# MIXING ON SEQUENCES 

NATHANIEL A. FRIEDMAN

1. Introduction. Our aim is to study the mixing sequences of a weak mixing transformation. An ergodic measure preserving transformation is weak mixing if and only if for each pair of sets there exists a sequence of density one on which the transformation mixes the sets [9]. An unpublished result of S . Kakutani implies there actually exists a single sequence of density one on which the transformation is mixing for all sets (see Section 3). This result motivated the general definition of a transformation being mixing on a sequence, as well as mixing of higher order on a sequence. Given a weak mixing transformation, there exist sequences along which it is mixing of all degrees. In particular, this is the case for an eventually independent sequence [7].

In Section 3 it will be shown that if $T$ is weak mixing but not mixing, then a sequence on which $T$ is two-mixing must have upper density zero. Thus in this case $T$ is mixing on a sequence of density one but $T$ cannot be two-mixing on a sequence of positive density.

In Section 4 we will study the Mean Ergodic Theorem (M.E.T.) for Césaro-averages along a mixing sequence. The Blum-Hansen Theorem [1] states that a transformation is mixing if and only if the M.E.T. holds along any sequence. It was proven by L. Jones [10] that the M.E.T. holds for any sequence of positive lower density when the transformation is weak mixing. An example will be given of a weak mixing transformation $T$ that is mixing on a certain sequence but the M.E.T. does not hold for $T$ on that sequence. An inspection of the proof in [1] shows that the M.E.T. is equivalent to a condition referred to in Section 4 as Césaro uniform mixing. In particular, this implies the M.E.T. holds along each sequence on which the transformation is two-mixing.

In Section 5 we will first verify a uniform version of the Blum-Hansen Theorem which states that if $T$ is mixing, then the Césaro average of any $n$ iterates $T^{k_{i}}, 1 \leqq i \leqq n$, is close to the integral of $f$ if $n$ is large. Here $n$ depends only on $f$ and the closeness is uniform for all choices of $k_{i}$, $1 \leqq i \leqq n$. A corollary is that if $T$ is mixing and $A$ is a set of positive measure, then the union of any $n$ iterates of $A$ has measure close to 1 for $n$ sufficiently large. However, if $T$ is mixing on a sequence, then this property can fail for iterates chosen on the sequence. The property holds on a two-mixing sequence.

[^0]I would like to thank A. Hajian for organizing the seminar at Northeastern University in May, 1981, where the ideas for this paper began. I would also like to thank S. Kalikow for several conversations that eventually led me to inspect the proof of the Blum-Hansen Theorem and the resulting uniform version in Section 5.
2. Preliminaries. Let $(X, \mathscr{B}, m)$ be a measure space isomorphic to the unit interval with Lebesgue measure. An invertible transformation $T$ defined on $X$ is weak mixing if
(2.1) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|m\left(T^{k} A \cap B\right)-m(A) m(B)\right|=0, \quad A, B \in \mathscr{B}$.

The transformation $T$ is mixing if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m\left(T^{n} A \cap B\right)=m(A) m(B), \quad A, B \in \mathscr{B} . \tag{2.2}
\end{equation*}
$$

We will only consider transformations that are weak mixing but not mixing.
An increasing sequence of positive integers will be denoted by $s=\left(s_{i}\right)$ or $s=(k: k \in s)$. A limit along $s$ will be denoted by $\lim _{k \in s}$. A transformation $T$ is mixing on $s$ if

$$
\begin{equation*}
\lim _{k \in s} m\left(T^{k} A \cap B\right)=m(A) m(B), \quad A, B \in \mathscr{B} . \tag{2.3}
\end{equation*}
$$

For each positive integer $n$, let $n(s)$ be the number of terms in $s$ not exceeding $n$. Define $D^{*}(s)$ and $D_{*}(s)$ as

$$
\begin{aligned}
& D^{*}(s)=\lim _{n \rightarrow \infty} \sup n(s) / n \\
& D_{*}(s)=\lim _{n \rightarrow \infty} \inf n(s) / n
\end{aligned}
$$

If $D^{*}(s)=D_{*}(s)=D$, then $s$ has density $D(s)=D$. The following result is proved in [9].
(2.4) Theorem. A transformation $T$ is weak mixing if and only if for each pair of sets $A, B \in \mathscr{B}$ there exists $s=s(A, B)$ with $D(s)=1$ and

$$
\lim _{k \in s} m\left(T^{k} A \cap B\right)=m(A) m(B)
$$

Since $(\mathscr{B}, m)$ is separable, one can use (2.4) and a diagonalization argument to prove there exists a sequence $s$ on which $T$ is mixing. Moreover, if $T$ is mixing on a sequence, then $T$ must be weak mixing. Thus $T$ is weak mixing if and only if $T$ is mixing on $s$ for some $s$. In Section 3 it will be proved that $s$ can be chosen to also satisfy $D(s)=1$.

The sequences on which a transformation is mixing are isomorphism invariants and can be used to distinguish certain weak mixing transformations. For example, given any increasing sequence $s$, one can construct a weak mixing transformation that is not mixing on $s$ [7]. Thus if $T_{1}$ is
mixing on $s$, then there exists $T_{2}$ not mixing on $s$. In particular, there does not exist a universal mixing sequence.

The method of independent cutting and stacking $[5,6,13]$ will be used to construct examples. A brief description follows. The construction takes place on the unit interval $[0,1)$ and all intervals considered will be leftclosed and right-open. A column $C$ of height $h$ is an ordered set of disjoint intervals $I_{i}, 1 \leqq i \leqq h$, that have the same length. The base of $C$ is $\underline{C}=I_{1}$, the top of $C$ is $\bar{C}=I_{h}$, the width of $C$ is $w(C)=m\left(I_{1}\right)$, and the height of $C$ is $h(C)=h$. We also let $C$ denote the union of the intervals in $C$, which we refer to as levels in $C$. A column $C$ can be pictured as the rungs on a ladder with $I_{i}$ above $I_{i-1}, 1<i \leqq h$.

The corresponding transformation $T_{C}$ maps $I_{i-1}$ onto $I_{i}$ by a translation, $1<i \leqq h$. Thus $T_{C}$ is defined on $C-\bar{C}$.

A tower $G$ is an ordered set of disjoint columns. The top of $G$ is the union of the tops of the columns in $G$, denoted by $\bar{G}$. The base of $G$ is the union of the bases of the columns in $G$, denoted by $G$. The width of $G$ is $w(G)=m(\underline{G})=m(\bar{G})$. The transformation $T_{G}$ consists of $T_{C}$ acting on $C$ in $G$. A level in a column in $G$ is simply called a level in $G$. We also let $G$ denote the union of levels in $G$. Thus $T_{G}$ is defined on $G-\bar{G}$.

Let $C$ be a column of height $h$ with base $I$. Let $J$ be a subinterval of $I$. We refer to $C_{J}=\left(T_{C}{ }^{i} J: 0 \leqq i<h\right)$ as a subcolumn of $C$. Let

$$
p=m(J) / m(I) \leqq 1
$$

We also refer to $C_{J}$ as a $p$-copy of $C$ and denote $C_{J}=p C$.
Given a tower $G=\left(C_{j}: 1 \leqq j \leqq k\right)$, denote a $p$-copy of $G$ as

$$
p G=\left(p C_{j}: 1 \leqq j \leqq k\right)
$$

Let $p_{j}=w\left(C_{j}\right) / w(G), 1 \leqq j \leqq k$; hence $\left(p_{1}+\ldots+p_{h}\right)=1$. Cut $G$ into disjoint copies $G_{0}=.5 G$ and $.5 G$. Cut the latter $.5 G$ into $k$ disjoint copies $G_{j}=p_{j}(.5 G), 1 \leqq j \leqq k$; hence $w\left(G_{j}\right)=.5 w\left(C_{j}\right), 1 \leqq j \leqq k$. Thus the width of $G_{j}$ is the same as the width of the $j$ th column in $G_{0}$, $1 \leqq j \leqq k$.

Form the tower $S G$ obtained by placing $G_{j}$ above the $j$ th column $.5 C_{j}$ in $G_{0}, 1 \leqq j \leqq k$. The tower $S G$ has $k$ columns above each column in $G_{0}$; hence $S G$ has $k^{2}$ columns. The width of $S G$ is $w(S G)=w\left(G_{0}\right)$ $=w(G) / 2$. Note that $T_{S G}$ extends $T_{G}$ to a set of measure $m\left(\bar{G}_{0}\right)=$ $w(G) / 2$, by mapping $\overline{p_{j} C_{j}}$ onto $\underline{G}_{j}, 1 \leqq j \leqq k$.

We refer to $S G$ as the tower obtained by independent cutting and stacking of $G$. Let $S^{k} G=S\left(S^{k-1} G\right)$ and $T_{k}=T_{S^{k} G}, k \geqq 1$, As a set, $G_{k}=G$ so $T_{k}$ is defined on $G-\bar{G}_{k}$, where $m\left(\bar{G}_{k}\right)=w(G) / 2^{k}, k \geqq 1$.

If $x$ is in a level in $G$, then $T_{k}(x)$ will be defined for $k$ sufficiently large. Thus a transformation $T(G)$ can be defined on $G$ as

$$
\begin{equation*}
T(G)(x)=\lim _{k \rightarrow \infty} T_{k}(x) \tag{2.5}
\end{equation*}
$$

A tower $G$ is an $M$-tower if two columns in $G$ have heights that are mutually prime. In particular, $G$ is an $M$-tower if two heights differ by one. If $G$ is an $M$-tower, then $T(G)$ is mixing [5]. Moreover, $T(G)$ is a mixing Markov shift and isomorphic to a Bernoulli shift [6, 13]. Mixing implies that given $\epsilon>0$, there exists a positive integer $N(G, \epsilon)$ such that

$$
\begin{equation*}
\left|m\left(T(G)^{n} I \cap J\right)-m(I) m(J) / m(G)\right|<\epsilon, \quad n \geqq N(G, \epsilon) \tag{2.6}
\end{equation*}
$$

where $I$ and $J$ are levels in $G$.
Fix $N \geqq N(G, \epsilon)$. By (2.5) we can choose $k=k(G, \epsilon, N)$ so large that if $T$ extends $T_{k}$, then (2.6) implies

$$
\begin{equation*}
\left|m\left(T^{n} I \cap J\right)-m(I) m(J) / m(G)\right|<\epsilon, \quad N(G, \epsilon) \leqq n \leqq N, \tag{2.7}
\end{equation*}
$$

where $I$ and $J$ are levels in $G$.
Let $G$ be a tower with columns with rational widths. Using the greatest common divisor, we can cut the columns in $G$ into subcolumns all of the same width $w$. These sub-columns are now stacked consecutively to form one column of width $w$ that we denote by $C(G)$. Note that if $I$ is a level in $G$, then $I$ appears as a finite union of levels in $C(G)$.

Let $C$ be a column of height $h$ and width $w$. Let $u$ be a positive integer. The column $C$ can be cut into $u$ subcolumns of equal width $w / u$. These $u$ subcolumns are stacked consecutively to form a single column denoted by $S_{u} C$, with height $u h$ and width $w / u$.

Let $\epsilon>0$ and $t$ a positive integer. Choose $u \geqq \epsilon / t$ and let $T$ be any extension of $T_{S_{u} C}$. If $J$ is a level in $C$, then the construction of $S_{u} C$ implies

$$
\begin{equation*}
m\left(\bigcap_{j=0}^{\ell} T^{j h} J\right) \geqq(1-\epsilon) m(J) \tag{2.8}
\end{equation*}
$$

3. Sequences. A sequence $s_{1}$ eventually contains a sequence $s_{2}$ if all but a finite number of terms in $s_{2}$ are in $s_{1}$. The union of a countable set of sequences of density zero can have positive density. However, the following unpublished result of S . Kakutani [11] states that there exists a sequence of density zero that eventually contains each sequence of density zero in the countable set. A proof is included for completeness.
(3.1) Theorem. Let $D\left(s^{n}\right)=0, n \geqq 1$. There exists $s$ with $D(s)=0$ such that s eventually contains $s^{n}, n \geqq 1$.

Proof. Let $s^{n}=\left(s_{j}{ }^{n}\right)$ and $\epsilon_{n}=1 / n^{2}, n \geqq 1$. Given $s=\left(s_{j}\right)$, let
(1) $d^{*}(s, u)=\lim _{k \rightarrow \infty} \sup V_{k} / k$,
where $V_{k}$ is the number of terms $s_{j}$ that do not exceed $k$ for $j \geqq u$. For $n \geqq 1, d^{*}\left(s^{n}, u\right)$ decreases to 0 as $u \rightarrow \infty$.

Choose $u_{1}$ such that

$$
\begin{equation*}
d^{*}\left(s^{1}, u_{1}\right)<\epsilon_{1} \tag{2}
\end{equation*}
$$

Assume $u_{1}<u_{2}<\ldots<u_{r}$ have been chosen so that for $1 \leqq v \leqq r$,

$$
\begin{equation*}
d^{*}\left(s^{n}, u_{v}\right)<\epsilon_{v}, \quad 1 \leqq n \leqq v . \tag{3}
\end{equation*}
$$

Choose $u_{r+1}>u_{r}$ such that

$$
\begin{equation*}
d^{*}\left(s^{n}, u_{r+1}\right)<\epsilon_{r+1}, \quad 1 \leqq n \leqq r+1 \tag{4}
\end{equation*}
$$

By induction we obtain an increasing sequence ( $u_{v}$ ) satisfying (3) for $v \geqq 1$. Now form $s$ as the union of $s_{j}^{n}$ for $j \geqq u_{n}, n \geqq 1$. Since $n \epsilon_{n} \rightarrow 0$, it follows that $D(s)=0$.
(3.2) Corollary. A transformation is weak mixing if and only if it is mixing on a sequence of density one.

Proof. Since $(X, \mathscr{B}, m)$ is separable there exists a sequence of pairs $\left(A_{k}, B_{k}\right)$ that are dense in the sense that for any pair $(A, B)$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \inf \left(m\left(A \Delta A_{k}\right)+m\left(B \Delta B_{k}\right)\right)=0 \tag{1}
\end{equation*}
$$

where $\Delta$ denotes the symmetric difference. We can choose a sequence $s^{k}$ with $D\left(s^{k}\right)=1$ such that Theorem (2.4) holds with $s\left(A_{k}, B_{k}\right)=s^{k}$, $k \geqq 1$. Let $t^{k}$ be the complement of $s^{k}$ in $N$. Apply Theorem (3.1) to obtain $t$ with $D(t)=0$ so that $t$ eventually contains $t^{k}, k \geqq 1$. Let $s$ be the complement of $t$. It follows that $T$ is mixing on $s$ and $D(s)=1$.

We will now consider higher order mixing on a sequence $s$. A transformation $T$ is 2 -mixing on $s$ if $A, B, C \in \mathscr{B}$ imply

$$
\begin{equation*}
\lim _{k, n \in s} m\left(T^{n} A \cap T^{k} B \cap C\right)=m(A) m(B) m(C) \tag{3.3}
\end{equation*}
$$

where $k \rightarrow \infty$ and $n-k \rightarrow \infty$. Since $T$ is measure preserving, $C=X$ in (3.3) implies
(3.4) $\lim _{k, n \in s} m\left(T^{n-k} A \cap B\right)=m(A) m(B)$.

The reason that $T$ may be mixing on $s$ but not 2 -mixing on $s$ is that $k, n \in s$ does not imply $n-k \in s$. In particular, $T$ may be mixing on $s$, but (3.4) may not hold. If (3.4) holds, then we will say $T$ is uniform mixing on $s$, in the sense that $T^{n} A$ mixes into $T^{k} B$ uniformly with respect to $n-k$. Note that (3.4) may not imply (3.3). Otherwise one could prove mixing implies 2 -mixing since a mixing transformation is uniform mixing on every sequence.

As in [8], a sequence $s$ has upper density $U(s)=u$ if $u$ is the largest number for which there exist $a_{j} \rightarrow \infty, b_{j}-a_{j} \rightarrow \infty$, and the number of terms in the sequence between $a_{j}$ and $b_{j}$ divided by $b_{j}-a_{j}$ converges to $u$ as $j \rightarrow \infty$. Note that $s$ may have $D(s)=0$ but $U(s)=1$ because $s$ contains long blocks of consecutive integers with even longer gaps of consecutive integers in between. We will now prove that uniform mixing implies $U(s)=0$.
(3.5) Theorem. If $T$ is weak mixing but not mixing and $T$ is uniform mixing on $s$, then $U(s)=0$.

Proof. Consider the set $D$ of positive differences $p=n-k$ where $k, n \in s$. The set $D$ can be written as $D=\left\{p_{i}: i \geqq 1\right\}$, where $p_{i}<p_{i+1}$, $i \geqq 1$. The gaps in $D$ are $p_{i+1}-p_{i}, i \geqq 1$. Suppose the gaps are bounded by a positive integer $g$.

Since $T$ is assumed weak mixing but not mixing, there exist $A, B$ and $\epsilon>0$ such that
(1) $\quad \lim _{n \rightarrow \infty} \sup m\left(T^{n} A \cap B\right) \geqq m(A) m(B)+\epsilon$.

Thus there exist $r_{j} \rightarrow \infty$ such that

$$
\begin{equation*}
m\left(T^{r_{i}} A \cap B\right) \geqq m(A) m(B)+\epsilon, \quad j \geqq 1 . \tag{2}
\end{equation*}
$$

For each $r_{j}$ there exists $t_{j}, 0 \leqq t_{j} \leqq g-1$, such that $r_{j}+t_{j} \in D$. Since there are only $g$ possible values for $t_{j}$, one value $t$ must repeat infinitely often. Thus $r_{j}+t \in D$ for infinitely many $j$. Now

$$
\begin{equation*}
m\left(T^{r_{i}{ }^{t}} A \cap T^{t} B\right)=m\left(T^{r_{i}} A \cap B\right) \tag{3}
\end{equation*}
$$

Let $v_{j}=r_{j}+t$ and $B_{1}=T^{t} B$; hence (2) and (3) imply

$$
\begin{equation*}
m\left(T^{\varepsilon_{j}} A \cap B_{1}\right) \geqq m(A) m\left(B_{1}\right)+\epsilon . \tag{4}
\end{equation*}
$$

Now $v_{j} \in D$; hence $v_{j}=n_{j}-k_{j}$ so (4) implies

$$
\begin{equation*}
m\left(T^{n_{i}} A \cap T^{\left.k_{i} B_{1}\right)} \geqq m(A) m\left(B_{1}\right)+\epsilon .\right. \tag{5}
\end{equation*}
$$

Now (5) contradicts uniform mixing. Thus $T$ cannot be uniform mixing on $s$ if $s-s$ has bounded gaps.
The proof is completed by a remark in [8] that states that if $s-s$ does not have bounded gaps, then $s$ has upper density zero. A simple proof of this result, shown to me by B. Weiss, will be included for completeness. It suffices to verify that $s$ has $n$ mutually disjoint translates for $n \geqq 1$. The translate of $s$ by $k$ is the set $i+k, i \in s$, which is denoted by $s+k$. Note that $s$ is disjoint from $s+k$ if and only if $k \notin s-s$.

Since $s-s$ has unbounded gaps, there exists a positive integer $k_{1} \notin s-s$; hence $s \cap\left(s+k_{1}\right)=\emptyset$. Now choose a gap in $s-s$ starting at $k_{2}$ such that the gap exceeds $k_{1}$; hence $k_{1}+k_{2} \notin s-s$. Therefore $s$, $s+k_{1}$, and $s+k_{1}+k_{2}$ are mutually disjoint. Note that $k_{2} \notin s-s$ implies

$$
\left(s+k_{1}\right) \cap\left(s+k_{1}+k_{2}\right)=s \cap\left(s+k_{2}\right)=\emptyset .
$$

Proceeding inductively, suppose $k_{1}, 1 \leqq i \leqq n$, have been chosen so that

$$
\begin{equation*}
s, \quad s+\sum_{i=1}^{n} k_{i}, \quad 1 \leqq r \leqq n, \tag{6}
\end{equation*}
$$

are mutually disjoint. Choose a gap starting at $k_{n+1}$ such that the gap
size exceeds $\sum_{i=1}^{n} k_{i}$. It follows that (6) holds with $n$ replaced by $n+1$. Thus $s$ has $n$ mutually disjoint translates for $n \geqq 1$.

Since 2-mixing on $s$ implies uniform mixing on $s$, Theorem (3.5) yields the following result.
(3.6) Corollary. If $T$ is weak mixing but not mixing and $T$ is 2 -mixing on $s$, then $U(s)=0$.

In Example (4.6) we will consider a case where $T$ is mixing on $s$ and $U(s)=0$, but $T$ is not 2 -mixing on $s$.

In [8] Furstenberg defined a transformation $T$ to be weak mixing of order $r$ if $A_{i} \in \mathscr{B}, 0 \leqq i \leqq r$, imply

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|m\left(\bigcap_{i=0}^{r} T^{k i} A_{i}\right)-\prod_{i=0}^{r} m\left(A_{i}\right)\right|=0 \tag{3.7}
\end{equation*}
$$

Furstenberg proved that weak mixing implied weak mixing of all orders. As in the case of weak mixing, one can use Theorem (3.1) and (3.7) to show there exists a sequence $s$ with $D(s)=1$ such that

$$
\begin{equation*}
\lim _{n \in s} m\left(\bigcap_{i=0}^{r} T^{n i} A_{i}\right)=\prod_{i=0}^{r} m\left(A_{i}\right), \quad A_{i} \in \mathscr{B}, \quad 0 \leqq i \leqq r \tag{3.8}
\end{equation*}
$$

Furthermore, another application of Theorem (3.1) yields a single sequence $s$ with $D(s)=1$ such that (3.8) holds for all $r \geqq 1$. In particular, for $r=2$ we can rewrite (3.8) as
(3.9) $\quad \lim _{n \in s} m\left(T^{2 n} A \cap T^{n} B \cap C\right)=m(A) m(B) m(C), \quad A, B, C \in \mathscr{B}$.

Thus (3.9) holds for $D(s)=1$, in contrast to Corollary (3.6).
In Section 4 a transformation will be constructed that is mixing on a sequence $s$ but is not uniform mixing on $s$. We have been unable to construct a transformation that is uniform mixing on a sequence $s$ but is not 2 -mixing on $s$. Another problem is to construct a transformation that is 2 -mixing on a sequence $s$ but is not $r$-mixing on $s$ for some $r>2$.
4. Mean convergence. We will now consider mean convergence of Césaro averages along a sequence $s=\left(s_{i}\right)$. Let $f \in L^{p}, p \geqq 1$, and denote

$$
\begin{equation*}
f_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} f\left(T^{-s_{i}} x\right) \tag{4.1}
\end{equation*}
$$

The following result [ $\mathbf{1}$ ] relates mixing and the mean convergence of $f_{n}$ to the integral $m(f)$ of $f$ with respect to $m$.
(4.2) Blum-Hansen Theorem. A transformation $T$ is mixing if and only if for each sequence $s, f_{n}$ converges to $m(f)$ in $L^{p}, f \in L^{p}, p \geqq 1$.

Now suppose $T$ is mixing on $s$. An example will be constructed to show that Césaro-averages along $s$ need not converge in the mean. The idea of the example can be illustrated by a mixing sequence of sets. Let $\left(A_{n}\right)$ be a sequence of sets with $m\left(A_{n}\right)=a, n \geqq 1$. The sequence is mixing [12] if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m\left(A_{n} \cap B\right)=\operatorname{am}(B), \quad B \in \mathscr{B} . \tag{4.3}
\end{equation*}
$$

Let $\epsilon_{n}>0$ and $\epsilon_{n} \rightarrow 0$. Let $\left(t_{n}\right)$ be an increasing sequence of positive integers that satisfy

$$
\begin{equation*}
\sum_{i=1}^{n-1} t_{i} / t_{n}<\epsilon_{n}, \quad n>1 . \tag{4.4}
\end{equation*}
$$

Let $\left(A_{n}\right)$ satisfy (4.3) with $a=1 / 2$. Consider the sequence of sets $\left(B_{n}\right)$ obtained by repeating $A_{n} t_{n}$ times, $n \geqq 1$. This sequence will also be mixing. Let $b(n)=\left(t_{1}+\ldots+t_{n}\right)$. The characteristic function of a set $A$ will be denoted by $A(x)$. The Césaro-average of the first $b(n)$ characteristic functions of sets in $\left(B_{n}\right)$ is denoted by $g_{n}(x)$; hence

$$
\begin{equation*}
g_{n}(x)=\sum_{i=1}^{n} t_{i} A_{i}(x) / b(n) \tag{4.5}
\end{equation*}
$$

Since $m(X)=1$, it follows from (4.4) that

$$
\left\|g_{n}-1 / 2\right\|_{1} \geqq 1 / 2-\epsilon_{n} .
$$

Thus $g_{n}$ does not converge to $1 / 2$ in the mean.
We will now construct a transformation $T$, a corresponding mixing sequence $s$, and a set $A$ of measure close to $1 / 2$ such that $T^{i} A, i \in s$, consists of blocks of length $t_{n}$ that are approximately the same set, $n \geqq 1$.
(4.6) Example. The construction is by induction and the $n$th stage begins with an $M$-tower $G_{n}$ with columns with rational widths. If $I$ is a level in $G_{i}, 1 \leqq i<n$, then $I$ appears as a union of levels in $G_{n}$. Let $L_{n}$ be the total number of levels in $G_{n}$ and let $\epsilon_{n}<w_{n} / 100 L_{n}{ }^{2}$. With reference to (2.6) and (2.7), let $N_{n}=N\left(G_{n}, \epsilon_{n}\right)$ and $k_{n}=k\left(G_{n}, \epsilon_{n}, N_{n}\right)$. Choose a positive integer

$$
r_{n} \geqq \max \left\{k_{n}, N_{n} / \epsilon_{n}\right\}
$$

and form $G_{n 1}=S^{r_{n}} G_{n}$. We let $T_{n j}$ denote $T_{G_{n} j}$ for notational convenience. Since $r_{n} \geqq k_{n}$, (2.7) implies that if $T$ extends $T_{n 1}$, then

$$
\begin{equation*}
\left|m\left(T^{i} I \cap J\right)-m(I) m(J) / m\left(G_{n}\right)\right|<\epsilon_{n}, \quad i=N_{n} \tag{1}
\end{equation*}
$$

where $I$ and $J$ are levels in $G_{n}$.
Now form the column $G_{n 2}=C\left(G_{n 1}\right)$. Each set $A$ that is a union of levels in $G_{n}$ will also appear as a union of levels in $G_{n 2}$. Moreover, the choice of $r_{n}$ implies $T^{N_{n}} A$ appears as a union of levels in $G_{n 2}$, except possibly for a set of measure at most $\epsilon_{n}$. This is because only the top $N_{n}$
levels in columns in $G_{n 1}$ pass through the top of $G_{n 1}$ under $T^{N_{n}}$. Thus we have
(2) $T^{N_{n}} A=\bigcup_{i=1}^{v} J_{i} \cup E$,
where $J_{i}$ is a level in $G_{n 2}, 1 \leqq i \leqq v$, and $m(E)<\epsilon_{n}$.
We also have positive integers $t_{j}, 1 \leqq j<n$, and choose $t_{n}$ to satisfy (4.4) ; hence

$$
\begin{equation*}
b(n-1) / t_{n}<\epsilon_{n} \tag{3}
\end{equation*}
$$

Now choose a positive integer $u_{n} \geqq t_{n} / \epsilon_{n}$. Form the column $G_{n 3}=S_{u_{n}} G_{n 2}$. Let $h_{n}$ be the height of $G_{n 2}$. If $J$ is a level in $G_{n 2}$ and $T$ extends $T_{n 3}$, then (2.8) implies

$$
\begin{equation*}
m\left(\bigcap_{j \leqq t_{n}} T^{j h n} J\right) \geqq\left(1-\epsilon_{n}\right) m(J) \tag{4}
\end{equation*}
$$

Let $s_{j}=N_{n}+(j-b(n-1)) h_{n}, b(n-1) \leqq j<b(n)$. From (2) and (4) we obtain

$$
\begin{equation*}
m\left(\bigcap_{j=b(n-1)}^{b(n)-1} T^{s j} A\right) \geqq\left(1-2 \epsilon_{n}\right) m(A) \tag{5}
\end{equation*}
$$

Lastly, let $G_{n+1}$ be the tower obtained by cutting $G_{n 3}$ into two equal columns and adding an extra interval above one column. Thus $G_{n+1}$ is an $M$-tower consisting of two columns with heights differing by one. The levels in $G_{n}$ appear as unions of levels in $G_{n+1}$ and the columns in $G_{n+1}$ have rational width. This completes the induction step.

We begin with an $M$-tower $G_{1}$ with columns of rational widths. Take $b(0)=1$ in (3). At each stage we add an interval to form $G_{n+1}$. It is easy to see that the sum of the measures of these intervals is finite. Let $X=\cup_{n=1}^{\infty} G_{n}$ and assume $m$ is normalized so that $m(X)=1$. Thus we obtain a transformation $T$ defined by

$$
\begin{equation*}
T(x)=\lim _{n \rightarrow \infty} T_{G_{n}}(x), \quad x \in X \tag{6}
\end{equation*}
$$

We first verify $T$ is mixing on $s=\left(s_{j}\right)$. Let $A$ and $B$ be sets that are unions of levels in $G_{1}$; hence $A$ and $B$ appear as levels in $G_{n}, n \geqq 1$. If $n$ is large, then $m\left(G_{n}\right)$ is essentially 1 and (1) implies

$$
\begin{equation*}
\left|m\left(T^{N_{n}} A \cap B\right)-m(A) m(B)\right| \leqq L_{n}^{2} \epsilon_{n}=w_{n} \tag{7}
\end{equation*}
$$

It is easily seen that $w_{n} \rightarrow 0$; hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m\left(T^{N_{n}} A \cap B\right)=m(A) m(B) \tag{8}
\end{equation*}
$$

The same proof holds if $A$ and $B$ are unions of levels in $G_{k}, k \geqq 1$. Since these sets generate $\mathscr{B}$, it follows that $T$ is mixing on $\left(N_{n}\right)$. From (5) we conclude $T$ is mixing on $s$.

To verify that the Mean Ergodic Theorem does not hold on $s$, choose $k$ large and fix $A$ consisting of a union of levels in $G_{k}$ such that

$$
\begin{equation*}
|m(A)-1 / 2|<1 / 100 \quad \text { and } \quad \epsilon_{k}<1 / 100 \tag{9}
\end{equation*}
$$

Now (5) holds for $n>k$. Let $g_{n}(x)$ be as in (4.5) with $A_{i}=T^{i} A, i \geqq 1$. From (9) and (5) we obtain

$$
\left\|g_{n}-m(A)\right\|_{1} \geqq 1 / 8
$$

Thus the M.E.T. does not hold on $s$.
The preceding example shows that mixing on $s$ does not imply the M.E.T. on $s$. An inspection of the proof in [1] yields the following mixing condition that is equivalent to the M.E.T. on $s$.
(4.7) Definition. A transformation $T$ is Césaro uniform mixing on $s$ if $A, B \in \mathscr{B}$ imply

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i, j=1}^{n} m\left(T^{s_{i}} A \cap T^{s_{j}} B\right)=m(A) m(B)
$$

(4.8) Theorem. The Mean Ergodic Theorem holds for $T$ on $s$ if and only if $T$ is Césaro uniform mixing on $s$.

Proof. Let $f_{n}(x)$ be defined as in (4.1) with $f(x)=A(x)$. In $L^{2}$ we have

$$
\begin{equation*}
\left\|f_{n}-m(A)\right\|_{2}^{2}=\frac{1}{n^{2}} \sum_{i, j=1}^{n} m\left(T^{s_{i}} A \cap T^{s j} A\right)-m(A)^{2} \tag{1}
\end{equation*}
$$

If $T$ is Césaro uniform mixing, then (1) implies $f_{n}$ converges to $m(A)$ in $L^{2}, A \in \mathscr{B}$. The M.E.T. now follows as in [1]. Conversely, suppose the M.E.T. holds. Let $f_{n}$ be defined as above and let $g_{n}$ replace $f_{n}$ in (4.1) with $f(x)=B(x)$ for $B \in \mathscr{B}$. Thus $f_{n}$ and $g_{n}$ converge in $L^{2}$ to $m(A)$ and $m(B)$, respectively. Thus $f_{n} g_{n}$ converges to $m(A) m(B)$ in $L^{2}$. Hence $f_{n} g_{n}$ converges to $m(A) m(B)$ in $L^{1}$ and this yields Césaro uniform mixing on $s$.

The proof in [1] can be used to verify uniform mixing implies Césaro uniform mixing. Since 2 -mixing on $s$ implies uniform mixing on $s$, we have the following result.
(4.9) Corollary. If $T$ is 2-mixing on s, then the Mean Ergodic Theorem holds for T ons.

The theorem of L. Jones [10] states that the M.E.T. holds on $s$ for all weak mixing transformations when $D_{*}(s)>0$. Thus Theorem (4.8) is useful only when $D_{*}(s)=0$. In particular, this is the case in Corollary (4.9).

In Example (4.6), $h_{n} \rightarrow \infty$ implies $U(s)=0$. Theorem (4.8) implies $T$ is not Césaro uniform mixing on $s$. In particular, $T$ is not 2 -mixing on $s$. This also follows directly from (5).
5. Uniform sweeping out. Given an increasing sequence $s=\left(k_{i}\right)$, we say $T$ sweeps out on $s$ if $m(A)>0$ implies

$$
m\left(\bigcup_{i=1}^{\infty} T^{k i} A\right)=1
$$

If $T$ sweeps out on all $s$, then we simply say $T$ sweeps out. If $T$ is mixing, then $T$ sweeps out. In [2] sequence mixing is the term used for sweeps out. To avoid confusion with mixing on a sequence, we will use the latter term. The following characterization is proved in [2].
(5.1) Theorem. A transformation $T$ sweeps out if and only if

$$
\lim _{n \rightarrow \infty} \inf m\left(T^{n} A \cap B\right)>0, \quad m(A) m(B)>0
$$

If $T$ sweeps out, then $T$ is weak mixing [3]. Hence if $T$ sweeps out, then $T$ is mixing on a sequence of density one by Corollary (3.2). However, there exist weak mixing transformations that do not sweep out. There also exist transformations that sweep out that are not mixing [4]. We will now consider a uniform type of sweeping out defined as follows.
(5.2) Definition. T sweeps out uniformly if given a set $A$ of positive measure and $\epsilon>0$, there exists $N=N(A, \epsilon)$ such that $n \geqq N$ implies

$$
m\left(\bigcup_{i=1}^{n} T^{k_{i}} A\right)>1-\epsilon \text { for all } k_{1}<k_{2}<\ldots<k_{n} .
$$

It is shown below that mixing implies uniform sweeping out. The following result is motivated by Lemma 1 [1].
(5.3) Lemma. Let $T$ be mixing, $m(A)>0$, and $\epsilon>0$. There exists $N=N(A, \epsilon)$ such that $n \geqq N$ implies

$$
\frac{1}{n^{2}} \sum_{i, j=1}^{n}\left|m\left(T^{k_{i}} A \cap T^{k_{j}} A\right)-m(A)^{2}\right|<\epsilon
$$

for all $k_{1}<k_{2}<\ldots<k_{n}$.
Proof. Since $T$ is mixing, we have

$$
\begin{equation*}
\lim _{|u-v| \rightarrow \infty} m\left(T^{u} A \cap T^{v} A\right)=m(A)^{2} \tag{1}
\end{equation*}
$$

Choose $w$ so large that $|u-v|>w$ implies

$$
\begin{equation*}
\left|m\left(T^{u} A \cap T^{v} A\right)-m(A)^{2}\right|<\epsilon / 2 \tag{2}
\end{equation*}
$$

Choose $N>(4 w+2) / \epsilon$. Now consider $k_{i}, 1 \leqq i \leqq n, n \geqq N$. For each $i$ there are at most $2 w+1$ values of $j$ such that $\left|k_{i}-k_{j}\right| \leqq w$. Since a term on the left of (2) is bounded by 1 , we have

$$
\begin{equation*}
\frac{1}{n^{2}} \sum_{i, j=1}^{n}\left|m\left(T^{k_{i}} A \cap T^{k_{j}} A\right)-m(A)^{2}\right| \leqq \frac{(2 w+1) n}{n^{2}}+\frac{\epsilon}{2}<\epsilon \tag{3}
\end{equation*}
$$

Lemma (5.3) will now be used to obtain a uniform version of the BlumHansen Theorem. We denote

$$
f_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} f\left(T^{-k_{i}} x\right) .
$$

(5.4) Theorem. Let $T$ be mixing, $p \geqq 1$, and $f \in L^{p}$. Given $\epsilon>0$, there exists $N=N(f, \epsilon)$ such that $n \geqq N$ implies

$$
\left\|f_{n}-m(f)\right\|_{p}<\epsilon \text { for all } k_{1}<\ldots<k_{n} .
$$

Proof. If $f(x)=A(x)$, then Lemma (5.3) yields the result for $p=2$ since (3) above with $\epsilon$ replaced by $\epsilon^{2}$ implies
(1) $\quad\left\|f_{n}-m(A)\right\|_{2} \leqq \epsilon$.

If $f$ is a simple function of the form

$$
\begin{equation*}
f(x)=\sum_{i=1}^{k} a_{i} A_{i}(x), \tag{2}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\left\|f_{n}-m(f)\right\|_{2} \leqq \sum_{i=1}^{k}\left|a_{i}\right|\left\|f_{n, i}-m\left(A_{i}\right)\right\|_{2} . \tag{3}
\end{equation*}
$$

Here $f_{n, i}$ corresponds to $f=A_{i}, 1 \leqq i \leqq k$. Choose

$$
N=\max \left\{N\left(A_{i}, \epsilon / k\left|a_{i}\right|\right), \quad 1 \leqq i \leqq k\right\} .
$$

Thus $n \geqq N$ implies the right side of (3) is less than $\epsilon$. For $f \in L^{2}$, we approximate by a simple function $g$ so that $\|f-g\|_{2}<\epsilon / 3$. Since $T$ is measure preserving, we obtain

$$
\begin{equation*}
\left\|f_{n}-g_{n}\right\|_{2}<\epsilon / 3, \quad n \geqq 1 . \tag{4}
\end{equation*}
$$

Now choose $N=N(g, \epsilon / 3)$; hence $n \geqq N$ implies

$$
\begin{equation*}
\left\|f_{n}-m(f)\right\|_{2} \leqq\left\|f_{n}-g_{n}\right\|_{2}+\left\|g_{n}-m(g)\right\|_{2}+|m(g)-m(f)|<\epsilon . \tag{5}
\end{equation*}
$$

If $p=1$, then the result follows from Holders inequality and the result for $p=2$. If $p>1$, then as in [ $\mathbf{1}$ ], let $g$ be bounded by $M$; hence

$$
\begin{equation*}
\|g\|_{\nu}^{p} \leqq\left(1+M^{p}\right)\|g\|_{1} . \tag{6}
\end{equation*}
$$

The result now follows from $p$ from (6) and the result for $p=1$ since simple functions are bounded.
(5.5) Corollary. If $T$ is mixing, then $T$ sweeps out uniformly.

Proof. Let $m(A)>0$ and choose $N=N\left(A, \epsilon^{2} m(A)^{2}\right)$ in Lemma (5.3). Let

$$
B=\left(\bigcup_{i=1}^{n} T^{k i} A\right)^{\prime} ;
$$

hence

$$
B \cap T^{k_{i}} A=\emptyset, \quad 1 \leqq i \leqq n
$$

Let $f_{n}$ correspond to $f=A$. Therefore Lemma (5.3) implies

$$
m(A) m(B)=\left|\int_{B}\left(f_{n}(x)-m(A)\right) d m\right| \leqq\left\|f_{n}-m(A)\right\|_{2}<\epsilon m(A)
$$

Thus $m(B)<\epsilon$.
Let us now consider the following version of Theorem (5.1) for a sequence $s$. The proof follows as in [2].
(5.6) Theorem. $T$ sweeps out on all subsequences of $s$ if and only if

$$
\lim _{n \in s} \inf m\left(T^{n} A \cap B\right)>0, \quad m(A) m(B)>0
$$

In particular, if $T$ is mixing on $s$, then $T$ sweeps out on all subsequences of $s$. However, mixing on $s$ does not imply uniform sweeping out on $s$. For consider Example (4.6) (5). This implies $T^{s_{j}} A$ is essentially invariant for $b(n-1) \leqq j<b(n)$ and $b(n)-b(n-1) \rightarrow \infty$.

If $T$ is uniform mixing on $s$, then the same proof of Lemma (5.3) yields the conclusion for $k_{i} \in s, 1 \leqq i \leqq n$. In this case Theorem (5.4) holds for $k_{i} \in s, 1 \leqq i \leqq n$. The analog of Corollary (5.5) also holds, where uniform sweeping out on $s$ corresponds to Definition (5.2) with $k_{i} \in s, 1 \leqq i \leqq n$. In particular, if $T$ is 2-mixing on $s$, then there is uniform mean convergence on $s$ and $T$ sweeps out uniformly on $s$.

An open problem is whether the converse of Corollary (5.5) holds. There is also the question of whether sweeping out uniformly on $s$ implies uniform mixing on $s$.

The following corollary of Theorem (5.4) states that given a set $A$ and $\epsilon>0$, there exists $N$ such that for any set $B$, not more than $N$ iterates of $A$ can be badly mixed in $B$ (with respect to $\epsilon$ ). The original formulation of this result (and (5.8) below) is due to S. Kalikow, where $m(B)$ had to be bounded away from zero.
(5.7) Corollary. Let $T$ be mixing, $m(A)>0$, and $\epsilon>0$. There exists $N=N(A, \epsilon)$ such that for any set $B$ there are at most $N$ positive integers $k$ such that

$$
\left|m\left(T^{k} A \cap B\right)-m(A) m(B)\right|>\epsilon
$$

Proof. Let $f(x)=A(x)$ with $p=1$ in (5.4) and let $N_{1}=N(f, \epsilon)$ in (5.4). Choose $N=2 N_{1}$ and suppose the conclusion does not hold. Hence there exist $B$ and $k_{i}, 1 \leqq i \leqq N_{1}$, such that

$$
\begin{equation*}
m\left(T^{k_{i}} A \cap B\right)-m(A) m(B)>\epsilon \quad(\text { or }<-\epsilon), \quad 1 \leqq i \leqq N_{1} \tag{1}
\end{equation*}
$$

Now (1) implies

$$
\begin{align*}
\epsilon<\frac{1}{N_{1}} \sum_{i=1}^{N_{1}} m\left(T^{k_{i}} A\right. & \cap B)-m(A) m(B)  \tag{2}\\
& =\int_{B}\left(f_{N_{1}}(x)-m(A)\right) d m \leqq\left\|f_{N_{1}}-m(A)\right\|_{1}<\epsilon
\end{align*}
$$

This contradiction implies $N=2 N_{1}$ and hence the conclusion.
(5.8) Corollary. Let $T$ be mixing, $m(A)>0$, and $\epsilon>0$. There exists $N=N(A, \epsilon)$ such that for any sets $B$ and $C$ and $j$ sufficiently large there are at most $N$ positive integers $k$ such that

$$
\left|m\left(T^{k} A \cap T^{j} B \cap C\right)-m(A) m(B) m(C)\right|>\epsilon
$$

Proof. Let $N=N(A, \epsilon / 2)$ in (5.7). Choose $j$ sufficiently large so that

$$
\begin{equation*}
\left|m\left(T^{j} B \cap C\right)-m(B) m(C)\right|<\epsilon / 2 . \tag{1}
\end{equation*}
$$

The conclusion follows from (5.7) with $B$ replaced by $T^{j} B \cap C$.
Note that Corollary (5.8) is in the direction of mixing implying 2 -mixing.

## References

1. J. R. Blum and D. L. Hanson, On the mean ergodic theorem for subsequences, Bull. A.M.S. 66 (1960), 308-311.
2. J. R. Blum, S. L. M. Christianson and D. Quiring, Sequence mixing and $\alpha-m i x i n g$, Illinois J. Math. 18 (1974).
3. J. W. England and N. F. G. Martin, On weak mixing metric automorphisms, Bull. A.M.S. 74 (1968), 505-507.
4. N. A. Friedman and D. S. Ornstein, On partially mixing transformations, Illinois J. Math. 16 (1972), 61-68.
5. N. A. Friedman, Mixing, entropy, and generators, J. Appl. Math. Anal. 26 (1969), 512-528.
6. -_ Bernoulli shifts induce Bernoulli shifts, Advances in Math. 10 (1973), 39-48.
7. Eventually independent sequences, Israel J. Math. 33 (1979), 310-316.
8. H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic sequences, J. Analyse Math. 31 (1977), 204-256.
9. P. R. Halmos, Lectures on ergodic theory, Publ. Math. Soc. Japan 3 (1965).
10. L. K. Jones, $A$ mean ergodic theorem for weakly mixing operators, Advances in Math. 7 (1971), 211-216.
11. S. Kakutani, Ergodic Theory Seminar, Northeastern University (1981).
12. A. Rényi, On mixing sequences of sets, Actu. Math. Acad. Sci. Hungary 9 (1958), 215-228.
13. P. Shields, Cutting and independent stacking of intervals, Math. Systems Theory 7 (1973), 1-4.

State University of New York, Albany, New York


[^0]:    Received March 16, 1982 and in revised form October 4, 1982. This work was partially supported by N.S.F. Grant No. MCS-8102101.

