MIXING ON SEQUENCES

NATHANIEL A. FRIEDMAN

1. Introduction. Our aim is to study the mixing sequences of a weak mixing transformation. An ergodic measure preserving transformation is weak mixing if and only if for each pair of sets there exists a sequence of density one on which the transformation mixes the sets [9]. An unpublished result of S. Kakutani implies there actually exists a single sequence of density one on which the transformation is mixing for all sets (see Section 3). This result motivated the general definition of a transformation being mixing on a sequence, as well as mixing of higher order on a sequence. Given a weak mixing transformation, there exist sequences along which it is mixing of all degrees. In particular, this is the case for an eventually independent sequence [7].

In Section 3 it will be shown that if T is weak mixing but not mixing, then a sequence on which T is two-mixing must have upper density zero. Thus in this case T is mixing on a sequence of density one but T cannot be two-mixing on a sequence of positive density.

In Section 4 we will study the Mean Ergodic Theorem (M.E.T.) for Césaro-averages along a mixing sequence. The Blum-Hansen Theorem [1] states that a transformation is mixing if and only if the M.E.T. holds along any sequence. It was proven by L. Jones [10] that the M.E.T. holds for any sequence of positive lower density when the transformation is weak mixing. An example will be given of a weak mixing transformation T that is mixing on a certain sequence but the M.E.T. does not hold for T on that sequence. An inspection of the proof in [1] shows that the M.E.T. is equivalent to a condition referred to in Section 4 as Césaro uniform mixing. In particular, this implies the M.E.T. holds along each sequence on which the transformation is two-mixing.

In Section 5 we will first verify a uniform version of the Blum-Hansen Theorem which states that if T is mixing, then the Césaro average of any n iterates $T^{k}if$, $1 \leq i \leq n$, is close to the integral of f if n is large. Here n depends only on f and the closeness is uniform for all choices of k_i , $1 \leq i \leq n$. A corollary is that if T is mixing and A is a set of positive measure, then the union of any n iterates of A has measure close to 1 for n sufficiently large. However, if T is mixing on a sequence, then this property can fail for iterates chosen on the sequence. The property holds on a two-mixing sequence.

Received March 16, 1982 and in revised form October 4, 1982. This work was partially supported by N.S.F. Grant No. MCS-8102101.

I would like to thank A. Hajian for organizing the seminar at Northeastern University in May, 1981, where the ideas for this paper began. I would also like to thank S. Kalikow for several conversations that eventually led me to inspect the proof of the Blum-Hansen Theorem and the resulting uniform version in Section 5.

2. Preliminaries. Let (X, \mathcal{B}, m) be a measure space isomorphic to the unit interval with Lebesgue measure. An invertible transformation T defined on X is *weak mixing* if

(2.1)
$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n|m(T^kA\cap B)-m(A)m(B)|=0, A, B\in\mathscr{B}.$$

The transformation T is mixing if

(2.2)
$$\lim_{n\to\infty} m(T^nA\cap B) = m(A)m(B), \quad A, B\in\mathscr{B}.$$

We will only consider transformations that are weak mixing but not mixing.

An increasing sequence of positive integers will be denoted by $s = (s_i)$ or $s = (k : k \in s)$. A limit along s will be denoted by $\lim_{k \in s} A$ transformation T is mixing on s if

(2.3)
$$\lim_{k \in S} m(T^k A \cap B) = m(A)m(B), A, B \in \mathscr{B}.$$

For each positive integer n, let n(s) be the number of terms in s not exceeding n. Define $D^*(s)$ and $D_*(s)$ as

 $D^*(s) = \lim_{n \to \infty} \sup n(s)/n,$ $D_*(s) = \lim_{n \to \infty} \inf n(s)/n.$

If $D^*(s) = D_*(s) = D$, then s has density D(s) = D. The following result is proved in [9].

(2.4) THEOREM. A transformation T is weak mixing if and only if for each pair of sets A, $B \in \mathcal{B}$ there exists s = s(A, B) with D(s) = 1 and

 $\lim_{k \in s} m(T^k A \cap B) = m(A)m(B).$

Since (\mathscr{B}, m) is separable, one can use (2.4) and a diagonalization argument to prove there exists a sequence s on which T is mixing. Moreover, if T is mixing on a sequence, then T must be weak mixing. Thus T is weak mixing if and only if T is mixing on s for some s. In Section 3 it will be proved that s can be chosen to also satisfy D(s) = 1.

The sequences on which a transformation is mixing are isomorphism invariants and can be used to distinguish certain weak mixing transformations. For example, given any increasing sequence s, one can construct a weak mixing transformation that is not mixing on s [7]. Thus if T_1 is mixing on s, then there exists T_2 not mixing on s. In particular, there does not exist a universal mixing sequence.

The method of independent cutting and stacking [5, 6, 13] will be used to construct examples. A brief description follows. The construction takes place on the unit interval [0, 1) and all intervals considered will be leftclosed and right-open. A column C of height h is an ordered set of disjoint intervals I_i , $1 \leq i \leq h$, that have the same length. The base of C is $\underline{C} = I_1$, the top of C is $\overline{C} = I_h$, the width of C is $w(C) = m(I_1)$, and the height of C is h(C) = h. We also let C denote the union of the intervals in C, which we refer to as levels in C. A column C can be pictured as the rungs on a ladder with I_i above I_{i-1} , $1 < i \leq h$.

The corresponding transformation T_c maps I_{i-1} onto I_i by a translation, $1 < i \leq h$. Thus T_c is defined on $C - \overline{C}$.

A tower G is an ordered set of disjoint columns. The top of G is the union of the tops of the columns in G, denoted by \overline{G} . The base of G is the union of the bases of the columns in G, denoted by \underline{G} . The width of G is $w(G) = m(\underline{G}) = m(\overline{G})$. The transformation T_G consists of T_C acting on C in G. A level in a column in G is simply called a level in G. We also let G denote the union of levels in G. Thus T_G is defined on $G - \overline{G}$.

Let C be a column of height h with base I. Let J be a subinterval of I. We refer to $C_J = (T_C {}^i J: 0 \le i < h)$ as a *subcolumn* of C. Let

$$p = m(J)/m(I) \leq 1.$$

We also refer to C_J as a *p*-copy of *C* and denote $C_J = pC$.

Given a tower $G = (C_j : 1 \leq j \leq k)$, denote a *p*-copy of G as

$$pG = (pC_j : 1 \leq j \leq k).$$

Let $p_j = w(C_j)/w(G)$, $1 \leq j \leq k$; hence $(p_1 + \ldots + p_h) = 1$. Cut *G* into disjoint copies $G_0 = .5G$ and .5*G*. Cut the latter .5*G* into *k* disjoint copies $G_j = p_j(.5G)$, $1 \leq j \leq k$; hence $w(G_j) = .5w(C_j)$, $1 \leq j \leq k$. Thus the width of G_j is the same as the width of the *j*th column in G_0 , $1 \leq j \leq k$.

Form the tower SG obtained by placing G_j above the *j*th column $.5C_j$ in G_0 , $1 \leq j \leq k$. The tower SG has k columns above each column in G_0 ; hence SG has k^2 columns. The width of SG is $w(SG) = w(G_0) = w(G)/2$. Note that T_{SG} extends T_G to a set of measure $m(\overline{G}_0) = w(G)/2$, by mapping $\overline{p_jC_j}$ onto \underline{G}_j , $1 \leq j \leq k$.

We refer to SG as the tower obtained by independent cutting and stacking of G. Let $S^kG = S(S^{k-1}G)$ and $T_k = T_{S^kG}$, $k \ge 1$. As a set, $G_k = G$ so T_k is defined on $G - \overline{G}_k$, where $m(\overline{G}_k) = w(G)/2^k$, $k \ge 1$.

If x is in a level in G, then $T_k(x)$ will be defined for k sufficiently large. Thus a transformation T(G) can be defined on G as

(2.5)
$$T(G)(x) = \lim_{k \to \infty} T_k(x).$$

A tower G is an *M*-tower if two columns in G have heights that are mutually prime. In particular, G is an *M*-tower if two heights differ by one. If G is an *M*-tower, then T(G) is mixing [5]. Moreover, T(G) is a mixing Markov shift and isomorphic to a Bernoulli shift [6, 13]. Mixing implies that given $\epsilon > 0$, there exists a positive integer $N(G, \epsilon)$ such that

(2.6)
$$|m(T(G)^n I \cap J) - m(I)m(J)/m(G)| < \epsilon, \quad n \ge N(G, \epsilon),$$

where I and J are levels in G.

Fix $N \ge N(G, \epsilon)$. By (2.5) we can choose $k = k(G, \epsilon, N)$ so large that if T extends T_k , then (2.6) implies

$$(2.7) \quad |m(T^n I \cap J) - m(I)m(J)/m(G)| < \epsilon, \quad N(G, \epsilon) \leq n \leq N,$$

where I and J are levels in G.

Let G be a tower with columns with rational widths. Using the greatest common divisor, we can cut the columns in G into subcolumns all of the same width w. These sub-columns are now stacked consecutively to form one column of width w that we denote by C(G). Note that if I is a level in G, then I appears as a finite union of levels in C(G).

Let C be a column of height h and width w. Let u be a positive integer. The column C can be cut into u subcolumns of equal width w/u. These u subcolumns are stacked consecutively to form a single column denoted by S_uC , with height uh and width w/u.

Let $\epsilon > 0$ and t a positive integer. Choose $u \ge \epsilon/t$ and let T be any extension of T_{S_uC} . If J is a level in C, then the construction of S_uC implies

(2.8)
$$m\left(\bigcap_{j=0}^{\prime}T^{jh}J\right) \geq (1-\epsilon)m(J).$$

3. Sequences. A sequence s_1 eventually contains a sequence s_2 if all but a finite number of terms in s_2 are in s_1 . The union of a countable set of sequences of density zero can have positive density. However, the following unpublished result of S. Kakutani [11] states that there exists a sequence of density zero that eventually contains each sequence of density zero in the countable set. A proof is included for completeness.

(3.1) THEOREM. Let $D(s^n) = 0$, $n \ge 1$. There exists s with D(s) = 0 such that s eventually contains s^n , $n \ge 1$.

Proof. Let
$$s^n = (s_j^n)$$
 and $\epsilon_n = 1/n^2$, $n \ge 1$. Given $s = (s_j)$, let

(1)
$$d^*(s, u) = \lim_{k \to \infty} \sup V_k/k$$
,

where V_k is the number of terms s_j that do not exceed k for $j \ge u$. For $n \ge 1$, $d^*(s^n, u)$ decreases to 0 as $u \to \infty$.

Choose u_1 such that

 $(2) \qquad d^*(s^1, u_1) < \epsilon_1.$

Assume $u_1 < u_2 < \ldots < u_r$ have been chosen so that for $1 \leq v \leq r$,

(3) $d^*(s^n, u_v) < \epsilon_v, \quad 1 \leq n \leq v.$

Choose $u_{r+1} > u_r$ such that

(4)
$$d^*(s^n, u_{r+1}) < \epsilon_{r+1}, \quad 1 \leq n \leq r+1.$$

By induction we obtain an increasing sequence (u_v) satisfying (3) for $v \ge 1$. Now form s as the union of s_j^n for $j \ge u_n$, $n \ge 1$. Since $n\epsilon_n \to 0$, it follows that D(s) = 0.

(3.2) COROLLARY. A transformation is weak mixing if and only if it is mixing on a sequence of density one.

Proof. Since (X, \mathcal{B}, m) is separable there exists a sequence of pairs (A_k, B_k) that are dense in the sense that for any pair (A, B) we have

(1)
$$\lim_{k\to\infty} \inf (m(A\Delta A_k) + m(B\Delta B_k)) = 0,$$

where Δ denotes the symmetric difference. We can choose a sequence s^k with $D(s^k) = 1$ such that Theorem (2.4) holds with $s(A_k, B_k) = s^k$, $k \ge 1$. Let t^k be the complement of s^k in N. Apply Theorem (3.1) to obtain t with D(t) = 0 so that t eventually contains t^k , $k \ge 1$. Let s be the complement of t. It follows that T is mixing on s and D(s) = 1.

We will now consider higher order mixing on a sequence s. A transformation T is 2-mixing on s if A, B, $C \in \mathscr{B}$ imply

(3.3)
$$\lim_{k,n\in s} m(T^nA \cap T^kB \cap C) = m(A)m(B)m(C),$$

where $k \to \infty$ and $n - k \to \infty$. Since T is measure preserving, C = X in (3.3) implies

(3.4)
$$\lim_{k,n\in s} m(T^{n-k}A \cap B) = m(A)m(B).$$

The reason that T may be mixing on s but not 2-mixing on s is that $k, n \in s$ does not imply $n - k \in s$. In particular, T may be mixing on s, but (3.4) may not hold. If (3.4) holds, then we will say T is uniform mixing on s, in the sense that T^nA mixes into T^kB uniformly with respect to n - k. Note that (3.4) may not imply (3.3). Otherwise one could prove mixing implies 2-mixing since a mixing transformation is uniform mixing on every sequence.

As in [8], a sequence s has upper density U(s) = u if u is the largest number for which there exist $a_j \to \infty$, $b_j - a_j \to \infty$, and the number of terms in the sequence between a_j and b_j divided by $b_j - a_j$ converges to u as $j \to \infty$. Note that s may have D(s) = 0 but U(s) = 1 because s contains long blocks of consecutive integers with even longer gaps of consecutive integers in between. We will now prove that uniform mixing implies U(s) = 0. (3.5) THEOREM. If T is weak mixing but not mixing and T is uniform mixing on s, then U(s) = 0.

Proof. Consider the set D of positive differences p = n - k where $k, n \in s$. The set D can be written as $D = \{p_i : i \ge 1\}$, where $p_i < p_{i+1}$, $i \ge 1$. The gaps in D are $p_{i+1} - p_i$, $i \ge 1$. Suppose the gaps are bounded by a positive integer g.

Since T is assumed weak mixing but not mixing, there exist A, B and $\epsilon > 0$ such that

(1)
$$\lim_{n\to\infty} \sup m(T^nA \cap B) \ge m(A)m(B) + \epsilon.$$

Thus there exist $r_j \rightarrow \infty$ such that

(2)
$$m(T^{r_j}A \cap B) \ge m(A)m(B) + \epsilon, \quad j \ge 1.$$

For each r_j there exists t_j , $0 \le t_j \le g - 1$, such that $r_j + t_j \in D$. Since there are only g possible values for t_j , one value t must repeat infinitely often. Thus $r_j + t \in D$ for infinitely many j. Now

(3)
$$m(T^{r_i+t}A \cap T^tB) = m(T^{r_i}A \cap B).$$

Let $v_j = r_j + t$ and $B_1 = T^t B$; hence (2) and (3) imply

(4)
$$m(T^{v_i}A \cap B_1) \ge m(A)m(B_1) + \epsilon.$$

Now $v_j \in D$; hence $v_j = n_j - k_j$ so (4) implies

(5)
$$m(T^{n_j}A \cap T^{k_j}B_1) \geq m(A)m(B_1) + \epsilon.$$

Now (5) contradicts uniform mixing. Thus T cannot be uniform mixing on s if s - s has bounded gaps.

The proof is completed by a remark in [8] that states that if s - sdoes not have bounded gaps, then s has upper density zero. A simple proof of this result, shown to me by B. Weiss, will be included for completeness. It suffices to verify that s has n mutually disjoint translates for $n \ge 1$. The translate of s by k is the set i + k, $i \in s$, which is denoted by s + k. Note that s is disjoint from s + k if and only if $k \notin s - s$. Since s - s has unbounded gaps, there exists a positive integer $k_1 \notin s - s$; hence $s \cap (s + k_1) = \emptyset$. Now choose a gap in s - s starting at k_2 such that the gap exceeds k_1 ; hence $k_1 + k_2 \notin s - s$. Therefore s, $s + k_1$, and $s + k_1 + k_2$ are mutually disjoint. Note that $k_2 \notin s - s$ implies

$$(s + k_1) \cap (s + k_1 + k_2) = s \cap (s + k_2) = \emptyset.$$

Proceeding inductively, suppose $k_1, 1 \leq i \leq n$, have been chosen so that

(6)
$$s, s + \sum_{i=1}^{n} k_{i}, 1 \leq r \leq n,$$

are mutually disjoint. Choose a gap starting at k_{n+1} such that the gap

size exceeds $\sum_{i=1}^{n} k_i$. It follows that (6) holds with *n* replaced by n + 1. Thus *s* has *n* mutually disjoint translates for $n \ge 1$.

Since 2-mixing on s implies uniform mixing on s, Theorem (3.5) yields the following result.

(3.6) COROLLARY. If T is weak mixing but not mixing and T is 2-mixing on s, then U(s) = 0.

In Example (4.6) we will consider a case where T is mixing on s and U(s) = 0, but T is not 2-mixing on s.

In [8] Furstenberg defined a transformation T to be weak mixing of order r if $A_i \in \mathcal{B}$, $0 \leq i \leq r$, imply

(3.7)
$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n \left|m\left(\bigcap_{i=0}^r T^{ki}A_i\right) - \prod_{i=0}^r m(A_i)\right| = 0.$$

Furstenberg proved that weak mixing implied weak mixing of all orders. As in the case of weak mixing, one can use Theorem (3.1) and (3.7) to show there exists a sequence s with D(s) = 1 such that

(3.8)
$$\lim_{n\in s} m\left(\bigcap_{i=0}^{r} T^{ni}A_{i}\right) = \prod_{i=0}^{r} m(A_{i}), \quad A_{i}\in \mathscr{B}, \quad 0 \leq i \leq r.$$

Furthermore, another application of Theorem (3.1) yields a single sequence s with D(s) = 1 such that (3.8) holds for all $r \ge 1$. In particular, for r = 2 we can rewrite (3.8) as

$$(3.9) \quad \lim_{n \in S} m(T^{2n}A \cap T^nB \cap C) = m(A)m(B)m(C), \quad A, B, C \in \mathscr{B}.$$

Thus (3.9) holds for D(s) = 1, in contrast to Corollary (3.6).

In Section 4 a transformation will be constructed that is mixing on a sequence s but is not uniform mixing on s. We have been unable to construct a transformation that is uniform mixing on a sequence s but is not 2-mixing on s. Another problem is to construct a transformation that is 2-mixing on a sequence s but is not r-mixing on s for some r > 2.

4. Mean convergence. We will now consider mean convergence of Césaro averages along a sequence $s = (s_i)$. Let $f \in L^p$, $p \ge 1$, and denote

(4.1)
$$f_n(x) = \frac{1}{n} \sum_{i=1}^n f(T^{-s_i}x).$$

The following result [1] relates mixing and the mean convergence of f_n to the integral m(f) of f with respect to m.

(4.2) BLUM-HANSEN THEOREM. A transformation T is mixing if and only if for each sequence s, f_n converges to m(f) in L^p , $f \in L^p$, $p \ge 1$.

Now suppose T is mixing on s. An example will be constructed to show that Césaro-averages along s need not converge in the mean. The idea of the example can be illustrated by a mixing sequence of sets. Let (A_n) be a sequence of sets with $m(A_n) = a, n \ge 1$. The sequence is mixing [12] if

(4.3)
$$\lim_{n\to\infty} m(A_n \cap B) = am(B), \quad B \in \mathscr{B}.$$

Let $\epsilon_n > 0$ and $\epsilon_n \to 0$. Let (t_n) be an increasing sequence of positive integers that satisfy

(4.4)
$$\sum_{i=1}^{n-1} t_i/t_n < \epsilon_n, \quad n > 1.$$

Let (A_n) satisfy (4.3) with a = 1/2. Consider the sequence of sets (B_n) obtained by repeating $A_n t_n$ times, $n \ge 1$. This sequence will also be mixing. Let $b(n) = (t_1 + \ldots + t_n)$. The characteristic function of a set A will be denoted by A(x). The Césaro-average of the first b(n) characteristic functions of sets in (B_n) is denoted by $g_n(x)$; hence

(4.5)
$$g_n(x) = \sum_{i=1}^n t_i A_i(x) / b(n).$$

Since m(X) = 1, it follows from (4.4) that

$$||g_n - 1/2||_1 \ge 1/2 - \epsilon_n.$$

Thus g_n does not converge to 1/2 in the mean.

We will now construct a transformation T, a corresponding mixing sequence s, and a set A of measure close to 1/2 such that $T^{i}A$, $i \in s$, consists of blocks of length t_{n} that are approximately the same set, $n \geq 1$.

(4.6) Example. The construction is by induction and the *n*th stage begins with an *M*-tower G_n with columns with rational widths. If *I* is a level in G_i , $1 \leq i < n$, then *I* appears as a union of levels in G_n . Let L_n be the total number of levels in G_n and let $\epsilon_n < w_n/100L_n^2$. With reference to (2.6) and (2.7), let $N_n = N(G_n, \epsilon_n)$ and $k_n = k(G_n, \epsilon_n, N_n)$. Choose a positive integer

 $r_n \geq \max\{k_n, N_n/\epsilon_n\}$

and form $G_{n1} = S^{r_n}G_n$. We let T_{nj} denote $T_{G_{nj}}$ for notational convenience. Since $r_n \ge k_n$, (2.7) implies that if T extends T_{n1} , then

(1)
$$|m(T^{i}I \cap J) - m(I)m(J)/m(G_{n})| < \epsilon_{n}, \quad i = N_{n},$$

where I and J are levels in G_n .

Now form the column $G_{n_2} = C(G_{n_1})$. Each set A that is a union of levels in G_n will also appear as a union of levels in G_{n_2} . Moreover, the choice of r_n implies $T^{N_n}A$ appears as a union of levels in G_{n_2} , except possibly for a set of measure at most ϵ_n . This is because only the top N_n

levels in columns in G_{n1} pass through the top of G_{n1} under T^{N_n} . Thus we have

(2)
$$T^{N_n}A = \bigcup_{i=1}^{v} J_i \cup E,$$

where J_i is a level in G_{n_2} , $1 \leq i \leq v$, and $m(E) < \epsilon_n$.

We also have positive integers t_j , $1 \leq j < n$, and choose t_n to satisfy (4.4); hence

$$(3) \qquad b(n-1)/t_n < \epsilon_n.$$

Now choose a positive integer $u_n \ge t_n/\epsilon_n$. Form the column $G_{n_3} = S_{u_n}G_{n_2}$. Let h_n be the height of G_{n_2} . If J is a level in G_{n_2} and T extends T_{n_3} , then (2.8) implies

(4)
$$m\left(\bigcap_{j\leq l_n}T^{jh_n}J\right)\geq (1-\epsilon_n)m(J).$$

Let $s_j = N_n + (j - b(n - 1))h_n$, $b(n - 1) \leq j < b(n)$. From (2) and (4) we obtain

(5)
$$m\left(\bigcap_{j=b(n-1)}^{b(n)-1}T^{sj}A\right) \geq (1-2\epsilon_n)m(A)$$

Lastly, let G_{n+1} be the tower obtained by cutting G_{n3} into two equal columns and adding an extra interval above one column. Thus G_{n+1} is an *M*-tower consisting of two columns with heights differing by one. The levels in G_n appear as unions of levels in G_{n+1} and the columns in G_{n+1} have rational width. This completes the induction step.

We begin with an *M*-tower G_1 with columns of rational widths. Take b(0) = 1 in (3). At each stage we add an interval to form G_{n+1} . It is easy to see that the sum of the measures of these intervals is finite. Let $X = \bigcup_{n=1}^{\infty} G_n$ and assume *m* is normalized so that m(X) = 1. Thus we obtain a transformation *T* defined by

(6) $T(x) = \lim_{n\to\infty} T_{G_n}(x), x \in X.$

We first verify T is mixing on $s = (s_j)$. Let A and B be sets that are unions of levels in G_1 ; hence A and B appear as levels in G_n , $n \ge 1$. If n is large, then $m(G_n)$ is essentially 1 and (1) implies

(7)
$$|m(T^{N_n}A \cap B) - m(A)m(B)| \leq L_n^2 \epsilon_n = w_n.$$

It is easily seen that $w_n \rightarrow 0$; hence

(8)
$$\lim_{n\to\infty} m(T^{N_n}A \cap B) = m(A)m(B).$$

The same proof holds if A and B are unions of levels in G_k , $k \ge 1$. Since these sets generate \mathscr{B} , it follows that T is mixing on (N_n) . From (5) we conclude T is mixing on s.

To verify that the Mean Ergodic Theorem does not hold on s, choose k large and fix A consisting of a union of levels in G_k such that

(9)
$$|m(A) - 1/2| < 1/100$$
 and $\epsilon_k < 1/100$.

Now (5) holds for n > k. Let $g_n(x)$ be as in (4.5) with $A_i = T^i A$, $i \ge 1$. From (9) and (5) we obtain

$$||g_n - m(A)||_1 \ge 1/8.$$

Thus the M.E.T. does not hold on s.

The preceding example shows that mixing on s does not imply the M.E.T. on s. An inspection of the proof in [1] yields the following mixing condition that is equivalent to the M.E.T. on s.

(4.7) Definition. A transformation T is Césaro uniform mixing on s if $A, B \in \mathcal{B}$ imply

$$\lim_{n\to\infty}\frac{1}{n^2}\sum_{i,j=1}^n m(T^{s_i}A\cap T^{s_j}B)=m(A)m(B).$$

(4.8) THEOREM. The Mean Ergodic Theorem holds for T on s if and only if T is Césaro uniform mixing on s.

Proof. Let $f_n(x)$ be defined as in (4.1) with f(x) = A(x). In L^2 we have

(1)
$$||f_n - m(A)||_2^2 = \frac{1}{n^2} \sum_{i,j=1}^n m(T^{s_i}A \cap T^{s_j}A) - m(A)^2.$$

If T is Césaro uniform mixing, then (1) implies f_n converges to m(A) in L^2 , $A \in \mathcal{B}$. The M.E.T. now follows as in [1]. Conversely, suppose the M.E.T. holds. Let f_n be defined as above and let g_n replace f_n in (4.1) with f(x) = B(x) for $B \in \mathcal{B}$. Thus f_n and g_n converge in L^2 to m(A) and m(B), respectively. Thus $f_n g_n$ converges to m(A)m(B) in L^2 . Hence $f_n g_n$ converges to m(A)m(B) in L^2 . Hence $f_n g_n$ converges to m(A)m(B) in L^1 and this yields Césaro uniform mixing on s.

The proof in [1] can be used to verify uniform mixing implies Césaro uniform mixing. Since 2-mixing on *s* implies uniform mixing on *s*, we have the following result.

(4.9) COROLLARY. If T is 2-mixing on s, then the Mean Ergodic Theorem holds for T on s.

The theorem of L. Jones [10] states that the M.E.T. holds on s for all weak mixing transformations when $D_{\bullet}(s) > 0$. Thus Theorem (4.8) is useful only when $D_{\bullet}(s) = 0$. In particular, this is the case in Corollary (4.9).

In Example (4.6), $h_n \to \infty$ implies U(s) = 0. Theorem (4.8) implies T is not Césaro uniform mixing on s. In particular, T is not 2-mixing on s. This also follows directly from (5).

5. Uniform sweeping out. Given an increasing sequence $s = (k_i)$, we say T sweeps out on s if m(A) > 0 implies

$$m\left(\bigcup_{i=1}^{\infty}T^{k_i}A\right)=1.$$

If T sweeps out on all s, then we simply say T sweeps out. If T is mixing, then T sweeps out. In [2] sequence mixing is the term used for sweeps out. To avoid confusion with mixing on a sequence, we will use the latter term. The following characterization is proved in [2].

(5.1) THEOREM. A transformation T sweeps out if and only if

 $\liminf_{n\to\infty} m(T^nA\cap B)>0, \quad m(A)m(B)>0.$

If T sweeps out, then T is weak mixing [3]. Hence if T sweeps out, then T is mixing on a sequence of density one by Corollary (3.2). However, there exist weak mixing transformations that do not sweep out. There also exist transformations that sweep out that are not mixing [4]. We will now consider a uniform type of sweeping out defined as follows.

(5.2) Definition. T sweeps out uniformly if given a set A of positive measure and $\epsilon > 0$, there exists $N = N(A, \epsilon)$ such that $n \ge N$ implies

$$m\left(\bigcup_{i=1}^{n} T^{k_i}A\right) > 1 - \epsilon$$
 for all $k_1 < k_2 < \ldots < k_n$.

It is shown below that mixing implies uniform sweeping out. The following result is motivated by Lemma 1 [1].

(5.3) LEMMA. Let T be mixing, m(A) > 0, and $\epsilon > 0$. There exists $N = N(A, \epsilon)$ such that $n \ge N$ implies

$$\frac{1}{n^2}\sum_{i,j=1}^n |m(T^{ki}A\cap T^{kj}A) - m(A)^2| < \epsilon,$$

for all $k_1 < k_2 < \ldots < k_n$.

Proof. Since T is mixing, we have

(1) $\lim_{|u-v|\to\infty} m(T^{u}A \cap T^{v}A) = m(A)^{2}.$

Choose w so large that |u - v| > w implies

(2)
$$|m(T^{u}A \cap T^{v}A) - m(A)^{2}| < \epsilon/2.$$

Choose $N > (4w + 2)/\epsilon$. Now consider $k_i, 1 \leq i \leq n, n \geq N$. For each i there are at most 2w + 1 values of j such that $|k_i - k_j| \leq w$. Since a term on the left of (2) is bounded by 1, we have

(3)
$$\frac{1}{n^2} \sum_{i,j=1}^n |m(T^{k_i}A \cap T^{k_j}A) - m(A)^2| \leq \frac{(2w+1)n}{n^2} + \frac{\epsilon}{2} < \epsilon.$$

Lemma (5.3) will now be used to obtain a uniform version of the Blum-Hansen Theorem. We denote

$$f_n(x) = \frac{1}{n} \sum_{i=1}^n f(T^{-k_i}x).$$

(5.4) THEOREM. Let T be mixing, $p \ge 1$, and $f \in L^p$. Given $\epsilon > 0$, there exists $N = N(f, \epsilon)$ such that $n \ge N$ implies

$$||f_n - m(f)||_p < \epsilon \quad for \ all \ k_1 < \ldots < k_n.$$

Proof. If f(x) = A(x), then Lemma (5.3) yields the result for p = 2 since (3) above with ϵ replaced by ϵ^2 implies

(1)
$$||f_n - m(A)||_2 \leq \epsilon$$
.

If f is a simple function of the form

(2)
$$f(x) = \sum_{i=1}^{k} a_i A_i(x),$$

then we have

(3)
$$||f_n - m(f)||_2 \leq \sum_{i=1}^k |a_i| ||f_{n,i} - m(A_i)||_2.$$

Here $f_{n,i}$ corresponds to $f = A_i$, $1 \leq i \leq k$. Choose

$$N = \max \{ N(A_i, \epsilon/k |a_i|), 1 \leq i \leq k \}.$$

Thus $n \ge N$ implies the right side of (3) is less than ϵ . For $f \in L^2$, we approximate by a simple function g so that $||f - g||_2 < \epsilon/3$. Since T is measure preserving, we obtain

(4)
$$||f_n - g_n||_2 < \epsilon/3, n \ge 1.$$

Now choose $N = N(g, \epsilon/3)$; hence $n \ge N$ implies

(5)
$$||f_n - m(f)||_2 \leq ||f_n - g_n||_2 + ||g_n - m(g)||_2 + |m(g) - m(f)| < \epsilon.$$

If p = 1, then the result follows from Holders inequality and the result for p = 2. If p > 1, then as in [1], let g be bounded by M; hence

(6) $||g||_{p} \leq (1 + M^{p})||g||_{1}$.

The result now follows from p from (6) and the result for p = 1 since simple functions are bounded.

(5.5) COROLLARY. If T is mixing, then T sweeps out uniformly.

Proof. Let m(A) > 0 and choose $N = N(A, \epsilon^2 m(A)^2)$ in Lemma (5.3). Let

$$B = \left(\bigcup_{i=1}^{n} T^{k_i} A\right)^c;$$

hence

$$B \cap T^{k_i}A = \emptyset, \quad 1 \leq i \leq n$$

Let f_n correspond to f = A. Therefore Lemma (5.3) implies

$$m(A)m(B) = \left|\int_{B} (f_n(x) - m(A))dm\right| \leq ||f_n - m(A)||_2 < \epsilon m(A).$$

Thus $m(B) < \epsilon$.

Let us now consider the following version of Theorem (5.1) for a sequence s. The proof follows as in [2].

(5.6) THEOREM. T sweeps out on all subsequences of s if and only if $\liminf m(T^n A \cap B) > 0, \quad m(A)m(B) > 0.$

In particular, if T is mixing on s, then T sweeps out on all subsequences of s. However, mixing on s does not imply uniform sweeping out on s. For consider Example (4.6) (5). This implies $T^{s_j}A$ is essentially invariant for $b(n-1) \leq j < b(n)$ and $b(n) - b(n-1) \rightarrow \infty$.

If T is uniform mixing on s, then the same proof of Lemma (5.3) yields the conclusion for $k_i \in s, 1 \leq i \leq n$. In this case Theorem (5.4) holds for $k_i \in s, 1 \leq i \leq n$. The analog of Corollary (5.5) also holds, where uniform sweeping out on s corresponds to Definition (5.2) with $k_i \in s, 1 \leq i \leq n$. In particular, if T is 2-mixing on s, then there is uniform mean convergence on s and T sweeps out uniformly on s.

An open problem is whether the converse of Corollary (5.5) holds. There is also the question of whether sweeping out uniformly on *s* implies uniform mixing on *s*.

The following corollary of Theorem (5.4) states that given a set A and $\epsilon > 0$, there exists N such that for any set B, not more than N iterates of A can be badly mixed in B (with respect to ϵ). The original formulation of this result (and (5.8) below) is due to S. Kalikow, where m(B) had to be bounded away from zero.

(5.7) COROLLARY. Let T be mixing, m(A) > 0, and $\epsilon > 0$. There exists $N = N(A, \epsilon)$ such that for any set B there are at most N positive integers k such that

$$|m(T^{k}A \cap B) - m(A)m(B)| > \epsilon.$$

Proof. Let f(x) = A(x) with p = 1 in (5.4) and let $N_1 = N(f, \epsilon)$ in (5.4). Choose $N = 2N_1$ and suppose the conclusion does not hold. Hence there exist B and k_i , $1 \leq i \leq N_1$, such that

(1) $m(T^{k_i}A \cap B) - m(A)m(B) > \epsilon$ (or $< -\epsilon$), $1 \le i \le N_1$.

Now (1) implies

(2)
$$\epsilon < \frac{1}{N_1} \sum_{i=1}^{N_1} m(T^{k_i}A \cap B) - m(A)m(B)$$

= $\int_B (f_{N_1}(x) - m(A))dm \le ||f_{N_1} - m(A)||_1 < \epsilon.$

This contradiction implies $N = 2N_1$ and hence the conclusion.

(5.8) COROLLARY. Let T be mixing, m(A) > 0, and $\epsilon > 0$. There exists $N = N(A, \epsilon)$ such that for any sets B and C and j sufficiently large there are at most N positive integers k such that

 $|m(T^{k}A \cap T^{j}B \cap C) - m(A)m(B)m(C)| > \epsilon.$

Proof. Let $N = N(A, \epsilon/2)$ in (5.7). Choose j sufficiently large so that

(1)
$$|m(T^{j}B \cap C) - m(B)m(C)| < \epsilon/2.$$

The conclusion follows from (5.7) with B replaced by $T^{i}B \cap C$.

Note that Corollary (5.8) is in the direction of mixing implying 2-mixing.

References

- 1. J. R. Blum and D. L. Hanson, On the mean ergodic theorem for subsequences, Bull. A.M.S. 66 (1960), 308-311.
- J. R. Blum, S. L. M. Christianson and D. Quiring, Sequence mixing and α-mixing, Illinois J. Math. 18 (1974).
- 3. J. W. England and N. F. G. Martin, On weak mixing metric automorphisms, Bull. A.M.S. 74 (1968), 505-507.
- N. A. Friedman and D. S. Ornstein, On partially mixing transformations, Illinois J. Math. 16 (1972), 61-68.
- 5. N. A. Friedman, Mixing, entropy, and generators, J. Appl. Math. Anal. 26 (1969), 512-528.
- 6. —— Bernoulli shifts induce Bernoulli shifts, Advances in Math. 10 (1973), 39-48.
- 7. Eventually independent sequences, Israel J. Math. 33 (1979), 310-316.
- 8. H. Furstenberg, Ergodic behaviour of diagonal measures and a theorem of Szemerédi on arithmetic sequences, J. Analyse Math. 31 (1977), 204–256.
- 9. P. R. Halmos, Lectures on ergodic theory, Publ. Math. Soc. Japan 3 (1965).
- L. K. Jones, A mean ergodic theorem for weakly mixing operators, Advances in Math. 7 (1971), 211–216.
- 11. S. Kakutani, Ergodic Theory Seminar, Northeastern University (1981).
- 12. A. Rényi, On mixing sequences of sets, Actu. Math. Acad. Sci. Hungary 9 (1958), 215–228.
- 13. P. Shields, Cutting and independent stacking of intervals, Math. Systems Theory 7 (1973), 1-4.

State University of New York, Albany, New York