
Parasitology

cambridge.org/par

Research Article

Cite this article: Betts EL, Gentekaki E,
Thomasz A, Breakell V, Carpenter AI, Tsaousis
AD (2018). Genetic diversity of Blastocystis in
non-primate animals. Parasitology 145,
1228–1234. https://doi.org/10.1017/
S0031182017002347

Received: 11 August 2017
Revised: 13 November 2017
Accepted: 26 November 2017
First published online: 17 January 2018

Key words:
Blastocystis; genetic diversity; phylogeny;
prevalence; subtype

Author for correspondence:
Anastasios D. Tsaousis, E-mail: A.Tsaousis@
kent.ac.uk and Eleni Gentekaki, E-mail:
gentekaki.ele@mfu.ac.th

© Cambridge University Press 2018. This is an
Open Access article, distributed under the
terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted re-use,
distribution, and reproduction in any medium,
provided the original work is properly cited.

Genetic diversity of Blastocystis in non-
primate animals

Emma L. Betts1, Eleni Gentekaki2, Adele Thomasz3, Vicki Breakell3,

Angus I. Carpenter3 and Anastasios D. Tsaousis1

1Laboratory of Molecular and Evolutionary Parasitology, RAPID group, School of Biosciences, University of Kent,
Canterbury, Kent, UK; 2School of Science and Human Gut Microbiome for Health Research Unit, Mae Fah Luang
University, Chiang Rai, Thailand and 3Wildwood Trust, Herne Common, Herne Bay, Kent, UK

Abstract

Blastocystis is an anaerobic protist, commonly inhabiting the intestinal tract of both humans
and other animals. Blastocystis is extremely diverse comprising 17 genetically distinct subtypes
in mammals and birds. Pathogenicity of this enteric microbe is currently disputed and knowl-
edge regarding its distribution, diversity and zoonotic potential is fragmentary. Most research
has focused on Blastocystis from primates, while sampling from other animals remains lim-
ited. Herein, we investigated the prevalence and distribution of Blastocystis in animals held
within a conservation park in South East England. A total of 118 samples were collected
from 27 vertebrate species. The barcoding region of the small-subunit ribosomal RNA was
used for molecular identification and subtyping. Forty one per cent of the species were
sequence positive for Blastocystis indicating a high prevalence and wide distribution among
the animals in the park. Six subtypes were identified, one of which is potentially novel.
Moreover, the majority of animals were asymptomatic carriers, suggesting that Blastocystis
is not pathogenic in animals. This study provides a thorough investigation of Blastocystis
prevalence within a wildlife park in the UK and can be used as a platform for further inves-
tigations on the distribution of other eukaryotic gut microbes.

Introduction

Blastocystis is a microbial eukaryote that inhabits the gastrointestinal tract of a variety of ani-
mals including humans, other primates, amphibians, reptiles and even insects (Abe, 2004;
Stensvold et al. 2009; Parkar et al. 2010; Roberts et al. 2013; Yoshikawa et al. 2016). After
fungi, Blastocystis is one of the most prevalent microbial eukaryotes in metazoans (Scanlan
et al. 2014).

Until recently, Blastocystis was overlooked due to its small size and lack of distinct morpho-
logical features. Nonetheless, the advent of molecular methods has revealed an astounding
genetic heterogeneity of Blastocystis. To date, 17 genetically diverse lineages have been reported
in mammals and birds (subtypes; ST), based on the differences of the small subunit ribosomal
RNA (SSU rRNA) (Stensvold and Clark, 2016). Blastocystis has wide host range, with the same
subtype found in several animal genera. Emerging data, however, suggests that host specificity
should be assessed based on lower than genus level taxonomy (Alfellani et al. 2013c). Of the 17
STs, only the first nine (ST1–ST9) and recently, ST12 have been found in humans (Ramirez
et al. 2016; Stensvold and Clark, 2016). Blastocystis has been reported in wild animals, pets and
domesticated animals and those that are housed in zoos (Parkar et al. 2010; Ruaux and Stang,
2014; Schar et al. 2014; Wang et al. 2014; Amenu et al. 2015; Figueroa, 2015; Puebla et al.
2017). Nonetheless, the comprehensive range of non-primate hosts of the various STs remains
unclear, since only a limited number of studies focus on screening such animals (Abe et al.
2002; Lim et al. 2008; Perez Cordon et al. 2008; Parkar et al. 2010; Roberts et al. 2013).

The presence in various animals of Blastocystis isolates that belong to the same STs as those
in humans has led to the speculation that the organism has zoonotic potential (Rajah Salim
et al. 1999; Parkar et al. 2010; Ramirez et al. 2016). Nonetheless, this scenario has come
under scrutiny in recent years, since cases where the direction of transmission has been estab-
lished conclusively are absent. Moreover, most molecular investigations of Blastocystis isolates
from domesticated animals and their keepers have not revealed any shared subtypes, though
there are notable exceptions (Alfellani et al. 2013b; Wang et al. 2014). Due to this controversy,
there is an urgent need for further investigations on the distribution of Blastocystis in animals
in captivity, since prevalence data and molecular characterization of Blastocystis in such ani-
mals remain sparse.

Herein, we examine Blastocystis isolates from Wildwood Trust, a wildlife park in East Kent,
UK. The park’s collection consists mostly of UK native and previously native wildlife, meaning
that the chance of the identified isolates being local is very high. The aim of this study was to
investigate the prevalence, distribution, genetic diversity and host range of Blastocystis STs in
animals at Wildwood Trust.

https://doi.org/10.1017/S0031182017002347 Published online by Cambridge University Press

https://www.cambridge.org/par
https://doi.org/10.1017/S0031182017002347
https://doi.org/10.1017/S0031182017002347
mailto:A.Tsaousis@kent.ac.uk
mailto:A.Tsaousis@kent.ac.uk
mailto:gentekaki.ele@mfu.ac.th
https://doi.org/10.1017/S0031182017002347


Materials and methods

Study site – source of specimens

A total of 118 faecal samples were collected from 27 different host
species (Table 1) located at Wildwood Trust (Herne Bay, Kent,
UK). Sampling covered a range of mammalian species, four
bird species and one reptile species (Table 1).

Sample collection and storage

A licensed veterinarian visits the park on a monthly basis to
monitor the animals’ health, during the week of sampling no

animals exhibit diarrhoea. Faecal samples were collected between
the months of July 2016 to January 2017. Wildwood Trust staff
collected samples under the guidance of laboratory members; A
minimum of one sample was collected per animal species,
where possible (Table 1). In the cases where multiple animals of
the same species were enclosed together, several samples were
collected.

Once collected, samples were placed in sealed, sterile falcon
tubes and stored at 4 °C until DNA extraction. The faecal samples
were subdivided shortly after collection to be used for microscopy,
culturing and DNA extraction. Heat-fixed slides were made from
all samples collected within an hour of collection.

Table 1. Animal samples collected from study hosts

Host Scientific name Location Sample number PCR positive (clone number)

Carnivora

Badger Meles meles Wildwood 2 –

European Brown Bear Ursus arctos arctos Wildwood 2 –

Lynx Lynx lynx Wildwood 3 –

Otter Lutra lutra Wildwood 7 –

Pine Marten Martes martes Wildwood 2 1 [1]

Polecat Mustela putorius Wildwood 1 –

Red Fox Vulpes vulpes Wildwood 3 –

Scottish Wild Cat Felis silvestris Wildwood 11 –

Stoat Mustela ermine Wildwood 3 –

Anseriformes

Barnacle Goose Branta leucopsis Wildwood 1 –

Pink Footed Goose Anser brachyrhynchus Wildwood 1 –

Artiodactyla

Muntjac Deer Muntiacus reevesi Wildwood 1 1 [1]

European Bison Bison bonasus Wildwood 3 3 [11]

Eurasian Elk Alces alces Wildwood 2 1 [4]

Pygmy Goat Capra aegagrus hircus Wildwood 2 2 [3]

Red Deer Cervus elaphus Wildwood 1 1 [8]

Reindeer Rangifer tarandus Wildwood 1 –

Soay Sheep Ovis aries Wildwood 1 1 [1]

Wild Boar Sus scrofa Wildwood 2 1 [1]

Squamata

Four-lined Snake Elaphe quatuorlineata Wildwood 1 –

Eulipotyphla

Hedgehog Erinaceus europaeus Wildwood 1 –

Water Shrew Neomys fodiens Wildwood 6 –

Passeriformes

Raven Corvus corax Wildwood 3 –

Red Billed Chough Pyrrhocorax pyrrhocorax Wildwood 1 –

Rodentia

Red Squirrel Sciurus vulgaris Wildwood 3 2 [1]

Water Vole Arvicola amphibious Wildwood 3 2 [12]

Water Vole Arvicola amphibious Bulphan (5) 30a 5 [17]

Water Vole Arvicola amphibious Tilbury (3) 18a 3 [9]

Diprotodontia Wallaby Macropus rufogriseus Wildwood 3 2 [2]

aHigh sample number due to repetitive sampling from a small population. Numbers in parentheses denote number of water vole individuals.
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Culturing

Within half an hour of sampling, a small amount of faecal sample
from randomly selected animals were separately inoculated in
sterile falcon tubes containing the following media: two tubes
containing modified LYSGM [16·07 mM potassium phosphate
dibasic, 2·94 mM potassium phosphate monobasic, 128·34 mM

sodium chloride, 2·5 g L−1 yeast extract, 0·5 g L−1 liver extract,
5% adult bovine (Sigma)/horse serum (Gibco); modified
TYSGM-9, without mucin (Diamond, 1982), http://entamoeba.
lshtm.ac.uk/xenic.htm], two tubes of TYM (22·2 g L−1 trypticase
peptone, 11·1 g L−1 yeast extract, 16·23 mM maltose, 9·17 mM

L-cysteine, 1·26 mM L-ascorbic acid, 5·1 mM potassium phosphate
dibasic, 6·53 mM potassium phosphate monobasic) (Diamond,
1957, 1983) enriched with 5% fetal bovine serum (FBS; Sigma)
and 2 tubes with 0·5% Liver Digest (LD) medium (0·5 g L−1

Oxoid liver extract). One tube of each medium type was incubated
at 35 °C and the rest were left at room temperature. Samples were
examined every 3 days under light microscope with neutral red
staining (see below). Cultures positive for Blastocystis, were sub-
cultured every 10 days.

Staining and microscopy

For the identification of live cells within cultures, a neutral red
staining technique was employed (DeRenzis and Schechtman,
1973). Ninety-four μL of re-suspended cultured samples were
mixed with equal volumes of freshly prepared 0·04% neutral red
staining (Sigma, N2889) in 0·5 mL tubes and incubated for
10 min at the temperature in which samples were cultured. The
samples were then centrifuged at 5000 g for 30 s. The supernatant
was removed and the pellet was re-suspended in 20 µL of 1 × PBS
(pH 7·2) by vortexing. Ten μL of the mixture was placed on a
glass slide under a 22-mm square coverslip and individual cells
were observed under 200× and 400× magnification.

DNA extraction, PCR, cloning and sequencing

DNA from feces and cultures were extracted using the
Microbiome DNA Purification Kit Purelink (Fisher, UK), follow-
ing the manufacturer’s specifications and protocols. The extracted
DNA was stored at −20 °C for long-term usage. To amplify the
fragment of interest, polymerase chain reaction (PCR) was carried
out using the extracted DNA. DNA extracted from an axenic
Blastocystis NandII culture was used as positive control in every
PCR application. The conditions of amplification were as follows:
2 µL of the extracted DNA was used for amplification of a
Blastocystis sp SSUrRNA product. 10 µL 5× buffer (Promega),
1 mM MgCl2, 0·4 µM forward primer, 0·4 µM reverse primer,
0·2 mM dNTPs (Promega), 0·25 µL Taq polymerase, 30·75 µL
HPLC grade water 2 µL DNA. The fragment was amplified in a
total of 50 µL reaction, according to the standard conditions of
for HiFI Taq polymerase (Promega). The broad specificity pri-
mers RD3 5′-GGGATCCTGATCCTTCCGCAGGTTCACCT
AC-3′ and RD5 5′-GGAAGCTTATCTGGTTGATCCTGCCA
GTA-3′ (Clark, 1997) were used for the first PCR. Cycling condi-
tions were as follows: 95 °C 5 min, 35 cycles of denaturation at
95 °C for 30 s, annealing 55 °C for 30 s, extension at 72 °C for
1 min 40 s and final extension at 72 °C for 5 min.

A second nested PCR was performed using the forward RD5F
5′-ATCTGGTTGATCCTGCCAGT-3′ and reverse BhRDr 5′-GA
GCTTTTTAACTGCAACAACG-3′ (Scicluna et al. 2006) primers
giving a fragment at approximately 650 bp. This fragment is
considered the barcoding region for Blastocystis identification.
Concentration of reagents in each reaction and PCR conditions

were the same as above. One μL from the PCR mentioned
above was used as template.

Positive PCR reactions from the nested-PCR were gel-extracted
using the Thermo Scientific GeneJET Gel Extraction Kit (follow-
ing manufacturer’s instructions) and subsequently cloned in the
pGEM-T vector (Promega) using the manufacturer’s protocol.
Five to ten colonies from each transformation were selected for
sub culturing and plasmid purification using the GeneJET
Plasmid Miniprep Kit. Positive plasmids were screened by diges-
tion with EcoRI restriction enzyme, to confirm presence of the
fragment of interest. Positive plasmids were bidirectionally
sequenced using T7 and SP6 universal primers by Eurofins, UK.

Genetic distance and phylogenetic analysis

The obtained sequences were trimmed to eliminate vector frag-
ments and forward and reverse sequences of each sample were
joined using Sequencher. Blast searches against GenBank using
the sequences obtained were performed to exclude bacterial con-
tamination. A dataset including all new sequences identified as
Blastocystis along with sequences spanning the breadth of diver-
sity of Blastocystis subtypes was build and aligned using
MAFFT v.7 (Katoh and Toh, 2010). The alignment was further
improved by visual check where necessary. Genetic distance was
calculated using the Kimura2 parameter criterion. Gaps were con-
sidered as complete deletions. For this calculation, only the bar-
coding region of Blastocystis was used.

For the phylogenetic analysis, four additional outgroup taxa
were included to the alignment and the entire sequence of
SSUrRNA was used. The alignment contained a total of 90 taxa.
Several sequences were represented only by their barcoding region
in which case, the missing part of the sequence was considered as
missing data. Following alignment with MAFFT, ambiguous posi-
tions were removed using trimAL (Capella-Gutierrez et al. 2009).
After trimming the alignment contained 1163 sites. Phylogenetic
trees were constructed by using maximum likelihood and
Bayesian inference methods. Maximum likelihood trees were
computed using the RAxML software (Stamatakis, 2006). For
each dataset bootstrap support was evaluated from 1000 bootstrap
replicates. Bayesian inference tree was computed using MrBayes
(Ronquist and Huelsenbeck, 2003). Posterior probabilities were
computed by running four chains with sampling occurring
every 100th generation, whilst 25% of trees were discarded as
burn-in. Trees were run for 1 500 000 generations at which
point all parameters converged at 0·01.

Results

Culturing

Blastocystis grew in the tubes containing LYSGM and TYM + FBS
at both 35 °C and room temperature. There was no Blastocystis
growth in the 0·5% LD medium.

Screening of faecal samples

A total of 118 samples from 27 species were examined of which 71
clones were sequence positive belonging to 11 species (41%)
(Table 1). Nonetheless, there was a notable difference in the pres-
ence of Blastocystis across hosts. With the exception of a single
case, all sequence positive samples came from non-carnivorous
animals. This was despite repeated sampling and sequencing
attempts (Table 1). Specifically, 7/8 (87·5%) of artiodactyls, 2/2
(100%) of rodents and 1/9 (11%) of carnivores were sequence
positive for Blastocystis. No sequence positive samples were
found in birds, snakes and insectivores (Table 1).
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Subtype identification and distribution in various hosts

Among the 71 Blastocystis-positive samples, six STs were detected
(Table 2, Fig. 1): ST1, ST4, ST5, ST10, ST14 and a potentially new
subtype. Subtypes 4 and 10 colonized the most species (seven
and six respectively) followed by ST14 (three), ST1 (two), ST5
(one) and a novel subtype (one). We provide the first molecular
data and subtyipng of Blastocystis from elk, water voles, pine mar-
tens and red squirrels. The Eurasian elk (artiodactyl) were the
hosts harbouring the widest range of subtypes, followed by
pygmy goat (artiodactyl) and water vole (rodent). Most notably,
four subtypes were found in the elk (ST4, ST10, ST14, novel),
while goat and water vole harboured three (ST1, ST10 and
ST14 in goat and ST1, ST4 and ST10 in water vole). The hosting
of multiple subtypes within elk is of no doubt, as there is just a
single elk in the park. The same cannot be verified for the goats
and voles as the park houses several of them. Nonetheless, only
two faecal samples were collected, which means that there are at
least two subtypes present in a single goat. The three subtypes
in water vole were identified only in the captive population of
which three were sampled. The presence of all subtypes can be
confirmed here, due to cloning being used rather than PCR puri-
fication of a single product.

Several samples were collected from two rodent species; the red
squirrel and water vole. Subtype 4 was commonly detected in both
species, while the range of subtypes previously reported within
rodents can be expanded to include ST1. Several colonies were
also screened from wallabies, diprotodontid marsupials. All sam-
ples from wallabies harboured ST10, which had not been reported
previously from these marsupials.

Phylogenetic analysis

Though 71 clones were sequenced, only 20 of them were used in
the phylogenetic analyses. In the cases where clusters contained
identical clones, only a few representative sequences were kept.
In total, the new sequences were subtyped as follows: ST4 (n =
41); ST10 (n = 22); ST14 (n = 4); ST1 (n = 2); ST5 (n = 1) novel
ST (n = 1). All Blastocystis sequences formed a strongly supported
cluster (100BS/1·00BI). Most newly sequenced isolates grouped

within clades formed by previously published subtypes (Fig. 1).
The most basal sequences belonged to Blastocystis isolates from
reptiles and cockroaches along with those from ST15, ST16 and
ST17 in agreement with previous studies (Alfellani et al. 2013c;
Yoshikawa et al. 2016). Subtype 3 sequences grouped together
and sister to a clustered formed by ST10, ST8 and ST4.
Subtypes 7, 9 and 6 clustered together, while ST11, ST2 and
ST1 formed a separate clade. Subtypes 12 and 5 also grouped
together. Subtypes 13 and 14 were not well resolved even when
a subtree was constructed (data not shown). The ELB_WW Elk
1 clone 1 did not fall within any of the 17 STs and its position
remains unresolved.

Discussion

Approximately 61 animals from 27 species were examined. Forty
one per cent of all animals were sequence positive for Blastocystis.
In select cases, we attempted to establish cultures of Blastocystis.
The organism has been previously cultured in a wide range of
media including egg slant medium with Locke’s solution,
Iscove’s modified Dulbecco’s medium, Robinson’s medium and
Jones’ medium (Clark and Diamond, 2002; Tan, 2008). The latter
is a widely used formulation ideal for short term culturing of mul-
tiple subtypes (i.e. a few days). Blastocystis isolates originating
from endothermic hosts are customarily cultured at 35 °C.
Reported here was cultivation of Blastocystis from a water vole
(Arvicola amphibius) in TYM medium enriched with FBS. The
culture had been maintained in the laboratory for at least 11
months. Although the origin of the isolate is an endothermic ani-
mal, it grew over abundantly at room temperature. This indicates
that some isolates of Blastocystis can grow at lower temperatures
given certain types of media. Whether all isolates of Blastocystis
or only some can grow in TYM + FBS at room temperature
needs further study.

Most of the animals that we examined harboured a single sub-
type of Blastocystis. Nonetheless, some animals carried more than
one subtype. Mixed colonization was confirmed, because we
employed cloning and screened multiple colonies from each sam-
ple, while previous studies only used direct sequencing from PCR
products (Stensvold et al. 2012; Roberts et al. 2013; Alfellani et al.

Table 2. Subtype results from sequencing positive samples

Blastocystis ST

Host Name Location
PCR positive
samples

Sequence
positive clones ST1 ST4 ST5 ST10 ST14 ST?

European Bison Bison bonasus Wildwood 3 11 – – – 11/11 – –

Eurasian Elk Alces alces Wildwood 1 4 – 1/4 – 1/4 1/4 1/4

Muntjac Deer Muntiacus reevesi Wildwood 1 1 – – – – 1/1 –

Pine Marten Martes martes Wildwood 1 1 – 1/1 – – – –

Pygmy Goat Capra aegagrus hircus Wildwood 2 3 1/3 – – 1/3 1/3 –

Red Deer Cervus elaphus Wildwood 1 8 – 2/8 – 6/8 – –

Red Squirrel Sciurus vulgaris Wildwood 2 1 – 1/1 – – – –

Soay Sheep Ovis aries Wildwood 1 1 – – – – 1/1 –

Wallaby Macropus rufogriseus Wildwood 2 2 – – – 2/2 – –

Water Vole Arvicola amphibius Wildwood 2 12 1/12 10/12 – 1/12 – –

Water Vole PP Arvicola amphibius Bulphan 5 17 – 17/17 – – – –

Water Vole TB Arvicola amphibius Tilbury 3 9 – 9/9 – – – –

Wild Boar Sus scrofa Wildwood 1 1 – – 1/1 – – –
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2013b, c; Stensvold, 2013). Using this strategy, it was found that
elk (Alces alces) harboured four subtypes, with this being the
first time Blastocystis has been reported in this mammal. In
cases where multiple subtypes are found within a single host, it
is important to exclude contamination from other sources. The
park has a single elk, which is housed in an isolated enclosure
on its own. Moreover, the faecal sample was collected at the
moment of defecation precluding contamination from small, non-
resident animals. More than one subtype was also detected in

pygmy goats (ST = 3), red deer (ST = 2) and water voles (ST =
3). Unlike in the case of the elk, we cannot definitively conclude
that the detected subtypes in goats originated from a single indi-
vidual per se, since enclosures housed multiple animals of the
same species. While colonization with multiple subtypes is rare
in humans, not much information is available for other animal
species (Meloni et al. 2012). In light of our findings, it is tempting
to speculate that the microbiota of at least some animals includes
Blastocystis subtypes. Sampling from more animals and use of

Fig. 1. Maximum likelihood phylogenetic tree inferred from 90 SSUrRNA sequences and 1163 sites. Newly generated sequences are shown in bold. Numerical values
on the branches indicate bootstrap percentages and posterior probabilities in this order. Only bootstrap support values greater than 70 are shown. The accession
numbers of all newly generated sequences are presented in online Supplementary Table S1.
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methodologies similar to ours will shed further light as to whether
presence of multiple subtypes is the norm within these and other
animals.

Water voles also constitute an interesting case. There are two,
temporary populations of water vole being held within the park,
together with permanent residents. These two groupings of
water vole are temporarily brought in to captivity as part of a
licensed, development mitigation programme and are subse-
quently to be introduced back into their natural environment
locations; two separate sites in Essex, UK. This study can report
that ‘wild’ water vole harboured ST4 only, whereas those in per-
manent captivity also harboured ST1. Wild water voles were
sampled multiple times, while captive ones provided only a lim-
ited number of samples. Despite considerable effort (PCR, clon-
ing and screening of clones) we were unable to detect ST1 in
wild water voles. It is tempting to speculate that the ‘captive’
water vole acquired ST1 after their introduction in the park and
that this is one of the many microbiota-related alterations asso-
ciated with life in captivity (Waite and Taylor, 2014; Kohl et al.
2017). However, since captive voles originated from two add-
itional locations other than Essex, this hypothesis needs further
testing involving surveys of all populations of origin.

ST10 and ST4 were the most widely distributed subtypes, each
isolated from five species. As previously described, artiodactyls
carried mostly ST10 (Alfellani et al. 2013c). It has been speculated
that rodents are reservoirs of ST4 for human infection, though not
all rodent species carry this specific ST (Alfellani et al. 2013b).
Subtypes 3 and 17 were also found in rodents in previous inves-
tigations (Stensvold et al. 2009; Alfellani et al. 2013a). Herein, this
study detected ST4 in all Blastocystis positive samples of rodents.
Nonetheless, other subtypes were also found in the screened
rodents: ST10 in red squirrels and ST1, ST5 and ST10 in water
voles. Therefore, the study has been able to expand the number
of subtypes recorded in rodents by identifying ST1 and ST10. It
was also possible to expand the range of subtypes identified in
goats to include ST14, along with the previously identified
ST10, ST1, ST3, ST6 and ST7 (Alfellani et al. 2013b). The study
also detected ST14 in four hosts, all of which belong to the
artiodactyls.

To determine the monophyly and relationships among STs,
phylogenetic analyses were performed. Traditionally, sampling
of Blastocystis had focused on primates, especially humans. As a
result, STs that were present in non-primates were reported infre-
quently and the clades of these STs remained sparsely populated.
For instance, the resolution of the ST13 and ST14 has been prob-
lematic. Previously, Alfellani et al. (2013c) speculated that ST14
should be split into two subtypes, but refrained from doing so
pending further sampling. The current study has shown that,
when our isolates were added to the tree, ST14 splits into two dis-
tinct clades, with our samples populating both of these clades,
hence, supporting the idea that it should be considered as two
STs. Moreover, one isolate from elk grouped independently of
all other STs, suggesting that this might be a novel ST. Genetic
divergence analysis of the barcode region indicated that the gen-
etic distance between our isolate and all other STs is over 5%, with
the exception of ST13, with which it differed by 4·4%. The recom-
mended threshold to define a new sequence is 5% divergence
(Clark et al. 2013). Nonetheless, the full sequence and further
samples are needed to confirm this finding since this is an indi-
vidual partial sequence.

In summary, we present here a comprehensive study of
Blastocystis prevalence focusing exclusively on non-primate ani-
mals in a zoo setting in the UK. Presented here has been the pres-
ence of six subtypes, with one potentially being novel. Through
the use of cloning, it has been possible to conclusively record
the presence of multiple STs within an individual animal. The

sequences generated from this study have populated STs that
were considered rare and for which not many sequences exist.
Collectively, these highlight the need for sampling from a wide
range of hosts.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182017002347.
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