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1. Introduction. Let A be a sequence of positive integers. Define P(A) to be the set
of all integers representable as a sum of distinct terms of A. Note that if A contains a
repeated value, we are free to use it as many times as it occurs in A. We call A complete if
every sufficiently large positive integer is in P(A), and entirely complete if every positive
integer is in P(A). Completeness properties have received considerable, if somewhat
sporadic, attention over the years. See Chapter 6 of [3] for a survey.

One interesting question about completeness properties is how robust they are. For
instance, if one is content with a slightly weaker property ("subcompleteness"), it often
happens that even rather strong perturbations of a sequence cannot destroy the property
[1, 2]. Another sense in which a property can be robust is that, even after the object in
question is somehow partitioned into two or more classes, the property remains true for
some class. This is the province of Ramsey theory, which is heavily studied today; see [4,
5] for surveys of the general field. The most straightforward definition of a "Ramsey-
complete" sequence would be that if it were partitioned into two classes Ax and A2, either
P(AX) or P(A2) would contain every large positive integer. Unfortunately, this does not
appear to lead to interesting problems. It seems necessary to permit the class to vary with
the number represented, as in the following definitions.

DEFINITION. A sequence is Ramsey-complete if whenever the sequence is partitioned
into two classes Ai and A2, every sufficiently large positive integer is a member of
P(A1)UP(A2).

DEFINITION. A sequence is entirely Ramsey-complete if whenever the sequence is
partitioned into two classes At and A2, every positive integer is a member of P(A,)U
P(A2).

These definitions lead naturally to many questions. Here we will consider that of the
maximum possible growth rate of such sequences. As usual, let A(x) denote the number
of terms of the sequence A that are less than or equal to x. It is easy to see that a
sequence for which A(x)<log2x infinitely often cannot be complete. Furthermore, a
complete sequence with exponential growth also must grow in a fairly regular way.
Something similar applies to Ramsey-completeness. Our main object here is to prove the
following two theorems. It will be convenient in most of what follows to work with the
binary logarithm log2, which we will denote by lg. To avoid confusion, we use In for the
natural logarithm.

THEOREM 1. There is an entirely Ramsey-complete sequence A satisfying
A (x) - A (\x) < 2 lg2 x for all sufficiently large x.

THEOREM 2. There is an e > 0 such that no infinite sequence of integers A satisfying
A(x)-A(5x)<e lgx for all sufficiently large x is Ramsey-complete.
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Theorem 1 gives a lower bound on the maximum growth rate of an (entirely)
Ramsey-complete sequence, and Theorem 2 essentially gives an upper bound, along with
a smoothness condition. In each of these theorems, it is possible to replace the condition
on A(x)-A(^x) by a pure growth condition. For the first, this is essentially trivial.

THEOREM la. There is an entirely Ramsey-complete sequence A satisfying ax>2(1/2) x

for all sufficiently large x.

Proof (using Theorem 1). We have A(x) = (A(x)-A&c)) + (A@x)-A(Jx)) + . . . ,
where about lgx terms appear. Therefore, the sequence in Theorem 1 satisfies A(x)<
(2 + e)lg3x; hence ax>2^m^Y)>2(im^.

At the cost of considerable effort, it is possible to prove a similar analog of The-
orem 1.

THEOREM 2a. There is a C > 0 such that no infinite sequence of integers A satisfying
ax>2c^* for all sufficiently large x is Ramsey-complete.

We will not prove this here; the proof is quite complicated, and the small improve-
ment does not seem to justify the effort, in view of the substantial gap between Theorems
1 and 2.

2. The Lower Bound. We now prove Theorem 1, in a form which explicitly exhibits
the required sequence.

THEOREM lb. Let A be a sequence defined as follows. The sequence begins with 16
copies of 1, followed by blocks Bn for each n ? l , where Bn consists of 2n + 2 copies of 2",
together with n + 2 copies of each of the numbers 2" +1 , 2n + 2, 2" + 4 , . . . , 2" + 2n~\ Then
the sequence A is entirely Ramsey-complete.

Proof. We will use induction. We will employ a stronger hypothesis, namely that if A is
partitioned into two classes, then for each n>0 , all the integers ( n - l ) 2 n ~ 1 , . . . , n2" are
representable by a single class, using only terms from Bn_i, Bn_2, •• •, and the l's at the
beginning. (Of course, the class may vary with the value of n.) Denote the set
{(n - 1)2"~\ . . . , n2"} by Dn_^ The hypothesis is trivially true for n = 1, 2. Now suppose
that the hypothesis holds for n - 1 , n's*2. Thus, without loss of generality, all of Dn^
is representable by Class 1, without using Bn, Bn+1,...; we distinguish two cases.

(1) At least n + 2 of the members of Bn are in Class 1, say bly..., bn+2. These all
satisfy 2n*£bt =£2" + 2n~\ In this case, we will show that all of Dn = {n2n,... ,(n + l)2n+1}
is representable in Class 1 as well. First consider the numbers representable using just bu

together with the members of Dn-t. The numbers so representable are (n-l)2"~1 +
bx,..., n2n + bt. If n 2* 2, it is clear that this range of values overlaps Dn_u even if b^ is as
large as 2n + 2"~\ Hence, we have represented all of ( n - l ) 2 n ~ \ . . . , n2n + b1. In the
same way, if we now use b2 as well, we can represent all of (n - l)2n~\ . . . , n2" + bl + b2.
Continuing in the same fashion, we see that all of (n - l )2"~ \ . . . , n2n + b1 + b2+...+
bn+2 can be represented by Class 1. Since n2n + b1 + b2 + .. . + bn+2^n2n + (
(n +1)2"+1, this includes all of Dn.
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(2) No more than n + 1 of the members of Bn are in Class 1. In this case, Class 2
contains at least n + 1 copies of 2", and at least one copy of each of 2" +1, 2" + 2 , . . . , 2" +
2""1. We will show that all of Dn can be represented by Class 2, using only these numbers.
Consider any number of the form n2n + m, where 0 «£ m <2". The binary expansion of m
requires just n bits. For each zero in this expansion, add in a copy of 2n. Each 1
corresponds to some value 2fc; add in a copy of 2" + 2k. Thus, we can represent all of
n2n,...,(n +1)2" - 1 by Class 2. At least one copy of 2n is left over. With this, in similar
fashion to Case (1), we can represent all of n2n,..., (n + 2)2" - 1. It is now an easy matter
to continue as in Case (1), representing all of Dn. (And a great deal more: observe that at
least n2+3n t-1 members of Bn are in Class 2 in this case.) This completes the proof.

Theorem lb uses a sequence in which many values are repeated. Repeated values are
convenient, but not necessary.

THEOREM lc. There is a strictly increasing sequence A which is entirely Ramsey-
complete and satisfies A(x)-A(^x)<8\g2x for all sufficiently large x, where 8 is some
constant.

Sketch of proof. We will describe roughly how to construct such a sequence
in a way similar to that of the proof of Theorem lb. In place of the 16 copies
of 1, use {1,2,3, . . . ,r} for some suitable r. For the blocks Bn, use
{2"±1,2"±2,2"±3,. . . ,2"±sn} in place of the 2n + 2 copies of 2", and
{2" + 2 i ± l ,2" + 2i±2,2" + 2 ' ± 3 , . . . , 2 " + 2i±m} in place of the n + 2 copies of 2" + 2\
where s and t must be suitably chosen. The definition of Dn must change somewhat. The
rest of the proof is then rather similar, using the fact that if both x±a are in a class, then
2x is representable by that class.

3. The Upper Bound. We will shortly prove Theorem 2, but we need a lemma. As

a technical convenience, we extend the definition of the binomial coefficient ( I to

arbitrary nonnegative real u and v using the gamma function. Furthermore, whenever a

sum or product involves ( I, the condition O ^ u ^ u is implicit.

LEMMA. Let S(u, v) denote the sum £ I . I, and let y be a fixed constant. Then
iisO \V — l)

there is an a = a(y), not depending on u, such that for every u > 1,

[1 S(u,2')<2au.
1«2'«YU

Proof. We first consider the range in which 2'^lu. Let t; ss^u; then ( 1 < - ( I

j . Taking natural logarithms and using Stirling's
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approximation, we have:

In S(u, v)

= u In u - u - ( « - v ) \ n { u - v ) + ( u - v ) - v In v-v + O(ln u)
= v In u - v In v - (u - u)ln(u - v) + (u - u)ln u + O(ln u)
= v In u/u - (u - u)ln(l - u/u) + O(ln u)
^u In u/v-(u-v)(-vlu-v2l2u2-.. .) + O(ln u)

Therefore, returning to binary logarithms,

lg (2") « 2' lg(u/2') + 2i+1 lg e + O(lg u)

Let us sum this from 0 to k, where u/8<2k=Su/4, so that fc = lgu + O(l) . Using the

standard formulas £ 2 ' = 2 k + 1 - l and £ /21 = ( k - l ) 2 k + 1 + 2, we have
j=0 j=0

I lgS(u,2')
/=o

= 2k+1(lg M + 2 lg c) - (fc - l)2k+1 + O(lg u)

= 2k+1(lg u + 2 lg e) - 2k+1(lg u + O(l))

for some a '>0 . Thus,
[I S(u,2')<2o''u.

However, the number of factors omitted from this product is not more than 2 + lgY + l,
and each of these is no more than 2". Including these factors, we have our desired upper
bound on the whole product. This completes the proof.

We now restate and prove Theorem 2.

THEOREM 2. There is an e > 0 such that no infinite sequence of integers A =
{a 1 «a 2

: s . •.} satisfying A(X)-A(iX)<e IgX for all sufficiently large X is Ramsey-
complete.

Proof. Let 7 = 5 and let a be the corresponding value in the lemma. We will prove
the desired result for e < l/(a +1). Let A be any sequence satisfying the given condition.
Define the sequence {Zu Z2, . . .} by Z t = 4, Zk = 2]e-2Z*-<. Partition A as follows. For each
i, Zk <af =£Zk+1 for some k. When k is odd, place af in Class 1; when k is even, place af

in Class 2. We will show that if k is large enough, there are integers in each interval
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(Zk, Zk+1] that are not representable by either class. Set Z = Zk; without loss of general-
ity, k is even. Set X = 2eZ lg Z. We will show that most of the integers in [X, 2X] are not
representable by either class. Indeed, no such integer is representable by Class 1, since it
is clear that 2X<Zk + 1 , and

< 2 e Z l g Z = X.

We now must estimate how many integers in [X, 2X] are representable by Qass 2.
To do this we break up the interval [Z, 2X] into subintervals:

(Z, 2X] c (X, 2X] U (A/2, X] U (A/4, A/2] U . . . U (A/2k+\ A/2k],

where the last interval contains the number Z. Hence 2k+1<2X/Z=s4e lgZ=s5e lgX. In
each interval (X. T\ X. 2~'+l], there are fewer than e lg (X. 2~'+l)=£ e lg X members of
A. Moreover, no more than 2X/(X. 2~') = 21+1 summands in each such interval can be
used to represent a number less than or equal to 2X. Hence, no more than

*J?X) = S(elgX,2'+l)

sums are possible using summands in such an interval. Hence, by the above lemma, with
7 = 5, the total number of sums using all these intervals is less than

II S(elgX,2'+1)<2ealgX

2«2'*'s5elgX

Finally, we must take into account any other at in Qass 2. These are all no greater
than Zfc_!. As in the proof of Theorem la,

=£ e lg Zfc_! + e lg (hZk^) +. . .

Therefore, the number of integers representable by at^Z,,.^ is no more than
lgX

Consequently, the total number of sums in [X, 2X] can be no more than

This completes the proof.

4. Concluding Remarks. Our results leave open many interesting problems. The
most obvious of these is that of the true maximum order of growth for Ramsey-complete
sequences. Possibly, Theorems 2 and 2a are closer to the truth than Theorems 1 and la. It
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certainly appears that the proof of Theorem lb leaves room for improvement. It seems
likely that one might be able to improve, say, the condition in Theorem la to perhaps
ax>2c^x l g x , without too much trouble. However, no obvious line of attack has presented
itself to narrow the gap, at either end, by a substantial margin.

Another very interesting area to study is that of generalizing the definition of
Ramsey-completeness to partitioning the sequence into three (or more) classes. The
following would seem to be a natural conjecture, by analogy to Theorem la.

CONJECTURE. There is a fi and a sequence A satisfying ax > 2X" for large x, such that if
A is partitioned into three classes Au A2, A3, then P(AX) U P(A2) UP(A3) contains all large
integers.

However, serious complications arise when trying to mimic the proof of Theorem lb,
and it is possible that no such (3 and sequence A exist.

Finally, one can ask whether various "natural" sequences are Ramsey-complete. The
most obvious of these would seem to be sequences of polynomial values, for instance the
sequence of squares. Indeed, the ideas in the proofs of Theorems lb and lc may be useful
here.
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