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Early on, there was the incandescent light bulb. Now, buildings 
and streets are lit by light-emitting diodes (LEDs) that use 

less than 25% of the energy and last 25 times longer. 
 The LED is the result of painstaking years spent searching 
for the right semiconducting compounds and finessing their mi-
crostructures. And it’s just one example of how materials science 
is pivoting the transition to a future where everyone has access 
to sustainable, affordable energy. 
 Satiating the needs and wants of an increasingly wealthy, 
digitized world will require new ways to convert and use energy. 
Materials are the foundation of those advances. As commercial 
silicon solar cells reach their theoretical limit, complementing 
them with efficient, affordable perovskite solar cells could help 
photovoltaic modules generate more power. The search is inten-
sifying for advanced batteries that pack more energy than lithi-
um-ion devices for lower cost and do not use scarce, expensive 
metals such as cobalt. Researchers are also investigating better 
thermoelectric materials, catalysts for clean energy technologies, 
and porous materials that soak up carbon.
 Yet materials development today is still mostly a result of 
intuition and luck. The empirical process is slow and fraught 
with human bias and error. Artificial intelligence (AI) is poised 
to change that. 
 The combination of big data and AI is being called the “fourth 
industrial revolution,” and its applications in materials science 
have soared in the past decade. Researchers have already used 
the AI subfield of machine learning to find new battery electrode 
materials and phosphors for solar cells. Identifying and develop-
ing a material for a technological application usually takes more 
than a decade. AI could slash that to one or two years.
 Speeding up materials discovery is not the main driver for 
the use of AI in materials research, though. According to Ger-
brand Ceder, professor of materials science and engineering at 
the University of California, Berkeley, “AI is best for solving 
problems that we don’t understand and things that we don’t 
know how to predict. Materials synthesis is a perfect example. 
A researcher could think of a new compound for a catalyst or 
electrode material, said Ceder, “but we don’t have any predic-
tive theory to tell us how to make the compound or if it can 
exist and be made at all. People have historical knowledge or 
intuition, and have made hundreds of thousands of compounds. 
Machine learning could find patterns in these data and learn the 
rules of synthesis.” 

 Materials scientists have used computational techniques for 
decades. Ab initio computing, for instance, simulates the behav-
ior of molecules by solving the equations that govern material 
properties at the atomic scale. Researchers can use it to calculate 
the properties of thousands of virtual compounds without step-
ping into the laboratory. Density functional theory (DFT) is a 
computational modeling method that calculates the energy of 
atomic structures and uses that to estimate material properties. 
The Materials Project aims to use ab initio methods to compute 
the properties of all known and predicted compounds.
 But DFT calculations are slow and computationally intensive. 
In addition, DFT is limited to picosecond time scales and can 
only simulate about 200 atoms, said Nongnuch Artrith, a research 
scientist at Columbia University. 
 Machine learning can overcome these limitations. Machine learn-
ing comprises statistical algorithms and models that can correlate 
data in large datasets to decipher patterns and underlying rules, which 
it can then use to make predictions. These computer models learn 
from existing data—large, cleanly labeled data sets are a must—and 
their performance improves with training. In image recognition, for 
instance, computer scientists use millions of labeled pictures to train 
neural networks to recognize objects. This is how social media sites 
recognize faces and autonomous vehicles navigate.
 “The idea is to train models on DFT reference calculations 
of small structures, and then use these models to run molecular 
dynamics simulations,” said Artrith. Using this method, she and 
her colleagues study structures of thousands or millions of at-
oms at nanosecond scales. This allows them to simulate battery 
materials containing a large number of atomic species, such as 
lithium, oxygen, different transition metals, and carbon.
 Researchers are also using machine learning to predict material 
properties by skipping ab initio calculations entirely. Instead, they 
create mathematical models to represent molecules based on size 
and number of atoms, and their relative locations and distance, said 
Gus Hart, physicist at Brigham Young University. Then the model 
is trained on data sets to map materials to their properties. 
 In 2018, Shyue Ping Ong, a nanoengineer at the University 
of California, San Diego, and colleagues showed that neural net-
works could use just two parameters—Pauling electronegativity 
and ion radii—to predict the formation energies of garnet and 
perovskite crystals. The model could accurately screen thousands 
of garnet and perovskite candidates and identify stable composi-
tions. The researchers have also developed graph-based models 
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 Yet, for all the excitement about machine learning in materi-
als science, “nobody has shown the ‘killer app’ yet,” said Ceder. 
That invaluable use for AI could stem from its ability to read and 
process text, he said. “Can you feed a million research papers to 
a machine, and can it learn science from that? Evidence shows 
that at a primitive level, it can, just like auto-predicting the next 
word in a text message.”
 Text mining has produced some incredible results. Ceder and 
his colleagues, for instance, trained a neural network on three 
million abstracts of research papers about a compound used for 
solar cells published before 2005. The model predicted that the 
material would be used in thermoelectric applications: turns out 
both solar cells and thermoelectric applications require similar 
band gaps. Indeed, research papers on the thermoelectric applica-
tions of the material were published after 2005.
 In another example, researchers at Haverford College had 
undergraduate researchers digitize their lab notebooks, recording 
reaction conditions that worked and did not work for the crystal-
lization of vanadium selenites. The researchers were able to use 
the data to train a model that could predict the success of a new 
set of reaction inputs with 89% accuracy. 
 Some researchers, such as Elsa Olivetti from the Massachusetts 
Institute of Technology, are now tackling a more complicated 
task: using AI to extract materials recipes from research papers 
in order to predict synthesis of new compounds. Ceder believes 
that using text mining to predict material synthesis could be a 
game-changer. “Could we then create materials with properties 
that we don’t know how to predict yet, like superconductiv-
ity?” he said.
 The use of AI in materials science is still nascent, held back by 
a lack of data. “Materials data tend to be small and sparse,” said 
Meredig. “You have lots of small data sets that are often siloed.” 
In addition to more data, there is also a need for metadata—a 
summarized basic description of data that makes it easier to use. 
“Data is only as good as its metadata,” said Ceder.
 To see a radical change in the material development process, 
AI should be tightly integrated into the workforce, said Meredig. 
“We need to make AI a copilot in materials research.” And that 
means training and educating the next generation of materials 
scientists and engineers to understand and utilize these tools. 
“Experimental material scientists need to know scanning electron 
microscopy but also AI tools.”         

trained on data from tens 
of thousands of crystals in 
the Materials Project data-
base to predict formation 
energies, bandgaps, and 
elastic moduli of crystals 
more accurately than DFT 
calculations performed 
on a much larger data set. 
 Another exciting use 
of machine learning is to 
create new materials from 
scratch. The idea is to give a trained model a set of target proper-
ties for an application, and let it scan millions of possible atomic 
configurations for compositions that are likely to meet the target. 
Using this inverse design principle, Jakoah Brgoch and colleagues 
at the University of Houston developed an algorithm that could 
predict the properties of almost 120,000 inorganic compounds to 
shortlist two dozen promising phosphors for white LEDs. When 
they synthesized and tested one of the compounds predicted com-
putationally, sodium barium borate, they found that it had a quan-
tum yield of 95 percent and was extremely thermally stable.
 Developing new materials is a necessity for companies that 
rely on advanced materials to produce consumer products. “They 
have a need to innovate materials faster,” said Bryce Meredig, 
chief scientific officer and co-founder of Citrine Informatics, 
one of several emerging startups combining AI and big data to 
accelerate the pace of making new materials. 
 “AI can be powerful, but it relies on having a large amount 
of data,” he said. “Over the past decades, companies have ac-
cumulated data and expertise on material sets, but not in a highly 
structured and organized form that is accessible to AI.” 
 Citrine helps its customers bring all their materials-related data 
into a single software system; develops AI software that can learn 
from this data; and works with the company to consistently integrate 
new data generated in labs and simulations into the platform. 
 Another startup, MaterialsZone Ltd. in Israel, specializes at 
correlating processing parameters, structures, and functionality. 
The Bar-Ilan University spin-off uses this and similar techniques 
in discovering new photovoltaic (PV) absorbers for future de-
vices. Data-mining tools analyze large PV material data sets 
generated by high-throughput methods. The deposition process 
parameters then model PV performance, providing a path to 
higher performing solar cells.
 “The properties calculated on the microscale for many energy-
related materials may present differently on the macroscale,” said 
Assaf Anderson, CEO of MaterialsZone. “In addition, lab-fabricat-
ed materials are never as ideal as the results of theoretical calcula-
tions, and the big challenges are to include and forecast effects of 
scaling-up, reproducibility, lifetime, and cost reductions.”
 AI can affect materials research in many other smaller ways too, 
said Meredig. It can help curate databases or help scientists process 
data more efficiently, “say by solving crystal structures from x-ray 
diffraction patterns, which can take hours and days and may not be 
solvable by a person.” 

Credit: Shyue Ping Ong, University of California, San Diego.
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