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Invariants and Coinvariants of the
Symmetric Group in Noncommuting
Variables

Nantel Bergeron, Christophe Reutenauer, Mercedes Rosas,
and Mike Zabrocki

Abstract. We introduce a natural Hopf algebra structure on the space of noncommutative symmetric

functions. The bases for this algebra are indexed by set partitions. We show that there exists a nat-

ural inclusion of the Hopf algebra of noncommutative symmetric functions in this larger space. We

also consider this algebra as a subspace of noncommutative polynomials and use it to understand the

structure of the spaces of harmonics and coinvariants with respect to this collection of noncommuta-

tive polynomials and conclude two analogues of Chevalley’s theorem in the noncommutative setting.

1 Introduction

In the commutative world there are two constructions of the Hopf algebra of sym-

metric functions: the more classical one as the invariants of the symmetric group on
the polynomial ring, the other as the commutative free algebra generated by one el-
ement in each degree (e.g., [Ma] vs. [Sa]). These two constructions lead to the same
algebra.

In the noncommutative world, these perspectives lead to two very different alge-
bras: a free algebra with one generator at each degree, NSym (see [T]), and the alge-
bra of noncommutative invariant polynomials, NCSym [BC, RS, W]. These algebras
are clearly not isomorphic since the index set of a homogeneous basis of NSym is the

set of compositions, with dimension 2n−1 at degree n, and NCSym is indexed by the
set partitions, with dimension given by the Bell numbers for each graded component.

An obvious problem that was first raised in the work of [RS] was to understand the

connection between the two algebras. In this paper we present an incredibly beautiful
relationship between them. We address this problem by first introducing a natural
Hopf algebra structure on the space of noncommutative polynomial invariants. The
structure imposed by having both a product and a coproduct is much richer than

just the algebra structure alone. This places so many conditions on a Hopf algebra
embedding from NSym to NCSym that there is only one solution given a set of
generators of Sym .

In the development of the proof that the embedding is injective, we compute the
determinant of a combinatorial matrix indexed by compositions. It turns out that
the determinant is expressed as a product of the number of permutations with no
global descents. This is a surprising fact, since these numbers also happen to be the
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number of free generators/primitives of the Malvenuto–Reutenauer Hopf algebra of
permutations (see [PR, Co]).

In Section 5 we digress and mention several other relationships between NCSym

and NSym by examining some quotients and embeddings of the algebra structure. In
particular, we show that as a graded algebra, NCSym in two variables is isomorphic
to NSym .

An interesting next step that is natural to consider, once one understands NCSym

as the space of invariants, is to try to understand the coinvariants. An important clas-
sical theorem of Chevalley [Ch], and later extended to other finite reflection groups
by Steinberg [St], says that the ring of polynomials is isomorphic as an Sn-module to

the tensor product of its invariants times its coinvariants. We next ask ourselves if it
is possible to obtain a version of Chevalley’s theorem in the noncommutative setting.

The first step in answering this question is to determine what is meant by the
coinvariants in noncommutative variables. In the commutative case, there are two

characterizations of this Sn-module. First, they can be defined as the solution space
of the system of equations obtained by looking at symmetric functions without con-
stant term as differential operators, e.g., p2(∂) f = ∇ f = 0. The solution space is
called the harmonics of the symmetric group. The coinvariants can also be defined

as the quotient of Q[X]/〈Sym+
n〉, where 〈Sym+

n 〉 is the ideal generated by all sym-
metric functions without constant term. Indeed, in the commutative case these two
definitions lead to isomorphic spaces.

In the noncommutative setting we have to be more careful. There are several

possibilities for the meaning of a noncommutative derivative. First, we study the
harmonics of the symmetric group with regard to the Hausdorff derivative [R], the
differential operator that acts on letters by ∂ab = δa,b, and that satisfies Leibniz rule,
∂a(pq) = (∂a p) · q + p · (∂aq). We define the harmonics of the symmetric group in

the noncommutative setting as the space of noncommutative polynomial solutions of
the system of equations obtained by looking at symmetric functions without constant
term as differential operators with regard to the Hausdorff derivative. We denote this
space by MHarn.

In Section 6, we give an elegant characterization of MHarn in terms of the free
Lie algebra. We show that this space satisfies a mixed commutative/noncommutative
version of Chevalley’s theorem. More precisely, Q〈Xn〉 ≃ MHarn ⊗Symn where
Symn is the space of symmetric polynomials in n variables.

In Section 8, we look at the coinvariants of the symmetric group in noncommu-
tative variables, defined as the left quotient Q〈Xn〉/〈NCSym+

n〉 where 〈NCSym+
n〉

is the left ideal generated by the symmetric functions in NCSymn without constant
term. We obtain the Hilbert series of this space in terms of the number of Wolf ’s

irreducible generators [W] which we present in a precise combinatorial manner in
Section 7.

In addition, we show that Chevalley’s theorem holds in the noncommutative set-
ting. More explicitly, we show that

Q〈Xn〉 ≃ Q〈Xn〉/〈NCSym+
n〉 ⊗ NCSymn .

This is done by observing that the coinvariants of the symmetric group that we just
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described are isomorphic to the space of harmonic polynomials with respect to the
twisted derivative defined by da(bv) = δa,bv.

2 Combinatorics of Set Partitions

A set partition A of m is a collection of nonempty subsets A1,A2, . . . ,Ak ⊆ [m] =

{1, 2, . . . ,m} such that Ai ∩ A j = {} for i 6= j and A1 ∪ A2 ∪ · · · ∪ Ak = [m]. We
will indicate that A is a set partition of m by the notation A ⊢ [m]. The subsets Ai are
called the parts of the set partition and the number of nonempty parts is referred to
as the length and will be denoted by ℓ(A).

There is a natural mapping from set partitions to integer partitions given by
λ(A) = (|A1|, |A2|, . . . , |Ak|), where we assume that the blocks of the set partition
have been listed in weakly decreasing order of size. If λ is a partition of n (integer
partition), we shall use ℓ(λ) to refer to the length (the number of parts) of the parti-

tion and |λ| will be the size of the partition (the sum of the parts), while ni(λ) shall
refer to the number of parts of the partition of size i. As a convention, lowercase
Greek letters λ, µ and ν will be used to represent integer partitions while uppercase
letters A,B and C will be used for set partitions.

When writing examples of set partitions, we will use the notation that the sets of
numbers are separated by the symbol “.” and the entire set partition is enclosed by
“{” and “}”. For example, {{1, 3, 5}, {2}, {4}} will be represented in our notation by
{135.2.4}. Although there is no order on the parts of a set partition, we will impose

an implied order such that the parts are arranged by increasing value of the smallest
element in the subset. This implied order will allow us to reference the i-th block of
the set partition without ambiguity.

The number of set partitions is well known and given by the Bell numbers. These

can be defined by the recurrence B0 = 1 and Bn =
∑n−1

i=0

(
n−1

i

)
Bi . The next seven

Bell numbers are 1, 2, 5, 15, 52, 203, 877.
For a set S = {s1, s2, . . . , sk} of integers si and an integer n we will use the notation

S + n to represent the set {s1 + n, s2 + n, . . . , sk + n}. For A ⊢ [m] and B ⊢ [r] set

partitions with parts Ai , 1 ≤ i ≤ ℓ(A) and Bi , 1 ≤ i ≤ ℓ(B), respectively, we will set
A|B = {A1,A2, . . . ,Aℓ(A),B1 + m,B2 + m, . . . ,Bℓ(B) + m}, therefore A|B ⊢ [m + r]
and this operation is noncommutatative in the sense that, in general, A|B 6= B|A.

There is a natural lattice structure on the set partitions. For A,B ⊢ [n] we will

define A ≤ B if for each Ai ∈ A there is a B j ∈ B such that Ai ⊆ B j (otherwise
stated, that A is finer than B). The set of set partitions of [n] with this order forms
a poset with rank function given by n − k where k is the length of the set partition.
This poset has minimal element {1.2. · · · .n} and maximal element {12 · · ·n}. The

largest element smaller than both A and B will be denoted

A ∧ B = {Ai ∩ B j : 1 ≤ i ≤ ℓ(A), 1 ≤ j ≤ ℓ(B)},

while the smallest element larger than A and B is denoted A ∨ B.

Example 2.1 Let A = {138.24.5.67} and B = {1.238.4567}. Then A and B are
not comparable in the inclusion order on set partitions. We calculate that A ∧ B =

{1.2.38.4.5.67} and A ∨ B = {12345678}.
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When a collection of disjoint sets of positive integers is not a set partition because
the union of the parts is not [n] for some n, we may lower the values in the sets so

that they keep their relative values and the resulting collection is a set partition. This
operation is referred to as the “standardization” of a set of disjoint sets A, and the
resulting set partition will be denoted st(A).

Now for A ⊢ [m] and S ⊆ {1, 2, . . . , ℓ(A)} with S = {s1, s2, . . . , sk}, we define
AS = st({As1

,As2
, . . . ,Ask

}) which will be a set partition of |As1
| + |As2

| + · · · + |Ask
|.

By convention A{} is the empty set partition.

Example 2.2 If A = {1368.2.4.579}, then

A{1} = {1234} A{2} = {1} A{3} = {1}

A{4} = {123} A{1,2} = {1345.2} A{1,3} = {1245.3}

A{1,4} = {1246.357} A{2,3} = {1.2} A{2,4} = {1.234}

A{3,4} = {1.234} A{1,2,3} = {1356.2.4} A{1,2,4} = {1357.2.468}

A{1,3,4} = {1257.3.468} A{2,3,4} = {1.2.345} A{1,2,3,4} = {1368.2.4.579}.

3 The Hopf Algebra of Noncommutative Symmetric Functions

Consider for a fixed n > 0 the space Q〈Xn〉 consisting of the linear span of monomi-
als in noncommuting variables Xn = {x1, x2, . . . , xn}. There is a natural Sn action
on the basis elements defined by σ(xi1

xi2
· · · xik

) = xσ(i1)xσ(i2) · · · xσ(ik). We can there-

fore consider Q〈Xn〉 as both an Sn module and an algebra where the product of two
monomials is given by the concatenation of the words.

Let xi1
xi2

· · · xim
be a monomial in the space Q〈Xn〉. We will say that the type of

this monomial is the set partition A ⊢ [m] with the property that ia = ib if and only
if a and b are in the same block of the set partition. This set partition will be denoted
as ∇(i1, i2, . . . , im) = A. Notice that the length of ∇(i1, i2, . . . , im) will be equal to
the number of different values which appear in (i1, i2, . . . , im).

The vector space NCSymn will be defined as the linear span of the elements

(3.1) mA[Xn] =

∑

∇(i1,i2,...,im)=A

xi1
xi2

· · · xim

for A ⊢ [m], where the sum is over all sequences with 1 ≤ i j ≤ n. For the
empty set partition, we define by convention m{}[Xn] = 1. If ℓ(A) > n, we must
have that mA[Xn] = 0. Since for any permutation σ ∈ Sn, ∇(i1, i2, . . . , im) =

∇(σ(i1), σ(i2), . . . , σ(im)), we also know σmA[Xn] = mA[Xn].

Example 3.1 We list below the monomial basis elements corresponding to set par-
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titions of size 3 in a polynomial algebra with four variables:

m{123}[X4] = x1x1x1 + x2x2x2 + x3x3x3 + x4x4x4,

m{12.3}[X4] = x1x1x2 + x1x1x3 + x1x1x4 + x2x2x1 + x2x2x3 + x2x2x4

+ x3x3x1 + x3x3x2 + x3x3x4 + x4x4x1 + x2
4x2 + x2

4x3,

m{13.2}[X4] = x1x2x1 + x1x3x1 + x1x4x1 + x2x1x2 + x2x3x2 + x2x4x2

+ x3x1x3 + x3x2x3 + x3x4x3 + x4x1x4 + x4x2x4 + x4x3x4,

m{23.1}[X4] = x2x1x1 + x3x1x1 + x4x1x1 + x1x2x2 + x3x2x2 + x4x2x2

+ x1x3x3 + x2x3x3 + x4x3x3 + x1x4x4 + x2x4x4 + x3x4x4,

m{1.2.3}[X4] =

∑

σ∈S4

xσ(1)xσ(2)xσ(3).

Now let NCSymn be the space of polynomials of Q〈Xn〉 which are invariant under
the action of Sn. For any element f ∈ NCSymn, if

∇(i1, i2, . . . , ik) = ∇( j1, j2, . . . , jk),

then the coefficient of xi1
xi2

· · · xim
in f is equal to the coefficient of x j1

x j2
· · · x jk

in f . We therefore conclude that {mA[Xn]}ℓ(A)≤n is a basis for NCSymn. In ad-
dition NCSymn has a ring structure where the product in this ring is defined as the

natural extension of the ring structure on Q〈Xn〉.
Our motivation for the following definitions is to extend this algebra to a Hopf

algebra. Define the vector space NCSymn
= L{mA}A⊢[n] where here we use mA as a

symbol representing a basis element for A a set partition and the symbol L indicates

the linear span of this set of elements. Now NCSym =
⊕

n≥0 NCSymn is the space
of noncommutative symmetric functions (as opposed to the space of noncommuta-
tive symmetric polynomials). The degree of a basis element mA is given by |A|. This
graded vector space is endowed with a product map µ : NCSymn ⊗NCSymm −→
NCSymm+n which is defined on the basis elements mA ⊗ mB by

µ(mA ⊗ mB) :=
∑

C⊢[m+n]

mC ,

where the sum is over all set partitions C of m+n such that C∧({1 . . .n}|{1 . . .m}) =

(A|B).

Example 3.2 We list below an example of a product in the the algebra of NCSym .

µ(m{13.2.4} ⊗ m{1.23}) = m{13.2.4.5.67} + m{135.2.4.67} + m{13.25.4.67} + m{13.2.45.67}

+ m{1367.2.4.5} + m{13.267.4.5} + m{13.2.467.5} + m{135.267.4}

+ m{135.2.467} + m{1367.25.45} + m{13.25.467} + m{1367.2.45}

+ m{13.267.45}.
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This definition is chosen to agree with the product map defined on mA[Xn], since
we have the following proposition.

Proposition 3.3 Let A ⊢ [r] and B ⊢ [m]. Then we have

mA[Xn]mB[Xn] =

∑

C

mC [Xn]

where the sum is over all set partitions C of r + m such that C ∧ ({1 . . . r}|{1 . . .m}) =

(A|B) with ℓ(C) ≤ n.

Proof The coefficient of any monomial xi1
xi2

· · · xim+r
in the expression of

mA[Xn]mB[Xn]

as a product in Q〈Xn〉 will have the value either 1 or 0. As we are working in Q〈Xn〉,
we must have that ℓ(∇(i1, . . . , ir+m)) ≤ n. We note that the coefficient will be 1 if

and only if ∇(i1, . . . , ir) = A and ∇(ir+1, . . . , ir+m) = B. This will hold if and only if
∇(i1, . . . , ir+m)∩{1, . . . , r} = A and ∇(i1, . . . , ir+m)∩{r+1, . . . , r+m} = B+r. This
is exactly equivalent to the condition that ∇(i1, . . . ir+m) ∧ ({1 . . . r}|{1 . . .m}) =

A|B.

We can conclude that for any n, the map φn : NCSym → NCSymn is a surjective
algebra homomorphism, where φn is defined as the linear function whose action on
the basis is given by φn(mA) = mA[Xn] for ℓ(A) ≤ n, and φn(mA) = 0 otherwise.

We state this precisely in the following corollary.

Corollary 3.4 The map φn is an algebra morphism. That is,

φn(µ(mA ⊗ mB)) = φn(mA)φn(mB).

Even though it is defined as an abstract algebra, NCSym can be realized as the for-
mal series of bounded degree in an infinite number of variables which are invariant

under all permutations of the indices. The map φn is the specialization of this algebra
so that the variables xn+1 = xn+2 = xn+3 = · · · = 0. In fact we have,

(3.2) φn(F) = 0 for all n ≥ 1 if and only if F = 0.

The algebra NCSym was originally considered by Wolf [W] in extending the fun-
damental theorem of symmetric functions to this algebra and later by Bergman and
Cohn [BC]. More recently Rosas and Sagan [RS] considered this space as defining

natural bases which generalize the bases of the symmetric functions. Our point of
departure is to consider NCSym as a Hopf algebra so that we may examine it from
another perspective.

To this end we define a coproduct map

∆ : NCSymn →

n⊕

k=0

NCSymk ⊗NCSymn−k
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as

(3.3) ∆(mA) =

∑

S⊆[ℓ(A)]

mAS
⊗ mASc ,

where Sc
= [ℓ(A)]\S. This coproduct is defined so that it agrees with the substitution

of two mutually commuting alphabets in the variables in the expression in equation

(3.1). This is more precisely expressed in Proposition 3.6.

Example 3.5 We compute an example of this coproduct to make it clearer. In gen-
eral, there will be 2ℓ(A) terms in the expression ∆(mA).

∆(m{15.24.37.6}) = m{15.24.37.6} ⊗ 1 + m{15.24.36} ⊗ m{1} + (m{13.25.4} + m{13.25.4}

+ m{14.23.5}) ⊗ m{12} + 2m{13.24} ⊗ m{12.3} + m{14.23} ⊗ m{13.2}

+ 2m{12.3} ⊗ m{13.24} + m{13.2} ⊗ m{14.23} + m{12} ⊗ (m{13.25.4}

+ m{13.25.4} + m{14.23.5}) + m{1} ⊗ m{15.24.36} + 1 ⊗ m{15.24.37.6}.

Assume that the Xn and Yn are two sets of variables such that each set is non-

commutative, but we have the relations xi y j = y jxi . Let φX
n (mA) = mA[Xn] and

φY
n (mA) = mA[Yn], as before.

Proposition 3.6 For F ∈ NCSym , we have ψ ◦ (φX
n ⊗ φY

n ) ◦ ∆(F) = F[Xn,Yn],

where F[Xn,Yn] represents the noncommutative symmetric polynomial in 2n variables

with the additional relations mentioned above, and

ψ( f [Xn,Yn] ⊗ g[Xn,Yn]) = f [Xn,Yn]g[Xn,Yn].

Proof It suffices to prove this relation for the mA basis. We know then that

(3.4) ψ ◦ (φX
n ⊗ φY

n ) ◦ ∆(mA) =

∑

S⊆[ℓ(A)]

mAS
[Xn]mASc [Yn] .

Now in addition

mA[Xn,Yn] =

∑

∇(i1,i2,...,ir)=A

xi1
xi2

· · · xir
,

where the sum is over the sequences with 1 ≤ ik ≤ 2n and we identify xi+n = yi for
1 ≤ i ≤ n. Now for each part of A, Ai = {k1, k2, . . . , k|Ai |}, has ik1

= ik2
= · · · =

ik|Ai |
. For a fixed S ⊆ [ℓ(A)], consider only the terms with the property that if i ∈ S

and ik ∈ Ai , then 1 ≤ ik ≤ n and if i /∈ S, then all ik ∈ Ai will have n + 1 ≤ ik ≤ 2n

(that is xik
= yik−n). If we restrict the sum to these sequences, then we have

∑

∇(i1,i2,...,ir )=A
ik<n+1 ⇐⇒ ik∈Ai ,i∈S

xi1
xi2

· · · xir
= mAS

[Xn]mASc [Yn].
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This implies

mA[Xn,Yn] =

∑

S⊆[ℓ(A)]

∑

∇(i1,i2,...,ir)=A
ik<n+1 ⇐⇒ ik∈Ai ,i∈S

xi1
xi2

· · · xir

=

∑

S⊆[ℓ(A)]

mAS
[Xn]mASc [Yn]

and this is equal to (3.4).

In order to have a Hopf algebra, we need, in addition, that the coproduct map is
an algebra morphism in the following sense.

Proposition 3.7 Let τ (F ⊗ G) = G ⊗ F with F,G ∈ NCSym . Then

∆ ◦ µ = (µ⊗ µ) ◦ (id⊗τ ⊗ id) ◦ (∆ ⊗ ∆).

Proof We will use the previous results and (3.2) to derive this identity. First we note
that for F,G ∈ NCSym and for any n we have by Proposition 3.3 and Proposition 3.6,

ψ ◦ (φX
n ⊗ φY

n ) ◦ ∆ ◦ µ(F ⊗ G) = F[Xn,Yn]G[Xn,Yn].

The fact that the Xn and Yn variables commute implies that ψ ◦ τ ◦ (φX
n ⊗ φY

n ) =

ψ ◦ (φX
n ⊗ φY

n ).
Therefore,

ψ ◦ (φX
n ⊗ φY

n ) ◦ (µ⊗ µ) ◦ (id⊗τ ⊗ id) ◦ (∆ ⊗ ∆)(mA ⊗ mB)

=

∑

S⊆[ℓ(A)]

∑

T⊆[ℓ(B)]

mAS
[Xn]mBT

[Xn]mASc [Yn]mBTc [Yn]

=

∑

S⊆[ℓ(A)]

mAS
[Xn]mASc [Yn]

∑

T⊆[ℓ(B)]

mBT
[Xn]mBTc [Yn]

= mA[Xn,Yn]mB[Xn,Yn].

Now, since it suffices to prove the relation for the mA basis, and by Proposition 3.6

ψ ◦ (φX
n ⊗ φY

n ) ◦ ∆ ◦ µ = ψ ◦ (φX
n ⊗ φY

n ) ◦ (µ⊗ µ) ◦ (id⊗τ ⊗ id) ◦ (∆ ⊗ ∆)

holds for any n, we must have that equation (3.7) holds on NCSym .

4 Hopf Algebras

One of the main reasons for looking at this space as a Hopf algebra is that we are
able to put it in context with other well-known Hopf algebras. To this end, we intro-
duce the space of symmetric functions Sym and another algebra referred to as the
noncommutative symmetric functions NSym .
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For each graded bialgebra H, we will have an implicit unit map uH sending the 1
in the field to the degree 0 basis element (also denoted by 1) and the counit εH which

sends all terms of degree greater than 0 to 0 and the 1 of the algebra to the 1 of our
base field (in the following algebras the field will always be Q).

In each of the following bialgebras, the product µH and coproduct ∆
H respect

the grading in the sense that µH : Hn ⊗ Hm → Hn+m and ∆
H : Hn →

⊕n
k=0 Hk ⊗

Hn−k, where the vector spaces Hn are the homogeneous components of the algebra

of degree n. It is a well-known result that every graded bialgebra where the degree 0
component has dimension 1 is a Hopf algebra, i.e., is a connected Hopf algebra [Sw].

We will not give the antipode explicitly on the algebras, but it is defined uniquely
for any graded, connected Hopf algebra by the defining relation:

µH ◦ (id⊗SH) ◦ ∆
H

= uH ◦ εH.

To compute the action of the antipode on an element f of homogeneous degree

greater than 0, we write ∆
H( f ) = 1 ⊗ f +

∑
i g ′

i ⊗ g ′ ′
i . It then follows that

0 = µH ◦ (id⊗SH) ◦ ∆
H( f ) = SH( f ) +

∑

i

µH(g ′
i ⊗, S

H(g ′ ′
i ))

which can be used to solve for SH( f ), while the SH(g ′ ′
i ) will be of smaller degree and

can be computed recursively.

From this discussion and Proposition 3.7 we can conclude the following.

Theorem 4.1 NCSym is a Hopf algebra.

4.1 Symmetric Functions

We will define the algebra of symmetric functions Sym as the free commutative
algebra generated by elements hk for k ≥ 1. The product on this algebra is the

standard commutative product with a grading defined by deg(hk) = k. Following
convention we will denote Symn

= L{hλ}λ⊢n with hλ := hλ1
hλ2

· · · hλℓ(λ)
and set

Sym =
⊕

n≥0 Symn
= Q[h1, h2, h3, . . .].

We define the graded dual algebra Sym∗ by letting the graded component
of degree n be the vector space (Sym∗)n

= L{mλ}λ⊢n and space is Sym∗
=⊕

n≥0(Sym∗)n, where the basis mλ is dual to hλ in the dual pairing. It arises that
Sym∗ ≃ Sym . In fact, hn =

∑
λ⊢n mλ. The product and coproduct on the mλ basis

can be determined from the product and coproduct on the h-basis. It develops that

mλmµ =

∑

ν

rνλµmν ,

where the coefficients rνλµ are the number of pairs of vectors (α, β) such that α ∼ λ,
β ∼ µ such that αi + βi = νi for all i and α ∼ λ means that the sequence of values
of α rearranges to the partition λ.
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The coproduct is given by the formulas

∆
Sym (hn) =

n∑

k=0

hk ⊗ hn−k and ∆
Sym∗

(mλ) =

∑

µ⊎ν=λ

mµ ⊗ mν

where µ ⊎ ν = λ in the sum denotes that µ and ν are partitions satisfying ni(ν) +

ni(µ) = ni(λ) for all i ≥ 1.

4.2 The Other Hopf Algebra of Noncommutative Symmetric Functions

There exists a noncommutative algebra which can be seen as an analogue to Sym

(whereas NCSym =
⊕

n≥0 L{mA}A⊢[n] is more clearly an analogue of Sym∗
=⊕

n≥0 L{mλ}λ⊢n), see for example [T]. NSym is defined as the noncommutative
polynomial ring generated freely by elements hk for k ≥ 1 where deg(hk) = k. For

a composition α of n (denoted α |= n) we set hα := hα1
hα2

· · · hαℓ(α)
and NSymn

=

L{hα}α|=n. The graded algebra is then defined as

NSym =
⊕
n≥0

NSymn
= Q〈h1, h2, h3, . . .〉.

The compositions of n are in bijection with the subsets of {1, 2, . . . , n − 1} by the

correspondence D(α) = {α1, α1 + α2, . . . , α1 + α2 + · · · + αℓ(α)−1} (the descent set
of the composition α) and hence dim(NSymn) = 2n−1.

The product on NSym is defined so that

µNSym : NSymn ⊗NSymm → NSymn+m

as the free noncommutative product µNSym(hα ⊗ hβ) = hαhβ .

The coproduct is given by the following formula and the fact that ∆
NSym is an

algebra homomorphism: ∆
NSym(hn) =

∑n
k=0 hk ⊗ hn−k.

There is a significant difference between the dimensions of the two Hopf algebras

of noncommutative symmetric functions. The dimension of NCSymn is the number
of set partitions of [n], and for n > 2 this is larger than the dimension of NSymn,
which is the number of compositions of n or dim(NSymn) = 2n−1.

4.3 Relations between Sym, NSym, and NCSym

The symbol χ will represent the “forgetful” map which sends elements of a non-
commutative algebra to the commutative counterpart (the map which “forgets” that
expressions are noncommutative). In our case we will begin by considering two such

maps, the first of which is χ : NSym → Sym given by the linear homomorphism
χ(hα) = hα1

hα2
· · · hαℓ(α)

.

Proposition 4.2 The linear map χ : NSym → Sym where χ(hα) = hα is a Hopf

morphism.

https://doi.org/10.4153/CJM-2008-013-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-013-4


276 N. Bergeron, C. Reutenauer, M. Rosas, and M. Zabrocki

Proof This is easy to check on the hα basis, since χ(hαhβ) = hαhβ and

(χ⊗ χ) ◦ ∆
NSym(hn) =

n∑

k=0

hk ⊗ hn−k = ∆
Sym ◦ χ(hn).

Since both χ and ∆ are algebra homomorphisms, this relation will hold as well on
basis elements hα.

In addition we will use the same symbol χ to represent the map χ : NCSym →
Sym ∼= Sym∗ given by the linear homomorphism χ(mA) = λ(A)! mλ(A), where we
denote λ!

= (
∏

i≥1 ni(λ)!). By contrast, we will use λ! = λ1!λ2! · · ·λℓ(λ)! (these

conventions use the notation introduced in Section 2 and are consistent with the no-
tation of [RS]). This map is inspired by the expression mA[Xn], since if the variables
were allowed to commute, then the expression is equal to λ(A)! mλ(A)[Xn], where for
a partition λ, mλ[Xn] =

∑
α∼λ xα is the monomial symmetric polynomial.

Proposition 4.3 The linear map χ : NCSym → Sym where χ(mA) = λ(A)! mλ(A)

is a Hopf morphism.

Proof As we remarked above, χ : NCSym → Sym is the restriction of the map

χ : Q〈x1, x2, x3, . . .〉 −→ Q[x1, x2, x3, . . .]

which is the map that forgets the variables are noncommutative. Clearly this map is

an algebra morphism. It follows that the restriction of this map to NCSym and Sym

will also be an algebra morphism.
In addition, we need to show that (χ ⊗ χ) ◦ ∆

NCSym
= ∆

Sym ◦ χ. We remark
that for a given µ the number of subsets S such that λ(AS) = µ and λ(ASc ) = ν with

ni(µ) + ni(ν) = ni(λ(A)) is equal to λ(A)!

µ! ν! . Therefore

(χ⊗ χ) ◦ ∆
NCSym(mA) =

∑

S⊆[ℓ(A)]

λ(AS)! λ(ASc )! mλ(AS) ⊗ mλ(ASc )

=

∑

µ⊎ν=λ(A)

µ! ν !
( λ(A)!

µ! ν !

)
mµ ⊗ mν

=

∑

µ⊎ν=λ(A)

λ(A)! mµ ⊗ mν

= ∆
Sym(λ(A)! mλ(A)) = ∆

Sym(χ(mA)).

Therefore χ is also a morphism with respect to the coproduct and hence is a Hopf
morphism.

There is a natural pullback ofχ : NCSym → Sym which was considered by Rosas
and Sagan [RS]. They called the linear homomorphism χ̃ : Sym → NCSym defined
by χ̃(mλ) =

λ!
|λ|!

∑
λ(A)=λ mA the lifting map and showed that it has the following

property.
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Proposition 4.4 ([RS, Proposition 4.1]) χ ◦ χ̃ is the identity map on Sym .

For our purposes, the important property of the lifting map will be from the fol-

lowing proposition.

Proposition 4.5 ∆
NCSym ◦ χ̃ = (χ̃⊗ χ̃) ◦ ∆

Sym .

Proof Equation (3.3) allows us to deduce this property by direct computation.

∆
NCSym(χ̃(mλ)) =

λ!

|λ|!

∑

C :λ(C)=λ

∆
NCSym(mC )

=
λ!

|λ|!

∑

C :λ(C)=λ

∑

S⊆[ℓ(λ)]

mCS
⊗ mCSc

=
λ!

|λ|!

∑

C :λ(C)=λ

∑

µ⊎ν=λ

∑

S⊆[ℓ(λ)]
λ(CS)=µ

mCS
⊗ mCSc

=
λ!

|λ|!

∑

C :λ(C)=λ

∑

µ⊎ν=λ

∑

A:λ(A)=µ
B:λ(B)=ν

∑

S⊆[ℓ(λ)]
CS=A
CSc =B

mA ⊗ mB.

Now to complete the computation we exchange the sums and notice that for fixed set

partitions A and B, there are exactly
(|C|
|A|

)
different set partitions C such that there is

an S ⊆ [ℓ(C)] with CS = A and CSc = B.

∆
NCSym (χ̃(mλ) =

λ!

|λ|!

∑

µ⊎ν=λ

∑

A:λ(A)=µ
B:λ(B)=ν

(
|λ|

|µ|

)
mA ⊗ mB

=

∑

µ⊎ν=λ

∑

A:λ(A)=µ
B:λ(B)=ν

λ!

|λ|!

|λ|!

|µ|! |ν|!
mA ⊗ mB

=

∑

µ⊎ν=λ

∑

A:λ(A)=µ
B:λ(B)=ν

λ!

|µ|! |ν|!
mA ⊗ mB.

Now since µ ⊎ ν = λ, then we have that λ! = µ! ν! and hence the equation above is
equal to

∆
NCSym(χ̃(mλ) =

∑

µ⊎ν=λ

χ̃(mµ) ⊗ χ̃(mν) = (χ̃⊗ χ̃) ◦ ∆
Sym (mλ).

This last proposition leads us to identifying an important relationship between
the algebra of NSym of noncommutative symmetric functions and the algebra of
NCSym .
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Theorem 4.6 Define I : NSym → NCSym by the action

I(hn) = χ̃(hn) =

∑

A⊢[n]

λ(A)!

n!
mA

and extend this as an algebra morphism by defining for the linear basis hα,

I(hα) = χ̃(hα1
)χ̃(hα2

) · · · χ̃(hαℓ(α)
).

Then I is a Hopf morphism and I an inclusion map so that NSym is a natural subalge-

bra of NCSym .

Before proceeding with the proof of the theorem we introduce an important
lemma. For each α a composition of n, we have a canonical corresponding set parti-
tion,

(4.1) A(α) = {1, 2, . . . , α1 .α1 + 1, . . . , α1 +α2 . · · · .α1 + · · ·+αℓ(α)−1, . . . , |α|}.

Lemma 4.7 The coefficient of mA(β) in I(hα) is equal to (α ∪ β)!/α! where α ∪ β is

the composition with descent set equal to D(α) ∪ D(β) and α! = α1!α2! · · ·αℓ(α)! for

a composition α.

Proof Note that I(hα) = I(hα̃)I(hαℓ(α)
) where α̃ = (α1, α2, . . . , αℓ(α)−1). Let B̃ =

A(β)
∣∣
{1,...,|α̃|}

, which corresponds to a composition β̃ and B̄ = st(A(β)
∣∣
{|α̃|+1,...,|α|})

).

When mA(β) arises as the coefficient of I(hα), the coefficient will be the coefficient of
mB̃ in I(hα̃) times the coefficient of mB̄ in I(hαℓ(α)

). By induction on the number of
parts of α we can assume that this coefficient is

(α̃ ∪ β̃)!

α̃!

λ(B̄)!

αℓ(α)!
=

(α̃ ∪ β̃)!λ(B̄)!

α!
=

(α ∪ β)!

α!
.

Proof of Theorem 4.6 Proposition 4.5 says that

∆
NCSym(I(hn)) = (χ̃⊗ χ̃) ◦ ∆

Sym(hn) =

n∑

k=0

χ̃(hk) ⊗ χ̃(hn−k)

= (I ⊗ I) ◦ ∆
NSym(hn).

Clearly we have that I(hαhβ) = I(hα)I(hβ), so we know that I is a Hopf morphism.
In order to show that I is an inclusion of NSym into NCSym , we need to show that
the generators of NSym , I(hn), are algebraically independent. This is equivalent to

showing that the elements I(hα1
)I(hα2

) · · · I(hαℓ(α)
) are linearly independent.

In order to show that I(hα) are linearly independent, it suffices to examine the
minor of coefficients of mA(β) in I(hα) and show that the determinant of this minor
is nonzero. The coefficient of mA(β) in I(hα) is (α ∪ β)!/α! by Lemma 4.7.

The proof follows by showing that the 2n−1 × 2n−1 determinant of the matrix

[(α ∪ β)! ]α,β|=n is nonzero. In Theorem 4.8 below we compute that this matrix has
a nonzero determinant (in fact we compute it explicitly) and hence conclude that I is
an inclusion.
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Writing the first few matrices and their determinants gives a clue on how to show
that they have a nonzero determinants. Begin by ordering the compositions in lex-

icographic order so that (11) < (2), (111) < (12) < (21) < (3), and (1111) <
(112) < (121) < (13) < (211) < (22) < (31) < (4) are the order of the indices of
the matrices below.

∣∣∣∣
1 1

1 2

∣∣∣∣ = 1

∣∣∣∣∣∣∣∣

1 1 1 1
1 2 1 2

1 1 2 2
1 2 2 6

∣∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1 1 1 1
1 2 1 2 1 2 1 2
1 1 2 2 1 1 2 2
1 2 2 6 1 2 2 6

1 1 1 1 2 2 2 2
1 2 1 2 2 4 2 4
1 1 2 2 2 2 6 6
1 2 2 6 2 4 6 24

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 117 = 32 · 13.

The next two values of this determinant are

2915757 = 35 · 132 · 71 and 458552896435013913 = 312 · 135 · 712 · 461.

Although the sequence of determinants is not familiar, the factors which appear in

it are. The sequence 1, 1, 3, 13, 71, 461, . . . is found in the OEIS [Sl] as sequence
A003319, the permutations of n with no global descents. A global descent is a value
k such that πi > π j for all i ≤ k and j > k. The number of these can be calculated
with the recurrence a1 = 1 and for n > 1,

an = n! −

n−1∑

i=1

ai(n − i)! .

The permutations with no global descents arise in the Hopf algebra of permutations
due to Malvenuto–Reutenauer as the primitive elements/generators of the Hopf alge-
bra [PR]. This begs an explanation of why these numbers should arise in this compu-

tation. The expression for the determinant is summarized in the following theorem.

Theorem 4.8

(4.2) det |(α ∪ β)! |α,β|=n =
∏
α|=n

ℓ(α)∏
i=1

aαi
,

where an is the number of permutations of n with no global descents.

One could prove this theorem by induction using the identity for a block matrix
(see [Mo])

det

[
A B

C D

]
= det(A) det(D −CA−1B)

and the recursive structure of the matrix [(α∪β)! ]α,β|=n. Instead, we present a proof
suggested to us by A. Lascoux1 which makes the formula of Theorem 4.8 transparent.

1Private communication.
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Proof It is easy to see that any permutation can be decomposed uniquely as a con-
catenation of permutations with no global descents. For example, 465312 can be

decomposed as 465 · 3 · 12.
Using this decomposition, we associate a composition with any permutation. For

instance, to 465 · 3 · 12 we associate the composition (3, 1, 2). Therefore, the set of all
permutations in Sn can be partitioned into a disjoint union of subclasses indexed by

compositions.
In addition, the cardinality of the class indexed by α |= n is aα := aα1

aα2
· · · aαℓ(α)

,
where a j is the number of permutations with no global descents.

We conclude that ∑

α|=n

aα = n! .

An analogous statement holds for any Young subgroup of Sn. To wit,

∑

β≤α

aβ = α!

with ≤ representing the standard refinement order on compositions. Now our nota-

tion for α ∪ β means that for η ≤ (α ∪ β) we have η ≤ α and η ≤ β. So using the
notation ([true]) = 1 and ([ f alse]) = 0 we have the expression

(α ∪ β)! =

∑

η≤(α∪β)

aη =

∑

η

([η ≤ α])([η ≤ β]) aη.

Let D represent the 2n−1 × 2n−1 diagonal matrix indexed by compositions η with
aη the entries along the diagonal. Also let C = [([β ≤ α])]α,β|=n, a matrix with
entry 1 at (α, β) if β ≤ α and 0 otherwise. Now look at the (α, β) entry in the
product CDCT . This will be

∑

δ,θ|=n

([δ ≤ α])([δ = θ]) aθ ([θ ≤ β]) =

∑

δ|=n

([δ ≤ α])([δ ≤ β]) aδ = (α ∪ β)! .

We conclude that CDCT
= [(α ∪ β)! ]α,β|=n and hence det[(α ∪ β)! ]α,β|=n = det D

(since det C = 1). This demonstrates (4.2) since D is a diagonal matrix with deter-

minant equal to
∏

α|=n aα.

Remark 4.9 NSym is also generated by the analogues of the power and elementary
bases of the symmetric functions and there are formulas for expressing these into

the h-basis. The map I is not unique since we could just as easily lift these other
bases (as we defined I(hn) = χ̃(hn)) and by direct computation one can verify that
these other inclusions of NSym in NCSym are not the same as I. For example,
e3 = h3 − h12 − h21 + h111 and

I(e3) =
1
6

m{1.2.3} + 1
3

m{13.2} −
1
6

m{12.3} −
1
6

m{1.23} 6= χ̃(e3) =
1
6

m{1.2.3}.

Therefore the inclusion that we present here is not unique, but once we fix a set of
generators of Sym there is a natural embedding of NSym to NCSym .
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We conclude this section with a summary of these results, stating that the Hopf
algebra morphisms which relate NSym , NCSym and Sym can be drawn in a com-

mutative diagram.

Theorem 4.10 The following diagram commutes and all maps are Hopf morphisms.

NSym

χ

��

I
// NCSym

χ

��

Sym Sym∗

5 Remarks on the Algebra Structure of Noncommutative Symmetric
Functions

There are other relationships between NCSym and NSym that are worth considering
but are not as structured because they only hold on the level of algebras and do not
respect the coproduct. First, we shall examine a graded algebra isomorphism between
the graded algebras NSym and NCSym2.

This algebra isomorphism implies that the structure constants for NCSym2 with
respect to the monomial basis coincide with the structure constants for NSym in the
ribbon Schur basis, which are known to be related to the representation theory of the
Hecke algebra at q = 0; see for example [KT].

In general, the structure constants of NCSymn with respect to the monomial basis
(as well as those of NCSym) are also nonnegative integers. A natural question to ask
is whether the representation theoretical interpretations of NCSym2 can be extended
to NCSym , as well as to its specializations NCSymn, for each value of n.

The number of set partitions of [n] with at most two blocks is 2n−1. Therefore,
there is a bijection between set partitions of [n] with at most two parts and composi-
tions of n. Compositions are the indexing set of the algebra NSym of Subsection 4.2

and so it is natural to look for a connection through this structure. In fact, this obser-
vation gives us a way of relating NCSym2 and NSym . That is, NSym is isomorphic
as an algebra to NCSym2.

To any set partition A = {A1 .A2}, we associate the ribbon shape obtained by

reading numbers 1, 2, . . . , n sequentially, and placing the (i + 1)st box to the right
of the ith box if i and i + 1 are in the same block of A, or placing the (i + 1)-st box
immediately below the i-th box otherwise. For instance, the ribbon associated to
A = {1245.3678} is

1 2

3

4 5

6 7 8

Note that we are placing numbers inside the boxes for the sake of clarity only. We de-
note by c(A) the composition of n obtained by recording the lengths of the horizontal
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segments in the corresponding ribbon. In our example, c(A) = (2, 1, 2, 3).
Following [T], we define a second and very important basis for NSym , the ribbon

Schur functions. Recall that the set of all compositions of n is equipped with the
reverse refinement order of the descent sets, denoted by ≤. For instance, (2, 2, 1) ≤
(4, 1). The ribbon Schur functions (Rα) are defined by the following expression:

Rα =

∑

β≤α

(−1)ℓ(α)−ℓ(β)
hα.

Let ι : NCSym2 7→ NSym be the linear homomorphism such that

ι(m{A.B}) = Rc({A.B}),

where c({A.B}) denotes the composition corresponding to {A.B} under the bijec-

tion just stated.

Proposition 5.1 The map ι : NCSym2 7→ NSym is an isomorphism of algebras.

Proof The monomials in NCSym2 multiply according to the following rule

m{A1 .A2} m{B1 .B2} = m{A1∪(B1+|A|).A2∪(B2+|A|)} + m{A1∪(B2+|A|).A2∪(B1+|A|)}.

For instance, if A = {1346.2578} and B = {12.345}, then B + 8 = {9 10.11 12 13},
and the two terms in the product of mA[x1, x2] and mB[x1, x2] are indexed by

{A1 ∪ (B1 + 8).A2 ∪ (B2 + 8)} = {13469 10.2578 11 12 13}

and
{A1 ∪ (B2 + 8).A2 ∪ (B1 + 8)} = {1346 11 12 13.25789 10}.

On the other hand, it is well known that the ribbon Schur functions multiply as
RαRβ = Rα⊲β+Rα·β ,whereα⊲β is the composition obtained by adding the last part
of α to the first part of β, and α · β is the composition obtained by concatenation.

Hence, multiplying ribbons Rα and Rβ is equivalent to placing the first box of Rβ

next to the last box of Rα either vertically or horizontally.
To finish our argument, note that if α = c({A1 .A2}), and β = c({B1 .B2}), then

α⊲ β = c({A1 ∪ (B1 + |A|).A2 ∪ (B2 + |A|)}) and α · β = c({A1 ∪ (B2 + |A|).A2 ∪
(B1 + |A|)}). This is best done looking at our running example and noticing that
joining the last row of α and the first row of β corresponds to joining blocks A1 and
B1 together, and placing the the first row of β below the last row of α corresponds to
joining blocks A1 and B2 together (or vice versa, depending on the position of largest

element in {A.B}).

1

2

3 4

5

6

7 8

·
1 2

3 4 5
=

1

2

3 4

5

6

7 8 9 10

11 12 13

+

1

2

3 4

5

6

7 8

9 10

11 12 13
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This algebra isomorphism also arises as a quotient space. Define the two-sided
ideal of NCSym generated by the monomials {mA | ℓ(A) ≥ 3} as I3. Notice that if A

has ℓ(A) ≥ 3, then every term in the product mAmB will be indexed by a set partition
of length greater than or equal to 3, and hence the ideal is linearly spanned by this set
of monomials as well. We have then that NCSym /I3 ≃ NSym since the quotient
will be linearly spanned by the mA for ℓ(A) ≤ 2.

There is another closely related copy of NSym sitting inside NCSym . Let α be a
composition, and let A(α) be the corresponding canonical set partition from equa-
tion (4.1). We define Mα to be the sum of all monomials in NCSym indexed by those
set partitions A that can be obtained from A(α) by gluing nonconsecutive blocks.

For instance, if α = (2, 1, 3, 2), then A(α) = {12.3.456.78}, and we can only ob-
tain the following five set partitions {12.3.456.78}, {12456.3.78}, {12.378.456},
{12456.378}, {1278.3.456}. A second way of describing Mα is as the sum of all
monomials in Q〈x1, x2, . . . 〉 whose exponents are given by composition α. For in-

stance, M(2,1,3,2) =
∑

i 6= j 6=k6=l x2
i x jx

3
kx2

l where in the sum we allow any of the possibil-
ities of i = k, i = ℓ or j = ℓ.

Proposition 5.2 The map ζ : NSym → NCSym by ζ(Rα) = Mα is an injective

algebra homomorphism.

Proof The map ζ is clearly injective, hence it suffices to show that ζ(RαRβ) =

ζ(Rα)ζ(Rβ). We have that

ζ(RαRβ) = ζ(Rα⊲β + Rα·β)

=

∑

i1 6=···6=iℓ(α)= j1 6=···6= jℓ(β)

xα1

i1
· · · x

αℓ(α)

iℓ(α)x
β1

j1
· · · x

βℓ(β)

jℓ(β)

+
∑

i1 6=···6=iℓ(α) 6= j1 6=···6= jℓ(β)

xα1

i1
· · · x

αℓ(α)

iℓ(α)x
β1

j1
· · · x

βℓ(β)

jℓ(β)

=

( ∑

i1 6=···6=iℓ(α)

xα1

i1
· · · x

αℓ(α)

iℓ(α)

)( ∑

j1 6=···6= jℓ(β)

x
β1

j1
· · · x

βℓ(β)

jℓ(β)

)

= ζ(Rα)ζ(Rβ).

The following observation, due to Florent Hivert2, shows that NSym is also a
quotient of NCSym .

When A is not equal to A(α) for any α, then we will say that A has crossings. We

remark that if A has crossings, then so will every term in the expansion of mAmB.
Consider the two-sided ideal I generated by all mA such that A has crossings. This
ideal is then linearly spanned by all mA such that A has crossings.

Now consider the quotient NCSym /I. It is linearly spanned by the basis mA(α)

for α a composition. The proof that the elements I(hα) are all linearly independent
also shows that they will be linearly independent in the quotient NCSym /I.

2Private communication.
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Corollary 5.3 NSym ≃ NCSym /I as algebras. The isomorphism is given explicitly

as ρ : NCSym → NSym by

ρ(mA) =

{
mA if A has no crossings,

0 otherwise.

A computation of ∆
NCSym ◦ ρ ◦ I(h3) and (ρ⊗ ρ) ◦∆

NCSym ◦ I(h3) shows that
these spaces are not isomorphic as Hopf algebras since I is not a Hopf ideal.

6 The Harmonics with Respect to the Hausdorff Derivative.

In this section we give an elegant characterization of the space of harmonics in non-
commuting variables with respect to the Hausdorff derivative in terms of the free Lie

algebra. We will require some basic definitions and results. We refer the reader to [R]
for references and their proofs.

A Lie algebra over Q is a Q-module L, together with a bilinear mapping

L × L → L

(x, y) 7→ [x, y]

called the Lie bracket. This bracket must satisfy two identities, [x, y] = −[y, x] and

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. Subalgebras of Lie algebras, homomorphisms
and modules are defined as usual for Lie algebras. Any associative algebra A over
Q acquires a natural structure of a Lie algebra when [x, y] is defined by [x, y] =

xy − yx. The free Lie algebra can be realized as the linear span of the minimal set

of polynomials in Q〈Xn〉 which include the variables {x1, x2, . . . , xn} and is closed
under the bracket operation.

For a Lie algebra L ⊆ Q〈Xn〉 with the natural bracket operation, the enveloping
algebra of L is the subalgebra of Q〈Xn〉 generated by the elements of L under the

concatenation product.
Let L = L(Xn) be the free Lie algebra generated by the noncommutative alphabet

Xn = {x1, x2, . . . , xn}, and let L ′
= [L,L] be the Lie subalgebra generated by the

brackets [P,Q] where both P and Q are in L. Let A ′ be the enveloping algebra of L ′.

In particular, L = L
′ + QXn, where QXn denotes the linear polynomials.

We want to characterize the harmonics of the symmetric group in noncommuting
variables. Recall that in the commutative setting the harmonics are defined as the set
of solutions for the system of PDEs obtained by looking at symmetric functions as

differential operators.
Our goal is to compute the harmonics of the symmetric group in the noncommu-

tative setting. To this end, we should start by defining what we mean by the deriva-
tive of a noncommutative polynomial. We first focus our attention on the Hausdorff

derivative, the most common definition for derivative in the noncommutative set-
ting.

Let w be a monomial in Q〈X〉, that is, a word. The Hausdorff derivative of w

with regard to the letter x is defined as the sum of all subwords w ′ obtained from w
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by deleting an occurrence of letter x, and then extended by linearity. For instance,
∂xxyx2 y = yx2 y + 2xyxy, and ∂x[x, y] = ∂x(xy) − ∂x(yx) = 0.

The following theorem can be found in [R] and characterizes the elements of A
′

as the elements of Q〈Xn〉 that are killed by each derivation.

Proposition 6.1 ([R])
⋂

x∈Xn
ker ∂x = A ′ .

For any polynomial f ∈ Q〈Xn〉, we will denote by f (∂Xn
) the linear differential

operator formed by replacing each of the monomials xi1
xi2

· · · xik
by the differential

∂xi1
∂xi2

· · · ∂xik
. Note that ∂x∂y = ∂y∂x and so we have that the operator mA(∂Xn

) acts
up to constant as mλ(A)(∂Xn

). More precisely, mA(∂Xn
)( f (Xn)) = χ(mA)(∂)( f (Xn)).

Definition 6.2 Let Xn = {x1, x2, . . . , xn} be a finite noncommuting alphabet. The
harmonics with respect to the Hausdorff derivative are defined as the space of solu-
tions of the system of PDEs f (∂Xn

)Q(Xn) = 0 for all f ∈ NCSymn without constant

term. We denote the solution space by MHarn .

Theorem 6.3 (Poincaré–Birkhoff–Witt) Let L be a Lie algebra, and consider L as a

vector space with a totally ordered basis (wi)i∈I . Let A0 be its enveloping algebra and

ϕ0 : L → A0 be the natural Lie algebra homomorphism. Then A0 is a vector space over

Q with basis ϕ0(wi1
) · · ·ϕ0(win

), where n ≥ 0, i1, . . . , in ∈ I, and i1 ≥ · · · ≥ in.

Let L be the free Lie algebra in the variables Xn. Take a basis B
′ of L

′
= [L,L].

Then the linear polynomials QXn satisfy L = L ′ ⊕ QXn, and B = B ′ ∪ Xn is a basis
for L. Next, order the basis in such a way that the elements of B ′ are strictly bigger
than the elements of Xn.

The enveloping algebra of the free Lie algebra L is Q〈Xn〉. Therefore, the theorem
of Poincaré–Birkhoff–Witt implies that decreasing products of elements of B form a
basis of Q〈Xn〉. Moreover, since A ′ is the enveloping algebra of L ′, the theorem of
Poincaré–Birkhoff–Witt also implies that decreasing products of B ′ are a basis of A ′.

We also know that decreasing products of Xn are isomorphic to Q[Xn]. We conclude
that because L = L ′ ⊕ QXn, we have, as vector spaces

(6.1) Q〈Xn〉 ≃ A
′ ⊗ Q[Xn] ≃ A

′[Xn].

Furthermore, this isomorphism is compatible with derivations ∂a. That is, for a

P(Xn) ∈ Q〈Xn〉 where P(Xn) =
∑

i bi fi(Xn) with bi ∈ A
′ and fi(Xn) ∈ Q[Xn],

we have ∂aP(Xn) =
∑

i bi∂a fi(Xn) for a ∈ Xn. This follows because ∂a(A ′) = 0.

We have from this discussion the following theorem.

Theorem 6.4 Let Hn be the classical harmonics. That is,

Hn = { f (Xn) ∈ Q[Xn] : p(∂Xn
) f (Xn) = 0 for all p(Xn) ∈ Symn with p(0) = 0}.

Then as vector spaces MHarn ≃ A ′ ⊗ Hn.
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Moreover, Chevalley [Ch] showed that Hn is the linear span of derivatives of the
Vandermonde polynomial

∆n =

∏

1≤i< j≤n

(xi − x j) =

∑

π∈Sn

sgn(π) xπ1−1
n xπ2−1

n−1 · · · xπn−1
1 .

Note that from the existence of the isomorphism (6.1) and the classical character-
ization for the harmonics in the commutative case, we obtain that N∆n ∈ MHar n,
where N∆n is the noncommutative Vandermonde, defined as

N∆n =

∑

π∈Sn

sgn(π) xπ1−1
n xπ2−1

n−1 · · · xπn−1
1 .

It is interesting to note that all other possible noncommutative Vandermondes (ob-

tained by fixing an order in the variables) are also harmonics, but it suffices to de-
scribe this space. To see this, we only need to order Xn in all possible ways before
applying the Poincaré–Birkhoff–Witt theorem. Likewise, we have that each deriva-
tive of N∆n is in MHarn. Therefore, Span∂[N∆n] ⊆ MHarn. Theorem 6.4 implies

that MHarn is equal to the A
′-module generated by N∆n and all its derivatives.

A famous theorem due to Chevalley says that the ring of polynomials is isomor-
phic to the tensor product of its invariants times its coinvariants (that in the commu-
tative case are shown to be isomorphic to the harmonics).

Theorem 6.5 (Chevalley [Ch]) As Sn-modules, Hn ⊗ Symn ≃ Q[Xn].

We conclude with a mixed commutative/noncommutative version of Chevalley’s
theorem which holds on the level of vector spaces which we derive from the results
above. But to get the isomorphism as Sn-modules we need some more tools.

We first define on Q〈Xn〉 a commutative product. The shuffle product, denoted
by X, is the bilinear operation recursively defined as follow. Given variables x, y and
monomials u, v ∈ Q〈Xn〉,

1 X u = u X 1 = u and xu X yv = x(u X yv) + y(xu X v).

This is a well-known commutative product on Q〈Xn〉. It is clear that the forgetful

map χ : Q〈Xn〉 → Q[Xn] acts as

χ(xi1
X xi2

X · · ·X xik
) = k! xi1

xi2
· · · xik

.

Now define p̃k =
∑n

i=1 xi X xi X · · ·X xi = m{[k]}[Xn] where the variable xi is
shuffled with itself k times. For λ = (λ1, λ2, . . . , λℓ(λ)) ⊢ m a partition of the integer
m, we let p̃λ = p̃λ1

X · · ·X p̃λℓ(λ)
. We then have that

(6.2) χ(p̃λ) = λ! pλ1
pλ2

· · · pλℓ(λ)
,

where pk =
∑n

i=1 xk
i ∈ Symn is the classical power sum symmetric polynomial. If

we denote by S̃ymn ⊆ Q〈Xn〉 the vector space spanned by the p̃λ with 1 ≤ λi ≤ n.
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Lemma 6.6 As graded Sn-modules, S̃ymn ≃ Symn.

Proof It is well known that Symn = Q[p1, p2, . . . , pn]. The map χ in equa-

tion (6.2) restricted to S̃ymn gives us a surjective linear map χ : S̃ymn → Symn.
This map preserves the degree of the polynomial, so we can restrict our attention to

S̃ym
m

n the homogeneous component of degree m. Since the product X is commuta-

tive, dim(S̃ym
m

n ) ≤ dim(Symm
n ), the number of partitions λ ⊢ m with 1 ≤ λi ≤ n.

Hence χ : S̃ymn → Symn is an isomorphism of graded vector spaces. Since each

element of S̃ymn is Sn invariant (as is Symn), S̃ymn and Symn are isomorphic as
Sn modules as well.

Let us denote by NCSym+
n the set of f ∈ NCSymn without constant term. Recall

that the map χ : NCSymn → Symn is surjective and also that the Hausdorff deriva-

tive commutes. We thus have f (∂) = χ( f )(∂) for all f ∈ Q〈Xn〉. Combining these
remarks, we get

MHarn = {P ∈ Q〈Xn〉 | f (∂)P = 0, ∀ f ∈ NCSym+
n}

= {P ∈ Q〈Xn〉 | χ( f )(∂)P = 0, ∀ f ∈ NCSym+
n}

= {P ∈ Q〈Xn〉 | pk(∂)P = 0, 1 ≤ k ≤ n}.

Now let 〈 , 〉 denote the scalar product on Q〈Xn〉 for which the monomials form an
orthonormal basis. For all variable x ∈ Xn and monomials u, v ∈ Q〈Xn〉 we easily

see that

(6.3) 〈x X u, v〉 = 〈u, ∂xv〉.

Finally let 〈 p̃k : 1 ≤ k ≤ n〉X ⊆ Q〈Xn〉 denote the ideal generated using the shuffle
product. That is

〈 p̃k : 1 ≤ k ≤ n〉X =

{ n∑

k=1

p̃k X qk | qk ∈ Q〈Xn〉
}
.

Lemma 6.7 MHarn = 〈 p̃k : 1 ≤ k ≤ n〉⊥
X

.

Proof If P ∈ MHarn, then for all 1 ≤ k ≤ n we have pk(∂)P = 0. Given any

F ∈ 〈 p̃k : 1 ≤ k ≤ n〉X, we have F =
∑n

k=1 pk X qk, where qk ∈ Q〈Xn〉 and we
calculate

〈F, P〉 =

n∑

k=1

n∑

i=1

〈xi X · · ·X xi X qk, P〉

=

n∑

k=1

n∑

i=1

〈qk, ∂
k
xi

P〉 =

n∑

k=1

〈qk, pk(∂)P〉 = 0,
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where we have used identity (6.3) k times in the summands. Hence P ∈ MHarn

implies P ∈ 〈 p̃k : 1 ≤ k ≤ n〉⊥
X

. Conversely if P 6∈ MHarn, then there is a 1 ≤ k ≤ n

such that pk(∂)P 6= 0. This means we can find q ∈ Q〈Xn〉 such that

0 6= 〈q, pk(∂)P〉 =

n∑

i=1

〈q, ∂k
xi

P〉 = 〈 p̃k X q, P〉

and conclude that P 6∈ 〈 p̃k : 1 ≤ k ≤ n〉⊥
X

.

At this point, we have shown that Q〈Xn〉 = MHarn ⊕〈 p̃k : 1 ≤ k ≤ n〉X. This

gives us for any G ∈ Q〈Xn〉

(6.4) G = P +

n∑

k=1

p̃k X qk = 1 X P +

n∑

k=1

p̃k X qk,

where P ∈ MHarn and deg(qk) < deg(G). If we repeat the use of equation (6.4)
recursively on the qk, we get that G =

∑
λ p̃λ X Pλ, where the sum runs over λ =

(λ1, . . . , λℓ(λ)) such that 1 ≤ λi ≤ n and Pλ ∈ MHarn. Also, by convention we allow
λ = () and p̃() = 1. This equation shows that the graded linear map

ψ : MHar n ⊗S̃ymn → Q〈Xn〉,

defined by ψ(P ⊗ p̃λ) = p̃λ X P, is surjective.

Theorem 6.8 As graded Sn-modules, MHarn ⊗Symn ≃ Q〈Xn〉.

Proof By equation (6.1) and Theorems 6.4 and 6.5, we have

MHarn ⊗Symn ≃ Symn ⊗Hn ⊗ A
′ ≃ Q[Xn] ⊗ A

′ ≃ Q〈Xn〉.

as vector spaces. Combined with Lemma 6.6 and the surjectivity of ψ, this shows that

ψ ◦ (id⊗χ−1) : MHarn ⊗Symn → MHarn ⊗S̃ymn → Q〈Xn〉

is surjective, and hence an isomorphism of vector spaces.

To view the result as an isomorphism of Sn-modules, we first need to make sure
that MHarn is indeed an Sn-module. This follows from the fact that for any P ∈
MHarn, any σ ∈ Sn, and for all 1 ≤ k ≤ n, pk(∂)σ(P) = σ(pk(∂)P) = 0 and

thus σ(P) ∈ MHarn. We already know that χ restricted to S̃ymn is a morphism
of Sn-modules. It thus remains to show that ψ ◦ (id⊗χ−1) is also a morphism of
Sn-modules. For this let σ ∈ Sn:

σ ◦ ψ(P ⊗ p̃λ) = σ(p̃λ X P) = (σ p̃λ) X(σP) = ψ((σP) ⊗ (σ p̃λ))

= ψ ◦ (σ ⊗ σ)(P ⊗ p̃λ).

Since p̃λ and pλ are both Sn invariant, σ ◦ψ ◦ (id⊗χ−1) = ψ ◦ (id⊗χ−1) ◦ (σ⊗ σ)
and our proof is then complete.
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7 Noncommutative Invariants of the Symmetric Group

In classical invariant theory of the symmetric group (see [Ma, St]) the ring of sym-
metric polynomials in n (commuting) variables is free. In particular, it is a poly-
nomial ring with n generators, one in each degree. Wolf [W] was the first to study

NCSymn as invariants in noncommuting variables. Her main theorem shows that
the space of noncommutative invariants of the symmetric group is also free.

In her proof, it is not obvious how to construct the generators, and the combina-
torics of set partitions is not fully developed. In particular, it is not clear what the

Hilbert series of the invariant polynomial ring in n noncommutative variables is. In
the final section of this article we will need her result and the associated Hilbert series.
We thus present it here along with a constructive proof.

Given two set partitions A = {A1, . . . ,Ak} ⊢ [n] and B = {B1, . . . ,Bℓ} ⊢ [m],
we define

A ◦ B =

{
{A1 ∪ (B1 + n), . . . ,Ak ∪ (Bk + n), (Bk+1 + n), . . . , (Bℓ + n)} if k ≤ ℓ,

{A1 ∪ (B1 + n), . . . ,Aℓ ∪ (Bℓ + n),Aℓ+1, . . . ,Ak} if k > ℓ.

Recall that the parts of A and B are ordered according to the minimum elements in
each part. For example, if A = {13.2} and B = {1.2.3}, then A ◦ B = {134.25.6}
and B ◦ A = {146.25.3}. We note that ℓ(A ◦ B) = max(ℓ(A), ℓ(B)).

If A = B ◦ C for B and C nonempty set partitions, then we say that A splits. If
it is not possible to split A, then we say that it is nonsplittable. By convention, only
non-empty set partitions are nonsplitable.

Example 7.1 For n = 3. the list of all set partitions is

{123} = {1} ◦ {1} ◦ {1}, {1.23} nonsplittable , {13.2} = {1.2} ◦ {1},

{12.3} = {1} ◦ {1.2}, {1.2.3} nonsplittable.

As we remarked in Section 3, a basis for NCSymn is given by {mA[Xn]}ℓ(A)≤n.

Consider the set Xn as an alphabet where x1 < x2 < · · · < xn. A monomial in
these noncommutative variables can be viewed as a word in the alphabet Xn. Given
A such that ℓ(A) ≤ n, we order the monomials of mA[Xn] by lexicographic or-
der and denote by LT(mA[Xn]) the smallest monomial in mA[Xn]. For example,

LT(m{14.25.3}[X6]) = x1x2x3x1x2. In general, the k-th variable of LT(mA[Xn]) is
xi exactly when k ∈ Ai and the parts of A are ordered according to the minimum
elements in each part.

Lemma 7.2 For any set partitions A and B with at most n parts, we have

LT(mA[Xn]mB[Xn]) = LT(mA[Xn])LT(mB[Xn]).

Proof This is a direct consequence of the following well-known fact about lexi-

cographic order. Given four words (monomials) u1, u2, v1, v2 in the alphabet Xn

such that u1 ≤lex v1 and u2 ≤lex v2, then u1u2 ≤lex v1v2. So the smallest term of
mA[Xn]mB[Xn] is the product of the smallest term of mA[Xn] with the smallest term
of mB[Xn], and all terms have coefficient equal to 1.
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We now proceed to show the main results of Wolf.

Proposition 7.3 NCSymn is freely generated as an algebra by

{mA[Xn] : ℓ(A) ≤ n and A is nonsplittable}.

Proof Let B ⊢ [m] be a set partition such that ℓ = ℓ(B) ≤ n. Let 1 ≤ k ≤ m be the
smallest integer such that

min(Bi ∩ [k]c) ≤ min(B j ∩ [k]c) for each 1 ≤ i < j ≤ ℓ(B),

where we use the convention that [k]c
= {k + 1, . . . ,m} and min(∅) = ∞.

Let B(1)
= {Bi ∩ [k] : i ≤ r} ⊢ [k]. Then by the choice of k, B(1) is nonsplittable.

If k = m, then B = B(1) is nonsplittable, otherwise k < m and

B̃ = {(Bi ∩ {k + 1, . . . ,m}) − k : i ≤ ℓ} ⊢ [m − k]

with B = B(1) ◦ B̃. Repeating this process recursively, we obtain a unique decomposi-

tion of B into nonsplittable set partitions:

B = B(1) ◦ B(2) ◦ · · · ◦ B(s).

Now consider the following expansion:

(7.1) WB[Xn] := mB(1) [Xn]mB(2) [Xn] · · ·mB(s) [Xn] =

∑

D⊢[m]

cDmD[Xn].

Since LT(mB(1) [Xn] · · ·mB(s) [Xn]) = LT(mB[Xn]), we have that cB = 1 and cD = 0
whenever LT(mD[Xn]) <lex LT(mB[Xn]). This implies that the change of basis ma-
trix between the basis {mB[Xn] : ℓ(B) ≤ n} and the set W = {WB[Xn] : ℓ(B) ≤ n} is

upper triangular and therefore W is a linear basis of NCSymn. We now remark that
W is also a basis of the free noncommutative algebra generated by the set {mA[Xn] :
ℓ(A) ≤ n and A is nonsplittable}, and this concludes the proof.

Let Sm,k denote the number of set partitions of m with exactly k parts (the Stirling
numbers of the second kind). Then the number of set partitions of m with at most n

parts is
∑n

k=1 Sm,k. We thus have that

Bn(q) =

∑

m≥0

dimm(NCSymn)qm
=

∑

m≥0

n∑

i=1

Sm,iq
m,

where dimm(NCSymn) is the dimension of the homogeneous component of degree
m in NCSymn. Let wm,n be the number of nonsplittable set partitions of m with at

most n parts and let Wn(q) =
∑

m≥0 wm,nqm. A direct consequence of the previous

theorem is that Bn(q) = (1 −Wn(q))−1. Thus

Wn(q) = 1 −
1

Bn(q)
.

As we will require the use of these numbers later, we include a table of the values
of wm,n for 1 ≤ m, n ≤ 8.
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m/n 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 0 1 1 1 1 1 1 1
3 0 1 2 2 2 2 2 2
4 0 1 5 6 6 6 6 6
5 0 1 13 21 22 22 22 22

6 0 1 34 78 91 92 92 92
7 0 1 89 297 406 425 426 426
8 0 1 233 1143 1896 2119 2145 2146

Notice that the differences between adjacent entries in this tables is the number of
generators of a fixed length as described by Wolf.

8 The Coinvariants of the Symmetric Group

Let Xn be an alphabet with n letters, and let Q〈Xn〉 be the corresponding ring of

noncommutative polynomials.
We denote by 〈NCSym+

n〉 the set

L{P(Xn)mA[Xn] | k ≥ 1,A ⊢ [k], P(Xn) ∈ Q〈Xn〉},

the left ideal of Q〈Xn〉 generated by all elements of NCSym without constant term.
The coinvariant algebra of the symmetric group in noncommutative variables will be

defined as the quotient Q〈Xn〉/〈NCSym+
n〉.

To find a linear basis of the space Q〈Xn〉/〈NCSym+
n〉, we use some standard tech-

niques of the theory of languages, which can be found in [BR]. We start with some
definitions.

Let L∗ be the free monoid generated by L, an alphabet for the monoid. A suffix set

is a subset C of L∗ such that for all u and v in L∗, if v, uv are both in C implies that
u = ∅.

A subset P of L∗ is prefix closed (resp. suffix closed) if uv ∈ P (resp. vu ∈ P) implies

u ∈ P for all words u and v. There is a bijection between suffix sets and suffix closed
sets. To a suffix set C is associated the suffix-closed set P = L∗ \ L∗C , that is, the set
of words which do not end with an element of C . Moreover, L∗

= PC∗.
For a polynomial P(Xn) ∈ Q〈Xn〉, the leading term with respect to the lexi-

cographic order will be denoted LT(P(Xn)) (without the leading coefficient, hence
LT(P(Xn)) will be an element of X∗

n ).
Noncommutative monomial symmetric functions indexed by set partitions have

the property that {LT(mA[Xn]) | A a set partition} is a prefix closed set. That is,

any prefix u of LT(mA[Xn]) is the leading term of mB[Xn] for some set partition B.
In particular, B will be equal to A restricted to {1, 2, . . . , |u|}. For example, A =

{13.246.5} has leading term x1x2x1x2x3x2 and the heads of these monomials are x1,
x1x2, x1x2x1, x1x2x1x2, x1x2x1x2x3, corresponding to the leading terms of m{1}[Xn],

m{1.2}[Xn], m{13.2}[Xn],m{13.24}[Xn], and m{13.24.5}[Xn].
We established in the previous section that the WA[Xn] of equation (7.1) for A a

set partition with ℓ(A) ≤ n are a basis for NCSymn. We will use this to show that the
polynomials umA[Xn] for A nonsplittable and u ∈ X∗

n form a basis for 〈NCSym+
n〉.
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Proposition 8.1 Let C = {LT(mA[Xn]) | A nonsplittable, ℓ(A) ≤ n}. Then C is a

suffix set of the language X∗
n .

Proof Suppose u and vu are both in C and v 6= ∅. Since vu = LT(mA[Xn]) for
A nonsplittable, then v = LT(mB[Xn]) for some nonempty set partition B, since
it is the head of the monomial LT(mA[Xn]). Because u = LT(mC [Xn]) for some
nonsplittable set partition C , we can conclude that A = B ◦ C , but this contradicts

that A is nonsplittable.

For any left ideal I of Q〈Xn〉, we note that the set MI = {LT( f ) | f ∈ I} is a left
monomial ideal, that is, for each v ∈ MI and for each u ∈ X∗

n , uv ∈ MI .

Now we are ready to describe precisely the quotient Q〈Xn〉/〈NCSym+
n〉. Consider

the set of leading terms of 〈NCSym+
n〉, M〈NCSym+

n〉
= {LT( f ) | f ∈ 〈NCSym+

n〉},
which is a left monomial ideal. We note that

M〈NCSym+
n 〉

= {vLT(mA[Xn]) | v ∈ X∗
n ,A set partition}

= {vLT(mA[Xn]) | v ∈ X∗
n ,A nonsplittable set partition}.

That is, M〈NCSym+
n〉

= X∗
nC where C is given in Proposition 8.1. Then by the corre-

spondence between suffix closed sets and suffix sets we conclude that

Mc
〈NCSym+

n 〉
= X∗

n \ M〈NCSym+
n 〉

= X∗
n \ X∗

nC

is suffix closed.

Proposition 8.2 The set

{umA[Xn] | u ∈ X∗
n ,A nonsplittable set partition}

is a linear basis of 〈NCSym+
n〉 and any element of w ∈ M〈NCSym+

n〉
= X∗

nC can be

decomposed uniquely as w = uv where u ∈ X∗
n and v ∈ C.

Proof Assume uv = u ′v ′ ∈ X∗
nC with v, v ′ ∈ C . Without loss of generality assume

v = wv ′ ∈ C . Since C is a suffix set, w = ∅, and hence v = v ′ and u = u ′. Therefore

the decomposition of uv ∈ M〈NCSym+
n〉

is unique.

Next consider the set {u mA[Xn] | u ∈ X∗
n ,A nonsplittable set partition}. Since

the leading terms of the elements of this set are all distinct, they are linearly indepen-
dent. This set must also span the ideal 〈NCSym+

n〉 because every element of the form
vWA[Xn] ∈ 〈NCSym+

n〉 is in the linear span of this set and the vWA[Xn] are certainly
a spanning set of the ideal.

Proposition 8.3 Mc
〈NCSym+

n〉
is a basis for Q〈Xn〉/〈NCSym+

n〉.
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Proof First we show that Mc
〈NCSym+

n 〉
spans the vector space. Since the words of X∗

n

span Q〈Xn〉, it suffices to show that for v ∈ X∗
n ,

v ≡
∑

u∈Mc
〈NCSym+

n 〉

auu mod 〈NCSym+
n〉.

Assume that v is the smallest such monomial which is not a linear combination of
u ∈ Mc

〈NCSym+
n〉

. Since v /∈ Mc
〈NCSym+

n 〉
, we have v ∈ X∗

nC = M〈NCSym+
n〉

and

so v = uLT(mA[Xn]) for some nonsplittable set partition A. Now v − umA[Xn] is
equal to a sum of terms which are smaller than v in lexicographic order and hence
are equivalent to a linear combination of elements of Mc

〈NCSym+
n 〉

.

The monomials in Mc
〈NCSym+

n 〉
are also linearly independent since, if we assume

that

P(Xn) =

∑

u∈Mc
〈NCSym+

n 〉

auu ≡ 0 mod 〈NCSym+
n〉,

then P(Xn) ∈ 〈NCSym+
n〉 and hence LT(P(Xn)) ∈ M〈NCSym+

n〉
. Since the leading

term of P(Xn) is one of the monomials of Mc
〈NCSym+

n 〉
, the only way this can happen

is if P(Xn) = 0.

We conclude from Propositions 8.2 and 8.3 the following corollary.

Corollary 8.4 The dimension of the subspace of degree k in Q〈Xn〉/〈NCSym+
n〉 is

equal to nk −
∑

i≤k wi,n nk−i , where wm,k is the number of nonsplittable set partitions of

size m and with length less than or equal to k.

Define the following three generating functions:

Tn(q) :=
∑

k

dimk(Q〈Xn〉)qk
=

1

1 − nq
,

Bn(q) :=
∑

k

dimk(NCSymn)qk
=

1

1 −Wn(q)
=

1

1 −
∑

k≥0 wk,nqn
,

Cn(q) :=
∑

k

dimk(Q〈Xn〉/〈NCSym+
n〉) qk

=

∑

k≥0

(
nk −

∑

i≤k

wi,nnk−i
)

qk.

Observe that we have the relationship Tn(q) = Bn(q)Cn(q) by the following calcu-

lation:

Bn(q)Cn(q) = Bn(q)
( ∑

k≥0

nkqk
)
− Bn(q)

(∑

k≥0

nkqk
)(∑

k≥0

wk,nqk
)

= Bn(q)
(∑

k≥0

nkqk
)(

1 −
∑

k≥0

wk,nqk
)

=

∑

k≥0

nkqk
=

1

1 − nq
= Tn(q).
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We conclude that as graded vector spaces

Q〈Xn〉/〈NCSym+
n〉 ⊗ NCSymn ≃ Q〈Xn〉.

As mentioned in the introduction, the twisted derivative provides a second defi-
nition of derivation in Q〈Xn〉 (see for example [R]). It is defined as

da(w) =

{
w ′ if w = aw ′,

0 otherwise.

We can show that space of noncommutative coinvariants of the symmetric group is

isomorphic to the space of harmonics of the symmetric group with respect to the
twisted derivative.

Recall that the scalar product is defined with the monomials as an orthonormal
basis. The twisted derivative has the property analogous to equation (6.3) for the
Hausdorff derivative. For x ∈ Xn and u, v ∈ Q〈Xn〉, we have 〈xu, v〉 = 〈u, dxv〉. In

particular, for P,Q ∈ Q〈Xn〉,

〈P,Q〉 = P(dXn
)τ (Q)

∣∣
x1=x2=···=xn=0

,

where τ is the operator on Q〈Xn〉 which sends any monomial to the monomial ob-
tained by reading its entries from right-to-left.

Definition 8.5 Let Xn = {x1, x2, . . . , xn} be a finite noncommuting alphabet. The
harmonics of the symmetric group, with respect to the twisted derivative, are de-
fined as the space of solutions for the system of PDEs f (dXn

)Q(Xn) = 0 for all

f ∈ NCSymn without constant terms. We denote them as NCHarn.

Lemma 8.6 NCHarn = 〈NCSym+
n〉

⊥
.

Proof By definition, it is immediate that NCHarn ⊆ 〈NCSym+
n〉

⊥
.

Suppose that f ∈ 〈NCSym+
n〉

⊥
. Then for all P in 〈NCSym+

n〉,

P(dXn
) f (Xn)|x1=x2=···=xn=0 = 0.

We claim that this implies that P(dXn
) f (Xn) = 0. Suppose this is not the case. Then

let u be the smallest monomial in lexicographic order that appears with nonzero co-
efficient in P(dXn

) f (Xn). Since P is in the left ideal 〈NCSym+
n〉, so is uP. But by con-

struction (uP)(dXn
) f (Xn) 6= 0, a contradiction. Hence, NCHarn = 〈NCSym+

n〉
⊥

.

Now we proceed as we did before in the case of MHarn. We have shown that
Q〈Xn〉 = NCHarn ⊕ 〈NCSym+

n〉 and by Proposition 8.2 any G(Xn) ∈ Q〈Xn〉 can
be expressed uniquely as G(Xn) = f (Xn) +

∑
A PA(Xn)mA[Xn], where the sum is
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over nonsplittable set partitions A, f (Xn) ∈ NCHarn, and PA(Xn) ∈ Q〈Xn〉 is of de-
gree strictly smaller than the degree of G. This procedure can be repeated recursively

on PA(Xn) and the products of mA[Xn] expanded in terms of other basis elements
for NCSym so that G(Xn) =

∑
A fA(Xn)mA[Xn] where the sum is over all set par-

titions A of size smaller than or equal to the degree of G(Xn) and each fA(Xn) ∈
NCHarn. This reduction is unique and so the map ψ : NCHarn ⊗ NCSymn →
Q〈Xn〉 defined as the linear extension of the map ψ( f (Xn) ⊗ P[Xn]) = f (Xn)P[Xn]
is an isomorphism of vector spaces.

Proposition 8.7 As graded Sn-modules, NCHarn ≃ Q〈Xn〉/〈NCSym+
n〉.

Proof For each G(Xn) ∈ Q〈Xn〉, we know by the previous discussion that since
Q〈Xn〉 = NCHarn ⊕ 〈NCSym+

n〉, there is a unique expression G(Xn) = f (Xn) +∑
A PA(Xn)mA[Xn] (A are nonsplittable), hence G(Xn) ≡ f (Xn)(mod 〈NCSym+

n〉).
Since for each non-empty set partition A, σ(PA(Xn)mA[Xn]) = σ(PA(Xn))mA[Xn] ∈
〈NCSym+

n〉, we have that σG(Xn) ≡ σ f (Xn)(mod 〈NCSym+
n〉).

Theorem 8.8 As graded Sn-modules, NCHarn ⊗ NCSymn ≃ Q〈Xn〉.

Proof Now consider the Sn action on the space NCHarn ⊗ NCSymn. Clearly
NCSymn is an Sn module since each element is Sn invariant. For f (Xn) ∈ NCHarn

and for each P(Xn) ∈ NCSymn, P(dXn
) f (Xn) = 0. Since

σ(P(dXn
) f (Xn)) = σ(P(dXn

))σ( f (Xn)) = P(dXn
)σ( f (Xn)),

hence σ f (Xn) ∈ NCHarn also.
Now for G(Xn) = ψ

(∑
A fA(Xn) ⊗ mA[Xn]

)
, we notice that

σG(Xn) = σ
(∑

A

fA(Xn)mA[Xn]
)

=

∑

A

σ( fA(Xn))mA[Xn]

and hence σ ◦ ψ = ψ ◦ (σ ⊗ σ) and therefore the isomorphism holds on the level of
Sn-modules.

We provide below a table of values of the dimensions of the graded component of

degree k of the space Q〈Xn〉/〈NCSym+
n〉. This is computed using the table of values

in section 7 and the formula given in Corollary 8.4. The rows in the table below
correspond to the coefficients of Cn(q).

n/k 0 1 2 3 4 5 6 7

1 1 0 0 0 0 0 0 0
2 1 1 1 1 1 1 1 1
3 1 2 5 13 34 89 233 610

4 1 3 11 42 162 627 2430 9423
5 1 4 19 93 459 2273 11274 55964
6 1 5 29 172 1026 6134 36712 219847
7 1 6 41 285 1989 13901 97215 680079

8 1 7 55 438 3498 27962 223604 1788406
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