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Abstract

Let K be a number field. For any system of semisimple mod ` Galois representations
{φ` : Gal(Q̄/K)→ GLN (F`)}` arising from étale cohomology (Definition 1), there exists
a finite normal extension L ofK such that if we denote φ`(Gal(Q̄/K)) and φ`(Gal(Q̄/L))
by Γ̄` and γ̄`, respectively, for all ` and let S̄` be the F`-semisimple subgroup of GLN,F`
associated to γ̄` (or Γ̄`) by Nori’s theory [On subgroups of GLn(Fp), Invent. Math.
88 (1987), 257–275] for sufficiently large `, then the following statements hold for all
sufficiently large `.

A(i) The formal character of S̄` ↪→ GLN,F` (Definition 1) is independent of ` and
equal to the formal character of (G◦` )

der ↪→ GLN,Q`
, where (G◦` )

der is the derived group
of the identity component of G`, the monodromy group of the corresponding semi-
simplified `-adic Galois representation Φss

` .
A(ii) The non-cyclic composition factors of γ̄` and S̄`(F`) are identical. Therefore,

the composition factors of γ̄` are finite simple groups of Lie type of characteristic ` and
are cyclic groups.

B(i) The total `-rank rk`Γ̄` of Γ̄` (Definition 14) is equal to the rank of S̄` and is
therefore independent of `.

B(ii) The An-type `-rank rkAn
` Γ̄` of Γ̄` (Definition 14) for n ∈ N\{1, 2, 3, 4, 5, 7, 8}

and the parity of (rkA4
` Γ̄`)/4 are independent of `.
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1. Introduction

Let K be a number field, P ⊂ N the set of prime numbers, and X a complete non-singular variety
defined over K. For 0 6 i 6 2 dimX, the absolute Galois group GalK := Gal(Q̄/K) acts on the
ith `-adic étale cohomology group H i

ét(XK̄ ,Q`) for each prime number ` ∈ P. The dimension
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of H i
ét(XK̄ ,Q`) as a Q`-vector space is independent of ` and we denote it by N . We therefore

obtain a system of continuous, `-adic Galois representations indexed by P,

{Φ` : GalK → GLN (Q`)}`∈P ,

which satisfies strict compatibility [Del74] in the sense of Serre [Ser98, ch. 1]. An `-independence
[Ser94] has been conjectured on the images of {Φ`}, which has been studied by many people.
When X is an elliptic curve without complex multiplication, Serre proved that the Galois action
on the `-adic Tate module T`(X) is the whole GL(T`(X)) when ` is sufficiently large, by showing
that the Galois action φ` on `-torsion points X[`] ∼= T`(X)/`T`(X),

φ` : GalK → GL(X[`]) ∼= GL2(F`),

is surjective for `� 1 (see [Ser72]). This paper is motivated by the idea that the largeness of the
`-adic Galois image Γ` := Φ`(GalK) can be studied by taking mod ` reduction. More precisely,
given any continuous `-adic representation Φ` : GalK → GLN (Q`), one can find a Galois stable
Z`-lattice of QN` such that, up to some change of coordinates, we may assume that Φ`(GalK) ⊂
GLN (Z`) since GalK is compact. Then, by taking mod ` reduction GLN (Z`) → GLN (F`) and
semi-simplification, we obtain a continuous semisimple mod ` Galois representation

φ` : GalK → GLN (F`)

which is independent of the choice of the Z`-lattice by Brauer–Nesbitt [CR88, Theorem 30.16].
We denote the mod ` Galois image φ`(GalK) by Γ̄`.

Definition 1. A system of mod ` Galois representations

{φ` : GalK → GLN (F`)}`∈P

is said to be arising from étale cohomology if it is the semi-simplification of a mod ` reduction
of the `-adic system or its dual system,

{Φ` : GalK → GL(H i
ét(XK̄ ,Q`))}`∈P ,

{Φ` : GalK → GL(H i
ét(XK̄ ,Q`)

∨)}`∈P ,

for a complete non-singular variety X defined over K and some i, where H i
ét(XK̄ ,Q`)∨ :=

HomQ`
(H i

ét(XK̄ ,Q`),Q`).

Let ρss denote the semi-simplification for any finite-dimensional representation ρ over a
perfect field (which is well-defined by Brauer–Nesbitt [CR88, Theorem 30.16]). Let {Φ`} be a
compatible system of `-adic representations of GalK as in Definition 1; the algebraic monodromy
group at ` of the semi-simplified system {Φss

` }, denoted by G`, is the Zariski closure of Φss
` (GalK)

in GLN,Q`
. Then G` is reductive. Denote the sets of non-Archimedean valuations of K and K̄ by

ΣK and ΣK̄ , respectively. The strict compatibility of {Φ`} implies that {φ`} is strictly compatible
in the following sense.

Definition 2. A system of mod ` Galois representations

{φ` : GalK → GLN (F`)}`∈P

is said to be strictly compatible if {φ`} is continuous and semisimple and satisfies the following
conditions.

1216

https://doi.org/10.1112/S0010437X14007969 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007969


`-independence for compatible systems of (mod `) representations

(i) There is a finite subset S ⊂ ΣK such that φ` is unramified outside S` := S∪{v ∈ ΣK : v | `}
for all `.

(ii) For any `1, `2 ∈P and any v̄ ∈ ΣK̄ extending some v ∈ ΣK\(S`1∪S`2), the characteristic
polynomials of φ`1(Frobv̄) and φ`2(Frobv̄) are the reductions mod `1 and mod `2 of some
polynomial Pv(x) ∈ Q[x] that depends only on v.

Let ρ : G → GLN,F be a faithful representation of a rank-r reductive algebraic group G
defined over a field F . At the beginning of § 2 we define the formal character of ρ as an element
of the quotient set GLr(Z)\Z[Zr]. Here Z[Zr] is the free abelian group generated by Zr, and
GLr(Z) acts naturally on Z[Zr]. This allows us to define what is meant by two representations
having the same formal character (see Definition 3′) and what it means for the formal character
to be bounded by a constant C > 0 (see Definitions 4 and 4′). Let {φ`} be a strictly compatible
system of mod ` representations arising from étale cohomology (Definitions 1 and 2). This paper
studies `-independence of mod ` Galois images Γ̄` for sufficiently large `. Let g be a Lie type. We
define the total `-rank rk` Γ̄ and the g-type `-rank rkg

` Γ̄ of a finite group Γ̄ in § 3.3, Definition 14.
The main results are as follows.

Theorem A (Main theorem). Let K be a number field and {φ` : GalK → GLN (F`)}`∈P

a strictly compatible system of mod ` Galois representations arising from étale cohomology
(Definitions 1 and 2). There exists a finite normal extension L of K such that if we denote
φ`(GalK) and φ`(GalL) by Γ̄` and γ̄`, respectively, for all ` and let S̄` ⊂ GLN,F` be the connected
F`-semisimple subgroup associated to γ̄` (or Γ̄`) by Nori’s theory for ` � 1, then the following
hold for `� 1.

(i) The formal character of S̄` ↪→ GLN,F` is independent of ` (Definition 3 ′) and is equal to
the formal character of (G◦` )

der ↪→ GLN,Q`
, where (G◦` )

der is the derived group of the identity
component of G`, the algebraic monodromy group of the semi-simplified representation Φss

` .

(ii) The composition factors of γ̄` and S̄`(F`) are identical modulo cyclic groups. Therefore,
the composition factors of γ̄` are finite simple groups of Lie type of characteristic ` and are cyclic
groups.

Corollary B. Let S̄` be defined as above; then the following hold for `� 1.

(i) The total `-rank rk` Γ̄` of Γ̄` (Definition 14) is equal to the rank of S̄` and is therefore
independent of `.

(ii) The An-type `-rank rkAn
` Γ̄` of Γ̄` (Definition 14) for n ∈ N\{1, 2, 3, 4, 5, 7, 8} and the

parity of (rkA4
` Γ̄`)/4 are independent of `.

Remark 1.1. As an application of the main results, we prove in [HL14] that Φ`(GalK), the
`-adic Galois image arising from étale cohomology, has a certain maximality inside the algebraic
monodromy group G` if ` is sufficiently large and G` is of type A. This generalizes Serre’s open
image theorem on non-CM elliptic curves [Ser72].

Remark 1.2. For any field F , define ι to be the involution of GLN,F that sends A to (At)−1. If Γ
is a subgroup of GLN (F ), then Γ is semisimple on FN if and only if ι(Γ) is semisimple on FN .
If φ` is the mod ` Galois representation arising from the dual representation H i

ét(XK̄ ,Q`)∨
(Definition 1), then the mod ` representation arising from H i

ét(XK̄ ,Q`) is ι ◦φ` under a suitable
basis, by Brauer–Nesbitt [CR88, Theorem 30.16]. Since ι is an automorphism of GLN , it suffices
to prove Theorem A by considering only the dual mod ` system {φ`} and Galois images {Γ̄`}.
Let φv̄ be the restriction of φ` to the inertia subgroup Iv̄ such that v̄ ∈ ΣK̄ divides `. The reason
for choosing the dual system is that the characters of φss

v̄ have bounded exponents in the sense
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of Definition 8 for `� 1 by Serre’s tame inertia conjecture, which was proved by Caruso [Car08]
(see Theorem 2.3.1). Such boundedness makes our arguments simpler.

This paper can be considered as a ‘mod `’ version of [Hui13], in which we studied
`-independence of monodromy groups of any compatible system of `-adic representations by
using the theory of abelian `-adic representation [Ser98] and the representation theory of complex
semisimple Lie algebras. The main difference between [Hui13] and this paper is that one gets
nothing new by considering monodromy groups of mod ` Galois images, because they are just
finite groups. The strategy in this paper is to first construct for each ` � 1 a connected
F`-reductive subgroup Ḡ` ⊂ GLN,F` with bounded formal characters (Definitions 4 and 4′)
such that [Γ̄` : Γ̄` ∩ Ḡ`(F`)] and [Ḡ`(F`) : Γ̄` ∩ Ḡ`(F`)] are both uniformly bounded (Theorem
2.0.5). The idea to construct such Ḡ` came from [Ser86], where Serre considered the Galois
action on the `-torsion points of abelian varieties A without complex multiplication. In Serre’s
case, the semisimple part S̄` of Ḡ` is constructed by Nori’s theory [Nor87], and the center
C̄` of Ḡ` is the mod ` reduction of some Q-diagonalizable group CQ, which is a subgroup of
the centralizer of the monodromy G` in GLN,Q`

. Hence, {Ḡ` ⊂ GLN,F`}` has bounded formal
characters. The construction of CQ uses the abelian theory of `-adic representations [Ser98]
and the Tate conjecture for abelian varieties (proved by Faltings [Fal83]), which relates the
endomorphism ring of A to the commutant of the Galois image Γ` in EndN (Q`). Although we
do not in general have the luxury of the Tate conjecture for étale cohomology, it is still possible
to construct reductive Ḡ` ⊂ GLN,F` satisfying the above conditions for ` � 1 by using Nori’s
theory, tame inertia tori [Ser86] and Serre’s tame inertia conjecture (proved by Caruso [Car08]).
The constructions of these algebraic envelopes Ḡ` of Γ̄` (see Definition 5) are accomplished in
§ 2. Once these nice envelopes are ready, we can use the techniques in [Hui13, § 3] to prove
that the formal character (Definition 3) of the semisimple part S̄` ↪→ GLN,F` is independent
of `� 1 (Theorem A). The number of An factors of S̄` for large n is then independent of ` for all
`� 1 by [Hui13, Theorem 2.19]. Since the group of F`-rational points of Ḡ` is commensurate to
the Galois image Γ̄`, one deduces `-independence results for the number of Lie-type composition
factors of Γ̄` of characteristic ` for ` � 1 (Corollary B). Section 3 is devoted to the proofs of
Theorem A and Corollary B. The following table summarizes the symbols that are frequently
used within this paper. Groups inside GLN,F with charF > 0 have their symbols overlined, and
this should not be confused with base change to an algebraic closure.

GalF The absolute Galois group of field F
K, L Number fields
v̄ A valuation of K̄ that divides the prime `
Iv̄ The inertia subgroup of GalK at valuation v̄
U`, V`, W` (Ū`, V̄`, W̄`), . . . Vector spaces defined over F` (over F̄`)
Γ̄`, γ̄`, Ω̄`, Ω̄v̄, . . . Finite subgroups of GLN (F`)
G`, T`, . . . Algebraic subgroups of GLN,Q`

Ḡ`, S̄`, N̄`, Ī`, Īv̄, . . . Algebraic subgroups of GLN,F`
Φ`, Ψ`, Θ`, . . . Representations over Q`
φ`, ψ`, µ`, t`, ρv̄, fv̄, wv̄, . . . Representations over F`
ρss The semi-simplification of representation ρ
ρ∨ The dual representation of representation ρ
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2. The algebraic envelope Ḡ`

We define formal character and prove some related propositions before stating the main result
(Theorem 2.0.5) of this section. Let ρ : G → GLN,F be a faithful representation of a rank-r
reductive algebraic group G defined over a field F . Choose a maximal torus T of G and denote
the character group of T by X. Let {w1, w2, . . . , wN} ⊂ X be the multiset of weights of ρ|T over
F̄ , and choose an isomorphism X ∼= Zr. Then the image of w1 + w2 + · · · + wN ∈ Z[X] ∼= Z[Zr]
in the quotient set GL(X)\Z[X] ∼= GLr(Z)\Z[Zr] is independent of the choices of maximal torus
T and isomorphism X ∼= Zr.

Definition 3. Let ρ be as above. The formal character of ρ is defined to be the image of
w1 + w2 + · · ·+ wN ∈ Z[Zr] in GLr(Z)\Z[Zr].

This definition of formal character is more general than the one in [Hui13, § 2.1]. It allows us to
compare the formal characters of two N -dimensional faithful representations ρ1 : G1→ GLN,F1

and ρ2 : G2 → GLN,F2 over different fields whenever G1 and G2 have the same rank. Let
GNm be the diagonal subgroup of GLN . Every character χ of GNm can be expressed uniquely as
xm1

1 xm2
2 · · ·x

mN
N , a product of powers of standard characters {x1, x2, . . . , xN}, where xi maps

(a1, . . . , aN ) ∈ GNm to ai for each i. The following proposition (definition) is particularly useful.

Proposition 2.0.1 (Definition 3′). Let ρ1 and ρ2 be as above. If T1 ⊂ G1 and T2 ⊂ G2 are
maximal tori, the following statements are equivalent.

(i) The representations ρ1 and ρ2 have the same formal character.

(ii) The tori ρ1(T1) and ρ2(T2) are conjugate (in GLN,F̄1
and GLN,F̄2

) to some subtori D1

and D2, respectively, of the diagonal subgroup GNm ⊂ GLN such that D1 and D2 are annihilated
by the same set of characters of GNm.

Hence, formal characters ofN -dimensional faithful representations are in bijective correspondence
with subtori in GNm up to the natural action of the permutation group Perm(N) of N letters
on GNm.

Proof. From now on assume that Tj = Gr
m,F̄j

and ρj(Tj) ⊂ GNm,F̄j
⊂ GLN,F̄j

by base change

to the algebraic closure of Fj and diagonalizations for j = 1, 2. Suppose that (i) holds; then, by
taking an automorphism of the character group of T1 and a permutation of coordinates of GNm,
we obtain

xi ◦ ρ1 = xi ◦ ρ2

for all standard characters xi of GNm if we identify the character groups of Gr
m,F̄1

and Gr
m,F̄2

in

a natural way. This implies that the set of characters of GNm that annihilate Dj := ρj(Tj) for
j = 1, 2 are equal, which is statement (ii). Now suppose that (ii) holds; it suffices to consider
the case where ρ1 and ρ2 are standard representations (inclusions), since ρ : G → GLN,F and
ρ(G) ⊂ GLN,F always have the same formal character. Statement (ii) implies that there exists
an automorphism of GNm such that

Dj = {(a1, . . . , aN ) ∈ GNm : a1 = a2 = · · · = aN−r = 1}

for j = 1, 2, because D1 and D2 are connected. Then (i) follows easily.
Let ρ : T→ GLN,F̄ be a representation of a torus T. Since the set of weights of ρ is obtained

by diagonalizing ρ(T) and is independent of diagonalizations, subtori of GNm that are conjugate to
ρ(T) differ only by a permutation of N coordinates. Therefore, the map from formal characters
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of N -dimensional faithful representations to subtori of GNm modulo the action of Perm(N) is
well-defined. Since the equivalence of (i) and (ii) implies injectivity and any subtorus of GNm
is the formal character of the standard representation of the subtorus, the map is a bijective
correspondence. 2

Examples. Denote standard representation and faithful representation by Std and ρ, respectively.
Listed below are some pairs of representations that have the same formal character:

(i) (GL2,Q`
, Std) and (GL2,F` , Std);

(ii) (G, ρ) and (H, ρ|H) if H is a reductive subgroup of G of the same rank;

(iii) (G, ρ) and (G, ρ∨);

(iv) (G, ρ) and (ρ(G), Std).

Definition 4. The formal character of ρ is said to be bounded by a constant C > 0 if there exists
an isomorphism X ∼= Zr such that the coefficients of the images of weights w1, w2, . . . , wN ∈ X
in Zr have absolute values bounded by C.

Let N be a fixed integer and {ρi : Gi → GLNi,Fi}i∈I a family of faithful representations
of reductive groups such that Ni 6 N for all i ∈ I. The family is said to have bounded formal
characters if for all i ∈ I the formal character of ρi is bounded by some constant C > 0.

Remark 2.0.2. Let {ρi}i∈I be a family of representations in Definition 4 having bounded formal
characters. Then the number of distinct formal characters arising from the family is finite.

Let χ = xm1
1 xm2

2 · · ·x
mN
N be a character of GNm expressed as a product of standard characters.

We refer to the multiset {m1, . . . ,mN} as the exponents of χ and say that the exponents are
bounded by C > 0 if |mi| < C for all 1 6 i 6 N . The following characterization of Definition 4 is
very useful in this paper.

Proposition 2.0.3 (Definition 4′). Let {ρi}i∈I be a family of faithful representations of reductive
Gi such that ρi is Ni-dimensional and Ni 6 N for all i ∈ I. Choose a maximal torus Ti of Gi

for each i ∈ I. Then the following statements are equivalent.

(i) The family has bounded formal characters.

(ii) For any i ∈ I and any subtorus Di of the diagonal subgroup GNi
m ⊂GLNi that is conjugate

(in GLNi,F̄i
) to ρi(Ti), one can choose a set Ri of characters of GNi

m such that the common kernel
of Ri is Di and the exponents of characters in Ri are bounded by a constant which is independent
of i ∈ I.

Proof. This follows easily from Definition 4, the bijective correspondence in Proposition 2.0.1,
and Remark 2.0.2. 2

Proposition 2.0.4. Let {ρi}i∈I and {φi}i∈I be two families of faithful representations of
reductive Gi and Hi over field Fi with bounded formal characters such that the targets
of ρi and φi are both equal to GLNi,Fi and ρi(Gi) commutes with φi(Hi) for all i ∈ I. Then the
family of standard representations

{ρi(Gi) · φi(Hi) ⊂ GLNi,Fi}i∈I

also has bounded formal characters.

Proof. This follows easily from Remark 2.0.2, Proposition 2.0.3, and the fact (by the
commutativity hypothesis) that any maximal torus of ρi(Gi) · φi(Hi) is generated by some
maximal torus of ρi(Gi) and some maximal torus of φi(Hi). 2
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Let {φ`} be the strictly compatible system of mod ` Galois representations arising from
(Definitions 1 and 2) the dual system of `-adic representations {Φ`}. Denote the image of φ` by
Γ̄` and the ambient space of the representation by V` ∼= FN` for each `. Each Γ̄` := φ`(GalK) is
a subgroup of GLN (F`) for a fixed N . Suppose that K ′ is a finite normal extension of K. Since
[φ`(GalK) : φ`(GalK′)] 6 [K ′ : K] for all ` and the restriction of {φ`} to GalK′ is semisimple
[CR88, Theorem 49.2] and satisfies the compatibility conditions (Definition 2), we are free to
replace K by K ′ in the course of proving the main theorem. The main result of this section states
that for ` � 1, Γ̄` can be approximated by some connected reductive subgroup Ḡ` ⊂ GLN,F`
with bounded formal characters (Definition 4′).

Theorem 2.0.5. Let {φ`}`∈P be a system of mod ` Galois representations as above. There exist
a finite normal extension L of K and a connected F`-reductive subgroup Ḡ` of GLN,F` for each
`� 1 such that:

(i) γ̄` := φ`(GalL) is a subgroup of Ḡ`(F`) of uniformly bounded index;

(ii) the action of Ḡ` on V̄` := V` ⊗ F̄` is semisimple;

(iii) the representations {Ḡ` ↪→ GLN,F`}`�1 have bounded formal characters in the sense of
Definition 4′.

Definition 5. A system of connected reductive groups {Ḡ`}`�1 satisfying the conditions in
the above theorem is called a system of algebraic envelopes of {Γ̄`}`�1. We say that Ḡ` is the
algebraic envelope of Γ̄` when a system of algebraic envelopes is given.

We first establish in §§ 2.1–2.4 essential ingredients of the proof of Theorem 2.0.5. Then the
proof is presented in § 2.5.

2.1 Nori’s theory
The material in this subsection is due to Nori [Nor87]. Suppose ` > N − 1. Given a subgroup Γ̄
of GLN (F`), Nori’s theory gives us a connected algebraic group S̄` that captures all the order-`
elements of Γ̄ if ` is bigger than a constant that depends only on N .

Let Γ̄[`] = {x ∈ Γ̄ : x` = 1}. The normal subgroup of Γ̄ generated by Γ̄[`] is denoted by Γ̄+.
Define exp(x) and log(x) by

exp(x) =
`−1∑
i=0

xi

i!
and log(x) = −

`−1∑
i=1

(1− x)i

i
.

Denote by S̄ the (connected) algebraic subgroup of GLN,F` defined over F`, generated by the
one-parameter subgroups

t 7→ xt := exp(t · log(x))

for all x ∈ Γ̄[`]. Algebraic subgroups with the above property are said to be exponentially
generated. The theorem we need is stated below.

Theorem 2.1.1 [Nor87, Theorem B(1), 3.6(v)]. There is a constant c0 = c0(N) such that if
` > c0 and Γ̄ is a subgroup of GLN (F`), then:

(i) Γ̄+ = S̄(F`)+;

(ii) S̄(F`)/S̄(F`)+ is a commutative group of order no greater than 2N−1.

Proposition 2.1.2. Let S̄` be the algebraic group associated to Γ̄` by Nori’s theory for all
` > N −1. There is a constant c1 = c1(N) > c0(N) which depends only on N such that if ` > c1,
then the following hold:
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(i) S̄` is a connected, exponentially generated, semisimple F`-subgroup of GLN,F` ;

(ii) S̄` acts semi-simply on the ambient space V̄` ∼= F̄N` ;

(iii) [S̄`(F`) : S̄`(F`) ∩ Γ̄`] 6 2N−1.

Proof. Since Γ̄` acts semi-simply on V̄`, so does Γ̄+
` ; see [CR88, Theorem 49.2]. Property (ii) then

follows from [EHK12, Theorem 24] for some sufficiently large constant c1(N) (>c0(N)) depending
only on N ; see also [Ser86]. Since ` > c0(N), S̄`(F`)+ = Γ̄+

` (Theorem 2.1.1) also acts semi-simply
on V̄`. This implies that S̄`(F`)+ cannot have normal `-subgroups. If S̄` has a non-trivial unipotent
radical Ū`, then Ū` is defined over F` (see [Spr08, Proposition 14.4.5(v)]) and Ū`(F`) is then a
non-trivial normal `-group of S̄`(F`)+, which is a contradiction. Therefore S̄` is reductive; in fact,
S̄` is semisimple since it is generated by unipotent elements Γ̄+

` . This proves (i). Since ` > c0(N),
(iii) is proved by Theorem 2.1.1. 2

Definition 6. The semisimple envelope of Γ̄` for all sufficiently large ` is defined to be the
connected, semisimple F`-algebraic group S̄` in Proposition 2.1.2.

Remark 2.1.3. If K ′ is a finite extension of K, then the semisimple envelopes of φ`(GalK′) and
φ`(GalK) are identical for ` � 1, because the order-` elements of the two finite groups are the
same when ` is large.

2.2 Characters of the tame inertia group
Let ρ` : GalK → GLN (F`) be a continuous representation and Iv̄ the inertia subgroup of GalK
at v̄ ∈ ΣK̄ that divides `. Let Iw

v̄ be the wild inertia (normal) subgroup of Iv̄ and ρss
v̄ the

semi-simplification of the restriction of ρ` to Iv̄. Since ρss
` (Iw

v̄ ) is an `-group and is semisimple on
FN` , ρss

v̄ (Iw
v̄ ) = {1} and ρss

v̄ factors through a representation of the tame inertia group It
v̄ := Iv̄/I

w
v̄

(still denoted by ρss
v̄ ):

ρss
v̄ : It

v̄ → GLN (F`).

The tame inertia group It
v̄ is a projective limit of cyclic groups of order prime to `,

θv̄ : It
v̄

∼=−→ lim
←−
k

F∗`k

(see [Ser72, Proposition 2]), where the projective system is given by norm maps of finite fields
of characteristic `. The isomorphism is unique up to action of GalF` on the target.

Definition 7. The fundamental characters of It
v̄ of level d (see [Ser72, § 1.7]) are defined to be

θ`
j

d for j = 0, 1, . . . , d− 1,

where θd : It
v̄

θv̄−→ lim
←−k F

∗
`k
� F∗

`d
↪→ F̄∗` .

Any continuous character χ : It
v̄ → F̄∗` of ρss

v̄ factors through a power of some θd. Character
theory tells us that Hom(F∗

`d
, F̄∗` ) ∼= Hom(F∗

`d
,C∗) is cyclic, generated by θd of order `d − 1.

Therefore, χ can always be expressed as a product of fundamental characters of level d:

χ = (θd)
m0 · (θ`d)m1 · · · (θ`d−1

d )md−1 .

Definition 8. Let χ : It
v̄ → F̄∗` be a character of ρss

v̄ and express χ as a product of fundamental
characters of level d as above.

(i) The product is said to be `-restricted if 0 6 mi 6 `− 1 for all i, with not all mi equal to
`− 1. It is easy to see that the `-restricted expression of χ is unique.
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(ii) The exponents of χ are defined to be the multiset of powers {m0,m1, . . . ,md−1} in the
`-restricted product. Note that the multiset is independent of the action of GalF` on the target.

Lemma 2.2.1. Let V ∼= Fn` be a continuous, irreducible subrepresentation of ρv̄. Then the
characters of the representation can be written as a product of fundamental characters of level n.

Proof. For simplicity, assume that ρv̄ is irreducible. The image of It
v̄ in GL(V ) is a cyclic group of

order prime to `; therefore V is a F`[x]/(f(x))-module where x corresponds to a generator of the
cyclic image and the minimal polynomial f(x) is separable. Irreducibility of V implies that
f(x) is irreducible over F`. Thus ρv̄(I

t
v̄) is contained in a maximal subfield F of End(V ) and

ρv̄ : It
v̄ → F ∗ ⊂ GL(V ) can be written as a product of fundamental characters of level n as

above. On the other hand, V has the structure of an F -vector space of dimension 1 such that
the action of ρv̄(I

t
v̄) ⊂ F ∗ is through field multiplication. By tensoring F with F (on the right)

over F`, we obtain an F -isomorphism

F ⊗ F → F ⊕ F ⊕ · · · ⊕ F,

x⊗ y 7→ (xy, x`y, . . . , x`
n−1

y)

where x, x`, . . . , x`
n−1

are just conjugates of x over F`. If x ∈ ρv̄(It
v̄) ⊂ F ∗, then we see that the

action of It
v̄ on V ⊗F` F is a direct sum of products of fundamental characters of level n. 2

2.3 Exponents of characters arising from étale cohomology
Every character χ of ρss

v̄ : It
v̄ → GLN (F`) can be written as

χ = (θn)m0 · (θ`n)m1 · · · (θ`n−1

n )mn−1 ,

a product of fundamental characters of level n 6 N , by Lemma 2.2.1. One would like to study
the exponents m0, . . . ,mn−1 (Definition 8), and in the case of étale cohomology we have the
following theorem proved by Caruso [Car08].

Theorem 2.3.1 (Serre’s tame inertia conjecture). Let X be a proper and smooth variety over a
local field K (a finite extension of Q`) with semi-stable reduction over OK , the ring of integers
of K, and let i be an integer. The Galois group GalK acts on H i

ét(XK̄ ,Z/`Z)∨, the F`-dual of the
ith cohomology group with Z/`Z coefficients. If we restrict the representation to the inertia group
of GalK , then the exponents of the characters of the tame inertia group on any Jordan–Hölder
quotient of H i

ét(XK̄ ,Z/`Z)∨ lie between 0 and ei, where e is the ramification index of K/Q`.
We now relate our mod ` Galois representation φ` to the representation H i

ét(XK̄ ,Z/`Z)∨

in Theorem 2.3.1. The cohomology group H i
ét(XK̄ ,Z`) is a finitely generated, free Z`-module

[Gab83] for `� 1:

H i
ét(XK̄ ,Z`) ∼= Z` ⊕ · · · ⊕ Z`.

Reduction mod ` gives

H i
ét(XK̄ ,Z`)⊗ F` = Z/`Z⊕ · · · ⊕ Z/`Z,

and the semi-simplification of H i
ét(XK̄ ,Z`) ⊗ F` is then isomorphic to the semi-simplification

of a mod ` reduction of the `-adic representation H i
ét(XK̄ ,Q`) by Brauer–Nesbitt [CR88,

Theorem 30.16]. Since the sequence

H i
ét(XK̄ ,Z`)

`
→ H i

ét(XK̄ ,Z`)→ H i
ét(XK̄ ,Z/`Z)

is exact [Mil13, Theorem 19.2], H i
ét(XK̄ ,Z`)⊗F` is isomorphic to H i

ét(XK̄ ,Z/`Z). Recall that V` is
the semi-simplification of a mod ` reduction of H i

ét(XK̄ ,Q`)∨. Thus, we conclude the following.
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Proposition 2.3.2. For all sufficiently large `, H i
ét(XK̄ ,Z`)⊗F` is isomorphic to H i

ét(XK̄ ,Z/`Z)
and the semi-simplification of H i

ét(XK̄ ,Z/`Z) is V ∨` .

The following theorem is the main result of this subsection.

Theorem 2.3.3. Let K be a number field. Let φ` : GalK → GL(V`) ∼= GLN (F`) be the mod `
Galois representation arising from the étale cohomology group H i

ét(XK̄ ,Q`)∨ for sufficiently
large `. If we restrict φ` to the inertia group Iv̄ of a valuation v̄ | ` of K̄ and semi-simplify the
representation, then every character χ of the representation can be written as

χ = (θN !)
m0 · (θ`N !)

m1 · · · (θ`N !−1

N ! )mN !−1 ,

a product of fundamental characters of level N ! with exponents (Definition 8) m0, . . . ,mN !−1

(depending on `) that lie in [0, ei], where e is the ramification index of Kv/Q`, with v = v̄|K and
Kv being the completion of K with respect to v.

Proof. Proposition 2.3.2 implies that if ` is sufficiently large, then the Galois representations
V` = (V ∨` )∨ and (H i

ét(XK̄ ,Z/`Z)∨)ss are isomorphic. Let χ be a character of It
v̄ given by the

semi-simplification of the restriction of V` to the inertia subgroup Iv̄. By Theorem 2.3.1, χ can
be written as

χ = (θd)
m0 · (θ`d)m1 · · · (θ`d−1

d )md−1 ,

a product of fundamental characters of level d (6N by Lemma 2.2.1) with exponents m0, . . . ,
md−1 belonging to [0, ei], where e is the ramification index of Kv/Q`. Since d divides N !, θN !

factors through χ. Consider the norm map Nm : F∗
`N ! → F∗

`d
given by

x 7→ x · x`d · x`2d · · ·x`(N !−d)
.

Then we obtain a product of fundamental characters of level N !,

χ= (Nm ◦ θN !)
m0+m1`+···+md−1`

d−1

= (θN !)
s0 · (θ`N !)

s1 · · · (θ`N !−1

N ! )sN !−1 ,

with exponents s0, . . . , sN !−1 belonging to [0, ei]. 2

2.4 Tame inertia tori and rigidity
Tame inertia tori were considered by Serre when he was studying Galois action on `-torsion
points of abelian varieties without complex multiplication [Ser86]. He observed that these tori
have a certain rigidity, which will be explained in this subsection.

Assume ` > N − 1 as in § 2.1. Since every non-trivial element of every `-Sylow subgroup of
Γ̄` is of order ` and Γ̄+

` is contained in S̄`(F`) by Theorem 2.1.1(i), the index [Γ̄` : Γ̄` ∩ S̄`(F`)] is
prime to `. Let N̄` be the normalizer of S̄` in GLN,F` ; clearly Γ̄` ⊂ N̄`.

Theorem 2.4.1 [Ser86, § 1, Theorem]. There are constants c2 = c2(N) and c3 = c3(N) such
that if ` > c2, S̄` ⊂ GLN,F` is an exponentially generated semisimple algebraic group defined

over F`, and the action on V̄` ∼= F̄N` is semisimple. If W` is the F`-subspace of

U` :=

c3⊕
i=1

(⊗iV`)

fixed by S̄`, then t` : N̄`/S̄` → GLW`
is an F`-embedding. Moreover, if x /∈ S̄`, then there is an

element of W̄` that is not fixed by x.
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By Theorem 2.4.1, Γ̄`/(Γ̄` ∩ S̄`(F`)) embeds in GL(W`) with dim(W`)6 c4 = c4(N) uniformly
for some integer c4. Theorem 2.4.2 below is the main result of this subsection.

Definition 9. For each `, define µ` : GalK → GL(W`) to be the composition t` ◦ φ` and Ω̄` to
be the image µ`, where t` is as in Theorem 2.4.1.

Theorem 2.4.2. Let Ī` be the algebraic group generated by a set of tame inertia tori Īv̄
(Definition 10) for `� 1. There exist a constant c8 = c8(N) and a finite normal field extension
L/K such that if `� 1, then Ī` is a torus, called the inertia torus at `, and µ`(GalL) ⊂ Ω̄` is a
subgroup of Ī`(F`) such that:

(i) {Ī` ↪→ GLW`
}`�1 have bounded formal characters (Definition 4′);

(ii) [Ī`(F`) : µ`(GalL)] is bounded by c8.

Theorem 2.4.3 [Jor78, Jordan’s theorem on finite linear groups]. For every n there exists a
constant J(n) such that any finite subgroup of GLn over a field of characteristic zero possesses
an abelian normal subgroup of index less than or equal to J(n).

The order of Ω̄` is prime to `; thus Ω̄` can be lifted to a subgroup of GLN ′(C) such that N ′

depends only on N . Theorem 2.4.3 then tells us that Ω̄` has a abelian normal subgroup J̄` of
index less than a constant c5 = c5(N) := J(N ′) depending on N ′. Since N ′ depends on N , we
have [Ω̄` : J̄`] 6 c5. If v̄ divides `, then the action of the inertia group Iv̄ on W` is semisimple
because |Ω̄`| is prime to `. Since dim(W`) | c4!, we obtain

µ` : It
v̄

θc4!

� F∗
`c4! → GL(W`).

By Theorem 2.3.3 and W` in Theorem 2.4.1, there exists c6 = c6(N) > 0 such that if χ is a
character, then χ can be written as a product of fundamental characters of level c4!,

χ = (θc4!)
m0 · (θ`c4!)

m1 · · · (θ`c4!−1

c4! )mc4!−1 ,

with exponents m0, . . . ,mc4!−1 belonging to [0, c6] for all `� 1. Therefore, we make the following
definition.

Definition 10. Denote the field F`c4! by E` for all `. This gives a homomorphism

fv̄ : E∗` → GL(W`)

if ` > c6(N) + 1. Let Ē` denote ResE`/F`(Gm) (the Weil restriction of scalars) for all `. We have
Ē`(F`) = E∗` . Then fv̄ extends uniquely [Hal11, § 3] to the following `-restricted F`-morphism:

wv̄ : Ē` := ResE`/F`(Gm)→ GLW`
.

Denote the image of wv̄ by Īv̄ for v̄ | `� 1. It is called the tame inertia torus at v̄ ∈ ΣK̄ .

Lemma 2.4.4. There exists a constant c7 = c7(N) such that for any v̄ | ` > c6(N) + 1:

(i) {Īv̄ ↪→ GLW`
}v̄ have bounded formal characters (Definition 4′);

(ii) [Īv̄(F`) : fv̄(E∗` )] 6 c7.

Proof. Since dim(W`) and dim(Ē`) are bounded by a constant independent of ` and the exponents
of the characters of wv̄ in terms of the fundamental characters [Hal11, § 3] belong to [0, c6], by
Proposition 2.0.3 we find a set of characters Rv̄ of uniformly bounded exponents of the diagonal
subgroup of GLW`

, by diagonalizing Īv̄; then assertion (i) follows. For assertion (ii), uniform
boundedness of exponents of characters and the fact that dim(Ē`) = c4! (for all `) imply that the
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number of connected components of Ker(wv̄) is uniformly bounded by c7. On the other hand,
the number of F`-rational points of any F`-torus of dimension k lies between (`−1)k and (`+1)k

by [Nor87, Lemma 3.5]. Therefore µ`(I
t
v̄) = fv̄(E∗` ) has at least

|E∗` |
c7(`+ 1)dim(Ker(wv̄))

=
`c4! − 1

c7(`+ 1)dim(Ker(wv̄))

points, and [Īv̄(F`) : µ`(I
t
v̄)] is bounded by

c7(`+ 1)dim(Ker(wv̄))+dim(Im(wv̄))

`c4! − 1
=
c7(`+ 1)c4!

`c4! − 1
→ c7

when ` is large. This proves (ii). 2

Lemma 2.4.5 (Rigidity; [Hal11, § 3], [Ser86, § 3]). Let s ∈ GL(W`) be a semisimple element and
fv̄ : E∗` → GL(W`) a representation such that the exponents of characters of fv̄ belong to [0, c]
for some c > 0. If H ⊂ E∗` is a subgroup such that fv̄(H) commutes with s in GL(W`) and
c · [E∗` : H] 6 `− 1, then Īv̄ commutes with s, and hence so does fv̄(E∗` ).

Recall from Definition 2 that there is a finite subset S ⊂ ΣK such that φ` is unramified
outside S` := S ∪ {v ∈ ΣK : v | `} for all `.

Proof of Theorem 2.4.2. The following arguments are influenced by the arguments Serre gave
for [Ser86, Theorem 1].

Denote the image of µ`(I
t
v̄) under the map Γ̄`/(Γ̄` ∩ S̄`(F`)) ↪→ GL(W`) by Ω̄v̄ whenever

v̄ | `. Let J̄` be a maximal abelian normal subgroup of Ω̄` := µ`(GalK). We first prove that Ω̄v̄

commutes with J̄` if ` is large. Since Ω̄v̄ and J̄` are abelian and

[Ω̄v̄ : Ω̄v̄ ∩ J̄`] 6 c5

by Theorem 2.4.3 (Jordan), the tame inertia torus Īv̄ at v̄ (Definition 10) and hence fv̄(E∗` ) = Ω̄v̄

commute with J̄` if ` > c5c6 + 1 by rigidity (Lemma 2.4.5). For any v̄1, v̄2 | `, since Ω̄v̄1 ∩ J̄`
commutes with Ω̄v̄2 ∩ J̄` and these are of bounded index in Ω̄v̄1 and Ω̄v̄2 , respectively, we obtain
that Īv̄1 commutes with Īv̄2 if `� 1 by rigidity (Lemma 2.4.5). The subgroup H̄` of Ω̄` generated
by the inertia subgroups Ω̄v̄ for all v̄ | ` is abelian and normal for `� 1. As J̄` is maximal normal
abelian in Ω̄`, we have that H̄` ⊂ J̄` for all ` � 1. Therefore each Ω̄`/J̄` corresponds to a field
extension of K of degree bounded by c5 that ramifies only in S (Definition 2) for ` � 1. By
Hermite’s theorem [Lan94, p. 122], the composite of these fields is still a finite field extension K ′

of K. Therefore µ`(GalK′) ⊂ J̄` for `� 1.
Since the representations {φ`} come from étale cohomology and Iv̄ ∩ GalK′ is the inertia

subgroup of GalK′ at v̄ (see [Neu99, Proposition 9.5]), they are potentially semi-stable, which
means that there exists a finite extension K ′′ of K ′ such that φ`(Iv̄ ∩GalK′′) is unipotent for any
v̄ not dividing ` (see [dJon96, § 1]). Therefore, for each `� 1, we have a finite abelian extension
of K ′′ with Galois group µ`(GalK′′) contained in J̄` that ramifies only at v ∈ ΣK′′ dividing `.
Since µ`(GalK′′) is an abelian Galois group over K ′′, each ramified prime v ∈ ΣK′′ dividing
large ` corresponds to an inertia subgroup Ī ′′v ⊂ µ`(GalK′′), and there are at most [K ′′ : Q] of
them. For each inertia subgroup Ī ′′v , choose a tame inertia torus Īv̄ such that Ī ′′v ⊂ Īv̄(F`). Since
these tame inertia tori commute with each other, the algebraic group Ī` generated by them is an
F`-torus, called the inertia torus at `. Since {Īv̄ → GLW`

}v̄|`�1 have bounded formal characters
(Lemma 2.4.4(i)) and each Ī` is generated by at most [K ′′ : Q] tame inertia tori, {Ī` ↪→ GLW`

}`�1

have bounded formal characters by Proposition 2.0.4. This proves (i).
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Let Ī ′′` be the subgroup of µ`(GalK′′) generated by Ī ′′v for all v | `. Then, for `� 1,

µ`(GalK′′)/Ī
′′
`

is the Galois group of a finite abelian extension of K ′′ that is unramified at every non-
Archimedean valuation. By abelian class field theory, these fields generate a finite extension
K ′′′ of K ′′. Choose L normal over K such that K ′′′ ⊂ L. Then we obtain

(∗) : µ`(GalL) ⊂ Ī ′′` ⊂ Ī`(F`).

It remains to prove (ii). Suppose that Ī` is generated by tame inertia tori Īv̄i , 1 6 i 6 k, for some
fixed k 6 [K ′′ : Q]. We have

[Ī`(F`) : µ`(GalL)] = [Ī`(F`) : Ī`(F`) ∩ Ω̄`] · [Ī`(F`) ∩ Ω̄` : µ`(GalL)]

6 [Ī`(F`) : fv̄1(E∗` ) · · · fv̄k(E∗` )] · [L : K].

It suffices to show that [Ī`(F`) : fv̄1(E∗` ) · · · fv̄k(E∗` )] is bounded independently of `. The proof is
identical to that of Lemma 2.4.4(ii), since fv̄1(E∗` ) · · · fv̄k(E∗` ) is the image of

fv̄1 × · · · × fv̄k : (E∗` )k → GL(W`),

Ī` is the image of

wv̄1 × · · · × wv̄k : (Ē`)
k
→ GLW`

,

k (depending on `) is always less than [K ′′ : Q], and the exponents of characters (`-restricted,
Definition 10) of wv̄1 × · · · × wv̄k are uniformly bounded. Hence, there exists c8 = c8(N) such
that [Ī`(F`) : µ`(GalL)] 6 c8 for `� 1. 2

2.5 Construction of Ḡ`

An F`-torus Ī` ⊂ GLW`
was constructed in § 2.4 for `� 1, and we have the following map defined

in Theorem 2.4.1:

t` : N̄` � N̄`/S̄` ↪→ GLW`
.

One has to show that Ī` ⊂ t`(N̄`) so that t−1
` (Ī`) is connected. It suffices to consider tame inertia

tori Īv̄. Recall the vector space U` from Theorem 2.4.1.

Lemma 2.5.1. Let H̄` be an algebraic subgroup of GLV̄` . Then H̄` acts on Ū`. If H̄` is invariant
on the subspace

W̄` ⊂ Ū`

fixed by S̄`, then H̄` is contained in N̄`.

Proof. Let x ∈ H̄`\N̄`. Then there exists s ∈ S̄` such that xsx−1 /∈ S̄`. There exists w ∈ W̄` such
that

xsx−1w 6= w

by the last statement of Theorem 2.4.1. Therefore,

sx−1w 6= x−1w

implies x−1w /∈ W̄`, which is a contradiction. Hence H̄` is contained in N̄`. 2
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Proposition 2.5.2. The F`-torus Ī` in GLW`
is a subgroup of the image of

t` : N̄` � N̄`/S̄` ↪→ GLW`

defined in Theorem 2.4.1.

Proof. Let v̄ | ` be a valuation of K̄ and let Iv̄ be the inertia subgroup of GalK at v̄. The restriction
φ` : Iv̄ → GL(V`) factors through a finite quotient πv̄ : Iv̄ � Jv̄ such that |Jv̄| = `k · (`c4! − 1).
Recall the vector spaces W` ⊂ U` from Theorem 2.4.1 and fv̄ : E∗` → GL(W`) from Definition
10. Consider the diagram below such that

r` ◦ φ` ◦ iv̄ = f ′v̄

and the actions of E∗` on W` via f ′v̄ and fv̄ are the same.

Jv̄

φ`
��

πv̄
// // E∗`

iv̄
yy

f ′v̄
��

GLV`
r` // GLU`

Here r` is the obvious map and iv̄ is a splitting of πv̄. This is possible because E∗` defined in § 2.4
is cyclic of order `c4! − 1 prime to `.

If ` is sufficiently large, then the exponents of the (`-restricted) characters of representations
φ`◦iv̄ and r`◦φ`◦iv̄ belong to [0, i] and [0, ic3], respectively, by Theorem 2.3.3 and the construction
of U`. Recall Ē` from Definition 10. By the Weil restriction of scalars, we obtain two F`-morphisms

α` : Ē`→GLV` ,

β` : Ē`→GLU`
.

Since r` ◦α` and β` are both `-restricted [Hal11, § 3] and equal to r` ◦ φ` ◦ iv̄ upon restricting to
E∗` , by uniqueness [Hal11, § 3] we have that

r` ◦ α` = β`.

The image r` ◦φ` ◦ iv̄(E∗` ) = f ′v̄(E∗` ) maps W` and hence W̄` to itself, so β`(Ē`) also maps W̄`

to itself. Since r` ◦ α`(Ē`) = β`(Ē`), we conclude that α`(Ē`) ⊂ N̄` by Lemma 2.5.1. One also
observes that the morphism

t` : N̄` � N̄`/S̄` ↪→ GLW`

maps α`(Ē`) to Īv̄ := wv̄(Ē`). Therefore, the tame inertia torus Īv̄, and thus Ī`, is a subgroup of
t`(N̄`). 2

Definition 11. Let L be the normal extension of K in Theorem 2.4.2. Denote φ`(GalL) by γ̄`
for all `. Then [Γ̄` : γ̄`] 6 [L : K] for all `.

Proof of Theorem 2.0.5 (i) and (ii). Since S̄` is a connected normal subgroup of N̄`, Ī` is a torus
and t` is an F`-morphism, Proposition 2.5.2 implies that t−1

` (Ī`), the preimage of the F`-torus Ī`,
is a connected F`-reductive group Ḡ`. Moreover, γ̄` ⊂ Ḡ`(F`) by construction of Ḡ` for ` � 1.
We obtain an exact sequence of F` algebraic groups for `� 1,

1→ S̄`→ Ḡ`→ Ī`→ 1,
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and hence

1→ S̄`(F`)→ Ḡ`(F`)→ Ī`(F`).

Recall that µ`(GalL) = t`(γ̄`) from Theorem 2.4.2. Since the semisimple envelopes (Definition 6)
of Γ̄` and γ̄` are identical for `� 1 by Remark 2.1.3, the above exact sequence implies that

[Ḡ`(F`) : γ̄`] 6 [S̄`(F`) : γ̄` ∩ S̄`(F`)][Ī`(F`) : µ`(GalL)] 6 2N−1c8

by Proposition 2.1.2(iii) and Theorem 2.4.2 for `� 1. Since the derived group of Ḡ` is S̄`, the

action of Ḡ` on the ambient space is semisimple if `� 1 by Proposition 2.1.2(ii). Therefore, we

have proved assertions (i) and (ii) of Theorem 2.0.5. 2

Proof of Theorem 2.0.5(iii). Let S̄sc
` → S̄` be the simply connected cover of S̄`. The

representation (S̄sc
` → S̄` ↪→ GLN,F`) × F̄` is semisimple and has a Z-form which belongs to

a finite set of Z-representations of simply connected Chevalley schemes [EHK12, Theorem 24] if
`� 1. Thus, {S̄` ↪→ GLN,F`}`�1 have bounded formal characters (Definition 4′). Let C̄` be the
center of Ḡ`. Since S̄` acts semi-simply on V̄` by Proposition 2.1.2(ii) for `� 1, we decompose
the representation S̄`→ GL(V̄`) into a sum of absolutely irreducible representations M̄i,

V̄` =

( m1⊕
1

M̄1

)
⊕
( m2⊕

1

M̄2

)
⊕ · · · ⊕

(mk⊕
1

M̄k

)
,

such that M̄i � M̄j if i 6= j. If c ∈ C̄`, then M̄i and c(M̄i) are isomorphic representations of S̄`
for all i. Hence, c is invariant on

⊕mi
1 M̄i and

⊕mi
1 M̄i is a subrepresentation of Ḡ` on V̄` for all

i. Let ni be the dimension of M̄i. Denote the representation of S̄` on M̄i under some coordinates
by

ui : S̄`→ GLni(F̄`).

Then, the representation of Ḡ` on
⊕mi

1 M̄i is given by

qi : Ḡ`→ GLnimi(F̄`),

so that upon restricting to S̄` the action is ‘diagonal’:

qi : S̄`
ui
→ GLni(F̄`)→

mi⊕
1

GLni(F̄`) ⊂ GLnimi(F̄`),

x 7→ ui(x) 7→ (ui(x), . . . , ui(x)).

Since ui is a irreducible representation and qi(c) commutes with qi(S̄`), qi(c) is contained in the
subgroup

H̄i =


D̄11 D̄12 ... D̄1mi

D̄21 D̄22 ... D̄2mi

...
...

. . .
...

D̄mi1 D̄mi2 ... D̄mimi

 ,

where D̄jk is the subgroup of scalars of GLni(F̄`) for 1 6 j 6mi and 1 6 k 6mi. We see that H̄i

is isomorphic to GLmi(F̄`). Since qi(C̄`) is a diagonalizable group which commutes with qi(S̄`)
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and qi|S̄`
is ‘diagonal’, we may assume that, after a change of coordinates by some element in

H̄i
∼= GLmi(F̄`), qi(C̄`) is contained in the following torus D̄i for all i:

D̄i =


D̄11 0 ... 0

0 D̄22 ... 0
...

...
. . .

...
0 0 ... D̄mimi

 .

Therefore, we may assume that C̄` is a subgroup of

B̄` := D̄1 × D̄2 × · · · × D̄k ⊂ GLN (F̄`)

in suitable coordinates. That the torus B̄` centralizes S̄` implies B̄` ⊂ N̄`. Denote the restriction
t`|B̄`

by s`. Since N̄` acts on W̄`, we have

s` : B̄`→ GLW`
.

We obtain (s−1
` (Ī`))

◦ = C̄◦` because Ker(s`) is discrete. Consider the construction of U` from
Theorem 2.4.1. This implies that the exponents of characters of s` on D̄i

∼=
∏mi

1 F̄∗` are
between 0 and c3 for all i. By Theorem 2.4.2(i) and the above, the system of diagonalizable
groups {s−1

` (Ī`)}`�1 satisfies the bounded exponents condition in Definition 4′. Hence, {C̄◦` =
(s−1
` (Ī`))

◦ ↪→ B̄` ↪→ GLV`}`�1 have bounded formal characters. Since {C̄` ↪→ GLN,F`}`�1 and
{S̄` ↪→ GLN,F`}`�1 both have bounded formal characters and C̄◦` commutes with S̄` for `� 1,
{Ḡ` = C̄◦` · S̄` ↪→ GLN,F`}`�1 have bounded formal characters by Proposition 2.0.4. This proves
Theorem 2.0.5(iii). 2

3. `-independence of Γ̄`

3.1 Formal character of Ḡ` ⊂ GLN,F`
A system of algebraic envelopes {Ḡ`}`�1 of {Γ̄`}`�1 (Definition 5) was constructed in § 2.5. Let
G` be the algebraic monodromy group of Φss

` for all `. The compatibility (Definition 2) of the
system {φ`} implies that the formal characters of {Ḡ` ↪→ GLN,F`}`�1 ∪{G` ↪→ GLN,Q`

}`�1 are
the same in the sense of Definition 3′.

Theorem 3.1.1. Let {Ḡ`}`�1 be a system of algebraic envelopes of {Γ̄`}`�1 (Definition 5).

(i) The formal characters of Ḡ` ↪→ GLN,F` and G` ↪→ GLN,Q`
are the same for `� 1.

(ii) The formal characters of {Ḡ` ↪→ GLN,F`}`�1 are the same.

Proof. The mod ` system {φ` : GalK → GLN (F`)} comes from the `-adic system {Φss
` : GalK →

GLN (Q`)} (Definition 1). The algebraic monodromy group G` is reductive for all `. By taking
a finite extension Kconn of K (see [Ser81]), we may assume that G` is connected for all `. This
does not change the formal character of G` ↪→ GLN,Q`

. It is well known that these algebraic
monodromy groups have same reductive rank r. Define

Char : GLN → GN−1
a ×Gm,

which maps a matrix to the coefficients of its characteristic polynomial. We know that Char(G`)
is a Q-variety of dimension r that is independent of ` (by the compatibility conditions) and can
be defined over Z[1/N ′] for some positive integer N ′ that is sufficiently divisible. Let PZ[1/N ′] be

the Zariski closure of Char(G`) in the projective PNZ[1/N ′]. Since φ` is continuous, every element

of Γ̄` is the image of a Frobenius element. Therefore, Char(Γ̄`) is a subset of the F`-rational
points of PF` := PZ[1/N ′] ×Z F` for `� 1.
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Generic flatness [DG65, Theorem 6.9.1] implies that PZ[1/N ′] is flat over Z[1/N ′] for
sufficiently divisible N ′, so the dimension of every irreducible component of PZ[1/N ′] is r + 1
(see [Har77, ch. 3, Proposition 9.5]), and hence the dimension of every irreducible component of
PF` is r (see [Har77, ch. 3, Corollary 9.6]) for ` � 1. Also, the Hilbert polynomial of PF` and,
in particular, the degree (call it d) of PF` ⊂ PNF` is independent of ` for `� 1 (see [Har77, ch. 3,
Theorem 9.9]). Since d is a positive integer, we conclude that the number and the degrees of
irreducible components of PF` are bounded by d (see [Har77, ch. 1, Proposition 7.6(a) and (b)]).
By [LW54, Theorem 1] and the above, we have that

|PF`(F`)| 6 3d · `r

for `� 1. Let T̄` be a F`-maximal torus of Ḡ`. Then [Nor87, Lemma 3.5] implies that T̄` has at
least (` − 1)dim(T̄`) F`-rational points. By Theorem 2.0.5(i), there is an integer n > 0 such that
the nth power of T̄`(F`) is contained in γ̄` for `� 1. One sees, by diagonalizing T̄` in GLN,F̄`

,

that the order of the kernel of this nth-power homomorphism is less than or equal to nN . Hence,
we obtain that

|T̄`(F`) ∩ γ̄`| >
(`− 1)dim(T̄`)

nN
.

Also, the morphism Char restricted to any maximal torus of GLN is a finite morphism of degree
N !. Thus, there is a constant c > 0 such that

c · `dim(T̄`) 6 |Char(T̄`(F`) ∩ γ̄`)| 6 |Char(γ̄`)| 6 |PF`(F`)| 6 3d · `r

for `� 1. This implies that dim(T̄`) 6 r for `� 1.
On the other hand, for each ` � 1 we can find a set R` of characters of GNm of exponents

bounded by C > 0 such that T̄` is conjugate in GLN,F̄`
to the kernel of R` by Theorem 2.0.5(iii)

and Definition 4′. Let L be an infinite subset of prime numbers P such that for all `, `′ ∈ L
we have the equality R` = R`′ . Denote this common set of characters by R, and define YC =
{y ∈ GNm,C : χ(y) = 1 for all χ ∈ R} so that dimCYC = dimF̄`T̄` for all ` ∈ L . If v̄ divides
v ∈ ΣK\S` (the S` in Definition 2), then the characteristic polynomial of φ`(Frobv̄) is just the
mod ` reduction of the characteristic polynomial of Φss

` (Frobv̄) = Pv(x) ∈ Q[x], which depends
only on v (Definition 2). Therefore, for each v /∈ S (Definition 2), we can put the roots of Pv(x)
in some order α1, α2, . . . , αN such that the following congruence equation holds:

αm1
1 αm2

2 · · ·α
mN
N ≡ 1 (mod `′)

for any character xm1
1 xm2

2 · · ·x
mN
N ∈ R and

`′ ∈ Lv := L \{`′′ ∈P : ∃v′ ∈ S` such that v′ | `′′}

if v | `. Since αm1
1 αm2

2 · · ·α
mN
N is an algebraic number and Lv consists of infinitely many primes,

we obtain the equality

αm1
1 αm2

2 · · ·α
mN
N = 1

for any character xm1
1 xm2

2 · · ·x
mN
N ∈ R. Therefore,

(Char|GN
m

)−1({Pv(x) : v ∈ ΣK\S}) ⊂
⋃

g∈Perm(N)

g(YC),

where Perm(N) is the group of permutations of N letters permuting the coordinates. Since
{Pv(x) : v ∈ ΣK\S} is Zariski dense in Char(G`) of dimension r and Char|GN

m
is a finite morphism
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of degree N !, the Zariski closure of (Char|GN
m

)−1({Pv(x) : v ∈ ΣK\S}) in GNm,C, denoted by DC, is

also of dimension r. Because we have obtained dim(T̄`) 6 r at the end of the second paragraph
and any maximal torus of the algebraic monodromy group G` is conjugate in GLN,C to an
irreducible component of DC (see [Ser81]), the inclusion

DC ⊂
⋃

g∈Perm(N)

g(YC)

implies that the formal characters of Ḡ` ↪→ GLN,F` and G` ↪→ GLN,Q`
are the same in the sense

of Definition 3′ for all ` ∈ L . There are only finitely many possibilities for R` by Remark 2.0.2
and Proposition 2.0.3. Upon excluding the primes ` such that R` appears finitely many times,
we conclude that the formal characters of Ḡ` ↪→ GLN,F` and G` ↪→ GLN,Q`

are the same for
`� 1. This proves (i) and hence (ii), since the formal character of G` ↪→ GLN,Q`

is independent
of ` (see [Ser81]). 2

3.2 Formal character of S̄` ⊂ GLN,F`
We make the following assumptions for this subsection.

Assumptions. By taking a field extension of K, we may assume that:

(i) G`, the algebraic monodromy group of Φss
` , is connected for all ` (see [Ser81]);

(ii) for all `, Ω̄` := µ`(Γ̄`) corresponds to an abelian extension of K that is unramified at all
primes not dividing ` (see the first paragraph of the proof of Theorem 2.4.2).

Theorem 3.2.1 below is the main result of this subsection. Denote a finite extension of K
by K ′. Because S̄` is independent of K ′ over K for ` � 1 by Remark 2.1.3, the assumptions
above remain valid for K ′, and {Ḡ`}`�1 constructed in § 2.5 are still algebraic envelopes of
{φ`(GalK′)}`�1, we are free to replace K with K ′ in this subsection.

Theorem 3.2.1. Let S̄` ⊂ GLN,F` be the semisimple envelope of Γ̄` (Definition 6) for all `� 1.

(i) The formal character of S̄` ↪→ GLN,F` is equal to the formal character of Gder
` ↪→ GLN,Q`

for `� 1, where Gder
` is the derived group of the algebraic monodromy group G` of Φss

` .

(ii) The formal character of S̄` ↪→ GLN,F` is independent of ` if `� 1.

In [Hui13, § 3], we used mainly abelian `-adic representations to prove that the formal
character of Gder

` ↪→ GLN,Q`
is independent of `. To prove Theorem 3.2.1, we adopt this strategy

in a mod ` fashion. The key point is to establish that the inertia characters of µ` (Definition 9)
for ` � 1 are in some sense the mod ` reductions of inertia characters of some Serre group Sm

(see [Ser98, ch. 2] and Proposition 3.2.4).

Definition 12. For each prime ` ∈ P, choose a valuation v̄` of Q̄ that extends the
`-adic valuation of Q. This valuation on Q̄ is equal to the restriction of the unique non-
Archimedean valuation on Q̄` (extending the `-adic valuation on Q`) to Q̄ with respect to some
embedding Q̄ ↪→ Q̄`. Denote this valuation on Q̄` by v̄` as well. We use the following notation:

• Galab
K , the Galois group of the maximal abelian extension of K;

• IK , the group of idéles of K;

• (xv)v∈ΣK
, a representation of a finite idéle;

• Kv, the completion of K with respect to v ∈ ΣK ;

• Uv, the unit group of K∗v ;
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• kv, the residue field of Kv;

• m0, the modulus of empty support;

• Um0 :=
∏
v Uv;

• K` :=
∏
v|`Kv = K ⊗Q`;

• Z̄`, the valuation ring of v̄`;

• p`, the maximal ideal of v̄`;

• k`, the residue field of v̄`;

• x` := (xv)v|`.

Let σ : K → Q̄ be an embedding of K in Q̄. The composition of σ with Q̄ ↪→ Q̄` extends to a
Q`-algebra homomorphism σ` : K`→ Q̄`.
Remark 3.2.2. The field k` is an algebraic closure of F` and the homomorphism σ` is trivial on
the components Kv of K` when v is not equivalent to v̄` ◦ σ.

Recall the representation µ` : GalK→GL(W`) (abelian by assumption (ii)) from Definition 9.
Thus, µ` induces the following ρ` for each ` by composing with IK → Galab

K :

ρ` : IK → GL(W`).

Proposition 3.2.3. If χ` : IK → F̄∗` is a character of ρ` for ` � 1, then for any finite idéle
x ∈ Um0 we have the congruence

χ`(x) ≡
∏

σ∈Hom(K,Q̄)

σ`(x
−1
` )m(σ,`) (mod p`)

such that 0 6 m(σ, `) 6 c6.

Proof. Since |Ω̄`| is prime to `, the homomorphism

Uv ↪→ K∗v → IK
ρ`
→ GL(W`)

factors through αv : k∗v → GL(W`) for all v | `. On the other hand, let v̄ ∈ ΣK̄ divide `. Since Ω̄`

is abelian and of order prime to `, the restriction of µ` : GalK → GL(W`) to Iv̄ factors through

Iv̄ → It
v̄

∼=
→ lim
←−F

∗
`k → k∗v

and induces βv : k∗v → GL(W`) that depends on v = v̄|K̄ . By [Ser72, Proposition 3], αv and
βv are inverses of each other. Since fv̄ (Definition 10) factors through βv and the exponents
of any character of fv̄ when expressed as an `-restricted (Definition 8) product of fundamental
characters of level c4! are bounded by c6 for ` � 1 (§ 2.4), the exponents of χ` when expressed
as an `-restricted product of fundamental characters of level [kv : F`] are also bounded by c6 for
` � 1. Since ρ` is unramified at all v not dividing `, ρ` is trivial on the subgroup

∏
v-` Uv of

Um0 :=
∏
v Uv. Therefore we conclude the congruence for `� 1. 2

Definition 13. Let Sm be the Serre group of K with modulus m (see [Ser98, ch. 2]), and let
Θ : Sm→ Gm,Q̄`

be a character of Sm over Q̄`. Since the image of the abelian representation Θ`

attached to Θ,

Θ` : Galab
K → Sm(Q`)

Θ
→ Q̄∗`

(see [Ser98, ch. 2]), is contained in Z̄∗` , define

θ` : IK → k∗`
∼= F̄∗`

as the mod p` reduction of the composition of IK → Galab
K with Θ`.
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Proposition 3.2.4. Let χ` be a character of ρ` as above. If ` is sufficiently large, then there is
a character Θ of Sm0 such that

χ`(x) = θ`(x)

for all x ∈ Um0 , where θ` is as in Definition 13.

Proof. Since 0 6 m(σ, `) 6 c6 for all σ ∈ Hom(K, Q̄) and ` � 1 by Proposition 3.2.3, the
proposition follows from the proof of [Ser72, Proposition 20]. 2

Let Ψ : Sm0 → GLn,Q be a Q-morphism of the Serre group Sm0 with finite kernel. Then
Ψ induces a strictly compatible system {Ψ`}`∈P of abelian `-adic representations of GalK (see
[Ser98, ch. 2]) with S = ∅ (Definition 2),

Ψ` : GalK → Galab
K → GLn(Q`).

We may assume that {Ψ`} is integral [Ser98, ch. 2, § 3.4] by twisting {Ψ`} with a suitable large
power of the system of cyclotomic characters.

Proposition 3.2.5. Let Ψ and {Ψ`}`∈P be as above.

(i) The subgroup generated by the characters of Ψ is of finite index in the character group
of Sm0 . Denote this index by k.

(ii) For any ` and character θ` of IK induced from a character Θ of Sm0 as in Definition 13,
we obtain the following congruence for all x ∈ Um0 ⊂ IK :

θ`(x) ≡
∏

σ∈Hom(K,Q̄)

σ`(x
−1
` )m(σ) (mod p`),

such that m(σ) > 0 for all σ.

Proof. Statement (i) follows from the fact that Ψ is an isogeny from Sm0 onto Ψ(Sm0). Statement
(ii) follows from the integrality of the system {Ψ`} and the theory of abelian `-adic representations
[Ser98, chs 2 and 3]. 2

Denote the semi-simplification of some mod ` reduction of Ψ` by ψ` for all `. Consider the
following strictly compatible system of `-adic representations:

{Φ` ×Ψ` : GalK → GLN (Q`)×GLn(Q`)}`∈P .

The semi-simplification of some mod ` reduction of {Φ` ×Ψ`}`∈P ,

{φ` × ψ` : GalK → GLN (F`)×GLn(F`)}`∈P ,

is then a strictly compatible system of mod ` representations (Definition 2). Denote the image
of φ` × ψ` by Γ̄′`. Let v̄ ∈ ΣK̄ divide `. When we restrict φ` × ψ` to the inertia subgroup Iv̄ of
GalK and then semi-simplify, the exponents of characters of the tame inertia quotient It

v̄ for some
level are bounded independently of ` by § 2.3, Proposition 3.2.5(ii) and [Ser72, Proposition 3].
Therefore, we can construct as in § 2 semisimple envelopes {S̄′`}`�1 (Definition 6), inertia tori
{Ī′`}`�1 (Theorem 2.4.2) and algebraic envelopes {Ḡ′`}`�1 (Definition 5) of {Γ̄′`}`�1.

Since ψ` is semisimple and abelian, we see that Nori’s construction gives S̄′` = S̄` × {1} ⊂
GLN,F` ×GLn,F` . The normalizer of S̄` × {1} in GLN,F` ×GLn,F` is N̄` ×GLn,F` . We have

t` × id : N̄` ×GLn,F` → GLW`
×GLn,F`
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with kernel S̄` × {1}. Therefore, we obtain a map

µ` × ψ` : Galab
K → GL(W`)×GLn(F`)

with image denoted by Ω̄′`. As Ω̄′` is abelian, denote the compositions of µ` and ψ` with IK →

Galab
K by µ̃` and ψ̃`, respectively, for all `. By (∗) in the proof of Theorem 2.4.2 and [Neu99,

Proposition 9.5], we assume, by taking a finite extension of K, that

(∗∗) : (µ̃` × ψ̃`)
(∏
v|`

Uv

)
= Ω̄′` for all `� 1.

Proposition 3.2.6. Let p2 : GLW`
×GLn,F` be the projection to the second factor. Then p2 is

an isogeny from Ī′` onto p2(Ī′`) for `� 1.

Proof. Let (x, 1) ∈ GLW`
×GLn,F` be an element of Ω̄′`∩Ker(p2), where (x, 1) = (µ̃`× ψ̃`)(x`) for

some x` ∈
∏
v|` Uv (Definition 12) by (∗∗) above. Since Ψ : Sm0 → GLn,Q has finite kernel and

µ̃`× ψ̃` is abelian and semisimple, we have xk = 1 for `� 1 by the fact that 1 = ψ̃`(x`) together
with Propositions 3.2.4 and 3.2.5(i). Since Ω̄′` is abelian of order prime to `, xk = 1 implies that
x has at most kdim(W`) possibilities (by diagonalizing the image of µ̃`), which implies that

|Ω̄′` ∩Ker(p2)| 6 kdim(W`).

Therefore, the F`-diagonalizable group Ker(p2) ∩ Ī′` cannot have positive dimension for ` � 1,
because [Ī′`(F`) : Ω̄′` ∩ Ī′`(F`)] is also uniformly bounded by Theorem 2.4.2(ii). Thus, p2 is an
isogeny from Ī′` onto p2(Ī′`). 2

Proof of Theorem 3.2.1. The mod ` system

{φ` × ψ` : GalK → GLN (F`)×GLn(F`)}

comes from the `-adic system (i.e. the semi-simplification of a mod ` reduction)

{Φss
` ×Ψ` : GalK → GLN (Q`)×GLn(Q`)}.

Let G′` be the algebraic monodromy group of the semisimple representation Φss
` × Ψ` for all

`. Thus G′` is reductive and we may assume that G′` is connected for all ` by taking a finite
extension of K. Denote the projections to the first and second factors of GLN ×GLn by p1 and
p2, respectively. Consider the map

Char1 × Char2 : GLN ×GLn→ (GN−1
a ×Gm)× (Gn−1

a ×Gm)

where Chari = Char ◦ pi for i = 1, 2. Note that the restriction of Char1 × Char2 to GNm ×Gnm is
a finite morphism. Let T′` be a maximal torus of the monodromy group G′` and T̄′` a maximal
torus of Ḡ′`, the algebraic envelope of the mod ` representation φ` × ψ`. Up to conjugation by
GLN ×GLn (over algebraically closed fields), we may assume that T′` and T̄′` are diagonal (i.e.
inside GN+n

m ). We claim that, up to permutation of coordinates by Perm(N)×Perm(n), T′` and
T̄′` are annihilated by the same set of characters of GN+n

m for all sufficiently large `. The proof of
the claim proceeds in exactly the same way as the proof of Theorem 3.1.1(i), with the following
replacements:

• GLN −→ GLN ×GLn;

• morphism Char −→ morphism Char1 × Char2;
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• Q-variety Char(G`) −→ Q-variety Char1 × Char2(G′`);

• Perm(N) −→ Perm(N)× Perm(n).

Therefore, T′′` := Ker(p2 : T′` → p2(T′`))
◦ and T̄′′` := Ker(p2 : T̄′` → p2(T̄′`))

◦ as subtori of
GNm are annihilated by the same set of characters for `� 1. The torus T′′` is the formal character
of Gder

` ↪→ GLN,Q`
(see [Hui13, proof of Theorem 3.19]). It suffices to show that T̄′′` is a maximal

torus of S̄` for `� 1. Since the dimension of the torus Ī′` is equal to the dimension of the center
of the algebraic envelope Ḡ′` for ` � 1 (see § 2.5) and p2 is an isogeny from Ī′` onto p2(Ī′`) by
Proposition 3.2.6 for `� 1, the identity component of the kernel of

p2 : Ḡ′`→ p2(Ḡ′`) = p2(Ī′`)

is S̄′` (the semisimple part of Ḡ′`) for ` � 1. Since p2(T̄′`) = p2(Ḡ′`) = p2(Ī′`) for ` � 1, by
construction T̄′′` is a maximal torus of S̄′` = S̄` × {1} for ` � 1. Hence, the formal characters
of S̄` ↪→ GLN,F` and Gder

` ↪→ GLN,Q`
are the same for `� 1. This proves (i). Since the formal

character of Gder
` ↪→ GLN,Q`

is independent of ` (see [Hui13, Theorem 3.19]), we obtain (ii)
from (i). 2

3.3 Proofs of Theorem A and Corollary B
The following purely representation-theoretic result is crucial to the study of Galois images Γ̄`
for `� 1.

Theorem 3.3.1 [Hui13, Theorem 2.19]. Let V be a finite-dimensional C-vector space, and let
ρ1 : g → End(V ) and ρ2 : h → End(V ) be two faithful representations of complex semisimple
Lie algebras. If the formal characters of ρ1 and ρ2 are equal, then the number of An factors for
n ∈ N\{1, 2, 3, 4, 5, 7, 8} and the parity of A4 factors of g and h are equal.

Theorem 3.3.2. The number of An = sln+1 factors for n ∈ N\{1, 2, 3, 4, 5, 7, 8} and the parity
of A4 factors of S̄` ×F` F̄` are independent of ` if `� 1.

Proof. Let S̄sc
` → S̄` be the simply connected cover of the semisimple S̄` for ` � 1. Then the

representation (S̄sc
` → S̄` ↪→ GLN,F`)× F̄` can be lifted to a representation of a simply connected

Chevalley scheme H`,Z defined over Z for `� 1,

π`,Z : H`,Z→ GLN,Z

(see [EHK12, Theorem 24]), which is also a Z-form of a representation of a simply connected
C-semisimple group H`,C,

π`,C : H`,C→ GLN,C

(see [Ste68a]). Hence, S̄` ⊂ GLN,F` and π`,C(H`,C) ⊂ GLN,C have the same formal character
for ` � 1. This and Theorem 3.2.1 imply that the formal character of π`,C(H`,C) ⊂ GLN,C is
independent of ` when ` is sufficiently large, which in turn implies that the formal character of
Lie(π`,C(H`,C)) ↪→ End(CN ) (see [Hui13, § 2.1]) is independent of ` when ` is sufficiently large.
Therefore, the number of An factors for n ∈ N\{1, 2, 3, 4, 5, 7, 8} and the parity of A4 factors of
π`,C(H`,C) and hence H`,C (the homomorphism H`,C→ π`,C(H`,C) is an isogeny since S̄sc

` → S̄`
is an isogeny) are independent of ` for ` � 1 by Theorem 3.3.1. Since the number of simple
factors of S̄sc

` × F̄` and H`,C of each type are equal, we are done. 2

Let g be a simple Lie type (e.g. An, Bn, Cn, Dn, . . .) and Γ̄ a finite group. Suppose ` > 5. We
measure the number of g-type simple factors of characteristic ` and the total number of Lie-type
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simple factors of characteristic ` within the set of composition factors of Γ̄ in the following sense.
Let Fq be a finite field of characteristic `, σ the Frobenius automorphism of F̄q/Fq and Ḡ a
connected Fq-group which is almost simple over F̄q. The identification of Ḡσ := Ḡ(Fq) is related
to g, the simple type of Ḡ×Fq F̄q, as shown in the following table [Ste68b, 11.6].

Type of Ḡ Composition factors of Ḡ(Fq)
A1 A1(q) = PSL2(q) + cyclic groups

An (n > 2) An(q) or 2An(q2) + cyclic groups
Bn (n > 2) Bn(q) + cyclic groups
Cn (n > 3) Cn(q) + cyclic groups

D4 D4(q) or 2D4(q2) or 3D4(q3) + cyclic groups
Dn (n > 5) Dn(q) or 2Dn(q2) + cyclic groups

E6 E6(q) or 2E6(q2) + cyclic groups
E7 E7(q) + cyclic groups
E8 E8(q) + cyclic groups
F4 F4(q) + cyclic groups
G2 G2(q) + cyclic groups

Ḡ(Fq) has only one non-cyclic composition factor, which is either a Chevalley group or a
Steinberg group of type g. For example, the non-cyclic composition factor is An(q) or 2An(q2) if
g = An and n > 2. For any semisimple algebraic group H/F and complex semisimple Lie algebra
h, denote by rk H and rk h the rank of H/F̄ and the rank of h, respectively.

Definition 14. Suppose that ` > 5 is a prime number and q = `f . Let Γ̄ be a finite simple
group of Lie type (of characteristic `) in the above table, and let g be the simple Lie type of the
corresponding Ḡ. We define the g-type `-rank of Γ̄ to be

rkg
` Γ̄ =

{
f · rk g if Γ̄ is associated with g in the above table,

0 otherwise.

For a finite simple group Γ̄′ not in the table, rkg
` Γ̄
′ is defined to be 0 for any g. We extend this

definition to arbitrary finite groups by defining the g-type `-rank of any finite group to be the
sum of the g-type `-ranks of its composition factors. The total `-rank of a finite group Γ̄ is defined
to be

rk` Γ̄ :=
∑
g

rkg
` Γ̄.

Remark 3.3.3. The definition of g-type `-rank is equivalent to the following. For any finite simple
group Γ̄ of Lie type of characteristic `, we have

Γ̄ = Ḡ(F`f ′ )
der

for some adjoint simple group Ḡ/F`f ′ so that

Ḡ×F
`f
′ F̄` =

m∏
H̄,

where H̄ is an F̄`-adjoint simple group of some Lie type h. We then set the g-type `-rank of Γ̄
to be

rkg
` Γ̄ :=

{
f ′ · rk Ḡ if g = h,

0 otherwise.

We extend this definition to arbitrary finite groups by defining the g-type `-rank of any finite
group to be the sum of the g-type `-ranks of its composition factors.
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Let Ḡ be a connected semisimple algebraic group over Fq and π : Ḡsc
→ Ḡ the simply

connected cover of Ḡ. The simply connected Ḡsc and isogeny π are defined over Fq (see [Ste68b,
9.16]). The group Ḡsc is a direct product of Fq-simple, simply connected semisimple groups Ḡsc

i :

Ḡsc
1 × Ḡsc

2 × · · · × Ḡsc
k

Fq∼=−→ Ḡsc

(see [CF65, ch. 10, § 1.3]). For each Ḡsc
i , there exist an integer mi and an algebraic group H̄sc

i

defined over Fqmi such that H̄sc
i ×Fqmi

F̄q is almost simple and

Ḡsc
i ×Fq Fqmi =

mi∏
H̄sc
i .

We have that (see [CF65, ch. 10, § 1.3])

Ḡsc
i = ResFqmi /Fq(H̄sc

i ),

so that

Ḡsc
i (Fq) = H̄sc

i (Fqmi ).

The following proposition relates rkg
` Ḡ(Fq) and rk` Ḡ(Fq) to Ḡ×Fq F̄q.

Proposition 3.3.4. Let ` > 5 be a prime and Ḡ a connected semisimple algebraic group over
Fq, where q = `f . The composition factors of Ḡ(Fq) are cyclic groups and finite simple groups
of Lie type of characteristic `. Moreover, if we let m be the number of almost simple factors of
Ḡ×Fq F̄q of simple type g, then

rkg
` Ḡ(Fq) = mf · rk g and rk` Ḡ(Fq) = f · rk Ḡ.

Proof. Since the kernel and cokernel of π : Ḡsc(Fq) → Ḡ(Fq) are both abelian [Ste68b, 12.6],

the composition factors of Ḡ(Fq) and
∏k
i=1 H̄sc

i (Fqmi ) defined above are identical modulo cyclic
groups. Hence, the composition factors of Ḡ(Fq) are cyclic groups and finite simple groups of
Lie type of characteristic ` by the table. Let

{H̄sc
1 , H̄

sc
2 , . . . , H̄

sc
j }

be the subset of {H̄sc
1 , . . . , H̄

sc
k } of type g. The equation

m1 +m2 + · · ·+mj = m

follows immediately from the fact that each Ḡsc
i is a direct product of mi copies of H̄sc

i over F̄q.
Since H̄sc

i is almost simple over F̄q, we obtain by Definition 14 that the g-type `-rank satisfies

rkg
` Ḡ(Fq) =

k∑
i=1

rkg
` H̄sc

i (Fqmi ) =

j∑
i=1

mif · rk g = mf · rk g,

and therefore the total `-rank satisfies

rk` Ḡ(Fq) = f · rk Ḡ

as claimed. 2
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We can now prove our main results.

Theorem A (Main theorem). Let K be a number field and {φ` : GalK → GLN (F`)}`∈P

a strictly compatible system of mod ` Galois representations arising from étale cohomology

(Definitions 1 and 2). There exists a finite normal extension L of K such that if we denote

φ`(GalK) and φ`(GalL) by Γ̄` and γ̄`, respectively, for all ` and let S̄` ⊂ GLN,F` be the connected

F`-semisimple subgroup associated to γ̄` (or Γ̄`) by Nori’s theory for ` � 1, then the following

hold for `� 1.

(i) The formal character of S̄` ↪→ GLN,F` is independent of ` (Definition 3 ′) and is equal to

the formal character of (G◦` )
der ↪→ GLN,Q`

, where (G◦` )
der is the derived group of the identity

component of G`, the algebraic monodromy group of the semi-simplified representation Φss
` .

(ii) The composition factors of γ̄` and S̄`(F`) are identical modulo cyclic groups. Therefore,

the composition factors of γ̄` are finite simple groups of Lie type of characteristic ` and are cyclic

groups.

Proof. By Proposition 2.1.2(i), S̄` ⊂ GLN,F` is a connected F`-semisimple subgroup for ` � 1.
Statement (i) is proved by Theorem 3.2.1. Since there is a finite normal extension L/K such
that γ̄` := φ`(GalL) is a subgroup of Ḡ`(F`) of uniform bounded index (by Theorem 2.0.5) and
S̄` is the derived group of Ḡ`, the composition factors of γ̄` and γ̄` ∩ S̄`(F`) are identical modulo
cyclic groups. Together with the S̄`(F`)/S̄`(F`)+ abelian and normal series

S̄`(F`)+ = γ̄+
` / γ̄` ∩ S̄`(F`) / S̄`(F`)

for ` � 1 by Theorem 2.1.1 and Remark 2.1.3, we conclude that the composition factors of γ̄`
and S̄`(F`) are identical modulo cyclic groups. Since Proposition 3.3.4 implies that the non-cyclic

composition factors of S̄`(F`) are finite simple groups of Lie type of characteristic `, we obtain

statement (ii). 2

Corollary B. Let S̄` be defined as above; then the following hold for `� 1.

(i) The total `-rank rk` Γ̄` of Γ̄` (Definition 14) is equal to the rank of S̄` and is therefore

independent of `.

(ii) The An-type `-rank rkAn
` Γ̄` of Γ̄` (Definition 14) for n ∈ N\{1, 2, 3, 4, 5, 7, 8} and the

parity of (rkA4
` Γ̄`)/4 are independent of `.

Proof. Since γ̄` is a normal subgroup of Γ̄` of index bounded by [L : K], they have equal total

`-rank and g-type `-rank for all sufficiently large `. It suffices to prove (i) and (ii) for γ̄`. Assertion

(i) is a direct consequence of Proposition 3.3.4 and Theorem A, and (ii) follows easily from

Theorem 3.3.2, Proposition 3.3.4 and Theorem A; so we are done. 2

Acknowledgements

It is my great pleasure to acknowledge my adviser, Michael Larsen, for useful conversations during

the course of this work and for his helpful comments on an earlier preprint. I am also grateful

to the anonymous referee for many helpful comments and suggestions, which have greatly

improved the exposition of the paper.

1239

https://doi.org/10.1112/S0010437X14007969 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X14007969


C. Y. Hui

References

Car08 X. Caruso, Conjecture de l’inertie modérée de Serre, Invent. Math. 171 (2008), 629–699.
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