could also
be important, especially near the equator. Indeed, recent studies have shown that the
horizontal component of background rotation can significantly affect the symmetric
instability (Itano & Maruyama 2009; Kloosterziel, Carnevale & Orlandi 2017; Zeitlin
2018).

In the future, it would be worthwhile investigating the manifestation of the instabilities
discussed in this paper in direct numerical simulations, including the nonlinear flow
states that would result from these instabilities. To explore short-wavelength instability
regimes in realistic oceanic settings, the instability criteria derived in this study could
be evaluated in field data (in situ and satellite measurements). The results in this study
are also potentially useful in interpreting outputs from large-scale climate models, which
often use some constant Sc value, unity or otherwise (Danabasoglu et al. 2012). An
interesting follow-up to this study would be to investigate the effects of non-isotropic
diffusivity, which is often the case in stratified oceanic settings, and triple-diffusive effects
resulting from the different diffusivities of momentum, temperature and salinity. Finally,
while the current study focused on short-wavelength instabilities, other instabilities such
as Kelvin—Helmholtz and baroclinic instabilities have to be considered too to construct an
overall instability regimes diagram.
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Appendix A. Classical double-diffusive instability (salt fingering)

In this appendix, we show that the local stability framework recovers the classical salt
fingering instability using a O(8?) scaling for the temperature, salinity and momentum
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diffusivities. For a quiescent base flow (Up = 0) with a salinity profile Sp(z) and a
temperature profile Tg(z), the local stability equations can be written as

da

k 2
pri —be, + bk|k|2 —cylkl|a, (A1)
ds
=—a-VSp— cslkl s, (A2)
dr
dr 5
i —a-VTp —c k|t (A3)

where s, T denote the leading-order perturbation amplitudes in salinity and temperature,
respectively (salinity and temperature perturbations are written as a series similar to
(2.10)-(2.12)). The diffusivities of momentum, salinity and temperature are given by
v =82, ks = ¢8% and k; = ¢;82, where ¢, ¢s and ¢; are constants. Here, b refers to
the leading-order buoyancy perturbation amplitude

b =g[Bs —art], (A4)

where 8, o are expansion coefficients in salinity and temperature, respectively. Writing
(A1) in component form, and substituting (A4), (A1)-(A3) become

da kxk;
o = B e —alkPan (AS)
day kyk;
P = (Bs — on:)glkl2 colk|? ay, (A6)
da; k2 2
E = —(ﬂs—a‘[)g+(/3s—0lf)g|k|2 Culkl az, (A7)
ds dSp
i eslkl%s, (A8)
dr dTp
L (A9)

where a = a,e, + ayey + aze;, and k = ke, + kye, + kze,.

For a quiescent base flow, (2.13) suggests that any wave vector remains constant.
Thus, (A5)-(A9) are a set of constant coefficient, linear, first-order ordinary differential
equations. The non-trivial growth rates A can then be shown to be governed by

341+ Pr+Pro*> + [T — S+ Pry + Pr+ PryPrld — SPr+ T + PrsPr = 0,

(A10)
where A= A/csk|?, Pry=cy/cs, Pr=cc/cs, S=Bg(1 —k2/|kI*)(dSp/d2)/(c5|k|"),
T = ag(l — k2/|k|*)(dTp/dz)/(c2|k|*). Equation (A10) is identical to the well-known
growth rate equation for double-diffusive salt fingering instability (Turner 1973). In
summary, we have shown that the 0(8?) scaling for diffusivities in the local stability
equations allows us to recover the growth rates associated with the double-diffusive salt
fingering instability.
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Appendix B. Neutral stability boundaries in terms of («1, a2, 8, Sc)
In this appendix, we derive the neutral stability boundaries on the («1 — ), (0 — B) plane
for various Sc. As shown in (3.20), A* = (1 + ¢, |k|2)/(cv |k|2) is governed by

P (i) A2 4 [ +ap — 2810 + (£> [ —B1=0, (B
Sc Sc
with the neutral stability boundaries occurring at Re(4*) = 1. To identify these
boundaries, we assume A* =1+ A +ic (A, ¢ are real), where A is small in the
neighbourhood of neutral stability boundaries. Substituting this * in (B1), and ignoring
terms that are O(A?) or higher, we get the imaginary part of the equation as

1
—ic® 4 3ic + 6icA + (S_ - 1) 2ic(1 + A) +ic(a; +ax —28) = 0. (B2)
c
Solving (B2) for ¢, we get
2 1
c=00rc2=1+—+a1+a2—2,3+2A 24+ —). (B3)
Sc Sc
For ¢ = 0, the real part of (B1) reduces to
o — B 1 2
+oy—-B+—+Alag+ar—28+1+—|=0, (B4)
Sc Sc Sc
which shows that * = 1 is a root of (B1) on the line
o) —p 1
+ay—B+—=0, B5
S o — B e (BS)

ifo) + a2 — 28 + 1 4+ 2/Sc #0. Furthermore, the line (B5) is a neutral stability boundary
only if the other two roots of (B1) are stable on it. The roots of (B1) other than A7 =1+ 4
are given by

\ 1(1 11 ? 1+A4
/12’3:_5 §+A 15 §+A —4 T—l—A—i—m—i—Otz—Zﬂ- (B6)

The roots /13’3 are real (with A = 0) if

1

_ S B7
@ =P = s yese— ) D
and stable (less than unity) if
1+ Sc
s(a; — B) <s , (B8)
1 —S8c

where s = sgn(1 — Sc). If conditions (B7) and (B8) are satisfied, then the eigenvalue that
goes from stable to unstable across the neutral stability boundary in (B5) is real, while the
remaining two stable eigenvalues are also real in the neighbourhood of the neutral stability
boundary. For A7 = 1, the other two eigenvalues (B6) are complex on the boundary in (B5)
if

1
4Sc(Sc —1)°

and are always stable since their real part is negative for A = 0. In other words, if (B9)
is satisfied, the straight line in (BS) is a neutral stability boundary, with the eigenvalue
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that goes from stable to unstable across the neutral stability boundary being real and
the remaining two stable eigenvalues being complex. In summary, (BS) represents the
monotonic (since ¢ = 0) neutral stability boundary for either conditions (B7) and (B8)
being satisfied or condition (B9) being satisfied.

For the case of ¢ = 1 + 2/8c+ay +ay — 28 +2A(2 + 1/Sc) in (B3), the real part of
(B1) becomes

1 2 1
2(0[1—,3)+(Ol2—,3)(1+—)+2<1+§+@>

Sc
28 (on von— 245+ - 1 2 (B10)
= — o] + oy — — 4+ —,
! 2 Sc2  Sc
provided 1 +2/Sc + o1 + oy — 28 +2A(2 + 1/Sc) > 0. Thus, the line
1 2 1
2(ag — — 1+ — 2{1+—+—1]=0 Bll
(a1 —B) + (2 ﬁ)(+SC>+ <+SC+S02> (B11)

is a neutral stability boundary with ¢> > 0 and A = 0 (as the third root A3 =—-1-1/Sc
is stable) if

1+S

st — B) < s—°€ (B12)

1—3S8c
The condition in (B12) is obtained based on the requirement of ¢2 > 0 on the line in
(B11). In summary, (B11) is the oscillatory neutral stability boundary for those («; — B)
satisfying (B12).

Appendix C. Monotonic-oscillatory instability interface

In this appendix, we derive closed form expressions for the interface between monotonic
and oscillatory instabilities within the unstable region on the («¢; — ), (2 — B) plane (see
figure 9). Approaching the interface from the oscillatory instability side, we seek solutions
of the form A* = (a + ib), (a — ib), ¢ for (3.20), where a, b and c are all real. Comparing
the coefficients of (3.20) and the cubic given by (1* — (a + ib))(1* — (a — ib))(1* — ¢),
we get 2a + ¢ = —(1 — Sc¢)/Sc. If monotonic and oscillatory instabilities were to occur
simultaneously, we require a > 1 and ¢ > 1. (recall that Re(1*) > 1 for instability). As a
result, Sc has to satisty (1 — Sc¢)/Sc > —3, which is not possible for Sc¢ > 0. Hence, for all
real values of «p, ap, B and Sc, the monotonic and oscillatory instabilities cannot occur
simultaneously.

Now, we seek the interface between monotonic and oscillatory instabilities as the
boundary where the unstable roots a 4 ib have b — 0 while we approach it from the
oscillatory instability side. Upon substituting * = a + ib, the real and imaginary parts
of (3.20) become

1—S8c

3 »  1=8¢ , 2
a’ — 3ab —I-T(a —b7) + o) +ap —2Bla+ (¢ — B) =0, (ChH

1—Sc
c
Solving for b in (C2), and requiring the b # 0 solution to tend towards zero gives

1—Scj: (1-S80)?% o +ar—28
Sc 9Sc2 3 )

—ib® + 3a%ib + 2iab + [o) + az — 2B1ib = 0. (C2)

ay — — (C3)
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For instability, we require @ > 1, which can be satisfied only by a in (C3). Requiring
ay > 1 gives

2
o +oay—28 < —1——. (4
Sc
Noting that o1 + a2 — 28 = —1 — 2/Sc intersects the monotonic and oscillatory neutral

stability boundaries (3.22)—(3.23) at a common location (¢ — f = (Sc+ 1)/(Sc —
1), oo — B = —2/Sc(Sc — 1)), and comparing their slopes, it can be shown that the
monotonic—oscillatory instability interface satisfies (C4). The equation describing the
monotonic—oscillatory instability interface can then be derived by substituting a in (C1)
with b = 0 to get

2(1=8¢) 1-Sc

o5 + 5 Qa1 — B) + (a2 — B))
- <2(1 _ SC)2 B 2(a; + oy — 2[8)) (1 — SC)2 B o] + oy — 2:3 —0. (C5)
9Sc2 3 9Sc2 3

Appendix D. Neutral stability boundaries in terms of physical parameters
To derive the neutral stability boundaries on the plane of base flow parameters, we first
write @1 — B and oy — B (§ 3.4) in terms of the physical parameters in (3.4a,b)—(3.5a,b)

. 2cos?6 — tan I sin 26 ~ tan F(2tan@sin29 — sin 260)
o —B=@ = , p—B=® = .

(Dla,b)
In this appendix, we assume @ =1,ie.the centrifugally stable regime.

In the neighbourhood of the monotonic neutral stability boundary on the («; — 8),
(otp — B) plane, the growth rate A is governed by (B4). For given base flow parameters,
we first maximize A with respect to the perturbation parameters, and then identify the
A = 0 boundary on the plane of base flow parameters. To maximize A with respect to 6,
we differentiate (B4) with respect to 6 to get

1 le 8ﬂ)+8a2 B aA[

w20~ . _ L=

00 00 a0 00 90

dop  dan aB
* |: a0 * a0 89:| (D2)

2
0!1+062—2ﬂ+1+—]
Sc

and substitute 0A/06 = 0. Furthermore, A = 0 on the neutral stability boundary we are
seeking, thus reducing (D2) to

1 (80[1 %)+8a2 %_O

—(—=- — - == (D3)
sc\90 o90) " 90 80

Substituting the expressions in (D1) in (D3) gives the expression for the most unstable 6
for monotonic instability as

tan 20% — (Sc+ DtanI”
© Sctan®tan " — 1

Recalling from §3.3.1 that ¢ = 0 on the neutral stability boundaries in the plane of
(Sc, (tan®/tan ")) and substituting (D4) in (B5), we obtain the monotonic neutral
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stability boundary as
tan® (1 + Sc)?
tanI"  4Sc
In the neighbourhood of the oscillatory neutral stability boundary on the («; — B), (o2 —
B) plane, the growth rate A is governed by (B10). For given base flow parameters, we
first maximize A with respect to the perturbation parameters, and then identify the 4 = 0
boundary on the plane of base flow parameters. To maximize A with respect to 6, we
differentiate (B10) with respect to 6 to get

dar 9B dar 9B 1 9A 16
p (2 9PN (22 0P (4 ) 4222 2454 — t —
(ae ae)+<ae ae)( +SC>+ 96 [““L“Z pt +Sc2+Sc:|

dap  Jdan aB
AN | — 4+ — —2— | =0,
+ [ a0 + a0 89]

and substitute 0A/9d6 = 0. Furthermore, A = 0 on the neutral stability boundary we are
seeking, thus reducing (D6) to

da; P dar 0B 1y
2 (G —a0) (G —30) (v ge) =0 v

Substituting the expressions in (D1) in (D7) gives the expression for the most unstable 6
for oscillatory instability as

(D5)

(D6)

3Sc+1
tan 207 = et . (D8)
(14 Sc)tan® — 4Sccot I’
Recalling from §3.3.1 that ¢ = 0 on the neutral stability boundaries in the plane of
(Sc, (tan®/tan I")) and substituting (D8) in (B11), we obtain the oscillatory neutral

stability boundary as

tan®  (3Sc+ 1)?
tan " 8Sc(Sc+1)

(DY)
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