
Artificial Intelligence for
Engineering Design, Analysis
and Manufacturing

cambridge.org/aie

Research Article

Cite this article: Keles HY (2018). Embedding
parts in shape grammars using a parallel
particle swarm optimization method on
graphics processing units. Artificial Intelligence
for Engineering Design, Analysis and
Manufacturing 32, 256–268. https://doi.org/
10.1017/S089006041700052X

Received: 14 October 2016
Revised: 6 July 2017
Accepted: 6 July 2017

Key words:
CUDA; embedding parts; GPGPU; particle
swarm optimization; shape grammars

Author for correspondence:
Hacer Yalim Keles, E-mail: hkeles@ankara.edu.tr

© Cambridge University Press 2018

Embedding parts in shape grammars using a
parallel particle swarm optimization method
on graphics processing units

Hacer Yalim Keles

Computer Engineering Department, Faculty of Engineering, Ankara University, Ankara, Turkey

Abstract

Embedding emergent parts in shape grammars is computationally challenging. The first chal-
lenge is the representation of shapes, which needs to enable reinterpretation of parts regardless
of the creation history of the shapes. The second challenge is the relevant part searching algo-
rithm that provides an extensive exploration of the design space–time efficiently. In this work,
we propose a novel method to solve both problems; we treat shapes as they are and use a par-
allel particle swarm optimization-based algorithm to compute emergent parts. The execution
time of the proposed method is improved substantially by dividing the search space into small
parts and carrying out searches in each part concurrently using a graphics processing unit.
The experiments show that the proposed implementation detects emergent parts accurately
and time efficiently.

Introduction

Shape grammars provide a formal mechanism to support design space exploration using visual
replacement rules (Stiny, 1980). This formalism is defined with an initial shape and a set of
visual rules. Depending on the domain of the computation, a particular algebra and its sup-
ported operations are applied to transform the given initial shape (Stiny, 2006).

A visual rule is represented inA→ B form, where A stands for the left-hand side (LHS) shape
of the visual rule and B is the right-hand side shape (RHS). Assume that S is the initial shape,
application of this rule to the initial shape is performed in three steps: (1) a Euclidean transfor-
mation of the LHS shape, that is Τ(A), is computed such that it is embedded in S: T(A)≤ S; (2)
the embedded part is subtracted from the initial shape, that is, S−Τ(A); (3) the same transfor-
mation is applied to B, that is, Τ(B), and added to the modified S, that is, S−Τ(A) + Τ(B). As a
result, a given initial shape is modified according to the embedding relation of the LHS shape
with the initial shape using a well-defined replacement operation. Although the formalism
defines a simple way to transform a given shape, its representational power can be used to
generate different designs in a particular style with a properly defined shape grammar (Stiny
& Mitchell, 1978; Flemming, 1987; Pugliese & Cagan, 2002; McCormack et al., 2004).

Ever since the shape grammar formalism is introduced, a considerable effort is put on the
computational modeling of shape grammar interpreters. The challenge is on the difficulty of
automatic computation of embedding emergent parts. When visual rules transform a given
shape with rule applications, shapes split, and fuse to form new patterns. Such productions
may generate new forms and provide new embedding possibilities that emerge only after
rule applications. A designer, who uses a computer-based solution, would like to be able to
reinterpret these parts since they become visible to them. Therefore, the representations of
the resultant shapes in computers should be adaptive to new interpretations and conform
the needs of a designer who continuously exploits the ambiguity in resultant forms.

In this research, we propose a novel approach to solve the part embedding problem. The
proposed approach implements an optimization algorithm to compute the embedded parts
using weighted representations of the initial shapes, in a fast and accurate way; we developed
a particle swarm optimization-based solution. Inspired by our preliminary work (Keles, 2015),
we designed and implemented a parallel algorithm that runs on thousands of hardware threads
on a graphics processing unit (GPU) simultaneously to compute embeddings. The motivation
behind this research is to solve two primary problems of the optimization-based part embed-
ding methods: (1) stucking into local minima and (2) high execution time. We also aim to
provide many different embedding alternatives to the designer simultaneously so that the
designer can explore the design space more effectively by selecting the desired embedding
to apply the rule. We believe that the improvement in the embedding accuracy and the
response time, together with many different embedding options, support the designer’s cog-
nitive processes better.

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://www.cambridge.org/aie
https://doi.org/10.1017/S089006041700052X
https://doi.org/10.1017/S089006041700052X
mailto:hkeles@ankara.edu.tr
https://doi.org/10.1017/S089006041700052X

In this paper, we explain our solution in detail both with respect
to its design and implementation. The paper is organized as follows.
In the next sub-section, we introduce the particle swarm optimiza-
tion algorithm in its general form. Following that, we provide a brief
introduction to the general purpose programming on GPUs. After
these introductory sections, we discuss the current state of the art in
the section “Related works”. In the section “The PSO approach for
part embedding problem”, we explain our particle swarm optimiza-
tion (PSO)-based solution, particularly for sub-shape embedding
problem. Following that, in the section “GPU–PSO-based part
embedding approach”, we discuss our GPU-based solution. In the
section “Results and discussion”, we provide a set of results and dis-
cuss the impact of our approach. Then, we finalize the paper with a
brief conclusion at the end.

The PSO algorithm

PSO is a population-based iterative algorithm, which optimizes a
problem using a method that is inspired by the movements of a
flock of birds or schooling of fishes. The algorithm is based on
the movement of individuals in a population in the direction con-
sidering a combination of the population’s best fitness value and
its own best fitness value. It is invented by Russell Eberhart and
James Kennedy in 1995 and has been used in many optimization
problems since then (Poli, 2008).

In evolutionary terms, a population is called a swarm, and an
individual is called a particle. A fitness function is defined accord-
ing to the problem and – similar to evolutionary approaches – is
designed to generate a score (i.e., a real value) using a set of opti-
mization parameter values as its inputs.

In a PSO formulation, a number of particles (i.e., candidate
solutions) search over the problem domain by interacting with
their environment and with other particles in the swarm to
improve their fitness. Each particle in a swarm has two main attri-
butes; velocity and position. The position of a particle corresponds
to a specific solution to the problem, while velocity is used to
determine the direction of the particle in the next iteration.
Hence, during the iterations, two reference values guide the move-
ment of a particle: (1) best fitness value achieved by the particle so
far and (2) best fitness value of the swarm recorded so far. Each
particle has a memory to keep their best fitness value and corre-
sponding position (i.e., the solution parameters) at a particular
time during the searches. Moreover, the swarm has a memory
that keeps the best fitness value of all particles obtained so far
and the corresponding position. The next position of a particle
i is determined using the two simple formulae given below:

�v t+1
i = �v t

i + AL ∗ rand(0, 1) ∗ (bxti
��− �x t

i)

+ AG ∗ rand(0, 1) ∗ (gbxt
���− �x t

i) (1)

�x t+1
i = �x t

i + �v t+1
i (2)

In Eqs. (1) and (2): t represents discrete time steps, �v t
i is the velo-

city of particle i at time step t, �x t
i is the position vector of the ith

particle (i.e., current solution) at time step t, bxti
��

is the best posi-

tion vector of the ith particle up to time step t, and gbxt
���

is the best
position of the all particles obtained up to time step t.

In (1), AL and AG are the local and global acceleration con-
stants, respectively. In this work, we set both of them to 1,

hence balanced the contribution of the swarm and the particle.
Assuming that we work in a d-dimensional search space, each
dimension corresponds to a particular optimization parameter
of the problem domain. In this domain, �vi is a d-dimensional
velocity for the particle i and �xi is a d-dimensional position vector
that contains the estimated values of the optimization parameters.

PSO is initialized with a set of particles with random positions
and each particle searches for some optima by updating its velo-
city and position for a number of generations. In (1), the velocity
direction is computed using a random number generator, that is,
rand(0,1) function that produces values that are driven from a
uniform distribution in the range (0, 1). This stochastic nature
helps efficient spatial exploration. The stopping condition is set
either with a constraining iteration number or with a minimum
error criterion.

In the proposed solution, the vector �xi represents the transfor-
mation parameters of the LHS shape such that T�xi (A) embeds the
shape A in the initial shape S, that is, T�xi (A) ≤ S. Here, the sub-
script i represents a candidate solution determined by the particle
i in the swarm. Therefore, the swarm in a particular region of the
initial shape, S, collaborates to decide the best embedding in that
region that satisfies a given tolerance constraint.

General-purpose computing on graphics processing units
(GPGPU) using CUDA

Today, GPUs are not only used for graphical computations but
are also used for general purpose computations that require
high performance with their many-core architectures. The release
of CUDA by NVidia in November 2006 enabled utilization of gra-
phics processing units for general purpose computations in a
more suitable way by providing a programming model that
enables utilization of data parallelism through the abstractions
for thread groups, shared memory, and thread synchronization
(Owens et al., 2008). For this purpose, it is defined as a set of
extensions to C programming language. In order to utilize this
high computational power, a serial algorithm needs to be rede-
signed both with respect to its computational flow and data access
patterns.

Modern GPUs are composed of an array of streaming multi-
processors (SMs) that are composed of many parallel executing
hardware threads that execute a given sequential GPU program,
which is called as a kernel, in parallel. The scheduling and man-
agement of these threads are made by SMs using a single instruc-
tion multiple thread (SIMT) architecture. So, each thread in an
SM executes the same instruction at a particular time while
executing a given kernel.

The CUDA programming model enables utilization of this
architecture by instantiating executions of the codes written as
sequential programs for one thread on many hardware threads
in an SM of GPU, simultaneously. Hence, it is a scalable parallel
programming model. In this model, every kernel is defined to
solve a particular computational problem for one thread; yet
each thread actually solves only a part of the problem. A given
problem is solved by executing many blocks of concurrently
executing threads.

A template utilization of CUDA programming model can be
summarized as follows: (1) allocate necessary memory space on
the device, that is, the GPU global memory; (2) copy the neces-
sary data that need to be operated on to the GPU memory; (3)
launch the GPU kernel(s); and (4) copy the computed results,
that is, modified data, back to the CPU memory.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 257

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700052X

We provide a detailed discussion about our GPU-based PSO
solution in the section “GPU–PSO-based part embedding
approach”.

Related work

Since the seminal work of Stiny and Gips on shape grammars
(Stiny & Gips, 1972), many researchers have focused on compu-
tational solutions that support shape grammar formalism. The
crucial part of such a solution is the ability to support embedding
emergent shapes during the generation process.

Earlier solutions to the embedding problem are primarily
based on Krishnamurti’s maximal element-based representation
(Krishnamurti, 1980, 1981; Krishnamurti & Giraud, 1986;
Chase, 1989; Krishnamurti, 1992; Tapia, 1999; Chau et al.,
2004; Jowers, 2006; McCormack & Cagan, 2006; Jowers & Earl,
2010). Most of these approaches detect emergent parts by repre-
senting shapes with some presumed analytical or geometric
abstractions, that is, straight lines, parametric curves, rectilinear
shapes, etc. The maximal representation is primarily based on
the representation of shape parts as parts of some maximal ele-
ments. These maximal elements are called as carriers. The parts
on these carriers are represented with their boundaries. For effi-
cient part searches, the parts on the same carriers are sorted
according to their boundaries and utilized as a list. Tapia
(1999) developed one of the best implementations of this idea,
with a graphical user interface (GUI) that works with rectilinear
shapes.

In addition to the researches that solve the embedding prob-
lem with straight lines and rectilinear shapes, some approaches
propose solutions for the curved shapes. Chau et al. (2004)
employed a similar method to the maximal element-based
approaches to implement embedding shapes with circular arcs.
Circular arcs share similar embedding properties with the straight
line segments in their parametric representations; hence, their
work adapts maximal representation of lines to circular arcs.
McCormack and Cagan (2006) provided a parametric sub-shape
recognition solution that decomposes shapes into a hierarchy of
sub-shapes ordered by their decreasing restrictions. They repre-
sent the curved shapes with their underlying straight line repre-
sentations (i.e., structure). Hence, matching is performed in two
stages; first, the straight line representations of the shapes are
matched, and then a validation is performed that matches curved
parts.

Jowers extended the embedding approach for straight line ele-
ments to work with free-form curves (Jowers, 2006). His represen-
tation defines shape elements using their carriers, boundaries, and
the types of curves. According to this solution, binary shape
operations can be performed only if the two shape elements are
of the same type and only if they lie on the same carrier.
Jowers and Earl (2010) then extended this approach to a more
generic form for curved shapes such that, shapes need not be rep-
resented with distinct points and parts, but are compared using
their intrinsic properties of their parametric curve segments,
that is, the curvature. They used differential geometry to compare
parametric curve segments, where the intrinsic properties of cur-
vature are defined with respect to the curve arclength. They
defined a formal representation to compare curved shapes accord-
ing to the types of the constituent curve segments. However, such
a representation may provide a limitation on the generic nature of
emergent part detection in a way similar to the representations of
shapes using a set of predefined shape primitives.

Shape grammar formalism provides necessary algebras and
Boolean operations defined in these algebras to perform visual
computation with shapes, regardless of their representation and
creation history of their constituent parts. This is the challenge
that needs to be taken by the approaches that solve the emergent
part detection problem. Although analytical approaches provide
solutions for different types of shapes, there are two primary com-
putational problems in practice while working with drawings/
sketches: (1) we need to know the analytical forms of constituting
parts of shapes before operating, and (2) we need to compute the
parameters of the analytical forms from drawings accurately.
Knowing the first one does not make the computational problem
of parameter estimation easy, especially in a system where a shape
constantly changes using different shape rules. These challenges
push the practical solutions to define some restrictions on the
types of shapes that a shape grammar implementation supports,
that is, working only with rectilinear shapes. Hence, a generic
solution needs to treat shapes indifferently from the parametric
types of their constituent parts.

Recently, new approaches have been proposed as a result of
this need and provide alternative solutions to the emergent sub-
shape detection problem by considering shapes as continuous
entities. In these approaches, shapes are treated as they are and
unlike the previous approaches, assumptions on the analytic
forms of shapes are avoided. Although each one uses different
representations for shapes and different approaches for part
embeddings, they all treat shapes that contain straight lines, circu-
lar arcs, or free-form curves or all, equally such that the shape
representations become invariant to constituting analytical
forms. They either use some registration points as vertices to
shape graphs to resolve structure and perform part matchings
for graph edges (Keles et al., 2010; Grasl & Economou, 2013);
use pixel-based representation and image processing algorithms
(Jowers et al., 2010); use weighted representation of shapes and
evolutionary optimization algorithms (Keles et al., 2012; Keles,
2015). In all these approaches, shapes are not treated as a compo-
sition of a set of pre-defined analytical forms but treated as con-
tinuous entities.

Keles et al. (2010) represented shapes using over-complete
graphs and determined part embeddings using the attributes of
the graph nodes which define the geometric relations among
the nodes in the spatial domain. Another graph-based solution
is proposed by Grasl and Economou (2013) that supports emerg-
ent shape detection and parametric rule applications. They per-
form parametric part matchings by defining restrictions on
shape topologies. Both approaches need to modify the corre-
sponding graphs when a rule application modifies a shape. This
is the main disadvantage of using graph-based representations.
The difficulty is on this dual interpretation and switching back
and forth between the shape and its representational form.

Jowers et al. (2010) provide an image-based solution to the
emergent part detection problem where image pixels are treated
as points in two-dimensional (2D) space and the Houssdorff dis-
tance is used as a metric to define part embeddings. They need to
define manual thresholds to accept embeddings according to the
given shapes.

Keles et al. (2012) proposed a solution that considers the part
embedding problem as an optimization problem using weighted
representations of given shapes. Shapes are transformed to a
weighted domain using a partial differential equation-based diffu-
sion function. The optimization in this domain is implemented
with a genetic algorithm. The cost function in the proposed

258 Hacer Yalim Keles

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700052X

implementation is defined as the sum of the squared distances
between a part of an initial shape and the rule shape.

The two primary disadvantages of using an optimization-
based method are the convergence time and local minima prob-
lem. In order to solve both problems, Keles (2015) proposed a
parallel genetic algorithm-based implementation of the embed-
ding problem using multiple CPU cores simultaneously. Being
the preliminary work of this research, Keles (2015) depicted
that running multiple sub-populations concurrently in the search
space not only optimizes the execution time, but also reduces the
probability of getting stuck in local minima, that is, an undesired
solution, considerably. We improved that work by changing the
utilized optimization algorithm, since determining the selected
evolutionary parameters in a genetic algorithm, that is, mutation
rate, cross-over rate, Elite count, etc. is more complicated.

There are other evolutionary approaches that are utilized with
shape grammars (Ang et al., 2006; Lee & Tang, 2009; O’Neil et al.,
2010); however, these approaches focus on solving the discovery
of visual rule sequences to obtain a particular design with a
given grammar. The evolution of the derivation, which is the
product itself, is evaluated with a cost function to assess its useful-
ness. Determining the sequence of rules that generates a feasible
production is out of the scope of this study.

In this work, inspired by the results of our preliminary work,
we designed and implemented a massively parallel optimization
solution to the part embedding problem. For optimization, we
adapted a PSO-based method to minimize the same cost function
that we used in Keles (2015). As in Keles (2015), this work also
provides multiple simultaneous embeddings in the shape genera-
tion process, if desired. Moreover, simultaneous evaluation of the
multiple results and selection of the best of best results among dif-
ferent sub-populations help locating the global solution. The con-
tribution of this work to the existing literature is twofold: (1)
adaptation of the particle swarm optimization algorithm in part
embedding problem is studied for the first time and (2) imple-
mentation of a parallel PSO-based solution on GPU architectures
in this problem domain is studied for the first time.

The PSO approach for part embedding problem

In this section, we discuss the fitness function and our data rep-
resentation that we use in our optimization method. We also pro-
vide pseudocodes for our PSO-based part embedding solution.

In our implementation, the initial shape in a shape rule is rep-
resented as an image and a smoothed distance field is generated
from this image using an exponential form of the standard distance
function that we specified in our preliminary work (Keles, 2015).
On the other hand, the rule shapes are represented as images.
Hence, the U12 representation of the LHS shape is aligned with
the W22 representation of the initial shape. In the W22 representa-
tion of the initial shape, the weights are zero on the shape pixels
and they increase exponentially away from them. When an LHS
rule shape is searched within the boundaries of this weighted rep-
resentation, each candidate alignment of the LHS shape via differ-
ent transformations produces a cost value that represents the total
distance of the alignment to the initial shape. In a successful
embedding scenario, an LHS shape is perfectly aligned with a
part of the initial shape. In this case, the sum of the distance values
corresponding to the alignment pixels of the distance field is almost
zero. This is the cost of the alignment and we want to minimize this
cost in order to optimize our search parameters. Therefore, our
fitness function is actually the inverse of the cost function.

In our computational framework, an LHS shape is initially
placed at the center of the initial shape. We then consider candi-
date similarity transformations of the LHS shape in the initial
shape’s local coordinates while embedding it to a part of the
initial shape. Therefore, we search for four parameters: (1) scale
(s), (2) rotation angle (θ), (3) translation on the x-axis (Tx), and
(4) translation on the y-axis (Ty). Transformation of an LHS
shape in the discrete domain corresponds to computing the trans-
formed positions of each pixel in the shape. For this purpose, the
following transformation matrix is utilized.

s ∗ cos(u) −s ∗ sin(u) Tx

s ∗ sin(u) s ∗ cos(u) Ty

0 0 1

⎡
⎣

⎤
⎦. (3)

When the pixel positions of an LHS shape are represented in
homogeneous coordinates in column major order, multiplication
of the matrix given in (3) with these coordinates generates the
corresponding coordinates of the transformed LHS shape. These
transformed coordinates are utilized to compute the cost of this
alignment on the distance field that is generated from the initial
shape. All the distance values that correspond to the transformed
coordinates are accumulated to compute the total alignment cost.
The PSO system is designed to optimize these four transforma-
tions parameters; namely the scale, rotation angle, and two trans-
lations. Hence, the search space is 4D. The pseudocode of our
embedding PSO system is given below.As it is seen from the pseu-
docode given in Listing 1, it is a simple algorithm that can be
implemented easily when the cost function is defined properly.
We defined the cost function as in our previous work, which is
proved to be effective in this domain (Keles, 2015).

Although the implementation is easy when the number of par-
ticles in a swarm is increased, that is, to more than 50, computa-
tion of the cost function for a candidate takes a considerable
amount of time and makes utilization of this method impractical
for designers. In order to solve this problem, we designed a
GPU-based solution to part embeddings.

GPU–PSO-based part embedding approach

Given an initial image, we want a crowded swarm that is uni-
formly distributed over the image plane to explore the search
space for part embeddings. However, when we increase the num-
ber of particles all around the image, computation of the fitness
function takes a considerable amount of time, which makes this
method unattractive for the users. Therefore, we designed a search
space that allows simultaneous parallel executions of multiple
swarms effectively.

The proposed approach is based on the partitioning of the
image space into regular grids so that a number of swarms can
work independently on different parts of the image plane. We
can realize this by efficiently using parallel hardware threads in
the GPU architecture. Then the resultant solutions, which come
simultaneously from different parts of the image domain, can
be evaluated on the CPU side.

For this purpose, we divide the image space in x- and
y-directions into a set of non-overlapping tiles; and assign a num-
ber of GPU threads to work as particles in each tile (Fig. 1).

In our solution, we consider all the threads in a tile as a swarm.
Each swarm searches the corresponding image region within the
tile boundaries. Hence, our approach considers the embedding

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 259

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700052X

problem as a multi-swarm optimization problem. The best solu-
tion in each tile can be compared with the other tiles to determine
a global best solution; alternatively, each of these best solutions
may be utilized to accept for simultaneous multiple embeddings.
This depends on the user preferences; yet the solution is flexible
enough to serve for both options. In addition, multiple-swarm
design helps the approach to locate the global minimum almost
all the time efficiently, due to the particles’ dense and uniform
distribution in each tile. This reduces the probability of skipping
a region in searches, which is the main cause of stucking in local
optima in optimization-based algorithms.

GPU–PSO design

Except for the initialization of the position (X) and velocity (V)
parameters, the entire embedding operation takes place on the
GPU part using four CUDA kernels. Similar to the given pseudo-
code of the PSO algorithm (Listing 1), Xi’s are initialized ran-
domly, considering the parameter constraints, for each tile. In
the default implementation, we only impose a translation con-
straint on Xi’s parameters. The boundary coordinates of each
tile are computed depending on the number of preferred sub-
divisions and hence particles’ spatial movements are restricted
within these coordinates. The user can also define desired scale
constraints during the searches. During the PSO iterations on a
GPU, these constraints are constantly checked for position
updates and satisfied by clamping the values when they exceed
the defined limits. In the following iterations, velocity and posi-
tion updates regulate the behavior of such particles towards the
inner parts of the tile. After the initialization, all the parameters
are copied from CPU memory to device memory, that is, GPU
memory.

We also need to copy the weighted representation of the initial
shape to the device memory. As we stated in the section “The PSO
approach for part embedding problem”, we need this representa-
tion to compute the fitness values for candidate solutions. The
pre-computed distance field can be considered as an image as
well. We copy this image to the device texture memory. The
advantage of using texture memory is that texture memory is
cached on-chip and these caches are optimized for memory access
patterns that depict spatial locality. This is the case in the part
embedding problem. When we compute a transformation, the
accessed parts of the texture will be in close proximity to each

Listing 1. Pseudocode of the PSO-based embedding algorithm

1: Input: P = number of particles, N = number of iterations,
2: Constraints = the min-max ranges for each dimension
3: Output: gbxd // best solution
4: For each particle i [P
5: x0i, d:= Init(Constraints) // initialize d-dim positions
6: v0i, d:= 0 // initialize particle velocities to zero
7: bx0i, d:= x0i, d // initialize the best solution for i’th particle
8: bcx0i := Cost(bx0i) // evaluate cost function
9: End For
10:t := 0
11:Do
12: (gbxtd, gbcxt):= find best solution among (bxti, d, bcxti), for all i [P
13:
14: For each particle i [P
15: vt+1

i, d := UpdateVelocity(vti, d, xti, d,bx
t
i, d,gbx

t
d) // Eqn(1)

16: xt+1
i, d := UpdatePosition(xti, d,v

t+1
i, d) // Eqn(2)

17: Clamp(xt+1
i, d , Constraints) // keep the solutions in the range

18: cx := Cost(xt+1
i, d)

19: if cx is less than bcxti // a better solution
20: bcxt+1

i := cx
21: bxt+1

i, d := xt+1
i, d

22: End if
23: End For
24:
25: t := t + 1
26: while t is less than N
27: return gbxd := gbxt−1

d

Fig. 1. Partitioning of the image space into a set of tiles is depicted. The points ran-
domly assigned to each tile represent particles in the swarm.

260 Hacer Yalim Keles

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700052X

other, considering the LHS shape as a whole, composed usually of
connected pixel groups.

As it is shown in the flowchart in Figure 2, we implemented
four kernel functions for GPU–PSO computations. For a prede-
fined number of iterations, the four kernels are launched one by
one. Note that the Evaluate Fitness kernel may be called multiple
times in a sequence depending on the number of pixels in the
LHS shape. Before explaining the kernels in detail let us define
some parameters so that the kernels can be understood easily.
Assume that we partitioned the initial shape into N tiles, hence

we define N blocks, and each tile is assigned to T particles,
hence we create T number of threads. The value of N depends
on the preferred partitioning of the image tile, that is, parametric,
hence can be changed by the user using the GUI. For example, for
the partitioning shown in Figure 1, N is 16. We set the number of
particles, T, in our experiments to 1024. Note that, the total num-
ber of particles searching the image space is N × 1024. This value
is intentionally kept very high to assess the time performance of
GPU–PSO implementation for the worst-case scenario where a
lot of particles are utilized.

Fig. 2. Flowchart of the GPU–PSO-based embedding implementation. Data flow is also depicted on the same chart.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 261

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700052X

The implementation of CUDA kernels

In this section, we provide the pseudocodes of the CUDA Kernels
and explain their design issues. During the execution of the GPU–
PSO algorithm, the data are kept in the device memory all the
time, and kernels are called one by one for a number of iterations.

GPU kernel, update X (Listing 2)
This is a small kernel, which reads X, V, and Constraints vectors
and updates X using Eq. (2).

GPU kernel, evaluate fitness (Listing 3)
Evaluation of the fitness of a particle requires: (1) transformation
of the LHS shape pixels to the initial shape’s local coordinates, (2)
accumulation of the distance values using these transformed coor-
dinates from the distance field, which is stored in the device tex-
ture memory. We need to compute this kernel for each and every
particle in the population, that is, N × T particles. Therefore, this
kernel is called for N × T number of blocks, each of which is actu-
ally computing the alignment cost of a particular particle. We
used 1024 threads; each is responsible for the transformation of
a specific LHS pixel coordinate to the initial image local

coordinates and computation of the alignment cost. All the
threads in a block store this cost value in the block’s shared mem-
ory and when they all complete the computation; the content of
the shared memory is summed up by the reduction technique1

to obtain the total cost. The result is then accumulated in the cor-
responding block position of the output fitness array. This array
resides in the device global memory. Notice that the accumula-
tion, instead of storing, is necessary here since we may need
this kernel more than once, depending on the number of pixels
on the LHS shape. For example, if the number of pixels is around
3000, then this kernel is called three times.

GPU kernel, select best X (Listing 4)
This kernel updates the best fitness of each particle and selects the
block-wise best fitness value and position. As we stated previously,
we consider each block as an independent swarm and assume that
they all make local, that is, block-wise, analysis. Hence, the best

Listing 2. Pseudocode of the GPU kernel: update X in CUDA

1: procedure UpdateX (X = particle positions, V = particle velocities, Constraints = Parameter constraints)
2: // note that There are 4 parameters and
3: // 8 Parameter Constraints are defined per block
4: P := 4; // number of parameters
5: pidx := threadIdx.x + (blockIdx.x* blockDim.x); // particle index
6:
7: For each parameter i
8: // update positions
9: X[pidx*P+i] := X[pidx*P+i] + V[pidx*P+i];
10: clamp the updated values according to the Constraints
11: End For

Listing 3. Pseudocode of the GPU Kernel: Evaluate Fitness in CUDA

1: procedure EvalFitness(OutFitnessVal = computed fitness values, X = particle positions, texRef = Weighted
representation of the initial shape, loop_count)
2: pidx := threadIdx.x; // current pixel, to be transformed
3: xidx := blockIdx.x; // transformation hypothesis for this block
4: // shared buffer to keep the accumulated alignment cost.
5: accumResult[pidx] := 0.0f;
6: synchronize threads
7:
8: Initialize OutFitnessVal[xidx] to 0.0f
9: load the coordinate point for current thread from the LHS image
10: load the transformation parameters from X
11: u,v := compute the candidate transformation
12: cost := tex2D(texRef, u, v); // this is the alignment cost
13: accumResult[pidx] := cost;
14: synchronize threads
15:
16: // cost is stored in shared memory, accumResult, for this block
17: cost_xids := reduce the cost sum in accumResult
18: Accumulate cost_xids to OutFitnessVal[xidx]

1Reduction is an optimization technique that is used widely on GPUs to compute an
operation, such as addition, multiplication, min/max determination etc., amongst a
given set of numbers in parallel (Harris, 2007).

262 Hacer Yalim Keles

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700052X

fitness in a block is considered as a global best. The global best is
also obtained efficiently by the reduction technique.

GPU kernel, update V (Listing 5)
Update of particle velocities is performed according to Eq. (1).
This kernel needs to access the best parameters of a particle
(FBestX) and global best parameters of the block (BlockBestX).
These values are already stored in the device global memory
when this kernel is called (see the flowchart in Fig. 2).

Results and discussion

In order to evaluate the performance of the proposed approach,
we provide a set of redundant rule applications to some randomly
selected initial shapes that we usually come across in the shape
grammar literature, that is, kettle sketches (Lim et al., 2008;

Jowers et al., 2010), a square grid, and a circular grid. In order
to test our algorithm, we implemented an application with a
GUI (Fig. 3). The initial shape is loaded into the top-left window
of the GUI, the LHS rule shape is loaded on the bottom-left and
the RHS rule shape is loaded on the bottom-right windows. The
control panel, which is used to run the algorithm and provide
some options to the user, is placed in the right column of the
GUI. This application accepts images scanned from sketches or
any image generated by image-editing tools as bitmaps. The
sketches are converted to bitmaps simply by thresholding. Since
the GUI is developed as a proof of concept, it accepts one rule
at a time. When the user wants to apply another rule, it is loaded
using the controls provided on the right panel.

All the experiments presented here are performed on a
machine that has Intel i7-4790K CPU and NVidia GeForce
GTX 970 graphics card. The GPU implementation is run by

Listing 4. Pseudocode of the GPU kernel: select best X in CUDA

1: procedure SelectBestX(FBest = best fitness values of each particle, FBestX = best positions (candidate
transformation) of each particle, FBlockBestX = best position of each swarm, currFVals = current fitness
values of each particle, currFValsX = current proposed position)
2: // each block contains individuals in a specific region of the image
3: //accumResult[ACCUM_N]: shared buffer; fitness vals for each block
4: //accumResultIdx[ACCUM_N]: shared buffer; keeps indexes
5: xidx := threadIdx.x + (blockIdx.x*blockDim.x); // current particle
6: t := threadIdx.x; // particle idx in a block
7: If currFVals[xidx] is better than FBest[xidx]
8: // update FBest[xidx] and FBestX[xidx]
9: FBest[xidx] := currFVals[xidx];
10: FBestX[xidx] := currFValsX[xidx] // for all params
11: End If
12:// store best params for each particle
13: accumResult[t] := FBest[xidx];
14: accumResultIdx[t] := xidx;
15: synchronize threads
16:
17: bestidx := reduce the values in accumResult to obtain best fitness of each block
18: synchronize threads
19:
20: //store the best global params (per block) into the device memory
21: FBlockBestX[blockIdx.x] := FBestX[bestidx] // for each parameter

Listing 5. Pseudocode of the GPU kernel: update V in CUDA

1: procedure UpdateV(V = particle velocities, X = particle positions, FBestX = Best positions (candidate
solution) of each particle, BlockBestX = Best position of each swarm)
2: P := 4; // number of parameters
3: pidx := threadIdx.x + (blockIdx.x*blockDim.x);//particle idx
4: gidx := blockIdx.x*P; // block best params start idx
5:
6: For each parameter i
7: // rn1 and rn2: random numbers between [0.0, 1.0],
8: // generated using curand_uniform function
9: lpidx := pidx*P+i;
10: V[lpidx] := V[lpidx] +
11: rn1*(FBestX[lpidx]-X[lpidx]) +
12: rn2*(BlockBestX[g_idx+i]-X[lpidx]);
13: End For

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 263

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700052X

setting the block number as the number of tiles and the number of
threads in each block as the number of particles in each tile. In our
initial tests, we used 1024 particles that are divided evenly for each
block. Hence, if there are 16 tiles, that is, a 4 × 4 grid setting, each
tile contains a swarm of 64 particles, that is, each block contains
64 threads. In our current CPU architecture, there are four CPU
cores that can be run simultaneously as discussed in Keles, 2015.
Therefore, we performed the tests with 2 × 2 tiles setting to com-
pare our single thread CPU, parallel CPU and GPU implementa-
tions (Table 1). When we set the number of particles fixed, the
effect of tile configuration to the execution times is minimized.

In this table, we provide the performance values of the alterna-
tive implementations of the proposed method for the three con-
sidered examples. All three implementations, namely the serial
CPU implementation, parallel CPU implementation and GPU
implementation are based on the proposed PSO algorithm. The
speedup of GPU-based implementation over CPU is between
133× and 190×; whereas over parallel CPU implementation is
between 45× and 73×.

We also tested our GPU-based solution with a number of dif-
ferent tile configurations using a fixed number of particles in each
tile, that is, 1024 (Table 2). All the tests are performed conserva-
tively for 50 iterations, although accurate alignments are usually
obtained around iteration 10. The execution times show that

even if the LHS is large, as in the four kettles test, embedding is
done in <1 s up to around 100 tiles. For relatively small LHS
shapes, a GPU-based solution runs less than 1 s even for 256
tiles, for 50 iterations.

As we state in the previous sections, when we increase the
number of particles in each swarm, design space exploration is
more effective, yet computationally more expensive. Hence,
there is a tradeoff between the alignment accuracy and execution
time. We configured a number of additional experiments, in
which we keep the number of particles in each tile fixed, hence
increased the total number of particles in searches, to evaluate
the performance of the GPU solution. In this case, the tiling con-
figuration has a direct effect on the execution times. For example,
if the search space is split into 16 tiles, there are 16 × 1024 parti-
cles in total. For this test, we used 2 × 2 tiles again so that we can
compare the performances of the GPU implementation with our
parallel CPU implementation. The results are depicted in Table 3.
In the serial and parallel CPU implementations, the execution
time increases around four times, compared with the fixed num-
ber of particles (Table 1). On the other hand, the increase in GPU
implementation is on the average 1.8 times. These experiments
show that our GPU-based implementation provides a significant
amount of improvement in the execution times.

Fig. 3. Left: sample initial shape and rule shapes. Right: Application GUI that shows the embedding second rule in the kettle shape.

Table 2. Executions times of the CUDA-based PSO implementation for a
number of different tile configurations using a total of 1024 particles during
searches.

2 × 2 Tiles
(sec)

4 × 4 Tiles
(sec)

8 × 8 Tiles
(sec)

16 × 16 Tiles
(sec)

Four kettles (Fig. 4-rule 2) 0.14 0.22 0.51 1.59

Square grid (Fig. 7-rule 1) 0.06 0.07 0.11 0.29

Circles grid (Fig. 8-rule 1) 0.07 0.09 0.19 0.51

Table 1. Execution times of the three PSO implementations using a total of
1024 particles during searches (2 × 2 tiles).

CPU (sec) Parallel CPU (sec) GPU (sec)

Four kettles (Fig. 4-rule 2) 26.72 10.25 0.14

Square grid (Fig. 7-rule 1) 8.01 3.45 0.06

Circles grid (Fig. 8-rule 1) 10.89 3.18 0.07

The performance of the GPU based PSO algorithm is depicted with bold lines.

264 Hacer Yalim Keles

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700052X

In Figure 4, we present sample derivations using the kettle sketch
depicted in Figure 3. The rules are applied in the given order. In
order to keep the results compact, we present the resultant images,
instead of repeating theGUI in each figure. On the first row, one ket-
tle is used as the initial shape. The search space is represented as one
tile and a swarmwith 1024 particles searches the entire image region
in cooperation to get the best candidate embedding. The embedded
parts are depicted in bold lines, while the original image is shown
slightly faded. The initial shape in the second row is composed of
four identical kettle sketches. In this representation, the search
space is representedwith four tiles, each one contains 1024 particles,
and best of each tile is selected as the embedded parts. The algo-
rithm is run for 50 iterations for ten times in a row and the particles
of each swarm were able to find the expected sub-shape alignments
for each trial. The embedding computation takes around 0.36 s in
our test machine, although there are 4096 number of particles
that are computing the costly fitness function concurrently for 50
times. We believe that these results show the potential benefits of
GPU–PSO-based parallel implementation both with respect to
the quality of the computed transformation and execution time.

Alternatively, in order to maximize the utilization of the GPU
resources, the image space in the first row is also divided into a
number of tiles (i.e., 16 and 32), where multiple swarms search
the space simultaneously. Each of them returns its best candi-
dates; yet only some of them, which are located close to the solu-
tion region, can return a cost value close to zero. The other
solutions are eliminated by checking the embedding cost for
each particle. Proper alignments would result in lower costs. For
example, the result depicted in Figure 5 is obtained by dividing
the image into 16 × 16 tiles; each tile is searched by 1024 particles
simultaneously (i.e., a total of 262,144 particles). There are 256
candidate solutions at the end of the run. In all these solutions,
only two particles return an alignment with a cost <5% alignment
error. Figure 5 depicts these two embeddings on the same image;
that is, why the embedded sub-shape is thicker than the searched

LHS shape. Embedding both candidates actually highlights the
embedded part more, rather than corrupting it.

The performance of the algorithm is similar when nine kettles
were used as the initial shape (Fig. 6). In this example, image
space is divided into 3 × 3 tiles, and best candidate for each
block is depicted simultaneously.

Extensive searching of an image, which contains repeated pat-
terns, results in different embedding options. Some of these
results may inspire the user by depicting many simultaneous divi-
sions and fusions and hence many context switches one after
another. It enables many reinterpretations of the parts of a
shape in a short time. This is found to be an important feature
for creative design exploration (Goldschmidth, 1991). In our
application, we allow the user to select a subset of these candidate
embeddings to be applied to the initial shape. A sample derivation
that is generated this way is depicted in Figure 7. There are six
pairs of images in this figure; each pair contains an embedding
result and the result of the selected rule application. The pairs
are ordered from left to right and top to bottom. The resultant
visual computation is depicted on the bottom right of the figure.

The reduced computation time enables running multiple
swarms concurrently. Therefore, the user of this system, for exam-
ple, a designer, may freely explore the design space very effec-
tively. To support design space exploration in a more flexible
way, the system may also be configured to accept partial part
embeddings as candidate results, if it is returned as a solution
by a swarm. Such a system has a potential for depicting part align-
ments with an implicit/hidden structure in the initial shape,

Table 3. Execution times of the three PSO implementations using 1024 particles
in each block (2 × 2 tiles)

CPU (sec) Parallel CPU (sec) GPU (sec)

Four kettles (Fig. 4-rule 2) 104.0 34.5 0.36

Square grid (Fig. 7-rule 1) 30.9 11.8 0.08

Circles grid (Fig. 8-rule 1) 42.6 11.4 0.12

The performance of the GPU based PSO algorithm is depicted with bold lines.

Fig. 5. Two candidate embeddings are shown together.

Fig. 4. Sample derivations using the kettle shape.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 265

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700052X

which may help “seeing” in ambiguities. The reason is that when
we decrease the accuracy of alignments, we increase the potential
of ambiguous interpretations. A sample derivation that is gener-
ated this way is depicted in Figure 8.

The initial shape is composed of overlapping, hence interacting,
circles in a structured fashion. Our system allows utilization of the
ambiguity, caused by these interactions, by revealing hidden struc-
tures in every step of these rule applications. The depicted derivation

Fig. 7. An initial shape and two shape rules are depicted on the top row. Embeddings and rule applications are shown in this order for the random application of
two rules six times.

Fig. 6. The parallel embeddings of the nine kettle shapes.

266 Hacer Yalim Keles

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700052X

is performed by representing the image space as 2 × 2 tiles; hence, we
see at most four results in each run. Sometimes, the user selects only
particular embeddings, that is, the bottom left image.

Conclusion

In this work, we proposed a novel working implementation of a
GPU-based PSO algorithm to efficiently solve the emergent part
embedding problem for shape grammars. The research presented
here shows that the PSO method is effective for locating sub-
shapes in an initial shape. In order to increase the possibility of
locating all valid parts, we divide the search space into multiple
tiles and initiated searches in each tile with separate swarms.
The cost of alignment optimization by multiple swarms is high;
to overcome this, we configured parallel searches using the pro-
grammable graphics hardware. As a result, the computation
time is reduced significantly with the concurrency provided by
the GPU architecture and CUDA programming environment.
Moreover, the alignment accuracy is increased substantially by
competing particles operating in smaller search regions.

Although the experimental results show desirable part embed-
dings, determination of the tile configuration and an optimum
number of particles in each tile still requires further investigation.
In this research, we set these parameters manually to observe and

validate the effectiveness of the searches for time and alignment
accuracy. Since the results are promising in both perspectives,
we can focus on improving and automating the best configuration
settings of parallel PSO approach, depending on the design space
characteristics in the future.

Acknowledgments. We thank the anonymous reviewers for their construc-
tive comments. This research is funded by Ankara University (Scientific
Research Projects Grant 15H0443009).

References

AngMC, Chau CM, Mckay A and de Pennington A (2006) Combining evolu-
tionary algorithms and shape grammars to generate branded product design.
In Design Computing and Cognition ’06, Springer, Netherlands, Dordrecht,
pp. 521–539.

Chase SC (1989) Shape and shape grammars: from mathematical model to
computer implementation. Environment and Planning B: Planning and
Design 16, 215–242.

Chau HH, Chen X, McKay A and Pennington A (2004) Evaluation of a 3D
shape grammar implementation. In First International Conference on
Design Computing and Cognition, Cambridge, MA.

Flemming U (1987) More than the sum of parts: the grammar of queen Anne
houses. Environment and Planning B 14, 323–350.

Goldschmidt G (1991) The dialectics of sketching. Design Studies, 4, 123–143.

Fig. 8. A sample derivation that is run with a more flexible embedding configuration.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 267

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700052X

Grasl T and Economou A (2013) From topologies to shapes: parametric shape
grammars implemented by graphs. Environment and Planning B: Planning
and Design 40(5), 905–922.

Harris M (2007) “Optimizing Parallel Reduction in CUDA”, presentation
packaged with CUDA Toolkit, NVIDIA Corporation.

Jowers I (2006) Computation with curved shapes: towards freeform shape gen-
eration in design. Ph.D. Thesis in the Department of Design and
Innovation, The Open University, UK.

Jowers I and Earl C (2010) The construction of curved shapes. Environment
and Planning B: Planning and Design 37, 42–58.

Jowers I, Hogg DC, McKay A, Chau HH and Pennington A (2010) Shape
detection with vision: implementing shape grammars in conceptual design.
Research in Engineering Design 21(4), 235–247.

Keles HY (2015) Embedding parts in sketches using a parallel evolutionary
approach. In 33’rd Education and Research in Computer Aided
Architectural Design in Europe (eCAADe) Conference, Vienna, Austria.

Keles HY, Ozkar M and Tarı S (2010) Embedding shapes without
predefined parts. Environment and Planning B: Planning and Design 37
(4), 664–681.

Keles HY, Ozkar M and Tarı S (2012) Weighted shapes for embedding per-
ceived wholes. Environment and Planning B: Planning and Design 39(2),
360–375.

Krishnamurti R (1980) The arithmetic of shapes. Environment and Planning
B: Planning and Design 7, 463–484.

Krishnamurti R (1981) The construction of shapes. Environment and
Planning B: Planning and Design 8, 5–40.

Krishnamurti R (1992) The maximal representation of a shape. Environment
and Planning B: Planning and Design 19, 267–288.

Krishnamurti R and Giraud C (1986) Towards a shape editor: the implemen-
tation of a shape generation system. Environment and Planning B: Planning
and Design 13, 391–404.

Lee HC and Tang MX (2009) Evolving product form designs using parametric
shape grammars integrated with genetic programming. Artificial Intelligence
for Engineering Design, Analysis and Manufacturing 23, 131–158.

Lim S, Prats M, Jowers I, Chase S, Garner S and McKay A (2008) Shape
exploration in design: formalizing and supporting a transformational
process. International Journal of Architectural Computing 6(4), 415–
433.

McCormack JP and Cagan J (2006) Curve-based shape matching: supporting
designer’s hierarchies through parametric shape recognition of arbitrary
geometry. Environment and Planning B: Planning and Design 33, 523–540.

McCormack JP, Cagan J and Vogel CM (2004) Speaking the Buick language:
capturing, understanding and exploring brand identity with shape gram-
mars. Design Studies 25, 1–29.

O’Neill M, McDermott J, Swafford JM, Byrne J, Hemberg E, Brabazon A,
Shotton E, McNally C and Hemberg M (2010) Evolutionary design
using grammatical evolution and shape grammars: designing a shelter.
International Journal of Design Engineering 3, 1–23.

Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC (2008)
GPU Computing. Proceedings of the IEEE 96, 879–899.

Poli R (2008) Analysis of the publications on the applications of particle swarm
optimization. Journal of Artificial Evolution and Applications 2008, 1–10.

Pugliese M and Cagan J (2002) Capturing a rebel: modeling the Harley–
Davidson brand through a motorcycle shape grammar. Research in
Engineering Design 13, 139–156.

Stiny G (1980) Introduction to shapes and shape grammars. Environment and
Planning B: Planning and Design 7, 343–351.

Stiny G (2006) Shape: Talking about Seeing and Doing. Cambridge, MA: MIT
Press.

Stiny G and Gips J (1972) Shape grammars and the generative Specification of
painting and sculpture. In Proceedings of IFIP Congress 1971. Amsterdam:
North-Holland Publishing Co.

Stiny G and Mitchell WJ (1978) The Palladian grammar. Environment and
Planning B: Planning and Design 5, 5–18.

Tapia M (1999) A visual implementation of a shape grammar system.
Environment and Planning B: Planning and Design 26, 59–74.

Hacer Yalim Keles received her BS, MS, and PhD degrees in Computer
Engineering Department from Middle East Technical University, Turkey,
in 2002, 2005, and 2010, respectively. From 2000 to 2007 she worked as a
researcher and senior researcher at the Scientific and Technological
Research Council of Turkey. She is currently working as an Assistant
Professor in the Computer Engineering Department of Ankara University.
Her research interests primarily lie in shape grammars, computer vision, pat-
tern recognition, and general purpose programming on GPUs.

268 Hacer Yalim Keles

https://doi.org/10.1017/S089006041700052X Published online by Cambridge University Press

https://doi.org/10.1017/S089006041700052X

	Embedding parts in shape grammars using a parallel particle swarm optimization method on graphics processing units
	Introduction
	The PSO algorithm
	General-purpose computing on graphics processing units (GPGPU) using CUDA

	Related work
	The PSO approach for part embedding problem
	GPU--PSO-based part embedding approach
	GPU--PSO design
	The implementation of CUDA kernels
	GPU kernel, update X (Listing 2)
	GPU kernel, evaluate fitness (Listing 3)
	GPU kernel, select best X (Listing 4)
	GPU kernel, update V (Listing 5)

	Results and discussion
	Conclusion
	Acknowledgments
	References

