
J. Appl. Prob. 43, 114–126 (2006)
Printed in Israel

© Applied Probability Trust 2006

A NOTE ON THE EXTREMAL INDEX
FOR SPACE–TIME PROCESSES

K. F. TURKMAN,∗ University of Lisbon

Abstract

Let {X(s, t), s = (s1, s2) ∈ R
2, t ∈ R} be a stationary random field defined over a

discrete lattice. In this paper, we consider a set of domain of attraction criteria giving the
notion of extremal index for random fields. Together with the extremal-types theorem
given by Leadbetter and Rootzen (1997), this will give a characterization of the limiting
distribution of the maximum of such random fields.
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1. Introduction

We consider the asymptotic distribution of the maximum of a stationary random field defined
over a discrete lattice in R

3. We will take the first two coordinates as space and the third
coordinate as time; hence, we call this random field a spatiotemporal process. We are motivated
by the extremal properties of linear spatiotemporal autoregressive moving average processes
(Cliff and Ord (1975); see also Cressie (1993, pp. 449–450)) given by

X(t)−
p∑
k=0

BkX(t − k) = ε(t)−
q∑
l=0

Elε(t − l),

where X(t) = (X(si , t), i = 1, 2, . . . , n)�, is a vector process defined at spatial locations
si , i = 1, 2, . . . , n, and at time points t = 1, 2, . . . , T ; Bk and El are matrices of constants
satisfying certain restrictions; and ε(t) = (ε(si , t), i = 1, 2, . . . , n)�, t = 1, 2, . . . , T , are
independent and identically distributed random variables at space–time locations (si , t).

The traditional way of obtaining limiting results for the maximum of a stationary sequence
is as follows.

1. Prove an extremal types-theorem, which shows that under a long-range dependence
condition the maximum of the field is the maximum of an approximately independent
sequence of submaxima.

2. Obtain domain of attraction criteria, which characterize the limiting distribution function
of the maximum in terms of the tail of the common marginal distribution and local
dependence behavior of the sequence, given in terms of the extremal index.

Leadbetter and Rootzen (1997) proved an extremal-types theorem for random fields in R
2,

under a weak coordinatewise-mixing (CW-mixing) condition. Although we will generalize
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The extremal index for space–time processes 115

this result to R
3 (which is straightforward), our main contribution will be to obtain a set of

domain of attraction criteria. We will show that the asymptotic distribution of the maximum
of the spatiotemporal process defined over a lattice in R

3 can be characterized in terms of the
tail of the distribution function of the process, as well as three coordinatewise conditions that
describe the propensity of consecutive large values of the process to cluster in each coordinate
direction.

Hence, the outline of the paper is as follows. In Section 2, we give the CW-mixing condition
of Leadbetter and Rootzen (1997), adapted for spatiotemporal processes. We also prove the
extremal-types theorem under this condition. Although the proof is a straightforward extension
of the extremal-types theorem given by Leadbetter and Rootzen (1997), we give the full proof for
completeness and the reader’s convenience. In Section 3, we define the notion of coordinatewise
extremal indices, which resembles the definition of the extremal index given by O’Brien (1987)
for stationary sequences, and prove the validity of a set of domain of attraction criteria based
on these three coordinatewise conditions.

2. Extremal-types theorem

Let X(s, t) be a stationary spatiotemporal process defined over a discrete lattice

En = {(i, j, k), i = 0, 1, . . . , n1, j = 0, 1, . . . , n2, k = 0, 1, . . . , n3},
with n = (n1, n2, n3). Here, we take (i, j) = s and k = t respectively to be the position
in the (x, y)-plane and the time at which the random field X(s, t) is evaluated. Let F(x) =
P(X(0, 0, 0) ≤ x) be the marginal distribution function of the process.

For any subset B ∈ En, define

M(B) = max
(i,j,k)∈B X(i, j, k).

We are interested in the asymptotic distribution ofM(En), when suitably normalized, as n1 →
∞, n2 → ∞, and n3 → ∞ (we write limn→∞ for limn1→∞, n2→∞, n3→∞); that is, in

lim
n→∞ P(M(En) ≤ un(x)),

for some suitably chosen normalizing constants bn and an such that un = anx + bn.
The following extension of the CW-mixing condition of Leadbetter and Rootzen (1997)

yields the extremal-types theorem needed to characterize the limiting distribution of M(En).
Let r1, r2, and r3 be integers defining the lengths of blocks of cubes

Bijk = [(i − 1)r1, ir1] × [(j − 1)r2, jr2] × [(k − 1)r3, kr3],
which will be used for subdivision of En. Assume that as n1 → ∞, n2 → ∞, and n3 → ∞,
r1, r2, and r3 all tend to ∞ in such a way that ri = o(ni), i = 1, 2, 3. Let mi = [ni/ri],
i = 1, 2, 3, be integers such that En contains mn = m1m2m3 complete blocks and no more
than (m1 +m2 +m3 + 1) incomplete blocks. (Note that [·] denotes the integer-part function.)
Without loss of generality, we assume that, for every i, miri = ni , in order that there be
no incomplete blocks. This assumption eases notational difficulties and should not effect the
asymptotic results. Let li ≡ li (ni), i = 1, 2, 3, be integers tending to ∞ in such a way that
li = o(ri). With this notation, the random field is said to satisfy the CW-mixing condition
(Leadbetter and Rootzen (1997)) for a given family of levels un and separation constants li if
the following conditions are satisfied.
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116 K. F. TURKMAN

Condition 1. (t-direction condition.) For each i and j with 0 < i ≤ n1 and 0 < j ≤ n2, and
for cubes

B1 = [0, i] × [0, j ] × [0, a] and B2 = [0, i] × [0, j ] × [b, c]
with 0 < a < n3, a + l3 ≤ b < c ≤ n3, and c − b ≤ r3, we have

|P(M(B1) ≤ un, M(B2) ≤ un)− P(M(B1) ≤ un)P(M(B2) ≤ un)| ≤ α3(r3, l3), (1)

where the t-coordinate mixing function α3 satisfies m3α3(r3, l3) → 0 as n3 → ∞. Note
that, with this condition, maxima defined over the cubes of size n1 × n2 × r3 (or smaller in the
(x, y)-plane) separated along the time direction by cubes of size n1 ×n2 × l3 are asymptotically
independent as n3 → ∞.

Condition 2. (x-direction condition.) For each j, 0 < j ≤ n2, and cubes

B1 = [0, a] × [0, j ] × [0, r3] and B2 = [b, c] × [0, j ] × [0, r3]
with 0 < a < n1, a + l1 ≤ b < c ≤ n1, and c − b ≤ r1, we have

|P(M(B1) ≤ un, M(B2) ≤ un)− P(M(B1) ≤ un)P(M(B2) ≤ un)| ≤ α1(r1, r3, l1), (2)

where the x-coordinate mixing function α1 satisfies m1m3α1(r1, r3, l1) → 0 as n3 → ∞ and
n1 → ∞. The x-coordinate mixing condition says that maxima defined over strips of cubes of
size r1 ×n2 × r3 (or smaller) are asymptotically independent, provided that they are separated
along the x-direction by strips of cubes of size l1 × n2 × r3.

Condition 3. (y-direction condition.) For cubes

B1 = [0, r1] × [0, a] × [0, r3] and B2 = [0, r1] × [b, c] × [0, r3]
with 0 < a < n2, a + l2 ≤ b < c ≤ n2, and c − b ≤ r2, we have

|P(M(B1) ≤ un, M(B2) ≤ un)− P(M(B1) ≤ un)P(M(B2) ≤ un)| ≤ α2(r1, r2, r3, l2),

where the y-direction mixing function α2 satisfies

m1m2m3α2(r1, r2, r3, l2) → 0 (3)

as n1 → ∞, n2 → ∞, and n3 → ∞. Again, under the y-direction mixing condition, the
maxima of the process over cubes of size r1 × r2 × r3 are asymptotically independent, provided
that these cubes are separated along the y-direction by cubes of size r1 × l2 × r3. Note that, as
we cut out smaller cubes, we need stricter conditions on the corresponding mixing functions
and, hence, stricter conditions on the asymptotic independence of the maxima over smaller
cubes.

The following result, due to Leadbetter and Rootzen (1997), essentially says that, under
the above separate mixing conditions on each of the three directions, for i = 1, . . . , m1,
j = 1, . . . , m2, and k = 1, . . . , m3 the m1m2m3 processes X(i, j, k) defined over the blocks

Bijk = [(i − 1)r1, ir1] × [(j − 1)r2, jr2] × [(k − 1)r3, kr3],
each of size r1r2r3, are asymptotically independent.
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Lemma 1. Assume that the stationary random fieldX(i, j, k) satisfies the CW-mixing condition
given above, for an appropriately chosen level un. Then, for

En = [0, n1] × [0, n2] × [0, n3]
= [0,m1r1] × [0,m2r2] × [0,m3r3]

=
m1⋃
i=1

m2⋃
j=1

m3⋃
k=1

Bijk,

we find that
P(M(En) ≤ un) = Pm1m2m3(M(J ) ≤ un)+ on(1),

where J = B111 = [0, r1] × [0, r2] × [0, r3], as n1, n2, and n3 all tend to ∞.

Proof. With the above notation, write

J1,i = [0,m1r1] × [0,m2r2] × [(i − 1)r3, ir3],
J2,i = [0,m1r1] × [0,m2r2] × [(i − 1)r3 + l3, ir3 − l3],
J ∗
i = J1,i − J2,i .

Then En = ⋃m3
i=1 J1,i and, using stationarity, for 2 ≤ m ≤ m3,

0 ≤ P

(
M

(m−1⋃
i=1

J1,i

)
≤ un, M(J2,m) ≤ un

)
− P

(
M

( m⋃
i=1

J1,i

)
≤ un

)

≤ P(M(J ∗
m) > un)

= P(M(J ∗
1 ) > un). (4)

Furthermore,

∣∣∣∣P
(
M

(m−1⋃
i=1

J1,i

)
≤ un, M(J2,m) ≤ un

)
− P

(
M

(m−1⋃
i=1

J1,i

)
≤ un

)
P(M(J2,m) ≤ un)

∣∣∣∣
≤ α3(r3, l3) (5)

and
0 ≤ P(M(J2,m) ≤ un)− P(M(J1,m) ≤ un) ≤ P(M(J ∗

m) > un); (6)

hence, it follows, using stationarity, that

∣∣∣∣P
(
M

( m⋃
i=1

J1,i

)
≤ un

)
− P

(
M

(m−1⋃
i=1

J1,i

)
≤ un

)
P(M(J1,1) ≤ un)

∣∣∣∣
≤ α3(r3, l3)+ 2 P(M(J ∗

1 ) > un). (7)

By applying (6) repeatedly, from CW-mixing we obtain

|P(M(En) ≤ un)− Pm3(M(J1,1) ≤ un)| ≤ 2m3 P(M(J ∗
1 ) > un)+ on(1). (8)

We will now show that

P(M(En) ≤ un)− Pm3(M(J1,1) ≤ un) → 0. (9)
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It is sufficient to show that this holds as n → ∞ in a manner such that Pm3(M(J ∗
1 ) ≤ un)

converges to some ρ, 0 ≤ ρ ≤ 1. If ρ = 1 then P(M(J ∗
1 ) > un) → 0, and since

m3 log P(M(J ∗
1 ) ≤ un) → 0 it follows that m1 P(M(J ∗

1 ) > un) → 0 and that (9) is a
consequence of (8).

On the other hand, if ρ < 1 then, since m3α3(r3, l3) → 0 and l3 = o(r3), there exists a
βn → ∞ such that m3βnα3(r3, l3) → 0 and βnl3 = o(r3). Hence, for sufficiently large n, βn

cubes congruent to J ∗
1 and mutually separated by at least a distance l3 in the t-direction may

be chosen in J2,1. Arguments parallel to those yielding (4)–(8) then imply that

P(M(J1,1) ≤ un) ≤ Pβn(M(J ∗
1 ) ≤ un)+ βnα3(l3, r3), (10)

whence

Pm3(M(J1,1) ≤ un) ≤ Pm3βn(M(J ∗
1 ) ≤ un)+ βnm3α3(l3, r3)

= (ρ + o(1))βn

→ 0. (11)

Hence, the second term of the difference in (9) tends to 0. Finally, it follows similarly that

P(M(En) ≤ un) ≤ Pm3(M(J2,1) ≤ un)+m3α3(l3, r3),

which tends to 0 since (10) and, hence, (11) apply with M(J2,1) in place of M(J1,1). Both
terms on the left-hand side of (9) therefore tend to 0 if ρ < 1, and the convergence again holds.

To complete the proof of the lemma it is sufficient to establish that

Pm3(M(J1,1) ≤ un)− Pm1m3(M([0, r1)× [0, n2] × [0, r3]) ≤ un) → 0

and
Pm1m3(M([0, r1)× [0, n2] × [0, r3]) ≤ un)− Pm1m2m3(M(J ) ≤ un) → 0.

We do this by splitting first the cube J1,1 into cubes [(i − 1)r1, ir1] × [0, n2] × [0, r3],
1 ≤ i ≤ m1, and repeating the above argument, then splitting the cube [0, r1)×[0, n2]×[0, r3]
into cubes [0, r1) × [(j − 1)r2, jr2] × [0, r3], j = 1, . . . , m2, and repeating the argument a
final time.

3. Domain of attraction criteria: the notion of extremal index in space–time

We now approximate P(M(J ) ≤ un), where

J = {(i, j, k), 0 ≤ i ≤ r1, 0 ≤ j ≤ r2, 0 ≤ k ≤ r3},
for some normalizing constants an and bn such that un = anx + bn with

lim
n→∞ n1n2n3 P(X(0, 0, 0) > un) = τ(x) > 0.

Note that if the random field is independent as well as stationary, then

P(M(J ) ≤ un) = Pr1r2r3(X(0, 0, 0) ≤ un).

Our aim is to study the asymptotic effect on P(M(J ) ≤ un) of the local dependence structure
of the random field.
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For k = 0, 1, . . . , r3 let
ζk = max

0≤i≤r1, 0≤j≤r2
X(i, j, k),

and for 0 ≤ i ≤ r1 let
νi = max

0≤j≤r2
X(i, j, 0).

Note that the ζk are the maxima over the (spatial) coordinates {(i, j), 0 ≤ i ≤ r1, 0 ≤ j ≤ r2}
at each time point k = 1, . . . , r3. We will call them the maxima of time plates. For each fixed
i = 0, 1, . . . , r1, the νi are the maxima over the coordinates {(i, j), 0 ≤ j ≤ r2} at fixed k = 0.
We will call them the maxima of y-arrays.

The local dependence structure of the stationary spatiotemporal process will be characterized
by three conditions, which represent the propensity of the large values of the process to cluster
along the t- , x-, and y-coordinates.

Assume that the following limits exist.

1. t-coordinate clustering propensity:

lim
n→∞ P(ζ1 ≤ un, ζ2 ≤ un, . . . , ζr3 ≤ un | ζ0 > un) = θ1 (12)

for some θ1, 0 < θ1 ≤ 1. This condition indicates how the largest values over the
(x, y)-plane cluster at consecutive time points.

2. x-coordinate clustering propensity:

lim
n→∞ P(ν1 ≤ un, ν2 ≤ un, . . . , νr1 ≤ un | ν0 > un) = θ2 (13)

for some θ2, 0 < θ2 ≤ 1. This condition indicates how largest values in the y-columns
cluster along the x-direction at a fixed point of time.

3. y-coordinate clustering propensity:

lim
n→∞ P(X(0, 1, 0) ≤ un, X(0, 2, 0) ≤ un, . . . , X(0, r2, 0) ≤ un | X(0, 0, 0) > un)

= θ3 (14)

for some θ3, 0 < θ3 ≤ 1. This condition indicates how the large values of the process
cluster along the y-direction at a fixed x-coordinate and a fixed time.

We will show, by extending the results of O’Brien (1987), that these coordinatewise clustering
conditions uniquely characterize how the process clusters in time and space and give us domain
of attraction criteria.

Theorem 1. Assume that un = unx + bn is chosen such that

lim
n→∞ n1n2n3(1 − F(un)) → τ(x).

Assume that the process {X(i, j, k), (i, j, k) ∈ En} satisfies the CW-mixing condition given in
(1), (2), and (3) for li , i = 1, 2, 3 and un chosen as above. Assume further that the limits in
(12), (13), and (14) exist. Then

lim
n→∞ |P(M(En) ≤ un)− exp(−θ1θ2θ3τ(x))| = 0.
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Proof. We extend O’Brien’s (1987) technique to random fields. Let

Mζ
r3

= max
0≤k≤r3

ζk and M
ζ
k1,k2

= max
k1+1≤k≤k2

ζk;

then
M
ζ
0,r3

= max
1≤k≤r3

ζk.

Similarly, define
Mν
r1

= max
0≤i≤r1

νi and Mν
i1,i2

= max
i1+1≤i≤i2

νi;

then
Mν

0,r1 = max
1≤i≤r1

νi .

Finally, let

MX
r2

= max
0≤j≤r2

X(0, j, 0) and MX
j1,j2

= max
j1+1≤j≤j2

X(0, j, 0);

then
MX

0,r2 = max
1≤j≤r2

X(0, j, 0).

Thus,

P(M(J ) > un) = P
(

max
0≤i≤r3

ζi > un

)

= P

( r3⋃
i=0

(ζi > un)

)

=
r3∑
i=0

P(ζi > un, M
ζ
i,r3

≤ un),

which follows from the fact that, for any events A1, . . . , An,

n⋃
i=1

Ai =
n⋃
i=1

(
Ai ∩

n⋂
k=i+1

Ac
j

)

and the events Ai ∩ ⋂n
k=i+1A

c
j , i = 1, . . . , n, are mutually exclusive.

Now,

P(ζi > un, M
ζ
i,r3

≤ un) = P(ζi > un, ζi+1 ≤ un, . . . , ζr3 ≤ un)

= P(ζ0 > un, ζ1 ≤ un, . . . , ζr3−i ≤ un)

≥ P(ζ0 > un, ζ1 ≤ un, . . . , ζr3 ≤ un)

= P(ζ0 > un, M
ζ
0,r3

≤ un),

and we have
P(M(J ) > un) ≥ r3 P(ζ0 > un, M

ζ
0,r3

≤ un). (15)
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Hence,

P(M(J ) ≤ un) = 1 − P(M(J ) > un)

≤ 1 − r3 P(ζ0 > un, M
ζ
0,r3

≤ un)

= 1 − r3 P(Mζ
0,r3

≤ un | ζ0 > un)P(ζ0 > un). (16)

Using the arguments leading to (15), we also have

P(ζ0 > un) = P
(

max
0≤i≤r1

νi > un

)

= P(Mν
r1
> un)

≥ r1 P(ν0 > un, M
ν
0,r1 ≤ un)

= r1 P(Mν
0,r1 ≤ un | ν0 > un)P(ν0 > un), (17)

and repeating the argument for P(ν0 > un) gives

P(ν0 > un) = P
(

max
0≤j≤r2

X(0, j, 0) > un

)

= P(MX
r2
> un)

≥ r2 P(X(0, 0, 0) > un, M
X
0,r2 ≤ un)

= r2 P(MX
0,r2 ≤ un | X(0, 0, 0) > un)P(X(0, 0, 0) > un). (18)

By combining (16), (17), and (18) we obtain

P(M(J ) ≤ un) ≤ 1 − r1r2r3 P(Mζ
0,r3

≤ un | ζ0 > un)P(Mν
0,r1 ≤ un | ν0 > un)

× P(MX
0,r2 ≤ un | X(0, 0, 0) > un)P(X(0, 0, 0) > un).

Hence, from the CW-mixing condition, as n → ∞,

P(M(En) ≤ un)

= Pm1m2m3(M(J ) ≤ un)+ on(1),

≤ (1 − r1r2r3 P(Mζ
0,r3

≤ un | ζ0 > un)P(Mν
0,r1 ≤ un | ν0 > un)

× P(MX
0,r2 ≤ un | X(0, 0, 0) > un)P(X(0, 0, 0) > un))

m1m2m3 + on(1)

→ exp(−θ1θ2θ3τ(x)).

We will now prove the opposite inequality, namely

P(M(En) ≤ un) ≥ exp(−θ1θ2θ3τ(x)) as n → ∞.

Let η1, η2, and η3 be sequences of integers converging to ∞, as n → ∞, in such a manner that
r1 = o(η1), η1 = o(n1), r2 = o(η2), η2 = o(n2), r3 = o(η3), and η3 = o(n3). Let υ1, υ2, and
υ3 be integers such that υ1 = [n1/η1], υ2 = [n2/η2], and υ3 = [n3/η3]. Furthermore, let

Ĵ = {0 ≤ i ≤ η1, 0 ≤ j ≤ η2, 0 ≤ k ≤ η3}.
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For such choices of integers, it follows from the CW-mixing condition that

P(M(En) ≤ un) = Pυ1υ2υ3(M(Ĵ ) ≤ un)+ on(1).

Now assume that
φk = max

0≤i≤η1, 0≤j≤η2
X(i, j, k),

ψi = max
0≤j≤η2

X(i, j, 0).

Then

P(M(Ĵ ) > un) = P
(

max
0≤k≤η3

φk > un

)

= P(Mφ
η3
> un)

= P({Mφ
r3
> un} ∪ {Mφ

r3
< un} ∩ {Mφ

r3+1,η3
> un})

= P(Mφ
r3
> un)+ P({Mφ

r3
< un} ∩ {Mφ

r3+1,η3
> un})

= P(Mφ
r3
> un)+ P(Mφ

η3−r3 > un, M
φ
η3−r3+1,η3

< un) (by stationarity).

Note that, since r3 = o(η3),

P(M(J ) > un) = P(Mφ
r3
> un) = o(P(M(Ĵ ) > un)) as n3 → ∞.

Hence,
P(M(Ĵ ) > un)(1 + on(1)) = P(Mφ

η3−r3 > un, M
φ
η3−r3+1,η3

< un).

By writing the event

{Mφ
η3−r3 > un, M

φ
η3−r3+1,η3

≤ un} =
η3−r3⋃
i=0

{φi > un} ∩ B,

where B = {Mφ
η3−r3+1,η3

≤ un}, in the ‘mutually exclusive’ form

η3−r3⋃
i=0

(
({φi > un} ∩ B) ∩

η3−r3⋂
j=i+1

({φj ≤ un} ∪ Bc)

)
,

we obtain

P(Mφ
η3−r3 > un, M

φ
η3−r3+1,η3

≤ un) =
η3−r3∑
i=0

P

(
{φi > un} ∩

η3−r3⋂
j=i+1

{φj ≤ un} ∩ B
)

=
η3−r3∑
i=0

P(φi > un, M
φ
i+1,η3

≤ un).

Since, for every i = 0, 1, . . . , η3 − r3, we have η3 ≥ i + r3 and

{Mφ
i+1,η3

< un} ⊆ {Mφ
i+1,r3

< un},
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we then obtain

P(Mφ
η3−r3 > un, M

φ
η3−r3+1,η3

≤ un) ≤
η3−r3∑
i=0

P(φi > un, M
φ
i+1,r3+i ≤ un)

=
η3−r3∑
i=0

P(φ0 > un, M
φ
1,r3

≤ un)

≤ η3 P(φ0 > un, M
φ
1,r3

≤ un)

= η3 P(Mφ
1,r3

≤ un | φ0 > un)P(φ0 > un).

≤ η3 P(Mζ
1,r3

≤ un | ζ0 > un)P(φ0 > un). (19)

The final inequality in (19) follows from the fact that, for every k = 1, . . . , r3, φk ≥ ζk almost
surely.

If we now start with
P(φ0 > un) = P

(
max

0≤i≤η1
ψi > un

)

and apply the steps leading to (19), we find that

P(φ0 > un) ≤ η1 P(Mν
0,r1 ≤ un | ν0 > un)P(ν0 > un). (20)

By applying the steps yet again, to P(ν0 > un) = P(MX
η2
> un), we obtain

P(MX
η2
> un) ≤ η2 P(MX

0,r2 ≤ un | X(0, 0, 0) > un)P(X(0, 0, 0) > un). (21)

From Lemma 1 and the CW-mixing condition, with η1, η2, η3, υ1, υ2, and υ3 as defined above,
as n → ∞ we find that

P(M(En) ≤ un) = Pυ1υ2υ3(M(Ĵ ) ≤ un)+ on(1),

and from (19), (20), and (21) we have

P(M(En) ≤ un) ≥ [1 − η1η2η3 P(X(0, 0, 0) > un)P(Mζ
1,r3

≤ un | ζ0 > un)

× P(Mν
1,r1 ≤ un | ν0 > un)P(MX

1,r2 ≤ un | X(0, 0, 0) > un)

× (1 + on(1))]υ1υ2υ3 + on(1)

→ exp(−θ1θ2θ3τ(x)).

The choice of the indices θ1, θ2, and θ3 is not unique. For example, we could first have sliced
the cube J along the x-direction, into plates parameterized by j and k, and looked at how the
largest values over these plates cluster along the x-direction; then looked at how large values
of the process cluster along the y-direction; and finally considered how the large values cluster
in time.

Let γi = max0≤j≤r2, 0≤k≤r3 X(i, j, k) and τj = max0≤k≤r3 X(0, j, k), and assume that the
following limits exist, where 0 < θ∗

1 , θ
∗
2 , θ

∗
3 ≤ 1.

1. x-coordinate clustering propensity:

lim
n→∞ P(γ1 ≤ un, γ2 ≤ un, . . . , γr1 ≤ un | γ0 > un) = θ∗

1 .
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2. y-coordinate clustering propensity:

lim
n→∞ P(τ1 ≤ un, τ2 ≤ un, . . . , τr2 ≤ un | τ0 > un) = θ∗

2 .

3. t-coordinate clustering propensity:

lim
n→∞ P(X(0, 0, 1) ≤ un, X(0, 0, 2) ≤ un, . . . , X(0, 0, r3) ≤ un | X(0, 0, 0) > un)

→ θ∗
3 .

If the process is stationary but not isotropic (in the sense that the process X(i, j, k) is a
subsampled version of an isotropic, continuous-parameter random field), then, in general,
θ∗
i �= θi, i = 1, 2, 3. However, provided that the limits exist, the extremal index of the

stationary process θ will be unique, i.e. θ∗
1 θ

∗
2 θ

∗
3 = θ1θ2θ3.

Example 1. Consider the spatial process

X(i, j) = φX(i − 1, j)+ ε(i, j), i, j = 1, 2, . . . , n, (22)

where |φ| < 1 and {ε(i, j)} are independent, identically distributed random variables with
regularly varying tails such that, as x → ∞,

P(ε(0, 0) > x) ∼ x−αL(x)

for some α ∈ (0, 2) and a slowly varying function L(x). Furthermore, we assume that

lim
x→∞

P(ε(0, 0) > x)

P(|ε(0, 0)| > x)
= 1.

The stationary solution to (22) is given by

X(i, j) =
∞∑
k=0

φkε(i − k, j).

From Resnick (1987), X(0, 0) and ε(0, 0) are tail equivalent; that is, as x → ∞,

P(X(0, 0) > x) ∼ cx−αL(x)

for some constant c. Let an = n2/α and un2 ≡ un2(x) = anx; then, for x > 0,

n2 P(X(0, 0) > un2) ∼ τ(x) as n → ∞.

Note that X(i, j) is an independent sequence along the y-direction. Let

νi = max
0≤j≤rn

X(i, j), i = 0, 1, . . . , r1,
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and let ri = rn and mi = mn, i = 1, 2. Then n = rnmn and, as n → ∞,

n

rn∑
i=1

P(ν1 > un2 , νi > un2)

= n

rn∑
i=1

P

( rn⋃
j=0

{X(1, j) > un2},
rn⋃
k=0

{X(i, k) > un2}
)

≤ n

rn∑
i=1

rn∑
j=0

rn∑
k=0

P(X(1, j) > un2 , X(i, k) > un2)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n

rn∑
i=1

rn∑
j=0

rn∑
k=0

P(X(1, j) > un2)P(X(i, k) > un2) if j �= k,

n

rn∑
i=1

rn∑
j=0

P(X(1, j) > un2 , X(i, j) > un2) if j = k.

(23)

The first term in (23) (for j �= k) is of orderO(1/m3
n), whereas the second term (for j = k)

can be written as

nrn

rn∑
i=1

P(X(1, 1) > un2 , X(i, 1) > un2).

If un = n1/αx (or un2 = n2/αx) then

n

rn∑
i=1

P(X(1, 1) > un2 , X(i, 1) > un2) = nrn

rn∑
i=1

P(X(1, 1) > un, X(i, 1) > un)gn(i),

where

gn(i) = rn
P(X(1, 1) > un2 , X(i, 1) > un2)

P(X(1, 1) > un, X(i, 1) > un)

= rn
P(

∑i−2
k=0 φ

kε(i − k, 1) > un2)

P(
∑i−2
k=0 φ

kε(i − k, 1) > un)

= O

(
1

mn

)
,

uniformly in i = 1, 2, . . . , rn. Since X(i, 1) is an (autoregressive) AR(1) process, we have

n

rn∑
i=1

P(X(1, 1) > un, X(i, 1) > un) = O

(
1

mn

)
.

Hence, it follows from (23) that νi satisfies the D′(un2) condition and θ1 = 1.
Note that (X(0, j), j = 0, 1, . . . , rn) is an independent sequence. It is easy to see that

θ2 = 1 and θ := θ1θ2 = 1.
On the other hand, with ζj = max0≤i≤rn X(i, j), we see that {ζj } is an independent sequence,

and that
θ∗

1 = lim
n→∞ P(ζ1 < un2 , . . . , ζrn < un2 | ζ > un2) = 1.
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Similarly,

θ∗
2 = lim

n→∞ P(X(1, 0) < un2 , . . . , X(rn, 0) < un2 | X(0, 0) > un2) = 1,

since the maximum of the array X(1, 0),X(2, 0), . . . , X(n, 0) is Op(n1/α) and cannot cluster
above the level n2/α . Hence, again θ := θ∗

1 θ
∗
2 = 1.

In general, the calculation of the extremal index for STARMA processes using this char-
acterization would not be easy. However, it permits the adaptation of the runs method (see,
for example, Embrechts et al. (1997, pp. 422–423)) to estimate the extremal index for these
processes.
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