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ARC COMPONENTS OF CERTAIN 
CHAINABLE CONTINUA 

BY 

SAM B. NADLER, JR.C) 

ABSTRACT. It is shown that if a chainable continuum has exactly 
two arc components, then one of them is an arc and the other is a 
half-ray. 

1. Introduction. We first give a brief discussion of how the author became 
interested in the topic which is the title of this paper. In [6] we proved that the 
only arcwise connected inverse limit (with onto bonding maps) of arcs is an arc. 
It was previously known [3] that the only locally connected inverse limit of arcs 
(respectively, simple closed curves) is an arc (respectively, simple closed curve). 
The question arose as to what are the arcwise connected inverse limits of simple 
closed curves? It was clear to the author that there are at least two such inverse 
limits, namely a simple closed curve and a sin (l/x)-circle (see Figure 1). 

FIGURE 1. 

It follows by using some of the results in [6] that an arcwise connected inverse 
limit of simple closed curves can be thought of as composed of two pieces (which 
fit together nicely), one an arc and the other a chainable continuum with at most 
two arc components. Hence, the problem of determining the arcwise connected 
inverse limits of simple closed curves is really the problem of determining those 
chainable continua which have exactly two arc components. The author thought 
for a long time that there were only two such chainable continua, namely the objects 
in Figure 2 and Figure 3. 
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FIGURE 2. FIGURE 3. 

This faulty intuition was the result of recognizing that certain chainable continua 
(such as those in Figure 4 and Figure 5) which looked quite different than the 
object in Figure 2 were, in fact, homeomorphic to it. 

FIGURE 4. FIGURE 5. 

However, a very simple modification (see Figure 6) of the object in Figure 2 yields 
a chainable continuum with exactly two arc components which is not homeo
morphic to any of the chainable continua in Figures 2 through 5. 

+ 1 

- 1 
FIGURE 6. 

By using simple modifications of the construction in Figure 6 and using Theorem 2 
(which was called to the author's attention by K. Kuratowski) of [5] it is easy to 
see that there are uncountably many topologically different chainable continua 
with exactly two arc components. Thus, the question arose—what can one say 
about the structure of the chainable continua which have exactly two arc com
ponents? 
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In this paper we determine the structure of such continua in the following sense. 
We prove (see Theorem 1 below) that any two chainable continua, each having 
exactly two arc components, have the same two topological types of arc com
ponents: one arc component is an arc and the other is a half-way (i.e., homeo-
morphic to [0, oo)). 

The applications mentioned above of the results in this paper to inverse limits 
will appear in another paper. 

I express my gratitude to D. G. Paulowich for his many valuable comments 
concerning the material in this paper. 

Throughout this paper a continuum will mean a compact connected metric space 
with more than one point. The symbol S will mean the closure of S. 

2. Results. An arc component of a continuum X is defined to be a maximal 
arcwise connected subset of X. 

The main purpose of this section is to prove Theorem 1 which says that if a 
chainable continuum has exactly two arc components, then one of them is an arc 
and the other is a half-ray. The proof of Theorem 1 is accomplished in essentially 
two steps. The first (Lemma 3) is to show that every one-to-one continuous mapping 
of [0, oo) into a certain type of space is a homeomorphism. The second step 
(Lemma 6) is to show that one of the arc components is compact—this compact
ness of one arc component is then used (see the proof of Theorem 1) to show there 
exists a one-to-one continuous mapping of [0, oo) onto the other arc component 
which, by the first step, is a homeomorphism. 

Though the content of the first lemma below is well-known and has been used 
in the literature (see for example [2]), we state it here as a formal lemma because 
it will be used quite often throughout this section. The proof is easy and is omitted. 

LEMMA 1. If K is a subcontinuum of an hereditarily unicoherent continuum X and 
F<= X is arcwise connected, then Kc\ Y is arcwise connected. 

LEMMA 2. Let X be an hereditarily decomposable, hereditarily unicoherent con
tinuum and let f: [0, oo) -> X be a one-to-one continuous function. Then there does 
not exist a sequence {tn}n=i in [0, oo) such that tn->co and {f(tn)}n=i converges to 
some point p e/([0, oo)). 

Proof. Let S={pef([0,oo)): there is a sequence {/nK°=i in [0,oo) such that 
tn-^co and {f(tn)}n=i converges to p) and suppose S is nonempty. It is easy to see 
that S is closed in/([0, oo)). We now show that 

(*) if x = f(s) and y = f(t), with s < t, are each in S, then/([s, *])<=£. 

To see this first note that since xe S, x ef([t9 oo)). Hence, x and y are in f([t, oo)) 
so, by Lemma 1, f([s, t])^f([t, oo)). Since / is one-to-one, it now follows that 
f([s> tD^S. This completes the proof of (*). It is now easy to see that S is of the 
form/(|>, t]) or f([s, oo)) for some s and t, 0<s<t<co. If S were of the form 
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f([s, t]) for some s and t, 0<s< t<oo, then f([t+1, oo)) H/fls-, t+l]) would equal 
*^u {/(*+!)} which is not connected, contradicting the hereditary unicoherence 
of X. Thus, S is of the form/([.y, oo)) for some s e [0, oo). Let M = f([s, oo)). Note 
that because f([s, co)) = S9 no set of the form/(|>, t]) has interior in M and, hence, 
f([s, oo)) is of the first category in M. Hence, f([s, oo)) does not contain a nonempty 
open subset of M. Thus, M is an hereditarily unicoherent continuum which con
tains a dense subset of f([s, oo)) that is a one-to-one continuous image of a half-
open interval but that contains no interior points relative to M. We may now apply 
Theorem 4 of [7] to conclude that M is indecomposable, which contradicts the 
assumption that X is hereditarily decomposable. Therefore, S is empty. 

LEMMA 3. Let X be an hereditarily decomposable, hereditarily unicoherent con
tinuum. Iff: [0, oo) -> X is a one-to-one continuous function, then f is a homeo-
morphism {of [0, oo) ontof([0, oo))). 

Proof. We need only show that the image under / of an open subset of [0, GO) 
is open relative to/([0, oo)). Let s, t e [0, oo) such that s<t. Since fis one-to-one, 
/ ( [0,oo))- / (( j ,0)=/([0,JDu/([f ,oo)) . Any point/> e/([0, co)) which is a limit 
point off([t, oo)) would be the limit of a sequence {/(fn)}£=i where tn> t for each 
« = 1 , 2 , By Lemma 2,tn^>oo so there is a subsequence {tn}™= i which converges 
to a number t0 > t. 

Since {f(tn)}^=1 is a subsequence of {f(tn)}^l9 {/(*»,)}£ i converges to p. But 
{fn}i"i converging to t0 implies {/(*„,)}£ i converges to/(*<,). Hence,/(f0) =/? so 
P G/(lA °°)). Hence,/([0, oo))—f((s, t)) is closed relative to/([0, oo)) which implies 
/((s, ?)) is open relative to/([0, oo)). A similar argument shows that any set of the 
form/([0, t)) is open relative to/([0, oo)). The lemma follows. 

REMARK. We could have stated a stronger result than the one given in Lemma 3 ; 
namely that any set of the form f((s, t)) or /([0, 0) is ° P e n relative to /([0, oo)). 
However, this stronger fact does not seem to be useful here. 

LEMMA 4. Let X be an a-triodic and hereditarily unicoherent continuum, let 
f: [0, oo) -> X be one-to-one and continuous such that /([0, oo)) is not arcwise con
nected, and let p £/([0, oo)) be in the same arc component of X as /([0, oo)). Let a 
be an arc from p to a point off([0, oo)), a given by a homeomorphism h: [0, 1] -> a 
with h(0)=p. If 

r0=glb.{re[0,\]:h(r)ef([0,œ))}, 

thenh(r0)=f{0). 

Proof. By Lemma 1, a n/([0,oo)) is arcwise connected (and obviously closed) 
in /([0, oo)). If a n / ( [0 , oo)) were of the form f([s, oo)) for some s e [0, oo), then 
f([0, oo)) would be contained in an arc so that/([0, oo)) would be arcwise connected 
(by Lemma 1). Hence, a n / ( [0 , oo)) is of the form f([s, t]) for some s and t, 
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0 < s < t < oo. Therefore, h(r0) e/([0, oo)). If h(r0) =f(t0) with t0 > 0, then/([0, tQ +1 ]) 
u a would be a triod. Hence, h(r0) =/(0). 

LEMMA 5. Let X be a chainable continuum with two arc components C and D such 

that C n D^ 0 . If ceC C\ D and de D, then there is a one-to-one continuous 

function/: [0, oo) -> D such that f(0) = d and c e/([0, oo)). 

Proof. Let {d^F= i be a sequence of points in D converging to c and assume 
d^d for all i. For each /= 1, 2 , . . . , let A{ be the (unique) arc in Z> from J to dt 

and, for « = 1 , 2 , . . . , let anU?=i A{. Since X is chainable, an is an arc for each 
n= 1, 2, Let x G ax—{<i, d±}. Then, for each «, x divides an into two subarcs 
an and c£ (with x a noncut point of each), the primes being chosen so that, for 
each n, ccf

n^an + 1 (and « ^ « n + i) (see the proof of Theorem 1 of [7]). Since in
finitely many terms of the sequence {d^=i belong to U"=i an or (Jn=i<x'L 
c E {Jn=i « i o r c e U^°=i a'n- Without loss of generality assume c e (J£=i a'n> Clearly 
U *= i a'n is a one-to-one continuous image of [0, oo). If d e (J "= ± an, then letting 
^=(Un°=i Un—p)^ {d} where ]8 denotes the unique arc in U^°=i an from x to d, 
it is obvious that H is a one-to-one continuous image of [0, oo). If d$ U"=i an> 
then letting H=(\J%=1 °4) u y> where y is the unique arc in D from J to x, it fol
lows from Lemma 4 that / / is a one-to-one continuous image of [0, oo). This 
completes the proof. 

LEMMA 6. If X is a chainable continuum with exactly two arc components A and B, 
then A is compact or B is compact. 

Proof. We first note that X is hereditarily decomposable. To see this let K be 
a nondegenerate subcontinuum of X. Then, by Lemma 1, K has at most two arc 
components, namely K n A and Kr\ B. If K were arcwise connected, then K 
would be an arc. Thus, we may assume K has exactly two arc components. Each 
arc component of K is obviously contained in a composant of K so K does not 
have uncountably many mutually disjoint composants. Hence, K is decomposable 
(see, for example, Theorem 3-46 and Theorem 3-47 of [4]) which completes the 
proof that X is hereditarily decomposable. Now suppose that neither A nor B is 
compact, let a e A n B, and let b e B n Z. Applying Lemma 5 twice we obtain 
two one-to-one continuous functions f± : [0, oo) -> B and f2 : [0, oo) -> A such that 
/i(0) = i , aefÔÔ^)), /a(0) = fl, and beffîo^ôj). Let ff^/^oo)) ^nd let 
#2 =/2([0, oo)). We now show that /fx 45 H2. Suppose H1D 772- Since b e (H2—H2) 
there exists a sequence { n̂)̂ =i in [0,00) such that s*n->oo and the sequence 
{f2(sn)}n=i converges to b. Since (^ — H^ DH2a sequence {*„}"= 1 in [0,00) can be 
produced such that tn -> 00 and d(f1(t^),f2(sn)) < l/n, where d denotes the distance 
for X. Hence, tn->co and {/i(*n)K°=i converges to the point b e/i([0,00)). This 
contradicts Lemma 2 (ïïl9 as a subcontinuum of the hereditarily decomposable 
continuum X, is hereditarily decomposable) and completes the proof that H1^H2> 
Similarly, H23>H1. Now let x e (H2-H^), x=f2(s) for some s G [0,00). By Lemma 
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1, H1 n H2 is arcwise connected. Also, since f2(0) = a, /2(0) eH1C\ H2. Suppose 
there is a point yeH1C\H2 such that y=f2(t) with t>s. Then there is an arc or 
from/2(0) to y such that a<^H1r>i H2. Since x $ o~, a n/2([0, t]) is not connected, 
a contradiction. Therefore, H1 n i/2c:/2([0, s]). Similarly, H2 n #!<=/([(), r]) for 
some r e [0, oo). Let M =f2([s+l, s+ 2]) and let 

N = # i u/ a ( [0 , s+1]) u/a([*+2,oo)). 

Since {H1 n H2)—H2 is nonempty (because the point Z? is in it) and contained in 

Hi n/2([^+2,oo)), we have that H± n/2( |> + 2, oo))^ 0 . It now follows that Nis 

connected. Hence, M and N are subcontinua of X. But M n N={f2(s+l),f2(s+2)} 

which is not connected. This contradicts the hereditary unicoherence of X. There

fore, A is compact or B is compact. 

THEOREM 1. If X is a chainable continuum with exactly two arc components, 
then one of them is an arc and the other is homeomorphic to [0, oo). 

Proof. Let A and B denote the arc components of X. By Lemma 6 one of them, 
say A, is compact. Hence, A is an arcwise connected chainable metric continuum 
so A is an arc [6]. We now show that there is a point be B such that B—{b} is arc-
wise connected. Let xeB such that B—{x} is not arcwise connected. Since X is 
tf-triodic and B is arcwise connected, B—{x} has exactly two arc components 
denoted by Bx and B2. Clearly xeB1r\ B2r\ B. Thus, since B± and B2 are disjoint 
open subsets of B and B1 u B2 = B—{x}, we have B1r\B2r\ B={x}. Now suppose 
B1^B and B2<$:B so that B1 n A^ 0 and B2c\ A^ 0. Then, since 

BnA = (B± u £2) n ,4 = (5X u 52) n A = (5X n 4) u (52 n ^ ) 

is connected and (5X n 52) n >4 = (5i n ,4) n (52 n A), (B± c\B2)c\Ai-0, Now 
since B± n 5 2 = [ ( ^ n l 2 ) n ^ ] u [(5X n 52) n 5 ] , since (Bx n 52) n £={*}, 
ï?! n 2?2 is not connected. This contradiction establishes that B±^B or B2^B. 
Without loss of generality we assume BX^B. Then B± is arcwise connected and, 
thus, is an arc [6]. Let b e B be the noncut point of Bx different from x. It is easy to 
verify (by considering arcs between points in B1 and/or in B2) that B— {b} is arc-
wise connected. We now show that there is a homeomorphism of [0, oo) onto B. 
Let a e B n A. By Lemma 5 there is a one-to-one continuous function/: [0, oo) -> B 
such that/(0) = Z> and a e/([0, oo)). We show tha t /maps onto all of B; then (X 
being hereditarily decomposable) Lemma 3 implies / is a homeomorphism of 
[0, co) onto B. Suppose / is not onto B so that there is a point yeB such that 
y £/([0, oo)). Since i?— {è} is arcwise connected, there is an arc a^B—{b) from y 
to a point of/((0, oo)). Since/(0) <£ a, this contradicts Lemma 4. Hence, / i s onto i?. 

REMARK. If a continuum is hereditarily indecomposable, then each arc compo
nent is a point. Thus, each arc component of the pseudo-arc is a point. However, 
there are hereditarily decomposable chainable continua such that each arc com
ponent must be a point (such an example may be found in [1]). 

https://doi.org/10.4153/CMB-1971-033-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1971-033-8


1971] ARC COMPONENTS OF CHAINABLE CONTINUA 189 

REMARK. One might conjecture that a slightly more general form of Lemma 6 
is valid, namely that if Zis an hereditarily unicoherent continuum with exactly two 
arc components, then one of them is compact (in other words, a-triodicity might 
not seem to play a crucial role in Lemma 6). However, such a conjecture is false 
even for continua in the plane as the example in Figure 7 shows. The example is 
due to G. S. Young. Descriptively, X is a triod T (contained in the x and y axes 
with noncut points ( -1 ,0 ) , (0, 1), and (0, -1)) together with a half-ray H={(x, 
sin(1/x)): 0<x< 1} and a sequence of arcs A0, Al9 A29... such that An has one 
noncut point at (— l/2n, 0) and such that each point of {(JC, sin (1/x)): l /2 n <x< 1} 
is within l/2n of some point of An. The two arc components of X are H and 

^ ( u ; = o 4 

FIGURE 7. 
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