
2 Random Matrix Theory

Random matrix theory, at its inception, primarily dealt with the eigenvalue distribution
(also referred to as the spectral measure) of large-dimensional random matrices. One
of the key technical tools to study these measures is the Stieltjes transform, often
presented as the central object of the theory [Bai and Silverstein, 2010, Pastur and
Shcherbina, 2011].

But signal processing and machine learning alike are often more interested in sub-
spaces and eigenvectors (which often carry the structural information of the data)
than in eigenvalues. Subspace or spectral methods, such as principal component
analysis (PCA) [Wold et al., 1987], spectral clustering [Luxburg, 2007] and some
semi-supervised learning techniques [Zhu, 2005] are built directly upon the eigenspace
spanned by the several top eigenvectors.

Consequently, beyond the Stieltjes transform, a more general mathematical object,
the resolvent of large random matrices will constitute the cornerstone of the book. The
resolvent of a matrix gives access to its spectral measure, to the location of its isolated
eigenvalues, to the statistical behavior of their associated eigenvectors when random,
and consequently provides an entry-door to the performance analysis of numerous
machine learning methods.

This chapter introduces the fundamental objects and tools necessary to characterize
the behavior of large-dimensional random matrices (the resolvent, the Stieltjes trans-
form method, etc.) in Section 2.1, with a particular focus on the modern and powerful
technical approach of deterministic equivalents. Section 2.2 then presents some foun-
dational random matrix results (under the form of deterministic equivalents), which
will serve as cornerstones for the various machine learning applications discussed in
the remainder of this book. Section 2.3 is next devoted to advanced considerations
on the limiting spectrum of sample covariance matrix models, with applications to
statistical inference in Section 2.4. Section 2.5 then introduces the family of spiked
models which, as we will see, play a crucial role in statistics, signal processing, and
machine learning applications. Section 2.6 lists and discusses other models and tools
of interest in the random matrix literatures, with a short introduction to the alternative
free probability approach and related techniques. Section 2.7 is finally devoted to the
“modern” concentration of measure framework for random matrices, which, as we just
elaborated in the previous chapter, provides a strong justification of the universality of
random matrix results when applied to real data machine learning, and also provides a
convenient mathematical framework to deal with neural networks. The chapter closes
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36 2 Random Matrix Theory

with concluding remarks in Section 2.8 and exercises in Section 2.9, both intended to
familiarize the reader with the tools introduced in the chapter as well as to provide
supplementary results and proofs.

2.1 Fundamental Objects

2.1.1 The Resolvent

We first introduce the resolvent of a matrix.

Definition 1 (Resolvent). For a symmetric matrix M ∈ R
n×n , the resolvent QM(z) of

M is defined, for z ∈ C not an eigenvalue of M, as

QM(z)≡ (M− zIn)
−1 . (2.1)

The matrix QM(z) will often simply be denoted Q(z) when there is no
ambiguity.

The resolvent operator is in fact a very classical tool, the use of which goes far
beyond random matrix theory. It is, for instance, exploited in the analysis of linear
operators in general Hilbert space [Akhiezer and Glazman, 2013] as well as in mono-
tone operator theory of importance to modern convex optimization theory [Bauschke
and Combettes, 2017].

2.1.2 Spectral Measure and Stieltjes Transform

The first use of the resolvent QM is in its relation to the empirical spectral measure μM

of the matrix M under study, through the associated Stieltjes transform mμM , which
we all define next.

Definition 2 (Empirical spectral measure). For a symmetric matrix M ∈ R
n×n , the

spectral measure or empirical spectral measure or empirical spectral distribution
(e.s.d.) μM of M is defined as the normalized counting measure of the eigenvalues
λ1(M),. . . ,λn(M) of M,

μM ≡ 1
n

n

∑
i=1

δλi (M). (2.2)

Since
∫
μM(dx) = 1, the spectral measure μM of a matrix M ∈ R

n×n (random
or not) is a probability measure. For (probability) measures, we can define their
associated Stieltjes transforms as follows.

Definition 3 (Stieltjes transform). For a real probability measure μ with support
supp(μ), the Stieltjes transform mμ(z) is defined, for all z ∈ C\ supp(μ), as

mμ(z)≡
∫

1
t − z

μ(dt). (2.3)
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2.1 Fundamental Objects 37

This definition and the Stieltjes transform framework in effect extend beyond prob-
ability measures to σ-finite real measures (i.e., measures μ such that μ(R) <∞), which
will occasionally be discussed in this book.

The Stieltjes transform mμ has numerous interesting properties: it is com-
plex analytic on its domain of definition C \ supp(μ), it is bounded |mμ(z)| ≤
1/dist(z,supp(μ)), it satisfies ℑ[z] > 0 ⇒ ℑ[m(z)] > 0, and it is an increasing func-
tion on all connected components of its restriction to R \ supp(μ) (since m′

μ(x) =∫
(t − x)−2μ(dt) > 0) with limx→±∞ mμ(x) = 0 if supp(μ) is bounded.

As a transform, mμ admits an inverse formula to recover μ, as per the following
result.

Theorem 2.1 (Inverse Stieltjes transform). For a,b continuity points of the probability
measure μ, we have

μ([a,b]) =
1
π

lim
y↓0

∫ b

a
ℑ [mμ(x+ ıy)] dx. (2.4)

Besides, if μ admits a density f at x (i.e., μ(x) is differentiable in a neighborhood of
x and limε→0(2ε)−1μ([x − ε,x+ ε ]) = f (x)),

f (x) =
1
π

lim
y↓0

ℑ [mμ(x+ ıy)] . (2.5)

Also, if μ has an isolated mass at x, then

μ({x}) = lim
y↓0

−ıymμ(x+ ıy). (2.6)

Proof. Since | y
(t−x)2+y2 | ≤ 1

y for y > 0, by Fubini’s theorem,

1
π

∫ b

a
ℑ [mμ(x+ ıy)] dx =

1
π

∫ b

a

[∫
y

(t − x)2 + y2 μ(dt)

]
dx

=
1
π

∫ [∫ b

a

y

(t − x)2 + y2 dx

]
μ(dt)

=
1
π

∫ [
arctan

(
b− t
y

)
− arctan

(
a − t
y

)]
μ(dt).

As y ↓ 0, the difference in brackets converges either to ±π or 0 depending on the
relative position of a, b, and t. By the dominated convergence theorem, the limit, as y ↓
0, is

∫
1[a,b]μ(dt) = μ([a,b]). When μ has an isolated mass at x, say μ(dt) = aδx(t),

we similarly have, again by dominated convergence (using, in particular, |y(t − x)| ≤
1
2 (y

2 +(t − x)2)) that

lim
y↓0

−ıym(x+ ıy) = − lim
y↓0

∫
ıy(t − x)μ(dt)
(t − x)2 + y2 + lim

y↓0

∫
y2μ(dt)

(t − x)2 + y2 = a.

This concludes the proof of Theorem 2.1.

The important relation between the empirical spectral measure μM of M ∈ R
n×n ,

the Stieltjes transform mμM(z), and the resolvent QM(z) lies in the fact that

mμM(z) =
1
n

n

∑
i=1

∫ δλi (M)(t)

t − z
=

1
n

n

∑
i=1

1
λi(M)− z

=
1
n

trQM(z). (2.7)
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38 2 Random Matrix Theory

Combining inverse Stieltjes transform in Theorem 2.1 and the relation above thus
provides a link between QM and the eigenvalue distribution of M. While seemingly
contorted at first sight, this link turns out to be a very efficient way to study the spectral
measure of large-dimensional random matrices M.

In particular, note that Theorem 2.1 raises an interesting fact: The Stieltjes trans-
form mμ(z) =

∫
(t − z)−1μ(dt) is defined on all C\ supp(μ), and as z approaches the

support supp(μ), the integrand (t − z)−1 becomes singular. Yet, this is precise when
x = ℜ[z] ∈ supp(μ) while ℑ[z] ↓ 0 that one can retrieve the density of μ at x from
the Stieltjes transform mμ(z). This observation is key to the analysis of the spectrum
(both eigenvalues and eigenvectors) of (random) matrices: The singular points of the
resolvent of a (random) matrix provide the information about its spectrum.

Remark 2.1 (Resolvent as a matrix-valued Stieltjes transform). As proposed in
Hachem et al. [2007], it is convenient to extrapolate Definition 3 of Stieltjes trans-
forms to n× n matrix-valued positive measures M(dt),1 in which case Equation (2.7)
can be generalized as

QM(z) =
∫ M(dt)

t − z
= Udiag

{
1

λi(M)− z

}n

i=1
UT,

where we used the spectral decomposition M = Udiag{λi(M)}ni=1UT. This def-
inition coincides with the former definition of the resolvent of M. As such, the
resolvent QM(z) is an “improved” matrix-valued Stieltjes transform, which enjoys
similar properties as Stieltjes transforms on real-valued measures: it is complex ana-
lytic on its domain of definition, it is bounded ‖QM(z)‖ ≤ 1/dist(z,supp(μM)), and
x �→ QM(x) for x ∈R\supp(μM) is an increasing matrix-valued function with respect
to symmetric matrix partial ordering (i.e., A � B whenever zT(A−B)z ≥ 0 for all z).

2.1.3 Cauchy’s Integral, Linear Eigenvalue Functionals, and Eigenspaces

Being complex analytic, the resolvent QM(z) can be assessed using advanced tools
from complex analysis. Of particular interest to this book is the relation between the
resolvent and Cauchy’s integral theorem.

Theorem 2.2 (Cauchy’s integral formula). For Γ ⊂C, a positively (i.e., counterclock-
wise) oriented simple closed curve and a complex function f (z) analytic in a region
containing Γ and its inside, then

(i) if z0 ∈ C is enclosed by Γ, f (z0) = − 1
2πı

∮
Γ

f (z)
z0−z dz;

(ii) if not, 1
2πı

∮
Γ

f (z)
z0−z dz = 0.

This result provides an immediate connection between the so-called linear func-
tionals of the eigenvalues (also referred to as the linear spectral statistics [Bai and

1 Defined by the fact that μ(dt ;z) = zTM(dt)z = ∑i j [z]i [z] j [M]i j (dt) is a positive real-valued measure
for all z. See Rozanov [1967] for an introduction.
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2.1 Fundamental Objects 39

Silverstein, 2004] or linear eigenvalue statistics [Lytova and Pastur, 2009]) of M and
the Stieltjes transform mμM(z) through

1
n

n

∑
i=1

f (λi(M)) = − 1
2πın

∮
Γ

f (z) tr(QM(z))dz = − 1
2πı

∮
Γ

f (z)mμM(z)dz,

for all f complex analytic in a compact neighborhood of supp(μM), by choosing the
contour Γ to enclose supp(μM) (i.e., all the eigenvalues λi(M)). More generally,

1
n ∑
λi (M)∈Γ◦

f (λi(M)) = − 1
2πı

∮
Γ

f (z)mμM(z)dz,

for Γ◦ the inside of the contour Γ. Note that in this case it is sufficient for f to
be analytic in a neighborhood of supp(μM) ∩ Γ◦; in particular, if one wishes to
count the number of eigenvalues in an interval [a,b], one may use the formula for
f (t) = 1t∈[a−ε,b+ε] for some ε > 0 small, which is of course not analytic on C but is
analytic on an open neighborhood of [a,b].

Another quantity of interest relates to eigenvectors and eigenspaces. Consid-
ering the spectral decomposition M = UΛUT with U = [u1,. . . ,un ] ∈ R

n×n and
Λ = diag{λ1(M),. . . ,λn(M)}, we have

QM(z) =
n

∑
i=1

uiuT
i

λi(M)− z

and thus the direct access to the ith eigenvector ui of M through

uiuT
i = − 1

2πı

∮
Γλi (M)

QM(z)dz,

for Γλi (M) a contour circling around λi(M) only. More generally,

U f (Λ;Γ)UT = − 1
2πı

∮
Γ

f (z)QM(z)dz,

for f analytic in a neighborhood of Γ and its inside Γ◦ and f (Λ;Γ) = diag{ f (λi(M)) ·
1λi (M)∈Γ◦}ni=1.

Of specific interest to this book will be the projection of an individual eigenvector
ui of M onto a deterministic vector v. In particular, from the above,

|vTui |2 = − 1
2πı

∮
Γλi (M)

vTQM(z)v dz.

In the real case M ∈ R
n×n , this gives access to vTui , up to a sign (which at any rate

is not fixed since both ui and −ui are valid eigenvectors). The formula extends in the
complex case by replacing the transpose (·)T with a Hermitian transpose (·)∗, and thus
providing access to the complex number v∗ui up to a “phase” eıθ for θ ∈ [0,2π).

To summarize, the resolvent QM provides access to scalar observations of the
eigenspectrum of M through its linear functionals, that is, the scalar observations
1
n ∑i f (λi(M)) and |vTui | accessible from 1

n trQM and vTQMv, respectively.
Before proceeding to the application of these results to random matrices, it is worth

noticing at this point that working with the resolvent automatically enables many
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40 2 Random Matrix Theory

powerful tools from complex analysis, the Cauchy integral formula being only one
instance. Analytic functions, such as the Stieltjes transform and the resolvent, are
“extremely smooth” objects, and enjoy a host of convenient properties. One such
important property is, as already mentioned in Theorem 2.2, that it suffices to know
an analytic function locally to know it globally.

Theorem 2.3 (Vitali’s convergence theorem [Titchmarsh, 1939]). Let f1, f2,. . . be a
sequence of functions, analytic on a region D ⊂ C, such that | fn(z)| ≤ M uniformly
on n and z ∈ D. Further, assume that fn(z j) converges for a countable set of points
z1,z2,. . . ∈ D having a limit point inside D. Then, fn(z) converges uniformly to a limit
in any region bounded by a contour interior to D. This limit is furthermore an analytic
function of z.

Vitali’s convergence theorem will be heavily exploited to study the behavior of
resolvents QM(z) near the real axis (where it is almost singular but of utmost interest)
by instead studying its properties away from the real axis (where it is mathematically
more convenient). The theorem is in fact doubly interesting as it states that the knowl-
edge of fn at a countable number of points z1,z2,. . . is sufficient to fully characterize
the limit f ; as we shall see later, this property will be used to prove the convergence
of functionals fn(z) = g(QM(z)− Q̄(z)) → 0 of random resolvents QM(z) to deter-
ministic equivalents Q̄(z) (here n is the growing size of the resolvents): if fn(z j)→ 0
almost surely for each z1,z2,. . . , then by the countable union of probability one events,
fn(z j) → 0 with probability one uniformly on the set {z1,z2,. . .}, and by Vitali we
obtain that fn(z) → 0 with probability one uniformly on a (possibly very large)
subset of C.

2.1.4 Deterministic and Random Equivalents

This book is concerned with the situation, where M is a large-dimensional random
matrix, the eigenvalues and eigenvectors of which need be related to the statistical
nature of the model design of M.

In the early days of random matrix theory, the main focus was on the limiting
spectral measure of M ∈ R

n×n , that is, the characterization of a certain “limit” to
the spectral measure μM of M as the size of M increases. For this purpose, a natu-
ral approach is to study the random Stieltjes transform mμM(z) and to show that it
admits a limit (in probability or almost surely) m(z) as n → ∞. However, this method
has strong limitations: (i) it supposes that such a limit exists, therefore restricting the
study to very regular models for M and (ii) it only quantifies the Stieltjes transform
1
n trQM, thereby discarding all subspace information about M carried in the resolvent
matrix QM. As a consequence, a further study of the eigenvectors of M often requires
a complete rework.

To avoid these limitations, modern random matrix theory focuses instead on the
notion of deterministic equivalents, which are deterministic matrices – thus finite
dimensional objects rather than limits – having (in probability or almost surely)
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2.1 Fundamental Objects 41

asymptotically the same scalar observations as the random ones.2 In particular, these
scalar observations of deterministic equivalents (e.g., their normalized traces or their
bilinear forms) need not themselves admit a limit as the matrix dimension n grows:
What only matters is that they deterministically “track” the behavior of their random
counterparts with increased accuracy as n grows large to infinity.

Definition 4 (Deterministic Equivalent). We say that Q̄ ∈ R
n×n is a deterministic

equivalent for the symmetric random matrix Q ∈R
n×n if, for (sequences of) determin-

istic matrices A ∈R
n×n and vectors a,b ∈R

n of unit norms (operator and Euclidean,
respectively), we have, as n → ∞,

1
n

trA(Q− Q̄)→ 0, aT(Q− Q̄)b → 0,

where the convergence is either in probability or almost sure.

This definition3 has the advantage of bringing forth the two key elements that pro-
vide access to the spectral information of a random matrix M: traces and bilinear forms
(of its resolvent QM(z) for some z). Deterministic equivalents for the resolvent QM

thus encode the necessary information to statistically quantify, at least spectrally, the
random matrix M.

A first and natural use of deterministic equivalents is to establish that, for a random
matrix M of interest, 1

n tr(QM(z)−Q̄(z))→ 0, say almost surely, for all z ∈C with C ⊂
C. Denoting m̄n(z)= 1

n trQ̄(z), this convergence implies that the Stieltjes transform of
μM “converges” in the sense that mμM(z)− m̄n(z)→ 0. As we will see, this indicates
that the spectral measure μM gets increasingly well approximated, as n grows large, by
a probability measure μ̄n having Stieltjes transform m̄n(z). Identifying m̄n(z), which
uniquely defines μ̄n as per Theorem 2.1, will often be as far as the Stieltjes transform
method will lead us. But in some rare cases (such as the Marc̆enko–Pastur and the
semicircle laws), μ̄n will be explicitly identifiable.

In the remainder of the book, we will often characterize the large-dimensional
(spectral) behavior of random matrix models M through the “approximation” offered
by the deterministic equivalents Q̄(z) of their associated resolvents QM(z), provid-
ing simultaneously access to their asymptotic spectral measures as well as to their
eigenspaces. We will therefore extrapolate some of the core traditional results in ran-
dom matrix theory, such as the Marc̆enko–Pastur law [Marčenko and Pastur, 1967],

2 The wide spread of deterministic equivalents in the random matrix literature arose from application
needs, primarily in signal processing and wireless communications, involving too structured matrix mod-
els for limiting eigenvalue distributions to be meaningful [Hachem et al., 2007, Couillet et al., 2011].
Yet, deterministic equivalents in fact originate from the (much earlier) works of Girko [2001]. They
have recently been included as a new feature of free probability theory [Speicher and Vargas, 2012], an
alternative approach to the resolvent method, which will be shortly discussed in Section 2.6.2.

3 The notion of “deterministic equivalent” has not been formally defined in the literature. The present
definition is thus restricted to this book and is for the convenience of presentation. Section 2.7 will
provide an alternative, possibly more satisfying, definition through the notion of linear concentration
(Definition 8).
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42 2 Random Matrix Theory

the sample covariance matrix model [Silverstein and Bai, 1995], etc., under this more
general form of deterministic equivalents.

Remark 2.2 (Q̄ versus E[Q]). For Q̄ a deterministic equivalent for Q, the (probabilis-
tic) convergences 1

n trA(Q− Q̄) → 0 and aT(Q− Q̄)b → 0 generally unfold from the
deterministic relation that

‖E[Q]− Q̄‖ → 0,

and from a control of the variance of 1
n tr(AQ) and aTQb; this will often be the strategy

followed in our proofs. Note particularly that if the above relation is met, then E[Q]

itself is, by Definition 4, a deterministic equivalent for the random Q. However, E[Q]

is often not convenient to work with and a “truly deterministic” matrix Q̄ involving no
integration over probability spaces (and that can be numerically evaluated with ease)
will be systematically preferred.

Deterministic equivalents will be used very regularly in the course of this book.
To avoid heavy notations, particularly in the main theorems and their proofs, we will
use the following shortcut notations, valid both for deterministic and random matrix
equivalents.

Notation 1 (Matrix Equivalents). For X,Y ∈ R
n×n two random or deterministic

matrices, we write

X ↔ Y,

if, for all A ∈R
n×n and a,b ∈R

n of unit norms (respectively, operator and Euclidean),
we have the simultaneous results

1
n

trA(X−Y) → 0, aT(X−Y)b → 0, ‖E[X−Y]‖ → 0,

where, for random quantities, the convergence is either in probability or almost sure.

In many situations, deterministic equivalents Y for a random matrix X may not be
directly accessible with classical random matrix techniques. In these cases, the intro-
duction of an intermediary random matrix X̃ satisfying ‖X̃ − X‖ a.s.−−→ 0 will help
“propagate” the deterministic equivalent relations. Indeed, if X̃ ↔ Y, then one neces-
sarily has X ↔ Y. When the convergence ‖X̃−X‖ a.s.−−→ 0 is too demanding, it may of
course be sufficient in some cases to prove that X ↔ X̃ (in which case both matrices
are random) to ensure that X ↔ Y. This justifies the need to apply the notation “↔”
to arbitrary, random or deterministic, matrices.

2.2 Foundational Random Matrix Results

In this section, we introduce the main historical results of random matrix theory
(appropriately updated under a deterministic equivalent form), which will serve as
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2.2 Foundational Random Matrix Results 43

supporting materials to most machine learning applications covered in this book.4 For
readability and accessibility to the readers new to random matrix theory, we mostly
stick to intuitive and short sketches of proofs. Yet, for the readers to have a glimpse on
the technical details and modern tools of the field, some of the proof sketches will be
appended with a complete and exhaustive proof.

Both sketches and detailed proofs rely on a set of elementary lemmas and identities,
which need be introduced to understand their spirits and cornerstone arguments. This
is done in Section 2.2.1. The detailed proofs differ from the sketches in having addi-
tional technical probability theory arguments to prove various convergence results.
These arguments strongly depend on the underlying random matrix model hypotheses
(Gaussian independent, i.i.d., concentrated random vectors, etc.); for readability, we
will focus in our proofs on one specific line of arguments (that we claim to be the “his-
torical” one) and will discuss alternative techniques in side remarks. In particular, the
specific concentration of measure theoretic approach, which is both more “modern”
(yet less mature) and more adapted to machine learning applications, will be given a
separate treatment in Section 2.7.

2.2.1 Key Lemmas and Identities

Resolvent Identities
Most results discussed in this section consist in tools meant to help “approximate”
random matrix resolvents Q(z) via deterministic resolvents Q̄(z) in the sense of Def-
inition 4. The following first identity provides a comparison of matrix inverses and is
often used to compare the aforementioned resolvents.

Lemma 2.1 (Resolvent identity). For invertible matrices A and B, we have

A−1 −B−1 = A−1(B−A)B−1.

Proof. This can be easily checked by multiplying both sides on the left by A and on
the right by B.

Another useful lemma that helps directly connect the resolvent of BA to that of AB
is given as follows:

Lemma 2.2. For A ∈ R
p×n and B ∈ R

n×p , we have

A(BA− zIn)−1 = (AB− zIp)−1A,

for z ∈ C distinct from 0 and from the eigenvalues of AB.

Proof. Left-multiply both ends of the equality by AB− zIp to obtain A = A.

4 Although historically and technically, said “Wigner” models of symmetric random matrices with inde-
pendent entries came first, are mathematically more accessible and have thus spurred more research
efforts [Wigner, 1955, Mehta and Gaudin, 1960, Anderson et al., 2010], for the sake of machine learn-
ing applications, our focus is primarily on the slightly more involved sample covariance matrix models
[Marčenko and Pastur, 1967, Bai and Silverstein, 2010].
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For AB and BA symmetric, Lemma 2.2 is a special case of the more general relation
A · f (BA) = f (AB) · A, with f (M) ≡ U f (Λ)UT under the spectral decomposition
M = UΛUT and f complex analytic. Since f is analytic, f (BA) = ∑∞

i=0 ci(BA)i for
some sequence {ci}∞

i=0 and thus A · f (BA) = ∑∞
i=0 ci(AB)i ·A = f (AB) ·A.

The next lemma, known as Sylvester’s identity (also known as the Weinstein–
Aronszajn identity), similarly relates the resolvents of AB and BA through their
determinant.

Lemma 2.3 (Sylvester’s identity). For A ∈ R
p×n , B ∈ R

n×p and z ∈ C\{0},

det(AB− zIp) = det(BA− zIn)(−z)p−n .

Proof. It suffices to develop the block-matrix determinant (recall that det
(

A B
C D

)
=

detD ·det(A−BD−1C) = detA ·det(D−CA−1B) when A,D are invertible)

det

(
zIp zA
B zIn

)
= det(zIp) ·det(zIn −BA) = det(zIn) ·det(zIp −AB).

An immediate consequence of Sylvester’s identity is that AB and BA have the same
nonzero eigenvalues (those nonzero zs for which both left- and right-hand sides van-
ish). Thus, say for n ≥ p, AB ∈R

p×p and BA ∈R
n×n have the same spectrum, except

for the additional n− p zero eigenvalues of BA. This remark implies the next identity.

Lemma 2.4 (Trace of resolvent and co-resolvent). Let A ∈ R
p×n , B ∈ R

n×p , and
z ∈ C not an eigenvalue of AB nor zero. Then,

trQAB(z) = trQBA(z)+
n− p

z
.

In particular, if AB and BA are symmetric,

mμAB(z) =
n
p

mμBA(z)+
n− p

pz
,

for μAB the empirical spectral measure of AB defined in Definition 2.

It will be customary, if QAB is the resolvent of the matrix AB under study, to call
QBA the co-resolvent of AB. We will see that the resolvent and co-resolvent of ran-
dom matrix models (in particular, the resolvent and co-resolvent of XXT for X some
structured random matrix) often intervene together, and quite symmetrically, to define
their associated deterministic equivalents.

Perturbation Identities
Quantifying the asymptotic global (e.g., spectral distribution) or local (e.g., isolated
eigenvalues or projection on eigenvector) behavior of random matrices M will sys-
tematically involve a perturbation approach. The idea often lies in comparing the
behavior of the resolvent Q = QM to the resolvent Q−i of M−i , with M−i defined as
M with either ith row and/or column, or some ith contribution (e.g., M−i = ∑ j �=i x jxTj
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if M = ∑ j x jxTj ), discarded. A number of so-called perturbation identities are then
needed.

The first one involves the segmentation of M under the form of subblocks, in gen-
eral consisting of one large block and three small ones. The corresponding resolvent
QM can correspondingly be segmented in subblocks according to the following block
inversion lemma.

Lemma 2.5 (Block matrix inversion). For A ∈ R
p×p , B ∈ R

p×n , C ∈ R
n×p and

D ∈ R
n×n with D invertible, we have

(
A B
C D

)−1

=

(
S−1 −S−1BD−1

−D−1CS−1 D−1 +D−1CS−1BD−1

)
,

where S ≡ A−BD−1C is the Schur complement (for the block D) of
(

A B
C D

)
.5

As a consequence of Lemma 2.5, we get the following explicit form for all diagonal
entries of an invertible matrix A.

Lemma 2.6 (Diagonal entries of matrix inverse). For invertible A ∈R
p×p and A−i ∈

R
(p−1)×(p−1) the matrix obtained by removing the ith row and column from A (i ∈

{1,. . . ,p}), we have

[A−1]ii =
1

[A]ii −Ai,−i(A−i)−1A−i, i
,

for Ai,−i ,A−i, i ∈ R
p−1 the ith row and column of A with ith entries removed,

respectively.

The result follows from Lemma 2.5 for entry (1,1) and can then be generalized to an
arbitrary diagonal entry (i,i) by pre- and post-multiplying by the permutation matrix
P which exchanges the first and the ith row and column. Alternatively, the result may
be obtained from the fact that A−1 = adj(A)

det(A) , with adj(A) the adjugate matrix of A,
together with the block determinant formula.

Perturbations by the addition or subtraction of low-rank matrices to M induce
modifications in its resolvent QM that involve the following Woodbury identity.

Lemma 2.7 (Woodbury). For A ∈R
p×p , U,V ∈R

p×n , such that both A and A+UVT

are invertible, we have

(A+UVT)−1 = A−1 −A−1U(In +VTA−1U)−1VTA−1.

Note importantly that, while (A+UVT)−1 is of size p× p, In +VTA−1U is of size
n × n. This will turn out useful, for n � p, to relate resolvents of large-dimensional
matrices to resolvents of more elementary and small-size matrices. In particular, for
n = 1, that is, UVT = uvT for U = u ∈ R

p and V = v ∈ R
p , the above identity

specializes to the Sherman–Morrison formula.

5 The Schur complement S = A − BD−1C is particularly known for its providing the block determinant
formula det

(
A B
C D

)
= det(D)det(S), already exploited in the proof of Sylvester’s identity, Lemma 2.3.
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Lemma 2.8 (Sherman–Morrison). For A ∈ R
p×p invertible and u,v ∈ R

p , A+uvT

is invertible if and only if 1+vTA−1u �= 0 and

(A+uvT)−1 = A−1 − A−1uvTA−1

1+vTA−1u
.

Besides,

(A+uvT)−1u =
A−1u

1+vTA−1u
.

Letting A = M− zIp , z ∈ C, and v = τu for τ ∈ R in the previous lemma leads to
the following rank-one perturbation lemma for the resolvent of M.

Lemma 2.9 (Silverstein and Bai [1995, Lemma 2.6]). For A,M ∈ R
p×p symmetric,

u ∈ R
p , τ ∈ R and z ∈ C\R,

∣∣∣trA(M+ τuuT− zIp)−1 − trA(M− zIp)−1
∣∣∣≤ ‖A‖

|ℑ(z)| .

Also, for A,M ∈R
p×p symmetric and nonnegative definite, u ∈R

p , τ > 0 and z < 0,6

∣∣∣trA(M+ τuuT− zIp)−1 − trA(M− zIp)−1
∣∣∣≤ ‖A‖

|z| .

It is interesting (and possibly counterintuitive at first) to note that the norm ‖u‖ and
the value τ do not intervene in the above inequality. In particular, irrespective of the
amplitude of the rank-one perturbation τuuT, under the conditions of the lemma,

mμ
M+τuuT

(z) = mμM(z)+O(p−1),

and thus, by the link between spectrum and Stieltjes transform, the spectral measure
of M is asymptotically close to that of M+ τuuT for any u and τ, in the large p limit.
This result can be understood through the following two arguments:

(i) for large p, the spectrum of M (say ‖M‖ = O(1) without loss of generality) is
only nontrivial if the vast majority of the p eigenvalues of M are of order O(1):
Thus, as p eigenvalues use a space of size O(1), they tend to aggregate;

(ii) by Weyl’s interlacing lemma presented next (Lemma 2.10) for symmetric
matrices, the eigenvalues of M and of M+ τuuT are interlaced
(i.e., . . . ≤ λi(M)≤ λi(M+ τuuT) ≤ λi+1(M)≤ . . .).

Together, Arguments (i) and (ii) thus indicate that the λi(M)s and λi(M+ τuuT)s are
asymptotically the same, at the possible exception of rightmost eigenvalue λp(M+

τuuT), which is free to be found away from λp(M). The rank-one perturbation τuuT

of M thus does not asymptotically affect the (limiting) spectral measure (the possible
presence of an outlying eigenvalue having no effect on the normalized counting mea-
sure). In passing, this remark unveils the important fact that, by definition, the spectral
measure, as well as its Stieltjes transform, is only able to capture the “bulk” behavior

6 Exercise 4 in Section 2.9 proposes a partial proof of Lemma 2.9 for the case z < 0.
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λi(M) λi+1(M) λi+2(M)

0
−1

λi(M+ τuuT) λi+1(M+ τuuT)

z

τ
uT

Q
M
(z
)u

Figure 2.1 Illustration of the eigenvalues of M and the rank-one perturbation
M+ τuuT of M, as well as the function τuTQM(z)u. Code on web: MATLAB and Python.

of the eigenvalues and not the behavior of individual eigenvalues. We will come back
to this point in more detail in Section 2.5.

Unlike nonsymmetric matrices, symmetric matrices enjoy the nice property of hav-
ing “stable” spectra with respect to rank-one perturbations. For z ∈ R, an eigenvalue
of M+ τuuT but not of M with, say, τ > 0, we have

0 = det(M+ τuuT− zIp) = det(Q−1
M (z)) ·det(Ip + τQM(z)uuT)

= det(Q−1
M (z)) ·

(
1+ τuTQM(z)u

)
,

where the second equality unfolds from factoring out Q−1
M (z) = M − zIp (which is

not singular as z is not an eigenvalue of M) and the third from Sylvester’s identity,
Lemma 2.3. As a consequence, z is one of the solutions to

−1 = τuTQM(z)u = τ
p

∑
i=1

|vTi u|2
λi(M)− z

, with M =
p

∑
i=1

λi(M)vivTi ,

which, seen as a function of z, has asymptotes at each λi(M) and is increasing
(from −∞ to ∞) on the segments (λi(M),λi+1(M)) (eigenvalues being sorted in
increasing order). The eigenvalues of M+ τuuT are therefore interlaced with those
of M, see Figure 2.1 for an illustration. This idea generalizes to generic low-rank
perturbation in the following lemma.

Lemma 2.10 (Weyl’s inequality, [Horn and Johnson, 2012, Theorem 4.3.1]). Let
A,B ∈R

p×p be symmetric matrices and the respective eigenvalues of A, B and A+B
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be arranged in nondecreasing order, that is, λ1 ≤ λ2 ≤ ·· · ≤ λp−1 ≤ λp . Then, for all
i ∈ {1,. . . ,p},

λi(A+B)≤ λi+ j(A)+ λp− j(B), j = 0,1,. . . ,p− i,

λi− j+1(A)+ λ j(B)≤ λi(A+B), j = 1,. . . ,i,

In particular, taking i = 1 in the first equation and i = p in the second equation,
together with the fact λ j(B) = −λp+1− j(−B) for j = 1,. . . ,p, implies

max
1≤ j≤p

|λ j(A)− λ j(B)| ≤ ‖A−B‖.

This last implication is fundamental as it shows that the difference in operator norm
‖A−B‖ controls (uniformly) the pairwise distance of the corresponding eigenvalues
|λ j(A)− λ j(B)|. Since ‖A − B‖ ≤ ‖A − B‖F , the same holds for the (numerically
simpler) Frobenius norm; however, it is in general too demanding to control the matrix
differences in Frobenius norm which, as a result, is less used in practice (in particular,
for most random matrix models X ∈R

p×p considered in this book ‖X‖F is in general
O(

√
p) larger than ‖X‖).7

Probability Identities
The results in the previous sections are algebraic identities useful to handle the resol-
vent QM of the deterministic matrix M. The second ingredient of random matrix
analysis lies in (asymptotic) probability approximations as the dimensions of M
increase. Quite surprisingly, most results essentially revolve around the convergence
of a certain quadratic form, which is often nothing more than a mere extension of the
law of large numbers.

Those quadratic form convergence results come under multiple forms. The histori-
cal form, due to Bai and Silverstein, sometimes referred to as the “trace lemma,” is as
follows.

Lemma 2.11 (Quadratic-form-close-to-the-trace, trace lemma, [Bai and Silverstein,
2010, Lemma B.26]). Let x ∈ R

p have independent entries xi of zero mean, unit
variance, and E[|xi |K ]≤ νK for some K ≥ 1. Then for A ∈ R

p×p and k ≥ 1,

E

[∣∣∣xTAx− trA
∣∣∣k
]
≤ Ck

[(
ν4 tr(AAT)

)k/2
+ ν2k tr(AAT)k/2

]
,

for some constant Ck > 0 independent of p. In particular, if ‖A‖ ≤ 1 and the entries
of x have bounded eighth-order moment,

7 This being said, the inequality ‖X‖ ≤ (tr(XXT)k )1/(2k), which coincides with ‖X‖ ≤ ‖X‖F for k = 1
and becomes an equality in the k → ∞ limit, is sometimes used (however with k ≥ 2) to control the
operator norm ‖X‖. Nonetheless, the approach is often quite cumbersome as it quickly becomes a heavy
combinatorial calculus for not too small k .
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E

[(
xTAx− trA

)4
]
≤ Cp2,

for some C > 0 independent of p, and consequently, as p → ∞,

1
p

xTAx− 1
p

trA a.s.−−→ 0.

This last result is rather intuitive. For A = Ip , this is simply an instance of the
(strong) law of large numbers. For generic A, first note that, by the independence
of the entries of x, E[xTAx] = trA. Exploiting the fact that Var[xTAx/p] = O(p−1)

we have that xTAx/p − trA/p → 0, but only in probability; since the variance cal-
culus involves exponentiating the entries xi of x up to power 4, they need to be of
finite fourth moment. The almost sure convergence is achieved by showing the faster
moment convergence E[(xTAx/p− trA/p)4] =O(p−2), which is the second statement
of the lemma and requires eighth-order exponentiation of the xis. The request for A
to be of bounded norm with respect to p in this case “stabilizes” the quadratic form
xTAx by maintaining its concentration properties.

Recalling from Remark 2.1 that ‖QM(z)‖ ≤ 1/dist(z,supp(μM)), Lemma 2.11 can
be exploited for A = QM(z) for all z away from the support of μM and all x indepen-
dent of QM(z). The core of the proofs of the main random matrix results is essentially
based on this last remark.

The quadratic-form-close-to-the-trace lemma is fundamental to already obtain
heuristics on the main random matrix identities, using 1

p xTAx � 1
p trA for x inde-

pendent of A with independent zero-mean unit-variance entries. In the rigorous proof
of many random matrix results presented in this book, the lemma allows for a care-
ful control on the fluctuations of 1

p xTAx for deterministic A (or, conditioned on A).
However, A may itself be random (as when A = QM(z) the resolvent of a random
matrix M). In this case, as a second step, the fluctuations of 1

p trA will also need
be controlled. The difficulty here, especially when A takes the form of an inverse
matrix A = QM(z), is to exploit the independence in the, say, columns of M nested
inside the matrix inverse (or other more elaborate function of the random matrix M).
This can be elegantly and universally dealt with using Burkholder inequality: denot-
ing Ei [M] the expectation of the random matrix M conditioned on its first (or last)
i columns, the sequence {(Ei −Ei−1)[M]}pi=1 forms a so-called martingale differ-
ence sequence; the fluctuations of such objects (which in a way extend the notion of
series of independent random variables) are well controlled by Burkholder inequality
as follows.

Lemma 2.12 (Burkholder inequality, Bai and Silverstein [2010, Lemma 2.13] ). Let
{Xi}∞

i=1 be a martingale difference for the increasing σ-field {Fi} and denote Ek the
expectation with respect to Fk . Then, for k ≥ 2, and some constant Ck only dependent
on k,

E

⎡
⎣
∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣
k
⎤
⎦≤ Ck

⎛
⎝E

[
n

∑
i=1

Ei−1[|Xi |2]
]k/2

+
n

∑
i=1

E[|Xi |k ]

⎞
⎠ .
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Lemma 2.12 will mostly be used in the context of proof details on the fluctuations
of technical random matrix functionals. It may however be substituted by other similar
tools such as the Gaussian Nash–Poincaré inequality (Lemma 2.14 in the “Gaus-
sian method” proof framework to be discussed in Section 2.2.2), which also involves
moment bounds but restricted to Gaussian random variables, or more conveniently
with concentration inequalities (see Section 2.7 for detail) which no longer involve
moments (which can be cumbersome to compute) but (exponential) tail bounds.

These identities constitute the main technical ingredients needed to understand the
proofs of both historical and more recent random matrix results. The next section
introduces the most fundamental of those, which will be repeatedly recalled in the
remainder of the book.

2.2.2 The Marc̆enko–Pastur and Semicircle Laws

We start by illustrating how the aforementioned tools can be used to prove the two
most popular results in random matrix theory: the Marc̆enko–Pastur law and the
Wigner semicircle law.

To simplify the exposition of the results, we will use the notation for deterministic
equivalents introduced in Notation 1. That is, for X,Y ∈R

n×n , we will denote X ↔ Y
if, for all unit norm A ∈R

n×n and a,b ∈R
n , 1

n trA(X−Y)
a.s.−−→ 0, aT(X−Y)b a.s.−−→ 0

and ‖E[X−Y]‖ → 0.
Most of the results involve Stieltjes transforms mμ(z) of a real probability measure

with support supp(μ) ⊂ R. Since Stieltjes transforms are such that mμ(z) > 0 for
z < infsupp(μ), mμ(z) < 0 for z > supsupp(μ) and ℑ[z] · ℑ[mμ(z)] > 0 if z ∈ C \R
(see Definition 3 and the discussions thereafter), it will be convenient to introduce the
following shortcut notation.

Notation 2 (“Valid” Stieltjes transform pair). For A⊂C, z ∈A and m ∈C, we denote
Z(A) the set of scalar pairs

Z(A) =
{
(z,m) ∈ A×C, such that (ℑ[z] ·ℑ[m] > 0 if ℑ[z] �= 0)

or (m > 0 if z < infAc ∩R) or (m < 0 if z > supAc ∩R)
}
.

In particular, for convenient choices of A (not always C \ supp(μ)), many results
presented next will involve pairs (z,m(z)) defined as the unique solution of an implicit
equation within Z(A) (while the implicit equation may, in general, have more than one
solution in C×C).

The Marc̆enko–Pastur Law
We present the Marc̆enko–Pastur law under the slightly modified form of a determin-
istic equivalent for the resolvent Q(z).

Theorem 2.4 (Marčenko and Pastur [1967]). Let X ∈ R
p×n with i.i.d. columns xi s

such that xi has independent entries with zero mean, unit variance, and satisfying
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some light tail condition8 and denote Q(z) = ( 1
n XXT− zIp)−1 the resolvent of 1

n XXT.
Then, as n,p → ∞ with p/n → c ∈ (0,∞),

Q(z)↔ Q̄(z), Q̄(z) = m(z)Ip , (2.8)

with (z,m(z)) the unique solution in Z(C\ [(1−√
c)2,(1+

√
c)2]) (see Notation 2) of

zcm2(z)− (1− c− z)m(z)+1 = 0. (2.9)

The function m(z) is the Stieltjes transform of the probability measure μ given
explicitly by

μ(dx) = (1− c−1)+δ0(x)+
1

2πcx

√
(x − E−)+(E+− x)+ dx (2.10)

where E± = (1±√
c)2 and (x)+ = max(0,x), and is known as the Marc̆enko–Pastur

distribution. In particular, with probability one, the empirical spectral measure μ 1
n XXT

converges weakly to μ.

Figure 2.2 depicts the density of the Marc̆enko–Pastur distribution for different
values of c = lim p/n. For a “fixed” dimension p, the ratio c decreases as the number of
samples n grows large, so that the eigenvalues of 1

n XXT become more “concentrated”
(their spread is given by the length of the support [(1−√

c)2,(1+
√

c)2]) around the
(unique) population covariance matrix eigenvalue (when seeing X as a collection X =

[x1,. . . ,xn ] of p-dimensional data vectors with E[xi ] = 0 and Cov[xi ] = Ip), which is
equal to 1.

Note that the “asymmetric bell” shape of the Marc̆enko–Pastur law gets increas-
ingly skewed toward large values as c increases and that, for c = 1, the left-edge value
has the very peculiar behavior to diverge. This c = 1 setting is referred to as the “hard
edge” scenario explained by the fact that the limiting density becomes

1
2πx

√
x+(4− x)+ ∼ 1

π
√

x
,

as x ↓ 0 and thus behaves as 1/
√

x near the left edge (the left edge being at x = 0)
rather than as

√
x − (1−√

c)2 when c �= 1 (the left edge being at x = (1−√
c)2, see

8 For this result, and those related, various tail conditions may be considered, for example, a uniform finite
moment of order k for some k > 2 (usually k = 4+ ε for any ε > 0 is sufficient). Depending on the
proof approach though, stronger conditions may be requested, such as a sub-Gaussian tail behavior, a
concentration of measure-type condition, etc. Determining the minimalistic conditions for the results to
hold has been of long interest to mathematicians, as demonstrated by the huge impact of the complete
proof by Tao and Vu [2008] of the full-circle law theorem under no other condition than the identical
distribution of the zero-mean and unit-variance entries (see also [Bordenave and Chafaï, 2014]). Yet,
for machine learning purposes, these are of minor interest: We shall systematically assume “sufficiently
smooth” (and technically convenient) conditions to hold, without hampering the practical applicability
of the results. This being said, it is already interesting to observe that, here and in the vast majority of the
upcoming results, the matrix entries need not be identically distributed, and that only the statistical mean
and cross-variance of the entries dictate the limiting spectral behavior. We presently assume that X has
i.i.d. columns for technical convenience in the proof – for instance, to exploit the (rough) union bound
in (2.20); this condition can be generalized to “independent columns” by considering, for example, that
the xi s are sub-Gaussian random vectors [Vershynin, 2018, Section 3.4].

https://doi.org/10.1017/9781009128490.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128490.003


52 2 Random Matrix Theory

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

x

µ
(d

x
)

c = 0.1
c = 0.5
c = 1
c = 2

Figure 2.2 Marc̆enko–Pastur distribution for different values of c. Note the peculiar “hard-edge”
behavior at c = 1, quite unlike other values of c.

also Exercise 6 for more detailed discussions on this point). When c > 1, a mass at
zero is created (of weight 1− c−1) while, possibly unexpectedly, the left edge of the
main “bulk” of nonzero eigenvalues moves towards the right, leaving the open segment
(0,(1−√

c)2) empty.9

Proof of Theorem 2.4. Before going into the details of the proof, we first give a few
intuitive arguments.

Intuitive idea
A first heuristic derivation, essentially due to Bai and Silverstein, consists in itera-
tively “guessing” the form of Q̄(z) = F−1(z) for some matrix F(z). To this end, from
Lemma 2.1, it first appears that, writing X = [x1,. . . ,xn ],

Q(z)− Q̄(z) = Q(z)

(
F(z)+ zIp − 1

n
XXT

)
Q̄(z)

= Q(z)

(
F(z)+ zIp − 1

n

n

∑
i=1

xixTi

)
Q̄(z).

For Q̄(z) to be a deterministic equivalent for Q(z), we wish, in particular, that
1
p trA(Q(z)− Q̄(z))

a.s.−−→ 0, for A arbitrary, deterministic, and such that ‖A‖ = 1.
That is,

1
p

tr(F(z)+ zIp)Q̄(z)AQ(z)− 1
n

n

∑
i=1

1
p

xTi Q̄(z)AQ(z)xi
a.s.−−→ 0. (2.11)

9 This hard-edge phenomenon is in fact not just an amusing artifact of the theory: It indeed has deep con-
sequences in practice and notably explains the so-called double-descent phenomenon lately evidenced in
large-dimensional statistical inference (see, e.g., [Nakkiran et al., 2020, Mei and Montanari, 2021, Deng
et al., 2021, Liao et al., 2020]).
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We recognize xTi Q̄(z)AQ(z)xi/p as a quadratic form on which we would like to use
Lemma 2.11 to turn it into a trace term independent of xi . Yet, Lemma 2.11 cannot be
applied directly as Q(z) depends on xi . To address this issue, we then use Lemma 2.8
to write

Q(z)xi =
Q−i(z)xi

1+ 1
n xTi Q−i(z)xi

,

where Q−i(z) = ( 1
n ∑ j �=i x jxTj − zIp)−1 is independent of xi . Now legitimately

applying Lemma 2.11, we find that

1
p

xTi Q̄(z)AQ(z)xi =
1
p xTi Q̄(z)AQ−i(z)xi

1+ 1
n xTi Q−i(z)xi

�
1
p trQ̄(z)AQ−i(z)

1+ 1
n trQ−i(z)

. (2.12)

From Lemma 2.9, normalized traces involving Q−i(z) and Q(z) are asymptotically
identical (since their inverse only differs by the rank-one matrix 1

n xixTi ) and thus this
further reads

1
p

xTi Q̄(z)AQ(z)xi �
1
p trQ̄(z)AQ(z)

1+ 1
n trQ(z)

.

Getting back to (2.11), we thus end up with the approximation

1
p

tr(F(z)+ zIp)Q̄(z)AQ(z)�
1
p trQ̄(z)AQ(z)

1+ 1
n trQ(z)

, (2.13)

(the argument of the right-hand side summation over i no longer depends on i, so the
sum symbol vanishes). As a consequence, we can now “guess” the form of F(z): if it
is to exist, F(z) must be of the type

F(z)�
(

−z+
1

1+ 1
n trQ(z)

)
Ip ,

for the approximation above to hold. To close the loop, taking A = Ip , 1
p trQ(z)

appearing in this display must be well approximated by m(z)≡ 1
p trQ̄(z)= 1

p trF−1(z)
so that

1
p

trQ(z)� m(z) =
1

−z+ 1
1+ p

n
1
p trQ(z)

� 1

−z+ 1
1+ p

n m(z)

, (2.14)

and we thus finally have

Q̄(z) = F−1(z) = m(z)Ip ,

where, in the large n,p limit, m(z) is solution to

m(z) =

(
−z+

1
1+ cm(z)

)−1

,

or equivalently

zcm2(z)− (1− c− z)m(z)+1 = 0.
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This equation has two solutions defined via the two values of the complex square root
function (letting z = ρeıθ for ρ≥ 0 and θ ∈ [0,2π),

√
z ∈ {±√

ρeıθ/2})

m(z) =
1− c− z

2cz
+

√
((1+

√
c)2 − z)((1−√

c)2 − z)
2cz

,

only one of which is such that ℑ[z]ℑ[m(z)] > 0 as imposed by the definition of Stieltjes
transforms, see again Definition 3 and the discussion after that. Now, from the inverse
Stieltjes transform theorem, Theorem 2.1, we find that m(z) is the Stieltjes transform
of the measure μ with

μ([a,b]) =
1
π

lim
y↓0

∫ b

a
ℑ[m(x+ ıy)]dx,

for all continuity points a,b ∈ R of μ. The term under the square root in m(z) being
nonnegative only in the set [(1−√

c)2,(1+
√

c)2] (and thus of nonreal square root),
the latter defines the support of the continuous part of the measure μ with density√

((1+
√
c)2−x)(x−(1−√

c)2)
2cπx at point x in the set. The case x = 0 brings a discontinuity

in μ with weight equal to

μ({0}) = − lim
y↓0

ıym(ıy) =
c−1

2c
± c−1

2c
,

where the sign is established by a second-order development of zm(z) in the neigh-
borhood of zero: that is, “+” for c > 1 inducing a mass 1−1/c for p > n, or “−” for
c < 1 in which case μ({0}) = 0 and μ has no mass at zero.

Detailed proof of Theorem 2.4
Having heuristically identified Q̄(z), we shall now use sound mathematical tools to
prove that, indeed, Q̄(z) is a deterministic equivalent for Q(z) in the sense of the
theorem statement. Let us first show that

E[Q(z)] = Q̄(z)+ o‖·‖(1), (2.15)

where o‖·‖(1) denotes a matrix term of vanishing operator norm as n,p → ∞.

Convergence in mean. For mathematical convenience, we will take z < 0 in what
follows. Since Q(z) and Q̄(z) in the theorem statement are complex analytic functions
for z /∈ R

+ (matrix-valued Stieltjes transforms are analytic), by Vitali’s convergence
theorem, Theorem 2.3, obtaining the convergence results on R

− (in fact even on a
restricted local subset of R−) is equivalent to obtaining the result on all of C\R+.

We proceed in two steps by first introducing the intermediate deterministic
quantities

α(z)≡ 1
n

trE[Q−1(z)], ¯̄Q(z)≡
(
−z+

1
1+α(z)

)−1

Ip , (2.16)

where we denote Q− j(z) ≡ ( 1
n ∑i �= j xixTi − zIp)−1 the “leave-one-out” version of

Q(z) by removing the contribution from x j and use the fact that the distribution of
Q− j is independent of the index j, as a consequence of the i.i.d. ness of the xis.
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From Lemma 2.1, we have (the argument z in α(z), Q(z) and ¯̄Q(z) is dropped
when confusion is not possible)

E[Q− ¯̄Q] = EQ
(

Ip
1+α

− 1
n

XXT
)

¯̄Q =
E[Q]

1+α
¯̄Q− 1

n
E[QXXT] ¯̄Q

=
E[Q]

1+α
¯̄Q−

n

∑
i=1

1
n
E[QxixTi ]

¯̄Q =
E[Q]

1+α
¯̄Q−

n

∑
i=1

E

[
Q−i

1
n xixTi

1+ 1
n xTi Q−ixi

]
¯̄Q,

where we applied Lemma 2.8 to obtain the last equality.
Since we expect 1

n xTi Q−ixi to be close to α (as a consequence of Lem-
mas 2.11 and 2.12), we rewrite

Q−i
1
n xixTi

1+ 1
n xTi Q−ixi

=
Q−i

1
n xixTi

1+α
−

Q−i
1
n xixTi (

1
n xTi Q−ixi −α)

(1+α)(1+ 1
n xTi Q−ixi)

,

so that

E[Q− ¯̄Q] =
E[Q]

1+α
¯̄Q−

n

∑
i=1

E
[
Q−i

1
n xixTi

] ¯̄Q
1+α

+
n

∑
i=1

E
[
Q 1

n xixTi di

] ¯̄Q
1+α

=
E[Q]

1+α
¯̄Q−

n

∑
i=1

E
[
Q−i

1
n xixTi

] ¯̄Q
1+α

+
E
[
Q 1

n XDXT
] ¯̄Q

1+α
,

where we introduced D = diag{di}ni=1 for di =
1
n xTi Q−ixi − α, and used again

Lemma 2.8 to write
Q−i

1
n xixTi

1+ 1
n xTi Q−ixi

= Q 1
n xixTi in the first equality. Since E[Q−ixixTi ] =

E[Q−i ], this further reads

E[Q− ¯̄Q] =
1
n

n

∑
i=1

(E[Q]−E[Q−i ])
¯̄Q

1+α
+

E
[

1
n QXDXT

] ¯̄Q
1+α

. (2.17)

For the first right-hand side term, again from Lemmas 2.1 and 2.8,

1
n

n

∑
i=1

E[Q−Q−i ] = −1
n

n

∑
i=1

E

[
Q

1
n

xixTi Q−i

]

= −1
n

n

∑
i=1

E

[
Q

1
n

xixTi Q
(

1+
1
n

xTi Q−ixi

)]

= −1
n
E

[
Q

1
n

XD2XTQ
]
, (2.18)

where D2 = diag
{

1+ 1
n xTi Q−ixi

}n
i=1 and thus

E[Q− ¯̄Q] = −1
n
E

[
Q

1
n

XD2XTQ
] ¯̄Q

1+α
+

E
[

1
n QXDXT

] ¯̄Q
1+α

. (2.19)

It remains to show that the right-hand side terms vanish in the large p,n limit.
For the first term, note that

0 � Q
1
n

XD2XTQ � Q
1
n

XXTQ · max
1≤i≤n

[D2]ii
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in the order of symmetric matrices. Since Q 1
n XXT = Ip + zQ which is of bounded

operator norm (by 2) and ‖Q‖ ≤ 1/|z|, controlling ‖E[Q 1
n XD2XTQ]‖ boils down to

controlling E[maxi [D2]ii ]. This can be established in various ways. For instance, from
the union bound and the i.i.d. nature of the xis,

P

(
max
i
[D2]ii > t

)
≤ n ·P([D2]11 > t). (2.20)

Now, by Markov’s inequality P(X > t)≤ E[X k ]/tk for every k (with X,t > 0) and the
moment inequality in Lemma 2.11 for, say k = 4, P(maxi [D2]ii > t) may be bounded
by a function decreasing as t−4, for all t large, and of order n−1. Specifically, for k
even,

P

(
[D2]11 > t +1+

1
n

trQ−1

)
≤

E
[
( 1
n xT1Q−1x1 − 1

n trQ−1)
k
]

tk

≤
EQ−1Ex1

[
( 1
n xT1Q−1x1 − 1

n trQ−1)
k
]

tk

where we isolated the expectation over Q−1 from that over x1 to let appear the differ-
ence 1

n xT1Q−1x1 − 1
n trQ−1 which, conditionally on Q−1 of bounded norm, we know

is small and can be controlled using Lemma 2.11:

Ex1

[∣∣∣∣1n xT1Q−1x1 − 1
n

trQ−1

∣∣∣∣
4
]

≤ C
n4 tr2(Q2

−1),

for some constant C > 0, which depends on the fourth- and eighth-order moments
of the entries of x, but which is independent of n,p, according to Lemma 2.11 with
k = 4. Since ‖Q−1‖ ≤ 1/|z| (note that this key boundedness property of the resolvent
is used to simplify the analysis, here and in most random matrix proofs), we have
tr2(Q2

−1)≤ p2/|z|4, 1+ 1
n trQ−1 ≤ 1+ p/(n|z|), and therefore

P([D2]11 > t)≤ Cp2

n4|z|4 · t4

holds for all t >C′ for some C′ > 0 that depends on n,p only via their ratio p/n. Finally,
since

E[max
i
[D2]ii ] =

∫ C ′

0
P(max

i
[D2]ii > t)dt +

∫ ∞

C ′
P(max

i
[D2]ii > t)dt

≤ C′+ n
∫ ∞

C ′
P([D2]11 > t)dt ≤ C′+

Cp2

n3|z|4
∫ ∞

C ′
t−4 dt < ∞

we find that E[maxi [D2]ii ] is bounded. Note that this also proves, by (2.18), that
‖E[Q−Q−1]‖ = O(n−1). Consequently, due to the leading 1/n factor in front of the
first right-hand side term of (2.19), this term vanishes as n,p → ∞.10

10 Another proof option could have been to derive a moment inequality for the random variable |xT1 Q−1x1 −
trE[Q−1]|k rather than for |xT1 Q−1x1 − trQ−1|k , which would have involved Burkholder inequality used
a bit later in the proof to control the fluctuations of trQ−1 − trEQ−1. But, as we saw, the fundamental
boundedness of ‖Q−1‖ discards here the need to control the fluctuations of Q−1.
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To now handle the second right-hand side term in (2.19), one needs to control the
norm of 1

n QXDXT ¯̄Q. This is not a symmetric matrix, but E[Q− ¯̄Q] is. We may rewrite
(2.19) as the half-sum of itself and its transpose and we are thus left to controlling the
operator norm of 1

n QXDXT ¯̄Q+ 1
n

¯̄QXDXTQ. Using the matrix inequalities ABT +

BAT � AAT +BBT (from (A − B)(A − B)T � 0) and ABT +BAT � −AAT − BBT

(from (A+B)(A+B)T � 0), it suffices to bound the norm of

E

[
nε

n
QXD2XTQ

]
+E

[
n−ε

n
¯̄QXXT ¯̄Q

]

where the division of the n−2 constant into n−1+ε and n−1−ε for some ε ∈ (0,1/2]
will appear as essential, since both terms may not have the same orders of magnitude
(which depend on the so far unknown magnitude of the entries of D). The second term
above is easily seen to be of order O(n−ε). As for the first term, we write, similar to
the bound on D2,

nεE[‖D‖2] = nεE

[
max
i

d2
i

]

≤ nε
∫ C ′n−θ−ε

0
P

(
max
i

d2
i > t

)
dt + n1+ε

∫ ∞

C ′n−θ−ε
P
(
d2

1 > t
)

dt

≤ C′n−θ + n1+ε
∫ ∞

C ′n−θ−ε
P

(∣∣∣∣1n xT1Q−1x1 −α

∣∣∣∣
2

> t

)
dt,

for some C′ > 0 and θ ∈ (0,1/2] to be determined, di =
1
n xTi Q−ixi − α and α =

1
n trE[Q−1] > 0. Here, since α involves an expectation over Q−1 (and not Q−1 itself
as in the bound of ‖D2‖), one needs be more precise in the control of the fluctuations
of both x1 and Q−1. Specifically, we write

E

∣∣∣∣1n xT1Q−1x1 − 1
n

trE[Q−1]

∣∣∣∣
4

= E

∣∣∣∣1n xT1Q−1x1 − 1
n

trQ−1 +
1
n

tr(Q−1 −E[Q−1])

∣∣∣∣
4

≤ 8
n4E

[∣∣∣xT1Q−1x1 − trQ−1

∣∣∣4
]
+

8
n4E

[
|trQ−1 − trE[Q−1]|4

]
,

which we will show to be of order O(n−2). For the first right-hand side term, this
follows from Lemma 2.11. For the second term, which does not involve a quadratic
form but the fluctuations of the columns of X inside the intricate functional trQ−1, we
will resort to Burkholder inequality, Lemma 2.12. For the sake of further reuse, we
will prove a slightly more general result on E[| trQ−1 − trE[Q−1]|4]: First note that
by Lemma 2.9 we may freely replace Q−1 with Q in the result without altering the
desired control, and that we may generalize the control to E[| trAQ−1 − trE[AQ−1]|4]
for arbitrary A deterministic of bounded norm (again, this will be useful later).
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Specifically, under the notation of Lemma 2.12, observe that we may write

1
p

trA(EQ−Q) =
n

∑
i=1

Ei

[
1
p

trAQ
]
−Ei−1

[
1
p

trAQ
]

=
1
p

n

∑
i=1

(Ei −Ei−1) [trA(Q−Q−i)] ,

(since Ei [trAQ−i ] = Ei−1[trAQ−i ]) for Fi the σ-field generating the columns
xi+1,. . . ,xn of X and with the convention E0[ f (X)] = f (X). This forms a martingale
difference sequence so that we fall under the scope of Burkholder inequality. Now,

from the identity Q = Q−i − 1
n

Q−ixixTi Q−i

1+ 1
n xTi Q−ixi

(Lemma 2.8),

(Ei −Ei−1)

[
1
p

trA(Q−Q−i)

]
= −(Ei −Ei−1)

1
pn xTi Q−iAQ−ixi

1+ 1
n xTi Q−ixi

,

which is order O(p−1). As a consequence, from Lemma 2.12,

E

[∣∣∣∣1p trA(Q−EQ)

∣∣∣∣
4
]
= O(n−2). (2.21)

Of course, this, in particular, implies that E[| 1
p tr(Q−1 − EQ−1)|4] = O(n−2), as

desired.
Having obtained this desired control on the moments, it finally follows from

Markov’s inequality that

P

(∣∣∣∣1n xT1Q−1x1 − 1
n

trE[Q−1]

∣∣∣∣
2

> t

)
≤ Ct−2n−2,

for all t > C′ and for some constant C′,C > 0. Therefore,

nεE[‖D‖2] ≤ C′n−θ +CC′n2ε+θ−1.

By choosing, for instance, ε = θ = 1/4, we thus conclude that11

‖E[Q]− ¯̄Q‖ ≤ Cn−1/4, with ¯̄Q =

(
−z+

1
1+α(z)

)−1

Ip . (2.22)

The introduction of the intermediate deterministic equivalent ¯̄Q allowed us to com-
pare Q to Q̄ by exploiting the more accessible statistical relation between Q and
E[Q]. We are now in position to compare the deterministic matrices ¯̄Q and Q̄. To

11 The obtained bound is of order O(n−1/4), which is in fact suboptimal and could (at least) be improved
to O(n−1/2). It is interesting to note here that this loss in optimality follows from the very rough union
bound P(maxi d2

i > t) ≤ nP(d2
i > t), which the fourth-order moment bound in O(n−2) applied in

Markov’s inequality does not optimally compensates. Alternative approaches to avoid this suboptimality
are (i) to either evaluate higher-order moments (in general, the moment of order 2k is bounded byCn−k )
but this may come at the cost of cumbersome calculus; or more conveniently (ii) to obtain exponential
decay bounds of P(d2

i > t) of the order O(e−nα
), which automatically annihilate the polynomial loss

induced by the extra factor n. Item (ii) partially justifies the relevance of a concentration of measure
framework for random matrices, which we will detail in Section 2.7.
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this end, recalling that Q̄ is defined implicitly through Q̄ = m(z)Ip with m(z) =
(−z+ 1

1+cm(z) )
−1 = 1

p trQ̄(z), we write, again with Lemma 2.1,

¯̄Q− Q̄ =
α(z)− cm(z)

(1+ cm(z))(1+α(z))
¯̄QQ̄,

so that

|α(z)− cm(z)|=
∣∣∣∣1n tr

(
E[Q−1(z)]− ¯̄Q(z)

)
+

1
n

tr
(

¯̄Q(z)− Q̄(z)
)∣∣∣∣

= |α(z)− cm(z)| ·
1
n tr( ¯̄Q(z)Q̄(z))

(1+ cm(z))(1+α(z))
+O(n− 1

4 ),

where we used the fact that ‖E[Q−1]− ¯̄Q‖≤ ‖E[Q−1 −Q]‖+‖E[Q]− ¯̄Q‖=O(n−1/4)

from (2.22). Since α(z) > 0 for z < 0, we have

0 ≺
¯̄Q(z)

1+α(z)
≺ Ip

1− z
,

so that

0 <
1
n tr( ¯̄Q(z)Q̄(z))

(1+ cm(z))(1+α(z))
<

1
1− z

cm(z)
1+ cm(z)

< 1,

and therefore, since m(z) > 0 for z < 0,

|α(z)− cm(z)| → 0,

which concludes the proof of (2.15), and thus of the “convergence in mean” part of
Theorem 2.4.

Concentration and almost sure convergence. To now prove the almost sure
convergence 1

p trA(Q− Q̄)
a.s.−−→ 0 and aT(Q− Q̄)b a.s.−−→ 0, it suffices to show

1
p

trA(Q−EQ)
a.s.−−→ 0, aT(Q−EQ)b a.s.−−→ 0.

Both results can be proved similarly using Burkholder inequality, Lemma 2.12
(which is the historical approach proposed by Bai and Silverstein [2010]). We have
indeed already proved in (2.21) that E[| trA(Q −EQ)/p|4] = O(n−2) so that, from
Markov’s inequality (i.e., P(|X | > t)≤E[|X |k ]/tk ) and the Borel–Cantelli lemma (i.e.,
P(|Xn | > t) = O(n−�) for some � > 1 for all t > 0 implies Xn

a.s.−−→ 0 as n → ∞),

1
p

trA(Q−EQ)
a.s.−−→ 0,

as requested. The convergence aT(Q−EQ)b a.s.−−→ 0 can be obtained similarly.

A few remarks on Theorem 2.4 and its proof are in order.

Remark 2.3 (On the convergence rates). In the course of the proofs above, we saw
examples of a general concentration trend for linear statistics and bilinear/quadratic
forms of random matrices. We shall indeed typically have for most of the models of
random matrices X ∈ R

n×n under study in this book that
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• linear eigenvalue statistics 1
n ∑n

i=1 f (λi(X)) for sufficiently well-behaved f (so,
for instance, 1

n trQX(z) = 1
n ∑i(λi(X)− z)−1) converge at speed O(1/n) (their

variance scales like O(1/n2)). From a central-limit theorem viewpoint, this is as
fast as it can get. Indeed, X is maximally composed of order O(n2) “degrees of
freedom” and thus, by the central limit theorem, fluctuations are (at most) at speed
O(1/

√
n2) = O(1/n).

• bilinear forms aT f (X)b, where f (X) = Udiag{ f (λi(X))}ni=1UT (in the spectral
decomposition of X) and a,b ∈ R

n of unit norm typically converge at a slower
O(1/

√
n) speed. This weaker convergence speed can be understood by considering

the case where a = b = e1 with e1 the canonical basis vector and f (t) = (t − z)−1:
In this case, by Lemma 2.6,

aT f (X)b = eT1Q(z)e1 = [Q(z)]11 = (X11 − z −X1,−1(X−1 − zIn−1)
−1X−1,1)

−1

(2.23)
the fluctuation of which is dominated by that of X11 and typically of order
O(1/

√
n).

This remark is particularly interesting as it indicates, from a statistics viewpoint, that
for data/feature matrix X ∈ R

p×n , asymptotic approximations may gain accuracy by
doubly exploiting the degrees of freedom in both the sample (n) and feature (p) sizes.

Remark 2.4 (On the assumptions on X). Let us pursue here on footnote 8 to clarify
the “light tail condition” phrase in Theorem 2.4. The Marc̆enko–Pastur law has been
widely generalized and several times proven using different techniques. For instance,
Adamczak [2011], O’Rourke [2012] assume that the Xi js are “weakly” dependent in
the sense that their correlation or higher-order cross-moments vanish at a certain con-
trolled speed as n,p → ∞. Alternatively, the works of Bai and Silverstein [2010] tend to
assume that the entries of X are not necessarily identically distributed; in this case, an
additional condition on the tails P(|Xi j | > t) of the probability measures of the entries
(for instance, a uniform bound on some moment higher than 2) is needed. El Karoui
[2009] provides a first result, which assumes that the columns xi s of X = [x1,. . . ,xn ]
are independent concentrated random vectors, an assumption that we will thoroughly
discuss in Section 2.7; (very) roughly speaking, concentrated random vectors x ∈ R

p

can be written as x = ϕ(z), where z ∈R
p has i.i.d. entries either following a Gaussian

law or of bounded support, and ϕ : Rp →R
p is any 1-Lipschitz function: This assump-

tion essentially maintains the p degrees of freedom in x (arising from z), while allowing
for strong correlation between the entries of x. In this case, the Marc̆enko–Pastur law
is indeed still valid if x = ϕ(z) has zero mean and identity covariance.

One may wonder how the (higher-order) moment conditions on the entries of X
could be relaxed as this seems to suggest that moment bounds can no longer be used.
The approach historically proposed by Bai and Silverstein (well documented in Bai
and Silverstein [2010]) relies on a truncation-and-centering approach which consists
in replacing X by a matrix X̃ defined as X̃i j = Xi j ·1|Xi j>t(n)| for a certain threshold

t, typically (a well-chosen) function of n. Being “truncated,” the entries of X̃ have
moments of higher orders (of all orders if t(n) is constant), so that moment bounds
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can be used on X̃. It then remains to show that the functional of X of interest (e.g., the
empirical spectral measure of 1

n XXT) is asymptotically the same as that of X̃ as n,
p → ∞. Other, possibly more convenient, techniques exist, which prove a result on
X having standard Gaussian entries (for instance, using Stein’s identity E[ξ f (ξ)] =
E[ f ′(ξ)] for ξ ∼ N (0,1); see Lemma 2.13) before using specific controls on the
deviations from the Gaussian case (such as generalized Stein’s lemma) to extrapolate
between Gaussian and non-Gaussian cases. This is the subject of the next section.

The “Gaussian Method” Alternative
Pastur and Shcherbina [2011] propose an alternative proof scheme for Theorem 2.4,
based on a two-step approach: (i) a proof for Gaussian X and (ii) an interpolation
method to non-Gaussian X; together known as the “Gaussian method.” Although less
intuitive when compared to the Bai and Silverstein’s approach presented in the previ-
ous section, this method is much more flexible as it can handle more structured random
matrix models, in particular, when the “guessing” part (of the ultimate deterministic
equivalent Q̄ for Q) of Bai–Silverstein’s method is nontrivial.

The proof in the Gaussian case itself is handled in two steps (or more precisely
is based on two ingredients): (i-a) convergence in mean of the resolvent with Stein’s
lemma, Lemma 2.13, and (i-b) control of the variance with the Nash–Poincaré inequal-
ity, Lemma 2.14, to establish concentration and convergence (in probability or almost
surely) of trace and bilinear forms.

Convergence in mean by Stein’s lemma.

Lemma 2.13 (Stein [1981]). Let x ∼ N (0,1) and f : R → R a continuously dif-
ferentiable function having at most polynomial growth and such that E[ f ′(x)] < ∞.
Then,

E[x f (x)] = E[ f ′(x)]. (2.24)

In particular, for x ∼ N (0,C) with C ∈ R
p×p and f : Rp → R a continuously dif-

ferentiable function with derivatives having at most polynomial growth with respect
to p,

E[[x]i f (x)] =
p

∑
j=1

[C]i jE

[
∂ f (x)
∂[x] j

]
, (2.25)

where ∂/∂[x]i indicates differentiation with respect to the ith entry of x; or, in vector
form

E[x f (x)] = CE[∇ f (x)], (2.26)

with ∇ f (x) the gradient of f (x) with respect to x.
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The lemma, sometimes referred to as the integration-by-parts formula for Gaussian
variables, simply follows from

E[x f (x)] =
∫

x f (x)e− 1
2 x

2
dx

= [− f (x)e− 1
2 x

2
]∞−∞ +

∫
f ′(x)e− 1

2 x
2
dx = E[ f ′(x)]

with integration by parts
∫

u′v = [uv]−
∫

uv′ for u(x) = −e− 1
2 x

2
and v(x) = f (x).

To prove (2.15) in the Gaussian case, let us thus assume X Gaussian, that is, Xi j ∼
N (0,1) and exploit Lemma 2.13. First observe that Q = 1

z
1
n XXTQ− 1

z Ip , so that

E[Qi j ] =
1
zn

n

∑
k=1

E[Xik [X
TQ]k j ]−

1
z
δi j ,

in which E[Xik [XTQ]k j ] = E[x f (x)] for x = Xik and f (x) = [XTQ]k j . Therefore,
from Lemma 2.13 and the fact that ∂Q = − 1

n Q∂(XXT)Q,12

E[Xik [X
TQ]k j ] = E

[
∂[XTQ]k j
∂Xik

]

= E[ET
ikQ]k j −E

[
1
n

XTQ(EikXT+XET
ik )Q

]
k j

= E[Qi j ]−E

[
1
n
[XTQ]ki [X

TQ]k j

]
−E

[
1
n
[XTQX]kkQi j

]

for Ei j the indicator matrix with entry [Ei j ]lm = δil δ jm , so that, summing over k,

1
z

1
n

n

∑
k=1

E[Xik [X
TQ]k j ] =

1
z
E[Qi j ]−

1
z

1
n2E[Qi j tr(QXXT)]

− 1
z

1
n2E[QXXTQ]i j . (2.27)

It is not too difficult to see that the term in the second line has vanishing opera-
tor norm (of order O(n−1)) as n,p → ∞ (see later Remark 2.5, which shows that for
complex-valued Gaussian X this term does not even appear in the derivation). Also
recall that tr(QXXT) = np+ zn trQ. As a result, matrix-wise, we obtain

E[Q]+
1
z

Ip = E[X·k [X
TQ]k ·] =

1
z
E[Q]− 1

z
1
n
E[Q(p+ z trQ)]+ o‖·‖(1),

where X·k and Xk · is the kth column and row of X, respectively. As the random 1
p trQ

is expected to converge to some deterministic m(z) as n,p → ∞, it can be taken out
of the expectation in the limit so that, gathering all terms proportional to E[Q] on the
left-hand side, we finally have

E[Q](1− p/n− z − p/n · zm(z)) = Ip + o‖·‖(1),

which, taking the trace to identify m(z), concludes the proof for the Gaussian case.

12 This is the matrix version of d(1/x) = −dx/x2.
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Concentration and almost sure convergence by Nash–Poicaré inequality. To
prove the concentration and the almost sure convergence of traces and bilinear forms of
the resolvent in the case of Gaussian X, one may then use the powerful Nash–Poincaré
inequality as follows.

Lemma 2.14 (Nash–Poincaré inequality, [Pastur, 2005]). For x ∼ N (0,C) with C ∈
R

p×p and f : Rp → R continuously differentiable with derivatives having at most
polynomial growth with respect to p,

Var[ f (x)]≤
p

∑
i, j=1

[C]i jE

[
∂ f (x)
∂[x]i

∂ f (x)
∂[x] j

]
= E

[
(∇ f (x))TC∇ f (x)

]
,

where we denote ∇ f (x) the gradient of f (x) with respect to x.

The proof of Lemma 2.14 is quite elegant and is provided as an exercise, in
Exercise 5 of Section 2.9.

In the present case, taking f (X) = 1
p trAQ for Gaussian X with Xi j ∼ N (0,1),

Var

[
1
p

trAQ
]
≤ 1

p2

p

∑
i=1

n

∑
j=1

E

[∣∣∣∣∂ trAQ
∂[X]i j

∣∣∣∣
2
]
.

Again using ∂Q = − 1
n Q∂(XXT)Q, we find

∂ trAQ
∂Xi j

= −1
n
[QAQX+QATQX]i j ,

so that, from (a+ b)2 ≤ 2(a2 + b2) and ‖A‖ = 1,

1
p2

p

∑
i=1

n

∑
j=1

E

[∣∣∣∣∂ trAQ
∂Xi j

∣∣∣∣
2
]

≤ 2
p2n2E

[
tr(QAQXXTQATQ)

+ tr(QATQXXTQAQ)
]
= O(n−2).

By Markov’s inequality and the Borel–Cantelli lemma, we thus have that 1
p trA(Q−

EQ)
a.s.−−→ 0.

When it comes to evaluating the fluctuations of aT(Q − EQ)b with the same
approach, it appears that Var[aT(Q −EQ)b] = O(n−1), which is enough to ensure
convergence in probability (again by Markov’s inequality) but not in an almost sure
sense (as the Borel–Cantelli lemma does not apply). Thus, one needs to resort to the
evaluation of its higher-order moments, such as E[|aT(Q−EQ)b|4]. To this end, we
may use the fact that

E[|aT(Q−EQ)b|4]

= Var[|aT(Q−EQ)b|2]+
(
E

[
|aT(Q−EQ)b|2

])2

= Var[|aT(Q−EQ)b|2]+
(

Var[aT(Q−EQ)b]
)2
.
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Since we know that the rightmost term is of order O(n−2), it remains to show, again
through Nash–Poincaré inequality, that Var[|aT(Q −EQ)b|2] = O(n−2), which is a
cumbersome but easily obtained result as well.

Interpolation trick to non-Gaussian X. To “interpolate” the obtained results from
Gaussian X to non-Gaussian X, one may then use the following lemma, which can be
viewed as a generalized version of Stein’s lemma to non-Gaussian distributions.

Lemma 2.15 (Interpolation trick, [Lytova and Pastur, 2009, Corollary 3.1]). For x ∈
R, a random variable with zero mean and unit variance, y ∼ N (0,1), and f a (k +2)
times differentiable function with bounded derivatives,

E[ f (x)]−E[ f (y)] =
k

∑
l=2

κl+1

2l!

∫ 1

0
E[ f (l+1)x(t)]t(l−1)/2dt + εk ,

where κl is the lth cumulant of x, x(t) =
√

t x +(1−
√

t)y, and |εk | ≤ CkE[|x|k+2] ·
supt | f (k+2)(t)| for some constant Ck only dependent on k.

All Gaussian expectations (means and variance) in the proof above can then be
expressed as their non-Gaussian form up to a sum of moment control on the derivatives
of f .

As mentioned above in (2.27), by considering complex Gaussian X instead of real
one, the derivation of Theorem 2.4 can be further simplified. This is detailed in the
following remark.

Remark 2.5 (Simplification in the complex case). The Marc̆enko–Pastur result pre-
sented in Theorem 2.4 has been proven universal with respect to the field (R or C) of
the entries of X, where the Gram matrix of interest in the complex case is XX∗ for
X∗ the Hermitian conjugate (transpose conjugate) of X. The resolvent now becomes

Q(z) =
(

1
n XX∗ − zIp

)−1
. Interestingly, Stein’s lemma, Lemma 2.13, is simplified in

the complex case into

E [Xi j f (X,X∗)] = E

[
d

dX̄i j
f (X,X∗)

]
,

for f (X,X∗) a (polynomially bounded) smooth function of both X and X∗, and X̄i j the
complex conjugate of Xi j , where the complex derivation rules become (d/dx̄)(x) = 0
and (d/dx̄)x̄ = 1 (see details in, for example Pastur and Shcherbina [2011]). As a
consequence, we find that

d
dXi j

XX∗ = Ei jX∗,

for Ei j , the indicator matrix with entry [Ei j ]lm = δil δ jm . This relation is more
convenient to use than in the real case, where

d
dXi j

XXT = Ei jXT+XET
i j ,
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and two terms instead of one appear; in recollection of the derivation above of the
Marc̆enko–Pastur theorem, Theorem 2.4, in the real case with Stein’s lemma, this extra
term was anticipated to vanish as n,p → ∞ (see Equation (2.27)).

This remark is particularly useful when universality is anticipated (essentially for
all such “first order” deterministic equivalents) and when elaborate random matrix
models are to be treated. That is, in these settings, it is convenient (at least as a
preliminary exploration) to assume that X has complex rather than real Gaussian
entries.

Wigner Semicircle Law
While the Marc̆enko–Pastur law is at the heart of sample covariance matrix models and
is thus a starting point in, for example, kernel methods for machine learning, Wigner
semicircle law concerns symmetric matrices of independent entries (above and on the
diagonal), which is more akin to random graphs and will be used in this book almost
exclusively to this purpose.13

The main result, again presented under the form of a deterministic equivalent for
the resolvent, is as follows.

Theorem 2.5 (Wigner [1955]). Let X ∈ R
n×n be symmetric and such that the Xi j s,

j ≥ i, are independent zero mean and unit variance random variables satisfying some
light tail condition. Then, for Q(z) = (X/

√
n− zIn)−1, as n → ∞,

Q(z)↔ Q̄(z), Q̄(z) = m(z)In , (2.28)

with (z,m(z)) the unique solution in Z(C\ [−2,2]) of

m2(z)+ zm(z)+1 = 0. (2.29)

The function m(z) is the Stieltjes transform of the probability measure

μ(dx) =
1

2π

√
(4− x2)+ dx, (2.30)

which is known as the Wigner semicircle law.

Figure 2.3 compares the empirical spectral measure of X/
√

n given in Theorem 2.5
with the (limiting) Wigner semicircle law (which, for a proper scaling of the axes, has
a half circular shape as the name suggests), for n = 1000.

Sketch of proof of Theorem 2.5. Although not the historical method of Wigner,14 we
propose here to follow exactly the two approaches detailed in the proof of the

13 Up to an important exception when dealing with “properly scaling kernels” in Section 4.3.
14 Wigner’s proof in Wigner [1955] relied on a method of moment approach: Having inferred that the

limiting measure should be a semicircle, he proved via a combinatorial approach, that the successive

“moments” 1
n tr(n− 1

2 X)k for k = 1, 2, . . . must converge, as n → ∞, to the moments of the semicircle
measure

∫
tk μ(dt). This method is simple but only useful if indeed the limiting measure μ can be

inferred. In the Marc̆enko–Pastur case of Theorem 2.4 and even worse in more elaborate random matrix
settings, the limiting measure μ is less obvious to anticipate.
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Figure 2.3 Histogram of the eigenvalues of X/
√

n versus Wigner semicircle law, for X having
standard Gaussian entries and n = 1000. Code on web: MATLAB and Python.

Marc̆enko–Pastur theorem, Theorem 2.4. For pedagogical interest, we provide the
main heuristic arguments both for the Bai–Silverstein and for the Gaussian method.

Bai–Silverstein heuristic. Let Q = (X/
√

n − zIn)−1 be the resolvent of interest,
we write, by Lemma 2.6,

Qii =
1

1√
n

Xii − z − 1
n xTi Q−ixi

,

with Q−i =(X−i/
√

n− zIn−1)
−1, X−i ∈R

(n−1)×(n−1) the matrix obtained by deleting
the ith row and column from X, and xi ∈ R

n−1 the ith column (and thus the ith row
by symmetry) of X with its ith entry removed. Taking the sum over i we obtain

1
n

trQ =
1
n

n

∑
i=1

1
1√
n

Xii − z − 1
n xTi Q−ixi

=
1
n

n

∑
i=1

1

−z − 1
n xTi Q−ixi

+ o(1),

since 1√
n

Xii asymptotically vanishes as n → ∞. By Lemmas 2.9 and 2.11, we should
have, for large n,

1
n

xTi Q−ixi =
1
n

trQ−i + o(1) =
1
n

trQ+ o(1),

and thus the quadratic equation of 1
n trQ

(
1
n

trQ
)2

+
z
n

trQ+1 = o(1).

With a concentration argument, for example, Lemma 2.12, we shall have, as n → ∞,
that 1

n trQ − 1
n trE[Q]

a.s.−−→ 0 and therefore 1
n trQ(z)− m(z)

a.s.−−→ 0, with m(z) the
unique solution to

m2(z)+ zm(z)+1 = 0,
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the solution of which is explicitly given by

m(z) =
1
2
(−z+

√
z2 −4),

with
√· again chosen as the branch of the square root for which m(z) is a valid Stieltjes

transform, see Notation 2. Taking the imaginary part and the limit when z → x ∈ R

(which is only nonzero if x2−4 < 0) gives the form of the density μ(dx) in the theorem
statement.

Note that in the above Bai–Silverstein heuristic, only the trace form 1
n trQ(z) was

treated; when the more involved bilinear forms of the type aTQ(z)b are considered (in
which case the nondiagonal entries of the inverse Q(z) need to be handled), it is often
more convenient to resort to the Gaussian method proof approach as follows.

Gaussian method heuristic. Similar to the proof of the Marc̆enko–Pastur law with
Gaussian methods in Section 2.2.2, observe that, for Q = (X/

√
n− zIn)−1, we have

1√
n
E[XQ] = In + zE[Q], (2.31)

so that by Lemma 2.13 and the fact that ∂Q = − 1√
n

Q(∂X)Q,

E[Qi j ] =
1
z

1√
n

n

∑
k=1

E[XikQk j ]−
1
z
δi j

=
1
z

1√
n

n

∑
k=1

E

[
∂Qk j

∂Xik

]
− 1

z
δi j

= −1
z

1
n

n

∑
k=1

E[QkiQk j +QkkQi j ]−
1
z
δi j

= −1
z

1
n
E
[
[Q2]i j +Qi j · trQ

]
− 1

z
δi j

which can be summarized in matrix form as

E[Q] = −1
z

1
n
E[Q2]− 1

z
E[Q] · 1

n
trE[Q]− 1

z
In + o‖·‖(1), (2.32)

where we used the fact that 1
n trQ − 1

n trEQ a.s.−−→ 0 as n → ∞ and can thus be
asymptotically “taken out of the expectation.”

Since the first matrix on the right-hand side has asymptotically vanishing operator
norm (of order O(n−1)) as n,p → ∞,15 we reach

E[Q] = −1
z

(
1+

1
z

1
n

trE[Q]

)−1

In + o‖·‖(1)

15 Again, we could even more simply have exploited Remark 2.5 to not even produce the term E[QkiQk j ]
in the early development of the calculus.
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which, after taking the trace and using 1
n trE[Q(z)]− m(z) → 0, gives the limiting

formula

m2(z)+ zm(z)+1 = 0.

The rest of the development is then identical to the Bai–Silverstein approach.

2.2.3 Large-Dimensional Sample Covariance Matrices and Generalized
Semicircles

The Marc̆enko–Pastur and semicircle theorems have long been the gold-standard in
both theoretical and applied random matrix theory, in the sense that most mathematical
studies and practical results concerned the Wishart and Wigner random matrix mod-
els.16 But the assumption of (the columns of) data X having i.i.d., let alone standard
Gaussian, entries has its limitation. In statistics where one is interested in the sample
covariance matrix 1

n XXT, it is expected that the columns xi ∈R
p of X exhibit a corre-

lation structure and even be nonnecessarily independent (in particular, when they are
samples from a time series). In graph theory, where the affinity matrix X ∈ R

n×n is
the central object of study, one may wish to model graph patterns, degree heterogene-
ity, community structures, etc., which go against the i.i.d. (Bernoulli) assumption of
so-called Erdős–Rényi graphs.

This section introduces generalizations of Marc̆enko–Pastur and semicircle theo-
rems that go beyond the i.i.d. entries setting, to a level that is convenient to machine
learning applications.17 As an example, in a machine learning classification context,
X will often be subdivided into subblocks that correspond to different classes, so as to
model the existence of classes or communities within the data.

Large Sample Covariance Matrix Model and its Generalizations
Our first result generalizes the Marc̆enko–Pastur law, Theorem 2.4, to sample covari-
ance matrices and is originally due to a long line of works by Silverstein and Bai
[1995].

Theorem 2.6 (Sample covariance matrix, Silverstein and Bai [1995]). Let X=C
1
2 Z ∈

R
p×n with symmetric nonnegative definite C ∈R

p×p of bounded operator norm (i.e.,
limsupp ‖C‖ < ∞),18 Z ∈ R

p×n having independent zero mean and unit variance

16 Among those studies are generalizations of the data model assumptions to matrices X with dependent
entries [Pajor and Pastur, 2009], refined studies and characterization of the limiting spectra [Silverstein
and Choi, 1995] (to be discussed later in Section 2.3), deeper considerations on the local behavior of
eigenvalues [Johnstone, 2001, 2008] (that will be briefly discussed in Section 2.5), just to name a few.

17 A host of other results for more elaborate random matrix models exists in the literature. Many are gath-
ered in the books [Tulino and Verdú, 2004, Couillet and Debbah, 2011]: These books particularly focus
on applications to wireless communication. Some of these results have effectively been reused to form
the base ground of the current wave of machine learning-oriented random matrix models.

18 In the original article [Silverstein and Bai, 1995], the constraint on the bounded norm of ‖C‖ is relaxed
and unnecessary. Yet, this complicates the proof and is never of actual use for the purpose of this book.
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entries satisfying some light tail condition. Then, as n,p → ∞ with p/n → c ∈ (0,∞),
letting Q(z) = ( 1

n XXT − zIp)−1 and Q̃(z) = ( 1
n XTX− zIn)−1, we have

Q(z)↔ Q̄(z) = −1
z
(Ip + m̃p(z)C)−1 ,

Q̃(z)↔ ¯̃Q(z) = m̃p(z)In ,

where (z,m̃p(z)) is the unique solution in Z(C\R+) of 19

m̃p(z) =

(
−z+

1
n

trC(Ip + m̃p(z)C)−1
)−1

. (2.33)

In particular, if the empirical spectral measure of C converges, that is, μC → ν as
p → ∞, then μ 1

n XXT
a.s.−−→ μ, μ 1

n XTX
a.s.−−→ μ̃ as p,n → ∞ where μ, μ̃ are the unique

measures having Stieltjes transforms m(z) and m̃(z), respectively, with

m(z) =
1
c

m̃(z)+
1− c

cz
, m̃(z) =

(
−z+ c

∫
tν(dt)

1+ m̃(z)t

)−1

. (2.34)

Before diving into the proof of Theorem 2.6, a few remarks are in order to better
understand the statement of the theorem.

Remark 2.6 (On the implicit statement). As opposed to Theorem 2.4, the statement
of the theorem is here implicit in the sense that μ is only defined through mμ(z), itself
implicitly defined as the solution of a fixed-point equation. The main reason for the
explicit nature of Theorem 2.4 is that Equation (2.14), which provides the connection
between m(z) and a function of itself, boils down to a quadratic equation in m(z),
which can be solved explicitly and from which the inverse Stieltjes transform, Theo-
rem 2.1, can be applied. Due to the presence of C, in the present situation, the form
equivalent to (2.14) here remains implicit. This will in fact be the case of almost all
generalizations of the Marc̆enko–Pastur and semicircle theorems to be introduced in
this book.

Note importantly that the uniqueness of the pair (z,m̃p(z)) is stated within the set
Z(C \R+), see Notation 2. In particular, for z ∈ C

+ belonging to the upper half of
the complex plane, there exists a unique m̃p(z) ∈ C

+ solution to the implicit equa-
tion; however, nothing prevents the existence of another solution (say in C

− = {z ∈
C | ℑ[z] < 0}) to exist: This solution would not correspond to the sought-for m̃p(z).
Possibly most importantly, we will see in Section 2.3 that, for (z,m̃p(z)) ∈ {R+ \
supp(μ)}×R (a set excluded from Z(C \R+) but where (z,m̃p(z)) can be formally
defined by continuity), there may exist multiple solutions to the implicit equation!
Fortunately, we will see that, here again, the correct solution can be identified.

19 Note that we denote the Stieltjes transform m̃p(z) with an additional subscript p, since, unlike The-
orem 2.4, m̃p(z) is here defined as a function of the finite dimensional matrix C, rather than as a
function of the limiting spectral measure of C. In particular, m̃p(z) needs not have a well-defined
limit as n, p → ∞. This again confirms the technical advantage of deterministic equivalents over lim-
its (see again Definition 4): m̃p(z), instead of being a limit, is an increasingly accurate deterministic
approximation of its random counterpart 1

n trQ̃(z), as n, p grow large.
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Another fortunate realization is that the sought-for m̃p(z) solution also often hap-
pens to be the only “stable” one, in the sense that it will often be the only one
discovered by numerical methods. See Remark 2.7 for detail.

In many applications, the value of m̃p(z) will rarely be a priority. Renaming
δ̃p(z) = m̃p(z), we will instead be more often interested in the quantity δp(z) ≡
1
n trCQ̄(z) = 1

n trC(−z[Ip + δ̃p(z)C])−1 (in the vast majority of cases, for z = −γ,
γ≥ 0 some deterministic parameter) which, from Lemma 2.11, corresponds to a deter-
ministic equivalent for 1

n xT0Q(z)x0 where x0 = C
1
2 z0 for some z0 ∈R

p independent of
Z having i.i.d. zero mean and unit variance entries: this quantity appears in the anal-
ysis of most regularized (not necessarily linear) regression problems. Interestingly,
from the theorem statement, it can be checked that δp(z) satisfies the following very
elegant symmetrically coupled equation

{
δp(z) = 1

n trC(−z[Ip + δ̃p(z)C])−1

δ̃p(z) = 1
n trIn(−z[In + δp(z)In ])−1 = − 1

z
1

1+δp (z)
.

(2.35)

Theorem 2.7 below will generalize this expression to the so-called bi-correlated model
C

1
2 ZC̃

1
2 with In replaced by an arbitrary nonnegative definite C̃ ∈R

n×n in the coupled
equation above.

Remark 2.7 (Numerical evaluation of m(z)). Due to its implicit nature, determining
m(z) for z ∈C\R+ requires to solve an implicit equation. Using contraction and ana-
lyticity arguments, it can be shown that the standard fixed-point algorithm converges,
that is,20

m(z) = lim
�→∞

m(�)(z)

with say m̃(0)(z) = 0 and for � ≥ 0

m(�)(z) =
1
c

m̃(�)(z)+
1− c

cz
, m̃(�+1)(z) =

(
−z+ c

∫
tν(dt)

1+ m̃(�)(z)t

)−1

, (2.36)

or the equivalent finite-dimensional version with C in (2.33).
One must be careful here that, since m(z) is not formally defined for z ∈

supp(μ), the above argument does not hold in this set. Yet, the argument extends to
(supsupp(μ),∞), where the fixed-point iteration above is also numerically stable, but
trying to solve (2.36) for m(z) with z ∈ supp(μ) numerically leads to a nonconverging
m(�)(z) sequence. This last remark can be effectively used in practice to numerically
determine the right-edge supsupp(μ) of the support as being the smallest z > 0, start-
ing from +∞, for which the fixed-point iteration fails to converge (this can be done fast
by dichotomy, starting from a left value z− > 0 known to belong to the support and a
large enough right value z+).

20 When carefully initialized, the convergence to the desired solution of standard fixed-point equa-
tions holds more generally (beyond the sample covariance model); see Couillet and Debbah [2011,
Chapters 12–15] for examples of more involved models.

https://doi.org/10.1017/9781009128490.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128490.003


2.2 Foundational Random Matrix Results 71

Numerically, when evaluating m(z) for z ∈ C
+ close to the real axis (say for

z = x + ıε , |ε | � 1), the convergence can appear to be quite slow for x ∈ supp(μ).
A convenient workaround is to sequentially evaluate m(z) for all zs of the form x+ ıε ,
starting from some z0 = x0 + ıε away from the support, that is, for x0 /∈ supp(μ), then
moving on to z1 = (x0 ± ε ′)+ ıε , then z2 = (x0 ±2ε ′)+ ıε , etc., for some ε ′ ∈R small
and, importantly, to systematically initialize the fixed-point iterations at position zi
with the value m(zi−1) obtained at the previous position. Proceeding this way, the
fixed-point iterations of m(zi) with ℜ[zi ] ∈ supp(μ) are initialized close to the (non-
real) solution and the convergence is in generally much faster than, for instance, the
fixed initialization m(0)(zi) = 0. (However, note that the procedure may fail close to a
mass of the spectrum of μ, typically at z = 0, and may keep accumulating errors if it
happens to fail to converge at any given position of the spectrum.)

As a consequence of Remark 2.7, one can now numerically solve the implicit
equation in Theorem 2.6 to draw, again numerically, the (limiting) spectrum μ.

Remark 2.8 (Drawing μ). As shall be seen in Section 2.3, the limiting measure μ in
Theorem 2.6 admits a density, which, from the inverse Stieltjes transform formula in
Theorem 2.1 and Remark 2.7 above, can be approximated by solving for m(z) with
z ∈ R+ ıε for some ε > 0 small (say ε = 10−5) and then retrieving the density at x as
1
πℑ[m(x+ ıε)].

This procedure, however, only allows for a numerical approximation (rather than
a theoretical evaluation) of μ and of its support (in particular, the support consists
approximately in all values of xs such that | 1

πℑ[m(x+ ıε)]| ∼ ε � 1). Section 2.3 will
go beyond this imprecise numerical approach and provide an exact determination of
(i) the limit limz∈C+→x∈R\{0} m(z) for all x ∈ R\{0} and (ii) the support of μ.21

Figure 2.4 depicts the empirical versus limiting behavior of μ 1
n XXT for C having

three distinct and evenly numerous eigenvalues. In this particular setting, the limit-
ing spectrum is composed of several connected components, with shapes akin to the
Marc̆enko–Pastur law. For sufficiently distinct eigenvalues of C, these components are
disjoint (Figure 2.4(a)) while for close eigenvalues they tend to merge (Figure 2.4(b)),
and for n < p a Dirac mass at zero is observed and the eigenvalues spread out even
further into a single large component (Figure 2.4(c)).

Remark 2.9 (Deterministic equivalent for μ 1
n XXT ). The convergence result

μ 1
n XXT

a.s.−−→ μ in Theorem 2.6 demands that there exists a limit ν to which μC con-
verges as p → ∞: this may not be practically meaningful. In generalized versions

21 One may be surprised at the implicit statement that limz∈C+→x∈R\{0} m(z) exists for all x ∈R\{0}, so
in particular for x ∈ supp(μ) while we also stated, at the very beginning of this section in Definition 3,
that m(x) =

∫
(t − x)−1μ(dt) is not formally defined for x ∈ supp(μ). This is not a contradiction and

is, we recall, at the core of the inverse Stieltjes transform formula in Theorem 2.1: The spectrum μ is
precisely determined by looking at ℑ[m(z)]/π for z complex but arbitrarily close to the real axis. We
will see in Section 2.3 that, at least for the sample covariance matrix model, limz∈C+→x∈R\{0} m(z) (as
well as limz∈C−→x∈R\{0} m(z) but whose value may be different!) indeed exists, while m(x) itself need
not be defined.
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Figure 2.4 Histogram of the eigenvalues of 1
n XXT, X = C

1
2 Z ∈ R

p×n , [Z]i j ∼N (0,1),
n = 3000; for p = 300 and C having spectral measure μC = 1

3 (δ1 + δ3 + δ7) (a),
μC = 1

3 (δ1 + δ3 + δ5) (b) and p = 4500 with μC = 1
3 (δ1 + δ3 + δ5) (c). Code on

web: MATLAB and Python.

of Theorem 2.6 (see, for example, Theorem 2.8), even if the spectral measure of the
population covariance matrix does converge, μ 1

n XXT may not have a limit.
One may instead consider the deterministic equivalent μp for μ 1

n XXT , which is

a sequence of probability measures for which dist(μ 1
n XXT , μp)

a.s.−−→ 0 for some

distance between probability measure (for instance, such that μ 1
n XXT − μp

a.s.−−→0

vaguely, so that for every bounded and continuous function f we have
∫

f dμ 1
n XXT −∫

f dμp
a.s.−−→ 0) as n,p → ∞.

Practically speaking, since the data dimension p is in general a fixed quantity and
C a given covariance matrix (rather than specific values in a growing sequence of
ps and Cs), one will always consider that the “effective” limiting measure ν actually
coincides with (or is “frozen” to) μC = 1

p ∑p
i=1 δλi (C).

Sketch of proof of Theorem 2.6. The proof of Theorem 2.6 generally follows the same
line of arguments as that of Theorem 2.4. The main difference is that (2.12) here

https://doi.org/10.1017/9781009128490.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128490.003


2.2 Foundational Random Matrix Results 73

becomes

1
p

xTi Q̄AQxi =
1
p xTi Q̄AQ−ixi

1+ 1
n xTi Q−ixi

=

1
p trQ̄AQ−iC

1+ 1
n trQ−iC

+ o(1),

where denoting xi = C
1
2 zi for zi the ith column of Z ∈R

p×n having independent zero
mean and unit variance entries, we have by Lemma 2.11 that

1
n

xTi Q−ixi =
1
n

zTi C
1
2 Q−iC

1
2 zi =

1
n

trQ−iC+ o(1).

Again with Lemma 2.9 and the fact that 1
n trQ−iC is bounded, we obtain the

approximation

1
p

tr(F+ zIp)Q̄AQ =

1
p trCQ̄AQ

1+ 1
n trQC

+ o(1),

that should hold for any A of unit norm, with F−1(z) = Q̄(z) the sought-for
deterministic equivalent, which then must admit the form

F(z) =
C

1+ 1
n trQC

− zIp + o‖·‖(1),

for the previous approximation to hold. Unlike in the proof of the Marc̆enko–Pastur
theorem, Theorem 2.4, we see here the new term 1

n trQC appears, which thus needs

be studied. Interestingly, note that taking A = C in 1
n trA(Q− Q̄)

a.s.−−→ 0 induces the
following closed-form equation:

1
n

trCQ =
1
n

trCQ̄+ o(1) =
1
n

trC

(
−zIp +

C

1+ 1
n trCQ̄

)−1

+ o(1) (2.37)

from which we obtain

m̃p(z) =

(
−z+

1
n

trC(Ip + m̃p(z)C)−1
)−1

,

if we denote m̃p(z) = − 1
z

(
1+ 1

n trCQ̄(z)
)−1

, as requested.22

With a deterministic equivalent Q̄ = F−1 for Q at hand, a corresponding deter-
ministic equivalent for Q̃ = ( 1

n XTX− zIn)−1 follows from the direct observation that
Q̃ = 1

z
1
n XTQX− 1

z In , so that

[Q̃]i j =
1
z

1
n

xTi Qx j −
1
z
δi j =

1
z

1
n xTi Q−ix j

1+ 1
n xTi Q−ixi

− 1
z
δi j

=
1
z

1
n trCQ̄

1+ 1
n trCQ̄

δi j −
1
z
δi j + o(1)

= −1
z

(
1+

1
n

trCQ̄
)−1

δi j + o(1) = m̃p(z)δi j + o(1),

22 Note that we implicitly used here the fact that ‖C‖ is bounded.
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and thus, for A ∈ R
n×n deterministic of bounded norm, applying the operator

1
n ∑n

i, j=1[A]i j · on both sides (one must be careful to ensure that the entry-wise-

“+o(1)” approximation still holds under this operator), we confirm that ¯̃Q(z) ≡
m̃p(z)In is indeed a deterministic equivalent for Q̃.

Remark 2.10 (On singular population covariances). It is interesting to note from The-
orem 2.6 that, if the population covariance C contains some zero eigenvalues, for
example, if μC → ν as p → ∞ with

ν(dx) = (1− cν)δ0(x)+ cν ν̃(dx)

for cν ∈ (0,1) and ν̃ some probability measure, then (as properly shown in Silverstein
and Choi [1995]) μ̃({0}) = max(0,1− ccν). This further implies

μ({0}) =
{

1− cν for ccν ≤ 1,
1− c−1 otherwise.

This result diverges from the systematic μ({0}) = max(0,1− c−1) in the Marc̆enko–
Pastur scenario, and takes into consideration the intrinsic dimension cνp of the
random vector C

1
2 zi ∈ R

p .
As we shall see later in this book, for machine learning applications, the data

covariance structure C may contain a wide range of very small eigenvalues, a behav-
ior suggesting that the data representation is of much smaller effective dimension.
It is interesting to observe that Theorem 2.6, in its expression in (2.33), in fact does
not depend on the ratio p/n itself but on 1

n trC(Ip + m̃p(z)C)−1: The effective data
dimension is thus encapsulated within C in (a nontrivial manner in) the fixed-point
expression.

When the data X = [x1,. . . ,xn ] arise from a time series, or when each data sample
is weighted by an independent coefficient (as shall be seen in Section 3.3 on robust
statistical methods), the sample covariance matrix model is not sufficiently expressive
but can be generalized to the so-called bi-correlated (or separable covariance) model
as follows,

1
n

C
1
2 ZC̃ZTC

1
2 (2.38)

for C ∈ R
p×p and C̃ ∈ R

n×n two nonnegative definite matrices and [Z]i j i.i.d. ran-

dom variables with zero mean and unit variance. In particular, for Z Gaussian and C̃
1
2

Toeplitz (i.e., such that [C̃
1
2 ]i j = α|i− j | for some sequence α0,. . . ,αn−1), the columns

of ZC̃
1
2 model a first-order auto-regressive process [Hamilton, 1994].23

23 In passing, Toeplitz matrices involved in time series analyses also exhibit interesting large-dimensional
behavior. As an instance, Gray [2006] showed that, under some decay condition on the sequence
{αi}n−1

i=0 , their spectral behavior is the same as that of equivalent circulant matrices, the latter having
the nice property to be diagonalizable in the Fourier basis: The asymptotic eigenvalues of the Toeplitz
matrix are, in particular, the coefficients of the discrete Fourier transform of the series {αi}n−1

i=0 .

https://doi.org/10.1017/9781009128490.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128490.003


2.2 Foundational Random Matrix Results 75

For this model, we have the following theorem.

Theorem 2.7 (Bi-correlated model, separable covariance model, [Paul and Silverstein,
2009]). Let Z ∈ R

p×n be a random matrix with i.i.d. zero mean, unit variance and
light tail entries, and C ∈ R

p×p , C̃ ∈ R
n×n be symmetric nonnegative definite matri-

ces with bounded operator norm. Then, as n,p → ∞ with p/n → c ∈ (0,∞), letting

Q(z) = ( 1
n C

1
2 ZC̃ZTC

1
2 − zIp)−1 and Q̃(z) = ( 1

n C̃
1
2 ZTCZC̃

1
2 − zIn)−1, we have

Q(z)↔ Q̄(z) = −1
z

(
Ip + δ̃p(z)C

)−1

Q̃(z)↔ ¯̃Q(z) = −1
z

(
In + δp(z)C̃

)−1

with (z,δp(z)),(z, δ̃p(z)) ∈ Z(C\R+) unique solutions to

δp(z) =
1
n

trCQ̄(z), δ̃p(z) =
1
n

tr C̃ ¯̃Q(z).

In particular, if μC → ν and μC̃ → ν̃, then

μ
1
n C

1
2 ZC̃ZTC

1
2

a.s.−−→ μ, μ
1
n C̃

1
2 ZTCZC̃

1
2

a.s.−−→ μ̃,

where μ, μ̃ are defined via their Stieltjes transforms m(z) and m̃(z) given by

m(z) = −1
z

∫
ν(dt)

1+ δ̃(z)t
, m̃(z) = −1

z

∫
ν̃(dt)

1+ δ(z)t
,

where (z,δ(z)),(z, δ̃(z)) are the unique solutions in Z(C\R+) to

δ(z) = −c
z

∫
tν(dt)

1+ δ̃(z)t
, δ̃(z) = −1

z

∫
t ν̃(dt)

1+ δ(z)t
.

Sketch of proof of Theorem 2.7. For simplicity and readability, only the case where
both C and C̃ are diagonal is presented here.24 In this case, similar to the decom-
position performed in the proof of Theorem 2.6, one has the following symmetric
re-expression of Q(z) and Q̃(z)

Q(z) =

(
1
n

n

∑
i=1

C
1
2 ỹi(C

1
2 ỹi)T− zIp

)−1

Q̃(z) =

(
1
n

p

∑
i=1

C̃
1
2 yi(C̃

1
2 yi)T− zIn

)−1

where we denote ỹi ∈R
p the ith column of ZC̃

1
2 and yi ∈R

n the ith column of ZTC
1
2

so that, for C and C̃ both diagonal, one has ỹi = C̃
1
2
iizi and yi = C

1
2
ii z̃i with zi ∈ R

p

the ith column and z̃i ∈ R
n the ith row of Z ∈ R

p×n .

24 Note that, if Z is standard Gaussian, then ZC̃ZT has the same distribution as ZUC̃UTZT for any unitary
matrix U ∈R

n×n (since Z ∼ ZU in law). We may then allow C̃ to be diagonal by specifically choosing U
to be a matrix of eigenvectors of C̃. By the universality of random matrix results with respect to the law
of the independent entries of Z (that we recall, can be rigorously established using, say, Lemma 2.15),
this should be sufficient to retrieve the result for any Z. The same remark symmetrically holds for C.
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As a consequence, with Q̄(z) = F−1(z) and ¯̃Q(z) = F̃−1(z), one obtains again with
Lemmas 2.1 and 2.8 that

Q(z)− Q̄(z) = Q(z)

(
F(z)+ zIp − 1

n

n

∑
i=1

C
1
2 ỹi(C

1
2 ỹi)T

)
Q̄(z)

= Q(F+ zIp)Q̄− 1
n

n

∑
i=1

Q−iC
1
2 C̃iizizTi C

1
2 Q̄

1+ 1
n C̃iizTi C

1
2 Q−iC

1
2 zi

,

Q̃(z)− ¯̃Q(z) = Q̃(z)

(
F̃(z)+ zIn − 1

n

p

∑
i=1

C̃
1
2 yi(C̃

1
2 yi)T

)
¯̃Q(z)

= Q̃(F̃+ zIn) ¯̃Q− 1
n

p

∑
i=1

Q̃−iC̃
1
2 Cii z̃i z̃Ti C̃

1
2 ¯̃Q

1+ 1
n Cii z̃Ti C̃

1
2 Q̃−iC̃

1
2 z̃i

,

where we denote Q−i(z) ≡ ( 1
n ∑n

j �=i C
1
2 C̃ j jz jzTj C

1
2 − zIp)−1 and symmetrically

Q̃−i(z) ≡ ( 1
n ∑p

j �=i C̃
1
2 C j j z̃ j z̃Tj C̃

1
2 − zIn)−1, which are independent of zi and z̃i ,

respectively.
With this independence of Q−i on zi and Q̃−i on z̃i , one deduces again with

Lemma 2.11 that

1
n

C̃iizTi C
1
2 Q−iC

1
2 zi = C̃ii ·

1
n

tr(Q−iC)+ o(1),

1
n

Cii z̃Ti C̃
1
2 Q̃−iC̃

1
2 z̃i = Cii ·

1
n

tr(Q̃−iC̃)+ o(1),

so that F(z) and F̃(z) must take the followings forms

F(z) =
1
n

n

∑
i=1

C̃ii ·C

1+ C̃ii · 1
n tr(Q−iC)

− zIp =
1
n

n

∑
i=1

C̃ii ·C

1+ C̃ii · 1
n trCQ̄

− zIp + o‖·‖(1),

F̃(z) =
1
n

p

∑
i=1

Cii · C̃

1+Cii · 1
n tr(Q̃−iC̃)

− zIn =
1
n

p

∑
i=1

Cii · C̃

1+Cii · 1
n tr C̃ ¯̃Q

− zIn + o‖·‖(1).

Denoting δp(z) = 1
n trCQ̄(z) and δ̃p(z) = 1

n tr C̃ ¯̃Q(z), this can be further reduced to

Q̄(z) = F−1(z) = −1
z

(
Ip − 1

z
1
n

n

∑
i=1

C̃ii

1+ C̃iiδp(z)
C

)−1

+ o‖·‖(1),

¯̃Q(z) = F̃−1(z) = −1
z

(
In − 1

z
1
n

p

∑
i=1

Cii

1+Cii δ̃p(z)
C̃

)−1

+ o‖·‖(1).

To eventually close the loop and obtain the sought-for relation on (δp , δ̃p), one may
plug the above approximation into the definition of δp and δ̃p to obtain the following
symmetric equation
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δp(z) = −1
z

1
n

p

∑
i=1

Cii

1− 1
z

1
n ∑n

j=1
C̃ j jCii

1+C̃ j jδp (z)

+ o(1),

δ̃p(z) = −1
z

1
n

n

∑
i=1

C̃ii

1− 1
z

1
n ∑p

j=1
C j j C̃ii

1+C j j δ̃p (z)

+ o(1),

which retrieves the expressions of Theorem 2.7.

As already hinted at when commenting on Theorem 2.6 in (2.35), it is interesting to
note the almost perfect symmetry in the equations for the resolvent and co-resolvent in
the bi-correlated model. From a machine learning perspective, wherein X = C

1
2 ZC̃

1
2

are the observed data, this symmetry between “space” and “time” correlations, or
between the sample covariance matrix XXT and the Gram (kernel) matrix XTX, will
often allow for a natural connection between results in the spatial (e.g., PCA, subspace
methods) and in the temporal (classification, regression) domains.

From a technical angle, by the trace lemma, Lemma 2.11, we immediately find
that the functions δp(z) and δ̃p(z) (which also happen to be Stieltjes transforms of
finite measures on R

+) are respectively deterministic equivalents for 1
n xT0Q(z)x0 and

1
n x̃T0Q̃(z)x̃0 for x0 = C

1
2 z0, x̃0 = C̃

1
2 z̃0 and z0 ∈ R

p , z̃0 ∈ R
n vectors of independent

zero mean and unit variance entries, both independent of Z. Similar to the remarks
after Theorem 2.6, these quadratic forms will naturally arise in various applications of
statistical inference and regression: particularly for z =−γ with γ ≥ 0 a regularization
parameter, and C̃ii (C̃ will usually be diagonal) an effective weight parameter induced
by the algorithm under study on data point C

1
2 zi .

As pointed out above, the Gram matrix XTX is directly connected to kernel matri-
ces of the type K = {xTi x j/p}ni, j=1 = XTX/p (linear inner-product kernels) and K =

{‖xi − x j‖2/p}ni, j=1 (Euclidean distance kernels) since ‖xi − x j‖2/p = ‖xi‖2/p +

‖x j‖2/p − 2xTi x j/p, which also involves the matrix XTX/p.25 Assuming, as is the
basic setting in a multi-class machine learning classification context, that the vectors
xi arise from a mixture model, the following generalization of Theorem 2.6 is of more
practical relevance to machine learning applications.

Theorem 2.8 (Sample covariance of k-class mixture models, [Benaych-Georges and

Couillet, 2016]). Let X= [X(1),. . . ,X(k)]∈R
p×n with X(a) = [x(a)1 ,. . . ,x(a)na ]∈R

p×na

and x(a)i = C
1
2
a z(a)i for z(a)i a vector with i.i.d. zero mean, unit variance and light

tail entries. Then, as na ,p → ∞ in such a way that k is fixed, p/n → c ∈ (0,∞), and
na/n → ca ∈ (0,1) for a ∈ {1,. . . ,k}, letting Q(z) = ( 1

n XXT − zIp)−1 and Q̃(z) =
( 1
n XTX− zIn)−1, we have26

25 The prefactor 1/p is necessary to ensure that the main eigenspectrum of K remains of order O(1) as
p, n increase.

26 Here, diag{va}ka=1 is a diagonal matrix with the concatenated vector v = [vT1, . . . , v
T
k ] on the diagonal;

and 1na ∈ R
na is the na -dimensional vector of all ones.
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Q(z)↔ Q̄(z) = −1
z

(
Ip +

k

∑
a=1

ca g̃a(z)Ca

)−1

Q̃(z)↔ ¯̃Q(z) = diag{g̃a(z)1na}ka=1

with (z,g̃a(z)), a ∈ {1,. . . ,k}, the unique solutions in Z(C\R+) to

g̃a(z) = −1
z
(1+ga(z))

−1, ga(z) = −1
z

1
n

trCa

(
Ip +

k

∑
b=1

cb g̃b(z)Cb

)−1

.

Sketch of proof of Theorem 2.8. Similar to the proof of Theorem 2.6, we obtain, with
the initial guess Q̄(z) = F−1(z), that

Q− Q̄ = Q

(
F+ zIp − 1

n

k

∑
a=1

na

∑
i=1

x(a)i (x(a)i )T

)
Q̄

which, unlike in the proof of Theorem 2.6, contains a sum over a due to the different
class covariances Ca . To establish 1

n trA(Q− Q̄)
a.s.−−→ 0, one must have

1
n

tr(F+ zIp)Q̄AQ− 1
n

k

∑
a=1

na

∑
i=1

1
n
(x(a)i )TQ̄AQx(a)i

a.s.−−→ 0.

Applying Lemma 2.8 to remove the dependence in Q of x(a)i , together with
Lemma 2.9, we deduce

1
n

k

∑
a=1

na

∑
i=1

1
n
(x(a)i )TQ̄AQx(a)i =

k

∑
a=1

na
n

1
n trCaQ̄AQ̄

1+ 1
n trQ̄Ca

+ o(1),

so that F must be written as the following sum over a:

F =
k

∑
a=1

ca
Ca

1+ 1
n trQ̄Ca

− zIp + o‖·‖(1),

which produces the term 1
n trQ̄Ca ,a = 1,. . . ,k. To identify these terms and close the

loop, we take A = Cb for each b ∈ {1,. . . ,k} to establish

1
n

trCbQ =
1
n

trCbQ̄+ o(1)≡ gb(z)+ o(1)

=
1
n

trCb

(
−zIp +

k

∑
a=1

ca
Ca

1+ 1
n trQ̄Ca

)−1

+ o(1)

≡ −1
z

1
n

trCb

(
Ip +

k

∑
a=1

ca g̃a(z)Ca

)
+ o(1),

where we denoted g̃a(z)≡− 1
z

(
1+ 1

n trQ̄Ca

)−1
=− 1

z (1+ga(z))−1, as desired. This
thus produces a k-dimensional vector equation linking the ga(z)s rather than a scalar
one as in the case of Theorem 2.6.

To finally derive a deterministic equivalent of Q̃ from that of Q, we use again
the fact that Q̃ = 1

z
1
n XTQX − 1

z In and therefore, indexing the set {1,. . . ,n} as
{(1)1,. . . ,(1)n1,. . . ,(k)1,. . . ,(k)nk}, we have
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Q(a)i,(b) j =
1
z

1
n
(x(a)i )TQx(b)j − 1

z
δ(a)i,(b) j

= −1
z

(
1+

1
n

trQ̄Ca

)−1

δ(a)i,(b) j + o(1) = g̃a(z)δ(a)i,(b) j + o(1),

which, after applying 1
n trA(·) on both sides for A of unit norm, concludes the proof

of Theorem 2.8.

With some further control, Theorem 2.8 may in fact be extended to k = n, that is,
each data vector xi has its own, possibly distinct, covariance matrix, as shown in Wag-
ner et al. [2012]. When the covariance matrices are diagonal, this is then equivalent
to letting X have a variance profile, that is, the entries [X]i js are all independent with
zero mean and variance σ2

i j ≡ [Ci ] j j (with Ci = E[xixTi ]), a setting studied in depth
in Hachem et al. [2007] but originally found in Girko [2001].

The application of a variance profile to random matrices with independent entries
finds an even more relevant application to Wigner matrices, as detailed next.

Generalized Semicircle Law with a Variance Profile
Similar to the large sample covariance matrix model, generalizations also exist for the
Wigner semicircle law in Theorem 2.5. In the following theorem, a variance profile
for the entries of the symmetric random matrix is considered.

Theorem 2.9 (Pastur and Shcherbina [2011]). Let X ∈ R
n×n be symmetric and such

that Xi j , j ≥ i, is of zero mean, bounded variance Var[Xi j ] = σ2
i j , and satisfies some

light tail condition. Then, for Q(z) = (X/
√

n− zIn)−1, we have

Q(z)↔ Q̄(z), Q̄(z) = diag

{
1

−z −gi(z)

}n

i=1
(2.39)

with (z,gi(z)) ∈ Z(C\R+), i ∈ {1,. . . ,n}, uniquely determined by

gi(z) =
1
n

n

∑
j=1

σ2
i j

−z −gj(z)
.

Sketch of proof of Theorem 2.9. Basing ourselves on the Gaussian approach, the proof
of Theorem 2.9 differs from that of Theorem 2.5 in the application of Lemma 2.13.
Taking into consideration the variance E[X2

ik ] = σ2
ik , Equation (2.31) gives

E[Qi j ] =
1
z

1√
n

n

∑
k=1

E[X2
ik ]E

[
∂Qk j

∂Xik

]
− 1

z
δi j

= −1
z

1
n

n

∑
k=1

σ2
ikE[QkiQk j +QkkQi j ]−

1
z
δi j

= −1
z

1
n
E[QΣiQ]i j −

1
z

1
n
E[tr(ΣiQ)Qi j ]−

1
z
δi j

with Σi ≡ diag{σ2
ik}nk=1, so that ‖Σi‖= O(1) uniformly over all i.
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Note that the semicircle law in Theorem 2.5 is indeed a special case with σ2
i j = δi j

and Σi = In . As a consequence, similar to the term 1
nE[Q

2] in (2.32), the first term
on the right-hand side vanishes as n,p → ∞ (or, again, does not even appear if one
considers complex Gaussian entries according to Remark 2.5). Following the same
reasoning, the random variable 1

n trΣiQ(z) essentially plays the role of 1
n trQ(z) in

(2.32) and is expected to converge to some deterministic gi(z) ≡ 1
n trΣiQ̄(z), which

can be taken out of the expectation. This gives, in matrix form

E[Q(z)] = −1
z

diag{gi(z)}ni=1E[Q(z)]− 1
z

In + o‖·‖(1).

Solving this equation for E[Q(z)] ↔ Q̄(z) and applying 1
n trA(·) on both sides for A

of unit norm, we conclude the proof of Theorem 2.9.

Theorem 2.9 plays a significant role in the study of random graphs, with applica-
tions to community detection in large graphs or networks. We shall come back to this
model in more detail later in Section 7.1.

Summarizing, this lengthy first technical section provided the necessary technical
ingredients, along with several key results, to study the (large n,p) spectrum of “data
sample matrices” from the data population statistics. In Section 2.4, we will seek to go
backwards, trying to infer the population spectral statistics from the observed empiri-
cal spectrum of the available samples. To this end though, subtle supplementary results
on the limiting spectra must be introduced. This is the objective of the next section.

The subsequent section, possibly the most technical of this part of the book, may
be skipped at first read, the main ideas of Section 2.4 being understandable if some
results are admitted. Yet, for a clear and rigorous treatment of the limitations of sta-
tistical inference in the large n,p regime, the readers will need to grasp the notions of
Section 2.3.

2.3 Advanced Spectrum Considerations for Sample Covariances

As opposed to the Marc̆enko–Pastur law in Theorem 2.4, the generalized sample
covariance matrix model of Theorem 2.6 (and beyond) only provides a characteri-
zation of the limiting spectral measure μ of μ 1

n XXT (or a deterministic equivalent μp
for it) through its Stieltjes transform m(z) for z ∈ C \R+ (respectively, through a
sequence mp(z) of Stieltjes transforms), which itself assumes an implicit form. Since
the Stieltjes transform inversion formula (Theorem 2.1) involves the limit of m(z) for
z → x ∈ R, the sole information about m(z) for all z ∈ C\R+ does not immediately
quantify the measure μ.

From a theoretical standpoint, one may wonder whether the limiting μ admits a
density as in the Marc̆enko–Pastur case and, if so, whether one can determine this
density and its exact support. As recalled in Remarks 2.7 and 2.8, the density of μ
(provided it exists) can be “numerically depicted” by solving for m(z) with z close to,
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but formally away from, the real axis. We aim here at a more theoretical and precise
characterization of μ.

From a practical standpoint, a fundamental byproduct of this characterization is the
introduction of the function z �→ − 1

m(z) , which plays a key role in statistical inference.
Indeed, we shall see in Section 2.4 and the many applications in Chapter 3 that the
statistical information related to the population covariance C (such as functionals of
its eigenvalues, projections on its eigenvectors) can be accessed from the data matrix X
by means of a complex integral method involving the change of variable z �→ − 1

m(z) .

2.3.1 Limiting Spectrum

In Silverstein and Choi [1995] (generalized later in Couillet and Hachem [2014] with
a more systematic approach), the authors prove that, for any measure ν (the limiting
spectral distribution of C), the limiting measures μ and μ̃ introduced in Theorem 2.6
indeed have a density with a well-defined support.27

Density and Support of μ (and μ̃)
Precisely, recall that μ = 1

c μ̃+(1 − 1
c )δ0 (with δ0 the Dirac mass at x = 0) with μ̃

defined by its Stieltjes transform m̃(z) solution to

m̃(z) =

(
−z+ c

∫
tν(dt)

1+ tm̃(z)

)−1

.

This functional expression has the interesting key property of being invertible, in the
sense that it is formally equivalent to

z = − 1
m̃(z)

+ c
∫

tν(dt)
1+ tm̃(z)

.

As a consequence, the function m̃(·) : C \ supp(μ̃) → C, z �→ m̃(z) admits the
functional inverse

z(·) : m̃(C\ supp(μ̃))→ C

m̃ �→ − 1
m̃

+ c
∫

tν(dt)
1+ tm̃

.

The important point to notice here is that z(·), seen as the functional inverse of m̃(·),
is only defined on the domain m̃(C \ supp(μ̃)). Yet, formally, this function could be

27 It may come as very surprising but very few works in the random matrix literature have actually studied
the exact behavior of the limiting measure μ of advanced random matrix models. The few exceptions
are Silverstein and Choi [1995], Couillet and Hachem [2014], which study the defining equation of

the Stieltjes transform mμ of μ associated with the sample covariance matrix models C
1
2 XXTC

1
2 and

C
1
2 XC̃XTC

1
2 , respectively, as well as the very extensive work [Ajanki et al., 2019] on the defining

equation of mμ attached to generalized Wigner models (for instance, the generalized semicircle law for
Wigner models with a variance profile, Theorem 2.9). The small number of these studies testifies of the
greater importance of the Stieltjes transform relation defining mμ over the measure μ itself which, both
in theory and in practice, is quite often of lesser interest.
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extended to all values m̃ ∈ C such that 0 /∈ 1+ m̃ · supp(ν) (i.e., all values that do not
cancel the denominator 1+ tm̃ for some t ∈ supp(ν)).

The idea of Silverstein and Choi [1995], originally expressed in the seminal work
of Marčenko and Pastur [1967], is twofold:

• Outside the support. (i) The Stieltjes transform mμ(x) =
∫
(t − x)−1μ(dt) of a

measure μ is well defined and an increasing function on its restriction to
x ∈ R\ supp(μ) (it has positive derivative there), hence (ii) so must be its
functional inverse x(·) on its restriction to mμ(R\ supp(μ)), (iii) consequently, if
x(·) admits an extension to some domain S with mμ(R\ supp(μ))⊂ S ⊂ R, x(·)
should only be increasing on mμ(R\ supp(μ));28 (iv) therefore, the
complementary R\ supp(μ) to the support of μ can be determined as the union of
the image of all increasing sections of x(·). See Figure 2.5, commented below, for
a simplified visual understanding.
In our setting, this thus formally defines the support of the limiting measure μ of
μ 1

n XXT .
• In the support. Inside this support, one then needs to determine the density of μ.

To this end, one may first prove the existence of m̃◦(x) = limε→0 m̃(x+ ıε). Upon
existence, since ℑ[m̃◦(x)] > 0 for x ∈ supp(μ), dominated convergence can be
applied on the defining equation for m̃(z) to find that m̃◦(x) is a solution with
positive imaginary part of

m̃◦(x) =

(
−x+ c

∫
tν(dt)

1+ m̃◦(x)t

)−1

,

which is then shown to be unique.

These arguments are formally stated in the following theorem.

Theorem 2.10 (Silverstein and Choi [1995]). Under the setting of Theorem 2.6 with
μC → ν as p → ∞, define

x(·) : R\{m̃ | (−1/m̃) ∈ supp(ν)} → R

m̃ �→ − 1
m̃

+ c
∫

tν(dt)
1+ m̃t

.

Then, μ̃ has a density f̃ on R\{0} and

• for y ∈ supp(μ̃), f̃ (y) = 1
πℑ[m̃◦(y)] with m̃◦(y) the unique solution with positive

imaginary part of x(m̃◦(y)) = y;
• the support supp(μ̃)\{0}, which coincides with supp(μ)\{0}, is defined by

supp(μ)\{0}
= R\

{
x(m̃) | (−1/m̃) ∈ R\{supp(ν)∪{0}} and x′(m̃) > 0

}
.

28 Formally, it is clear that all decreasing sections of (the extended version of) x(·) cannot correspond to
the functional inverse of a Stieltjes transform. It is less evident though that all increasing sections do
correspond to the inverse of a Stieltjes transform; this was settled in Silverstein and Choi [1995].

https://doi.org/10.1017/9781009128490.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128490.003


2.3 Advanced Spectrum Considerations for Sample Covariances 83

−1 − 1
3 − 1

7
0

0
1
3

7
m̃−

1
m̃+

1

m̃1

x(
m̃
)

x(m̃)

supp(μ)

(a)

−1 − 1
3 − 1

5
0

0
1

3

5

x(
m̃
)

x(m̃)

supp(μ)

(b)

−1 − 1
3−

1
5

0

1
3
5

m̃

x(
m̃
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Figure 2.5 The functional inverse x(m̃) for −1/m̃ ∈ R\ supp(ν), with ν = 1
3 (δ1 + δ3 + δ7) (a)

and ν = 1
3 (δ1 + δ3 + δ5) (b), c = 1/10 in both cases, and ν = 1

3 (δ1 + δ3 + δ5) with c = 2 (c).
Local extrema are marked by circles, inflexion points by squares. The support of μ can be read
on the vertical axes. Code on web: MATLAB and Python.

Figure 2.5 depicts the function x(m̃) under a similar setting as Figure 2.4 with ν

composed of three Dirac masses. The top display, Figure 2.5(a), shows four increas-
ing regions of x(·), thus corresponding (on the y-axis) to four connected components
of R \ supp(μ). The complementary, depicted in black on the y-axis, corresponds to
the (three) connected components of supp(μ). The middle display, Figure 2.5(b), only
shows three growing regions for x(·), thus restricting the support of μ to two con-
nected components. Analogously, in the bottom display, Figure 2.5(c), there is only
one growing region for x(·) (close to the y-axis from above), which now corresponds
to a single connected component for supp(μ) \ {0}. This is in accordance with the
observations made in Figure 2.4, when altering either ν or c.
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A careful analysis of the function x(·) actually reveals additional interesting
properties:

(i) the restriction of x(·) to its growing sections is a growing function. This follows
from the fact that, there, x(·) is the functional inverse of m̃(·) restricted to
R\ supp(μ), which is a growing function.

(ii) in the case of Figure 2.5, since ν is discrete, x(·) presents asymptotes at each
−1/t, t ∈ supp(ν). Thus, from the previous item, supp(μ) is here determined by
the union ∪k [m̃

−
k ,m̃

+
k ] for m̃−

1 < m̃+
1 < m̃−

2 < . . . the successive values of m̃ such
that x′(m̃) = 0. This remark may however not hold for ν with continuous
support. Detailed conditions for this characterization to hold are discussed in
Couillet and Hachem [2014], see also Exercise 8 in Section 2.9 for an example.

(iii) the derivative of x(·) is given by

x′(m̃) =
1

m̃2 − c
∫

t2ν(dt)
(1+ tm̃)2

and thus m̃2x′(m̃) converges to 1− c as |m̃| → ∞, while x(m̃)→ 0. Thus, x(·) is
either decreasing or increasing at ±∞ depending on whether c < 1 or c > 1. In
particular, the pre-image by x(·) of 0+ is −∞ if c < 1 (Figure 2.5(a) and Figure
2.5(b)) and some positive value if c > 1 (Figure 2.5(c)): This remark is
fundamental for the next section.

Variable Change: relating supp(ν) and supp(μ)
An important side consequence of the study above of z(·) (and its restriction x(·) to
the real axis) is that the function

γ : C\{supp(μ)∪{0}} → C

z = z(m̃) �→ − 1
m̃

(2.40)

provides an injective mapping between points outside the support of μ and points
outside the support of ν with the property that

γ(C\R) ⊂ C\R and γ(R\ supp(μ))⊂ R\ supp(ν)

but where the inclusion is strict, in general.
To understand this statement, first consider z ∈ C \R+. Then, by Theorem 2.6,

there exists a unique pair (z,m̃(z)) ∈ Z and we may thus write z = z(m̃) for the value
m̃ ∈ C \R− given by m̃ = m̃(z). For z = x ∈ R

+ \ supp(μ), we have just seen in our
discussion of Theorem 2.10 and Figure 2.5 that there also exists m̃ ∈ R

− (it must be
real because ℑ[m̃(x)] = 0 outside the support) such that x = x(m̃). As a consequence,
for z ∈ C \R, m̃ = m̃(z) ∈ C \R and thus −1/m̃ ∈ C \R. Similarly, for x ∈ R \
supp(μ), from Figure 2.5, −1/m̃ ∈R\ supp(ν). The map is however only injective (in
general not surjective) as not all values of C\ supp(ν) can be reached. For instance, in
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/
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Support of ν
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0
<

>

�[−1/m̃(z)]

Figure 2.6 Domain of validity of variable changes, for ν = 1
3 (δ1 + δ3 + δ5), with c = 1/10 (left)

and c = 2 (right). The filled blue regions in the bottom display are the (inaccessible)
complementary to the image of −1/m̃(·). The red contour Γν is the image by −1/m̃(·) of a
rectangular contour Γμ surrounding supp(μ). Code on web: MATLAB and Python.

Figure 2.5, the sets (−1/m̃−
1 ,1) and (1,−1/m̃+

1 ) cannot be reached by γ. This remark
will constitute a fundamental limitation to statistical inference methods.

More visually, Figure 2.6 depicts in blue the complementary to the image
γ(C \ supp(μ)). This blue region is inaccessible in the sense that no point in C \
supp(μ) can have an image by γ(·) in it. In red are depicted typical images by γ(·) of
rectangular contours surrounding supp(μ). Intuitively, we observe that, as c increases
(compare left to right displays), the exclusion region increases in size and one thus
cannot get “too close” to the support of ν (which is here the discrete union of three
point masses): This “pushes” the image of the red contour further away from the real
axis.

In particular, for c > 1, the exclusion region includes {0}. This is a consequence of
Item (iii) in the remarks of the previous paragraph: While the right real crossing of a
contour Γμ ⊂ {z ∈ C, ℜ[z] > 0} surrounding the support of μ will have an image by
γ(·) somewhere on the right side of supp(ν), (i) for c < 1, the left real crossing will
have 0+ for image, and (ii) for c > 1, the left real crossing will have a negative value
for image.
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This, we shall see next in Section 2.4, is an important problem when it comes to
estimating certain functionals

∫
f dν of ν based on the sample measure μ 1

n XXT .

2.3.2 “No Eigenvalue Outside the Support”

Before exploiting the aforementioned change of variable (the mapping z �→ −1/m̃(z))
for statistical inference (in Section 2.4), an important extension of Theorem 2.6 is
needed.

It must be stressed that the limiting results of Theorem 2.6 are weak convergences
for the normalized counting measure 1

p ∑p
i=1 δλi ( 1

n XXT) (i.e., the spectral measure in

Definition 2) of the eigenvalues of 1
n XXT. This, by definition, means that, for every

continuous bounded f ,

1
p

p

∑
i=1

f

(
λi

(
1
n

XXT
))

−
∫

f (t)μ(dt)
a.s.−−→ 0.

Letting, for instance, f be a smoothed version of the indicator 1[a,b] for a,b ∈ supp(μ),
this thus only says that the averaged number of eigenvalues of 1

n XXT within [a,b]
converges to μ([a,b]).

In the example of Figure 2.4(a) or Figure 2.4(b) if p1 is the number of eigenvalues
falling in the neighborhood of the leftmost connected component of μ (around one),
it is thus only possible to know from Theorem 2.6 that p1/p = 1/3+ o(1) (almost
surely), which is equivalent to p1 = p/3+o(p). This, in particular, does not guarantee
that p1 − p/3

a.s.−−→ 0 exactly as n,p → ∞.
Worse, Theorem 2.6 only guarantees that, for [a,b] a connected component of R \

supp(μ), the number of eigenvalues of 1
n XXT inside [a,b] is asymptotically of order

o(p). As such, [a,b] may never be empty, even for arbitrarily large n,p (it can contain
a fixed finite number of eigenvalues or even a growing number of eigenvalues, so long
that this number is much less than O(p)). In other words, Theorem 2.6 does not prevent
a few eigenvalues of 1

n XXT from “leaking” from the limiting support of μ, which, as
we shall see in Figure 2.6 and Section 2.4, may cause problems in statistical inference.

The following result, again originally due to Bai and Silverstein, settles this
nontrivial issue.

Theorem 2.11 (“No eigenvalue outside the support” and “exact separation”: [Bai and
Silverstein, 1998, 1999, Bai et al., 1988]). Under the setting of Theorem 2.6,29 let ‖C‖
be bounded with μC → ν and

max
1≤i≤p

dist(λi(C),supp(ν)) → 0,

as p → ∞. Consider also −∞ ≤ a < b ≤ ∞ such that a,b ∈ R
+ \ supp(μ). Then the

following results hold

29 Here formally, the theorem statement must be understood with the “light tail condition” discarded, that
is, the only condition on Z is that it is composed of i.i.d. entries with zero mean and unit variance.
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• if E[|Zi j |4] < ∞, then, for |A| the cardinality of set A,
∣∣∣∣
{
λi

(
1
n

XXT
)

∈ [a,b]

}∣∣∣∣−|{λi(C) ∈ [γ(a),γ(b)]}| a.s.−−→ 0

with γ(·) defined by (2.40). In particular, if [a,b] is a connected component of
R
+ \ supp(μ), then

∣∣∣∣
{
λi

(
1
n

XXT
)

∈ [a,b]

}∣∣∣∣ a.s.−−→ 0.

That is, with probability one, no eigenvalues of 1
n XXT appears in [a,b], for all n,p

large.
• if E[Z4

i j ] = ∞, then

max
1≤i≤p

λi

(
1
n

XXT
)

a.s.−−→ ∞.

In plain words, the theorem precisely states that

• under the condition that E[Z4
i j ] < ∞ and that no eigenvalue of C isolates from its

associated limiting spectrum ν, (i) there asymptotically exists no eigenvalue
outside the support of μ and (ii) the eigenvalues assembled in asymptotically
contiguous “bulks” are found in asymptotically expected numbers. For instance, in
the setting of Figure 2.4, it can be verified that not a single eigenvalue is found
away from the support of μ and, in addition, that the exact number of eigenvalues
in the neighborhood of each connected component of μ is in exact proportion (for
Figure 2.4(a), exactly p/3 eigenvalues in each component, and for Figure 2.4(b),
exactly 2p/3 eigenvalues in the rightmost and largest component). We emphasize
that this is a much finer control (of order O(1)) of the eigenvalues than that offered
by Theorem 2.6 (which is only of order o(p)).

• if E[Z4
i j ] = ∞ (for instance, for a Student t-distribution with low degree of

freedom), this “exact separation” collapses: while in correct asymptotic proportion
guaranteed by Theorem 2.6, up to o(p) eigenvalues may be found away from the
support of μ, with, in particular, the largest eigenvalue going to infinity.

For future reference, we insist on the condition

max
1≤i≤p

dist(λi(C),supp(ν)) → 0, (2.41)

which is also fundamental for the above theorem to hold. Not surprisingly, if a single
eigenvalue of C were to diverge as p → ∞, it is expected that an eigenvalue of 1

n XXT

would also diverge. For instance, say λ1(C) = p and λ2(C) = . . . = λp(C) = 1; then,
μC → δ1 so that Theorems 2.4 and 2.6 ensure that μ 1

n XXT converges weakly to the

Marc̆enko–Pastur law, while the largest eigenvalue of 1
n XXT is strongly expected to

diverge to infinity (which it, indeed, does in this case). Section 2.5 on spiked models
is strongly inspired by this remark.
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2.4 Preliminaries on Statistical Inference

Section 2.3 provides the necessary (technical) ingredients for basic statistical inference
considerations of large-dimensional sample covariance matrix models.

In this section, we will successively consider the estimation (i) of linear eigenvalue
statistics30 of the type 1

p ∑p
i=1 f (λi(C)) and (ii) of eigenvector projections aTui (ui

an eigenvector of C) for deterministic vectors a; from the sample observation X =

[x1,. . . ,xn ], xi = C
1
2 zi and zi with standard i.i.d. entries, as defined in Theorem 2.6.

Before entering the topic, it must be mentioned that large-dimensional statistical
inference, from a random matrix approach, has stood for long as a complex prob-
lem. In particular, retrieving information about a population covariance C from the
samples C

1
2 Z may be seen as inverting Theorem 2.6, a problem tentatively tackled

in El Karoui [2008] and later in Bun et al. [2017] using convex optimization (thus
nonexact) schemes, but with limited success. Some specific objects, such as traces
of powers of C, traces of its resolvent, quadratic forms, etc., may be estimated by
detoured means and formed the extensive database of the more-than-fifty G-estimators
due to Girko [2001] (the phrase “G-estimator” should be understood as “generalized
estimators,” according to Girko). In this section, we instead concentrate on a contour
integral approach to systematically estimate a broad class of functionals of C: The
idea, found scattered in the literature, was revived by Mestre [2008]. The content of
this section is not easily found in the existing literature but is strongly inspired by (a
simplified treatment of) Mestre [2008].

2.4.1 Linear Eigenvalue Statistics

Relating Population and Sample Stieltjes Transforms
A first observation is that the defining equation for m̃(z) in Theorem 2.6, that is,

m̃(z) =

(
−z+ c

∫
tν(dt)

1+ tm̃(z)

)−1

can be equivalently rewritten under the form

mν

(
− 1

m̃(z)

)
= −zm(z)m̃(z) (2.42)

where we recall that m(z) = 1
c m̃(z)+ 1−c

c
1
z . This simply follows from noticing that

30 These are called linear statistics although f will in general not be linear. What is linear here is in fact
the mapping ( f (λ1), . . . , f (λp)) �→ 1

n ∑p
i=1 f (λi ).
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∫
tν(dt)

1+ tm̃(z)
=

1
m̃(z)

∫
tm̃(z)ν(dt)
1+ tm̃(z)

=
1

m̃(z)

(
1−

∫
ν(dt)

1+ tm̃(z)

)

=
1

m̃(z)

(
1− 1

m̃(z)

∫
ν(dt)

t − (−1/m̃(z))

)

where, from Definition 3, we recognize
∫ ν(dt)

t−(−1/m̃(z)) to be the Stieltjes transform mν

of the measure ν evaluated at −1/m̃(z).
Theorem 2.6 thus (indirectly) establishes a relation between the population statistics

of C and that of the (observed) sample covariance matrix 1
n XXT, through the Stieltjes

transforms of their limiting measures, and we can already anticipate that −1/m̃(z) will
indeed play the role of a variable change to move from z in m(z),m̃(z) to z′ in mν(z′)
if z′ = −1/m̃(z).

Eigen-Inference
Now, observe that, for f : C → C a function analytic in a neighborhood of the eigen-
values of C, by Cauchy’s integral theorem, the linear statistics 1

p ∑p
i=1 f (λi(C)) of the

eigenvalues of C can be expressed as31

1
p

p

∑
i=1

f (λi(C))�
∫

f (t)ν(dt)

=
∫ [

1
2πı

∮
Γν

f (z)dz
z − t

]
ν(dt)

= − 1
2πı

∮
Γν

f (z)

[∫
ν(dt)
t − z

]
dz

= − 1
2πı

∮
Γν

f (z)mν(z)dz (2.43)

where Γν ⊂C is a (positively oriented) contour encircling the support of ν but no sin-
gularity of f . Here, the integral exchange comes at no difficulty because Γν is a closed
compact contour carefully avoiding the support of ν (so that t − z in the denominator
is uniformly away from zero) and supp(ν) is bounded. Thus, one can express (smooth)
linear statistics of the eigenvalues of C by means of a complex integral involving the
Stieltjes transform mν(z).

As a consequence of (2.42), it is now possible to relate the nonobservable mν(z)
to m̃(z), which is the large n,p limit of the observable Stieltjes transform m 1

n XTX(z).
To be able to plug (2.42) into (2.43), one needs to perform the change of variable
z �→ −1/m̃(z). This is however only possible if there indeed exists a Γν ⊂ C (the
contour in (2.43)) such that Γν =−1/m̃(Γμ) for some well-defined complex path Γμ .
The discussions in Section 2.3.1 and in particular, around Figure 2.6, have clarified the
conditions under which such a Γν exists.

31 Here again the “�” sign can be turned into an equality if one assumes ν = 1
p ∑p

i=1 δλi (C).
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But let us assume that Γν is indeed well defined as Γν =−1/m̃(Γμ) for some valid
Γμ . Then, Equation (2.43) along with (2.42) imply

∫
f (t)ν(dt) = − 1

2πı

∮
Γμ

f

(
− 1

m̃(ω)

)
mν

(
− 1

m̃(ω)

)
m̃′(ω)

m̃2(ω)
dω

=
1

2πı

∮
Γμ

f

(
− 1

m̃(ω)

)
ω

m(ω)m̃′(ω)

m̃(ω)
dω

where we wrote z =−1/m̃(ω). Using that m(ω) = 1
c m̃(ω)+(1−c)/(cω), this further

reads ∫
f (t)ν(dt) =

1
2cπı

∮
Γμ

f

(
− 1

m̃(ω)

)
(ωm̃(ω)+(1− c)) m̃′(ω)

m̃(ω)
dω

=
1

2cπı

∮
Γμ

f

(
− 1

m̃(ω)

)
ωm̃′(ω)dω− 1− c

c
f (0) ·1{0∈Γ◦

ν}

where Γ◦
ν is the inside of Γν , and where for the last equality we used

1
2πı

∮
Γμ

f

(
− 1

m̃(ω)

)
m̃′(ω)

m̃(ω)
dω = − 1

2πı

∮
Γν

z−1 f (z)dz = − f (0) ·1{0∈Γ◦
ν}

by residue calculus, assuming again that f is analytic on a sufficiently large region (in
particular here around zero).

To complete the statistical inference framework, one finally needs to relate
the above expression to the observation X. The idea is to use the fact that
m 1

n XTX(ω)
a.s.−−→ m̃(ω) from Theorem 2.6. To ensure that m̃(ω) can be replaced by

m 1
n XTX(ω) in the above expression, one however needs to ensure that dominated

convergence on the compact set Γμ holds. For this, two ingredients are needed: (i)

first guarantee that the convergence m 1
n XTX(ω)

a.s.−−→ m̃(ω) is uniform on Γμ , which
easily follows from the analytic nature of Stieltjes transforms, and more importantly
(ii) prove that the integrand f (−1/m 1

n XTX(ω))ωm′
1
n XTX

(ω) is uniformly bounded on

Γμ . This second item follows from Theorem 2.11 which guarantees that, for all n,p
large, with probability one, all eigenvalues remain in the vicinity of supp(μ) under the
additional conditions (i) E[|Xi j |4] < ∞ and (ii) maxi dist(λi(C),supp(ν)) → 0.

As a consequence, accounting now for the conditions of validity of the variable
change discussed in the previous section, we have the following statistical inference
result, the original ideas of which are due to Mestre.

Theorem 2.12 (Inspired by Mestre [2008]). Under the setting of Theorem 2.6 with
E[|Xi j |4] < ∞ and max1≤i≤p dist(λi(C),supp(ν)) → 0, let f : C → C be a complex
function analytic on the complement of γ(C\ supp(μ)) in C with γ defined in (2.40).
Then,

1
p

p

∑
i=1

f (λi(C))− 1
2cπı

∮
Γμ

f

(
−1

m 1
n XTX(ω)

)
ωm′

1
n XTX

(ω)dω
a.s.−−→ 0,

for some complex positively oriented contour Γμ ⊂ C surrounding supp(μ) \ {0}. In
particular, if c < 1, the result holds for any f analytic on {z ∈ C, ℜ[z] > 0} with Γμ
chosen as any such contour within {z ∈ C, ℜ[z] > 0}.

https://doi.org/10.1017/9781009128490.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128490.003


2.4 Preliminaries on Statistical Inference 91

From a numerical standpoint, for c < 1, Theorem 2.12 is rather straightfor-
ward: It indicates that any complex contour Γμ in {z ∈ C, ℜ[z] > 0} guarantees
the result. For c > 1, the choice of Γμ is less trivial. For safety, it is advised
to take Γμ a contour closely fitting the support of μ 1

n XTX, excluding zero (such
as a small rectangle). Figures 2.5 and 2.6 visually explain the issue surround-
ing the case c > 1 and the technical request regarding the analytic nature of
f : From Figure 2.6, since the “tightest-to-the-real-line” (red) contours Γν in the
bottom displays must avoid the blue areas (to be well-defined images of valid
contours Γμ from the top displays), the minimal request is for f to be ana-
lytic on those blue areas enclosed in the red contour; if not analytic there,
the complex integral would have additional residues, thereby altering the result of
the theorem.

In practice, the most problematic case occurs when 0 falls within a blue area and
one has to deal with functions f (z) involving log(z),

√
z, 1/z, all of which are singular

at z = 0. A typical way out of this situation would be to add an extra term in the
result to compensate for the extra residue; this compensating term would then have
to be estimated. This however appears not always to be possible as discussed in the
following remark.

Remark 2.11 (On the c > 1 case). For c > 1 and for f not analytic at zero (for
instance, f (z) = log(z), f (z) = z−1, or f (z) =

√
z), Theorem 2.12 cannot be applied.

That is, for these functions,

1
p

p

∑
i=1

f (λi(C))

cannot be consistently estimated directly from the theorem statement. Using the above
compensation by the residue at zero workaround, however, it appears that the com-
pensating term is at least as hard to estimate as 1

p ∑p
i=1 f (λi(C)) itself. This somehow

suggests that, when p > n and thus the sample covariance matrix 1
n XXT is of rank n <

p, one lacks information to estimate some functionals of the p eigenvalues of C. A sim-
ilar problem will be discussed in Remark 3.3 on the application to between-covariance
matrix distance estimation.

Application Example: Estimating Population Eigenvalues of Large
Multiplicity
Figure 2.4 presents three scenarios where the population spectral measure μC (or
equivalently its limit ν) is a discrete sum of three distinct eigenvalues. A natural con-
cern in the large n,p setting is whether it is possible to estimate these eigenvalues
consistently from the sample data X of size n.

In Figure 2.4(a), it a priori appears that averaging the sample eigenvalues of each
component of μp may provide such a consistent estimator. This is however not the
case: As can be checked below, this estimator is indeed biased. The framework devised
in the previous section, on the contrary, will provide a consistent estimator: The idea
is now to design a contour Γν , which would encircle only one of the three masses
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in the spectrum (rather than encircling the whole support of ν); one must then find
a corresponding valid contour Γμ such that Γν = −1/m̃(Γμ); not surprisingly, this
contour Γμ will encircle the “hump” in the empirical spectrum μ associated with the
corresponding sought-for eigenvalue of C (this being a consequence of the discussions
in Section 2.3 and particularly of Figure 2.5). In Figure 2.4(b), a problem arises for
the two population eigenvalues (3 and 5) of C associated with the same connected
component of μ: For these, no complex contour Γν exists that would be a proper
image Γν = −1/m̃(Γμ) and that would circle around either 3 or 5 alone, see also the
left plots of Figure 2.6. We will see that a more involved procedure can nonetheless
consistently estimate them both. In Figure 2.4(c), the difficulty further increases: Here
again, it remains possible to estimate 1, 3, and 5 but at the cost of a more involved
method.

Consider then the following generalized setting of Figure 2.4, where

νC =
1
p

k

∑
i=1

piδ�i →
k

∑
i=1

ciδ�i

for �1 > · · · > �k > 0, k fixed with respect to n,p, and pi/p → ci > 0 as p → ∞ (i.e.,
each eigenvalue has a large multiplicity of order O(p)).

Fully Separable Case
We additionally assume for the moment that the sample size n > p of X = [x1,. . . ,xn ]
(where xi = C

1
2 zi , zi having standard i.i.d. entries and bounded fourth-order moment

as demanded in Theorem 2.11) is sufficiently large for the number of connected com-
ponents in μ to be exactly k, that is, each eigenvalue of C is “mapped” to a single
connected component of supp(μ) as in Figure 2.4(a) and Figure 2.5(a).

Then, to estimate the population �a , a ∈ {1,. . . ,k}, Theorem 2.12 may be applied

to the mere function f (z) = z, however for Γμ now changed into Γ(a)
μ , a contour con-

taining only the ath connected component of supp(μ) (these connected components
are sorted descendingly according to their values from ∞ to 0, for example, there are
three connected components in Figure 2.4(a): the first component around 7, the second
around 3, and the third around 1, respectively). Adapting Theorem 2.12 according to
Theorem 2.11 and our previous line of reasoning, we then have

�a − �̂a
a.s.−−→ 0, �̂a = − n

pa

1
2πı

∮
Γ(a)
μ

ω
m′

1
n XTX

(ω)

m 1
n XTX(ω)

dω
a.s.−−→ 0. (2.44)

The estimator �̂a can be numerically evaluated. However, recalling that m 1
n XTX(ω)

(and its derivative) are rational functions, this integral is prone to estimation by a
simple residue calculus. Indeed, first observe that the integrand in the expression of �̂a
has two types of poles: (i) the λi = λi(

1
n XTX) falling inside the surface described by

Γ(a)
μ , since in the neighborhood of λi ,
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− n
pa
ω

m′
1
n XTX

(ω)

m 1
n XTX(ω)

= − n
pa
ω

1
n ∑n

i=1
1

(λi−ω)2

1
n ∑n

i=1
1

λi−ω

∼ω∼λi − n
pa

ω

λi −ω

and (ii) the zeros of m 1
n XTX falling within Γ(a)

μ .

For readability in what follows, we sort the eigenvalues of 1
n XTX as λ1 ≥ ·· · ≥ λn

(these are almost surely distinct but for the possible zero eigenvalues). Dealing with

the first type of poles is easy: The λi falling within Γ(1)
μ are precisely the p1 largest,

within Γ(2)
μ the next p2 largest, etc., as per Theorem 2.11. The residue associated with

λi is then

lim
ω→λi

(ω− λi)
n
pa

−ω
λi −ω

=
n
pa
λi .

The second set of poles is less immediate to retrieve. An important remark is that
the zeros, call them η j (sorted also as η1 ≥ η2 ≥ . . .), of m 1

n XTX(ω) are necessar-

ily real (since the Stieltjes transform has nonzero imaginary part for ℑ[ω] �= 0, see
Definition 3) and satisfy

1
n

n

∑
i=1

1
λi −η j

= 0.

Since the function

x �→ 1
n

n

∑
i=1

1
λi − x

is increasing and has ∞ and −∞ asymptotes at x = λi − 0 and x = λi + 0, respec-
tively, each η j falls exactly in one of the intervals [λi ,λi+1] and thus each λi pole is
accompanied by its ηi pole (if sorted similarly; see Figure 2.7 for an illustration). The
residue calculus then gives, by Taylor expanding the denominator,

lim
ω→η j

(ω−η j)
n
pa

−ωm′
1
n XTX

(ω)

0+m′
1
n XTX

(η j)(ω−η j)
= − n

pa
η j .

As a result, we finally have the estimator

�̂a =
n
pa

p1+...+pa

∑
i=p1+...+pa−1+1

λi −ηi . (2.45)

Surprisingly at first, it appears that the estimator is the sum of pa =O(p) terms, which
may seem to conduct to an estimate of order O(p). However, recall that λ1,. . . ,λp

are “compacted” in a support of size O(1) and that λi−1 < ηi < λi so that λi − ηi =

O(p−1), which resolves the problem.
This formulation is nonetheless still not fully closed, in the sense that the ηis are so

far only provided in terms of the zeros of m 1
n XTX. The following remark provides an

explicit form.
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λi−1 λi

0
λi−1 λi

ηi

x

m
X
(x
)

Figure 2.7 Illustration of the zeros (ηi ) and poles (λi ) of the (restriction to the real axis of the)
Stieltjes transform mX(x). Code on web: MATLAB and Python.

Remark 2.12 (Explicit expression for the zeros of mX(z)). For X ∈ R
n×n symmetric

with eigenvalues λ1 > · · · > λn , the zeros η1 > η2 > . . . of mX(z) satisfy the following
equivalence relations

1
n

n

∑
i=1

1
λi −η j

= 0 ⇔ 1
n

n

∑
i=1

−η j

λi −η j
= 0

⇔ 1
n

n

∑
i=1

λi
λi −η j

−1 = 0

⇔ 1
n

√
λ
T
(Λ−η jIn)−1

√
λ−1 = 0

⇔ det

(
1
n

√
λ
√
λ
T
(Λ−η jIn)−1 − In

)
= 0

⇔ det

(
1
n

√
λ
√
λ
T −Λ+η jIn

)
= 0

where we denoted
√
λ ∈ R

p the (column) vector of the
√
λis and Λ ∈ R

p×p the diag-
onal matrix diag{λi}pi=1, sorted in the same way, and used Lemma 2.3 as well as the
fact that det(Λ−η jIn) �= 0 according to our discussion above.

Consequently, the zeros of mX are exactly the eigenvalues of

Λ− 1
n

√
λ
√
λ
T
.

Figure 2.8 depicts the estimation errors in the setting of two population eigenvalues
�1 and �2 (with �1 = 1 and p/n = 1/4), as a function of the difference Δλ = �2 − �1.
Note first that the derived random matrix-based estimator significantly outperforms
the naive approach of averaging the eigenvalues of each component of the sample
covariance. Also, we observe that the estimator error of the proposed approach grows
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0 0.5 1 1.5 2
0

0.1

0.3

0.5

Δλ

√ ∑
k a
=

1
(�

a
−
�̂ a
)2

Naive estimator
RMT-improved estimator

Figure 2.8 Eigenvalue estimation errors with naive and RMT-improved approach, as a function
of Δλ, for �1 = 1, �2 = 1+Δλ, p = 256 and n = 1024. Results averaged over 30 runs. Code on
web: MATLAB and Python.

rapidly once Δλ < 1: This is a typical “avalanche effect,” which appears below the
phase transition threshold when the two connected components of the support of the
empirical measure μ are no longer separable and the estimator is thus, in theory, no
longer consistent.

Nonseparable Case
The estimator introduced above is only valid if the contour Γ(a)

μ is licit, in the sense

that its image by the variable change z �→ −1/m̃(z) leads to a valid contour Γ(a)
ν sur-

rounding �a only. However, we have seen (in Figure 2.6 notably) that there may not

exist any such licit Γ(a)
μ . In our present setting, Figure 2.5(b) and Figure 2.5(c), as

well as Figure 2.6, reveal that, if say �1 and �2 are associated with a single connected

component of supp(μ), then all contours Γ(1)
μ surrounding only the p1 largest empirical

eigenvalues λis are illicit.
In order to estimate both �1 and �2 individually, one must then resort to using at least

two estimates of linear functionals of the couple (�1,�2). One approach is to estimate
simultaneously both p1

p �1 +
p2
p �2 and p1

p �
2
1 +

p2
p �

2
2, which are accessible from our

present adaptation of Theorem 2.12 for f (z) = z and f (z) = z2, with a contour Γ(1,2)
μ

surrounding the connected component of μ encompassing the p1 + p2 largest λis.
Assuming that p1 and p2 are known, this thus boils down to solving a

second-order polynomial in �̂1 and �̂2. This procedure however has several
limitations: (i) the polynomial equations may lead to nonreal solutions (recall that,
while asymptotically this will not occur, the procedure is based on the finite-
dimensional random realization X, so that nonreal solutions may arise with nonzero
probability), and (ii) assuming that p1 and p2 are known is, unlike the fully separable
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case guaranteed by Theorem 2.11, in fact quite demanding as they cannot be easily
estimated from the empirical eigenvalues λi themselves (an additional third equation
is then needed), (iii) a further classical issue in statistics is that estimates of higher-
order (second-order here) moments are increasingly prone to large variances as the
moment order increases: As such, the need for additional equations to estimate the
individual �a and their multiplicity must pass through generalized (nonpolynomial)
moments, which are possibly cumbersome to estimate.

2.4.2 Eigenvector Projections and Subspace Methods

In the previous section on the inference methods for the linear statistics (of eigenval-
ues) of the population covariance C, we exploited, as a immediate consequence of
Theorem 2.6, the relation

mν (−1/m̃(z)) = −zm(z)m̃(z)

between the Stieltjes transform mν of the population covariance measure ν and
the Stieltjes transform m (and m̃) of the sample covariance measure μ (and μ̃ =

cμ+(1− c)δ0).
The deterministic equivalent statements Q(z) ↔ Q̄(z) (as well as Q̃(z) ↔ ¯̃Q(z))

in Theorem 2.6 go beyond Stieltjes transform relations as they connect the whole
resolvent matrix Q(z) = ( 1

n XXT − zIp)−1 of the sample covariance (almost directly)
to the resolvent (C− zIp)−1 of the population covariance.

These relations can be used in the following ways: (i) when C is known, they
provide asymptotic characterizations of some functionals of X involving its singu-
lar vectors (i.e., the eigenvectors ûi(XTX) of XTX or ûi(XXT) of XXT), in particular
projections ûi(XXT)Tu(C) onto the eigenvectors u(C) of C; (ii) when C is unknown,
they provide estimates for some functionals of the eigenvectors of C, notably projec-
tions aTu(C) onto deterministic vectors a, using those of the empirical eigenvectors
ûi(XXT). The latter case is particularly suited to the so-called subspace methods, for
instance, based on the fact that u(C) is known to be aligned (or be equal) to some
vector aθ parametrized by θ and one aims to solve for θ maximizing this alignment.
See Section 3.1.3 for an example of such methods in signal processing application.
Another scenario of significance is spectral clustering, where the dominant eigen-
vectors of the kernel matrix XTX are used to estimate the dominant population
eigenvectors, themselves precisely providing the data classes: knowing their asymp-
totic alignment thus provides precise characterizations of the performance of spectral
clustering.

Estimates of Functionals of X
In some machine learning applications, the observed data X will be processed in a
nonlinear fashion that may nonetheless preserve its eigenvector structure. The spectral
behavior of the resulting matrix may here be typically evaluated by means of its pro-
jection onto specific vector structures. This is, for instance, the case of some simple
gradient descent mechanisms for supervised learning to be discussed in Section 5.2,
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where the learning performance can be measured from the alignment between the gra-
dient descent iterates and the classification vectors (such as the vector [−1n1 ,1n2 ] in a
binary classification setting).

For M ∈ R
p×p , a symmetric matrix with spectral decomposition M = UΛUT and

Λ = diag{λ1,. . . ,λp}, and f : R→ R, we shall here denote

f (M) = Udiag{ f (λi)}pi=1UT.

Assume f is extensible to a complex function f : C → C, analytic on a neighborhood
of λ1,. . . ,λp . Then, we have that

f (M) = − 1
2πı

∮
Γ

f (z)QM(z)dz

for Γ ⊂ C a contour closely encompassing λ1,. . . ,λp but no singularity of f . This
result arises from a simple residue calculus. Indeed, writing

QM = U(Λ− zIp)−1UT =
p

∑
i=1

uiuT
i

λi − z

with U = [u1,. . . ,up ], each eigenvalue λ j is a pole of the integrand and the associated
residue is

lim
z→λ j

(z − λ j) f (z)
p

∑
i=1

uiuT
i

λi − z
= − f (λ j)u juT

j .

Summing the expression above over j gives the result.
Now, assuming that QM(z) admits a deterministic equivalent Q̄(z), we have, in

particular, for A ∈ R
p×p and a,b ∈ R

p , deterministic and of bounded norms,

1
p

tr(A f (M)) = − 1
2πı

∮
Γ

f (z)
1
p

trAQM(z)dz

= − 1
2πı

∮
Γ

f (z)
1
p

trAQ̄(z)dz+ o(1),

aT f (M)b = − 1
2πı

∮
Γ

f (z)aTQM(z)b dz

= − 1
2πı

∮
Γ

f (z)aTQ̄(z)b dz+ o(1),

thereby giving access to the asymptotics of these eigenvector functionals.
Under the notations of Theorem 2.6, for M = 1

n XXT the sample covariance matrix
under study, we have, in particular,

1
p

trA f

(
1
n

XXT
)
=

1
2πı

∮
Γμ

f (z)
z

1
p

trA(Ip + m̃(z)C)−1 dz+ o(1) (2.46)

aT f

(
1
n

XXT
)

b =
1

2πı

∮
Γμ

f (z)
z

aT (Ip + m̃(z)C)−1 b dz+ o(1)

for Γμ a contour circling around the limiting spectral support supp(μ).
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Example: Eigenspace Correlation
Returning to Figure 2.4, we have seen that, when the population covariance spectrum
ν is a discrete measure ν = ∑k

a=1
pa
p δ�a and c is small enough, μ has a density that

spreads in k connected components supp(μ) = S1 ∪ . . .∪Sk , with Sa mapped to the
atom �a of ν; these connected components spread more when c increases. A natu-
ral subsequent question would be to know whether the eigenvectors ûis associated
with the pa eigenvalues of 1

n XXT of a given connected component Sa share the same
eigenspace as that spanned by the eigenvectors uis of C corresponding to population
eigenvalue �a (with multiplicity pa) of ν.

This question can be answered by evaluating the following quantity

1
pa

trΠaΠ̂a , Πa = ∑
λi (C)=�a

uiuT
i , Π̂a = ∑

j∼Sa

û j ûT
j

and where the relation j ∼ Sa stands for dist(λ j(
1
n XXT),Sa) → 0, that is, those

eigenvalues of 1
n XXT converging to the limiting component Sa of μ.

This quantity can be evaluated by letting A = Πa , f (z) = 1 and changing Γμ into
ΓSa , a contour surrounding only the component Sa of supp(μ) in (2.46). We precisely
get

1
pa

trΠaΠ̂a =
1

2πı

∮
ΓSa

1
z

1
pa

trΠa (Ip + m̃(z)C)−1 dz+ o(1)

=
1

2πı

∮
ΓSa

1
z

1
1+ m̃(z)�a

dz+ o(1), (2.47)

which, for a given population eigenvalue �a , can be evaluated numerically with the
following two-step procedure:

(i) with Theorem 2.10, determine the support of μ, which is assumed to have exactly
k disjoint components, that is,

supp(μ) =
k⋃

a=1

Sa , Sa = [s−a ,s
+
a ] with s+a < s−a+1, (2.48)

(ii) choose any licit contour ΓSa that carefully circles around only the component
Sa , for instance, the rectangular ΓSa as depicted in Figure 2.9 (which was
adopted, for example, in Bai and Silverstein [2004]); then evaluate the integral
numerically over this contour by solving the fixed-point defining equation of
m̃(z) in (2.33).

But we may go beyond this numerical evaluation and obtain an explicit expression
of the integral. To this end, for the chosen rectangular contour ΓSa in Figure 2.9,
this consists in evaluating the sum of four line integrals (two “horizontal” and two
“vertical”). We provide here the full derivation as it is instrumental of many such
calculus arising in similar inference problems and, to the best of our knowledge, this
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Figure 2.9 Typical contour ΓSa
, for ν = 1

3 (δ1 + δ3 + δ7) with c = 1/10.

specific calculus was not derived elsewhere in the random matrix literature. Let us first
focus on the sum of the two horizontal integrals

∫ s−a−εx

s+a+εx
g(x+ ıε y)dx+

∫ s+a+εx

s−a−εx
g(x − ıε y)dx

for g(z) ≡ 1
z

1
1+m̃(z)�a

our object of interest here. Note from the definition of Stieltjes

transform, Definition 3, that32

ℜ[m(x+ ıy)] = ℜ[m(x − ıy)], ℑ[m(x+ ıy)] = −ℑ[m(x − ıy)],

for any Stieltjes transform m(z) and, consequently,

ℜ[g(x+ ıy)] = ℜ[g(x − ıy)], ℑ[g(x+ ıy)] = −ℑ[g(x − ıy)].

A direct consequence of this observation is that
∫ s−a−εx

s+a+εx
g(x+ ıε y)dx+

∫ s+a+εx

s−a−εx
g(x − ıε y)dx = −2ı

∫ s+a+εx

s−a−εx
ℑ[g(x+ ıε y)]dx

and thus only the imaginary part of g(z) = 1
z

1
1+m̃(z)�a

remains, which is explicitly
given by

ℑ[g(x+ ıε y)] = − ε y + �a (xℑ[m̃(x+ ıε y)]+ ε yℜ[m̃(x+ ıε y)])

(x2 + ε2
y)(1+2�aℜ[m̃(x+ ıε y)]+ �2

a |m̃(x+ ıε y)|2)
.

As for the two vertical integrals (from −ε y to ε y ), we expect that, in the limit ε y → 0,
they can be neglected. This is indeed the case as we know from Theorem 2.10 that the
limit

m̃◦(x) = lim
εy↓0

m̃(x+ ıε y) = lim
εy↓0

(m̃(x − ıε y))
∗

(with (·)∗ the complex conjugate) exists and is real for x /∈ supp(μ), so that g(z) is
continuous on the vertical lines and the vertical integrals thus vanish as ε y → 0. The

32 This second equality is reminiscent of the property ℑ[m(z)] · ℑ[z] > 0 that immediate follows
Definition 3.

https://doi.org/10.1017/9781009128490.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128490.003


100 2 Random Matrix Theory

m = 1 0.05 0.1 0.15 0.2
0.5

0.6

0.7

0.8

0.9

1

p/n

E
ig

en
sp

ac
e

co
rr

el
at

io
n

Empirical
Asymptotics by (2.49)
Asymptotics by Theorem 2.14

Figure 2.10 Empirical versus limiting eigenspace correlation as a function of p
n = p

m
m
n for

ν = (1− m
p )δ1 +

m
p δ2, m

p = 1
16 and n = 1024. Code on web: MATLAB and Python.

resulting complex integral thus corresponds to the limit of the horizontal integrals for
ε y → 0. As opposed to the vertical integrals though, for every x ∈ supp(μ), m̃◦(x) is
of positive imaginary part, so that the limits of m(z) and thus of g(z), for z = x ± ıε y ,
come in conjugate pairs as ε y ↓ 0. This finally leads to

1
pa

trΠaΠ̂a =
1
π

∫ s+a

s−a

�aℑ[m̃◦(x)]
1+2�aℜ[m̃◦(x)]+ �2

a |m̃◦(x)|2
dx
x

+ o(1), (2.49)

where we recall from Theorem 2.10 that, for x inside the support, m̃◦(x) is the unique
solution with positive imaginary part of

m̃◦(x) =

(
−x+ c

∫
tν(dt)

1+ m̃◦(x)t

)−1

.

We will show in Section 2.5 on “spiked models” that when the multiplicity pa of
atom �a is small – technically, if one assumes that pa = O(1) with respect to p –
the alignment trΠaΠ̂a just derived takes a much simpler and fully explicit form, see
Theorem 2.14. Yet, the present estimate, which we set under the scenario where pa =

O(p), turns out (as numerical observations in Figure 2.10 suggest) to be as well precise
even when pa is small, at least in the setting of Figure 2.10.

To make this claim more visual, consider the setting where the population covari-
ance C ∈ R

p×p has its p−m eigenvalues equal to 1 and the remaining m eigenvalues
equal to � > 1, so that the population spectral measure ν is a discrete measure
having two components: ν = p−m

p δ1 +
m
p δ� . In the case where m,n,p → ∞ with

lim m/p,lim p/n ∈ (0,∞), the correlation of eigenspaces that corresponds to the leading
eigenvalues of C (equal to � with multiplicity m) and those of 1

n XXT can be fully char-
acterized by (2.49). Figure 2.10 compares the empirical eigenspace correlation with
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different limiting behaviors predicted by the “separate bulk” model in (2.49) versus the
spiked model introduced later in Theorem 2.14. For small values of m, both limiting
predictions are close, although (2.49) already shows a surprisingly marked advantage
over the spiked model, even though m � p (which goes against our assumptions).
But as m increases, the spiked model-based Theorem 2.14 tends to overestimate the
correlation, while the prediction (2.49) is a close match to the empirical output.

This observation, which appears to be quite systematic in random matrix theory, is
interesting from an application perspective: In practice, C is fixed (instead of growing
size) and so are m, p, and n. Yet, the random matrix predictions based on simultane-
ously large m,p,n are always extremely accurate and, most importantly, systematically
more accurate than when one assumes one of the dimensions (be it m, p, or n) is fixed.

As a side remark, if we only have access to the empirical covariance 1
n XTX and

its Stieltjes transform (i.e., if C is unknown), then the contour integration in (2.47)
asymptotically and practically reduces to residue calculus as

1
pa

trΠaΠ̂a =
1

2πı

∮
ΓSa

1
z

1
1+m 1

n XTX(z)�a
dz+ o(1)

= ∑
i∼Sa

−m 1
n XTX(ζi)

ζim′
1
n XTX

(ζi)
+ o(1),

with ζis the roots of m 1
n XTX(ζi) = −1/�a , which, by an argument similar to

Remark 2.12, are the (sorted) eigenvalues of Λ+ �a
n 1n1Tn , for Λ the diagonal matrix

containing the eigenvalues of 1
n XTX. The residue calculus technique performed in the

last equation was described in the previous section.

Eigenvector Inference and Subspace Methods
The second interest of the deterministic equivalent Q(z) ↔ Q̄(z) of Theorem 2.6,
already underlined in the previous example, now concerns the statistical inference of
the eigenvectors and eigenspaces of C. Unless a strong a priori structure is imposed,
the eigenvectors themselves cannot be consistently estimated from X (especially
“large” eigenspaces involving O(p2) parameters, which cannot be estimated from the
O(pn) data observations). But their scalar projections onto some deterministic vec-
tors are accessible. Precisely, for a,b ∈ R

p of bounded Euclidean norm, denoting Πi

a projector on the eigenspace associated with the eigenvalue λi(C),

aTΠib = − 1
2πı

∮
Γi
ν

aT (C− zIp)
−1 b dz

for Γi
ν a contour circling around λi(C) only. From Theorem 2.6 and our subsequent

discussions in Section 2.3, it is strongly desirable to use again the variable change
z = −1/m̃(ω) in order to estimate aTΠib from an integral over aTQ(z)b involving
the resolvent Q(z). However, this is again only possible if there exists a pair of con-
tours (Γi

ν ,Γ) such that −1/m̃(Γ) = Γi
ν . This is, in general, not possible unless λi(C)

“induces” its own associated connected component in supp(μ), see illustrations in
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Figures 2.5 and 2.6. Assuming the validity of such variable change, we thus have

aTΠib = − 1
2πı

∮
Γ

aT
(

C+
1

m̃(ω)
Ip

)−1

b · m̃′(ω)

m̃2(ω)
dω

=
1

2πı

∮
Γ

aTQ(ω)b · ωm̃′(ω)

m̃(ω)
dω+ o(1).

This formula reveals handy when testing whether an expected “structure” vector
a ∈ R

p is present in the dominant subspace associated with, say, the largest eigen-
value (possibly with multiplicity) λ1(C) of the data covariance structure C. The value
aTΠa/‖a‖2 ∈ [0,1] precisely evaluates a score for the structure vector a to be in the
span of the dominant eigenvectors of C.

This analysis finds several applications in detection and estimation, notably in the
field of array processing. A concrete example, the G-MUSIC algorithm, is discussed in
Section 3.1.3 but more results are available in the dedicated array processing literature
[Mestre and Lagunas, 2008, Kammoun et al., 2017].

2.5 Spiked Models

The statistical methods discussed in the previous sections for the sample covari-
ance matrix model offer a flexible estimation and inference framework, which
can be extended to a large spectrum of random matrix models. However, they
have a certain number of practical limitations: (i) they rely on the implicit
nature of Theorem 2.6 and thus their behavior is not easily understood, (ii) the
complex integration framework, while theoretically satisfying, may be difficult to han-
dle in practice (conditions of the existence of valid contours need to be ensured,
the complex integrals do not necessarily lend themselves to simple analytical
evaluation, etc.).

In this section, we will consider a very special, yet practically far-reaching, case
of sample covariance matrix models for which the limiting spectral measure coin-
cides with the Marc̆enko–Pastur law, while the population covariance matrix has a
nontrivial informative structure. Since the Marc̆enko–Pastur law assumes an explicit
well-understood expression (recall Theorem 2.4), the various estimates of interest will
be explicit, and thus intuitions on their behavior are easily derived. Besides, the var-
ious change of variable difficulties for contour integral methods met in the previous
sections are greatly simplified in this setting.

These special models fundamentally rely on letting the covariance matrix C be a
low-rank perturbation of the identity matrix Ip , that is, C = Ip+P for P ∈R

p×p with
rank(P) = k fixed with respect to n,p.

Such statistical models corresponding to a low-rank update of a classical random
matrix model with well-known behavior are generically called spiked models.
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2.5.1 Isolated Eigenvalues

Let us then consider again the model X = [x1,. . . ,xn ]∈R
p×n with xi = C

1
2 zi , zi ∈R

p

with standard i.i.d. entries and where

C = Ip +P, P =
k

∑
i=1

�iuiuT
i

with k and �1 ≥ ·· · ≥ �k > 0 fixed with respect to n,p.
According to Theorem 2.6, the spectral measure μ 1

n XXT admits a limit μ defined
through the limiting spectral measure ν of C. Note that here ν = δ1 since

μC =
p− k

p
δ1 +

1
p

k

∑
i=1

δ1+�i → δ1

as p → ∞. As a consequence, while C is not the identity matrix, the limiting μ is the
Marc̆enko–Pastur law introduced in Theorem 2.4. However, note importantly that the
conditions for “no eigenvalue outside the support,” Theorem 2.11, do not hold here
since dist(1+ �i ,supp(ν)) �→ 0 for i ∈ {1,. . . ,k}. Therefore, one cannot claim that all
the eigenvalues of 1

n XXT will lie within the support supp(μ).
We will precisely show here that, depending on the values of �i and the ratio c =

lim p/n, the ith largest eigenvalue λ̂i of 1
n XXT may indeed isolate from supp(μ). As

such, since most of the eigenvalues of 1
n XXT aggregate, except possibly for a few ones

(up to k of them), the latter isolated eigenvalues are seen as isolated “spikes” in the
histogram of eigenvalues. See Figure 2.11, commented next, for a visual representation
of these “spikes.”

This specific result, due to Baik (not Bai) and Silverstein, is given in the following
theorem.33

Theorem 2.13 (Spiked eigenvalues, Baik and Silverstein [2006]). Under the setting
of Theorem 2.6 with E[Z4

i j ] < ∞, let C = Ip +P with P = ∑k
i=1 �iuiuT

i its spectral
decomposition, where k and �1 ≥ ·· · ≥ �k > 0 are fixed with respect to n,p. Then,
denoting λ̂1 ≥ ·· · ≥ λ̂p the eigenvalues of 1

n XXT, as n,p → ∞ with p/n → c ∈ (0,∞),

λ̂i
a.s.−−→

{
λi = 1+ �i + c 1+�i

�i
> (1+

√
c)2 , �i >

√
c

(1+
√

c)2 , �i ≤
√

c.

The theorem thus identifies an abrupt change in the behavior of the ith dominant
eigenvalue λ̂i of 1

n XXT: if �i ≤ √
c, λ̂i converges to the right-edge (1+

√
c)2 of the

33 These same results were later retrieved using a free probability approach (so formally under slightly
different assumptions on Z) in the work of, for example, Benaych-Georges and Nadakuditi [2011] and
were generalized to a larger class of random matrix models. This last article, a richer set of dedicated
and better digested techniques (such as those exposed presently), as well as the growing evidence of
fundamental applications of these results [Bianchi et al., 2011, Donoho et al., 2018, Candès et al., 2015,
Couillet, 2015, Couillet and Hachem, 2013], triggered a renewed wave of interest for spiked models
[Loubaton and Vallet, 2011, Capitaine, 2014].
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Figure 2.11 Eigenvalues of 1
n XXT (blue crosses), the Marc̆enko–Pastur law (red solid line),

and asymptotic spike locations (red dashed line), for X = C
1
2 Z, C = Ip +P with

μP = p−4
p δ0 +

1
p (δ1 + δ2 + δ3 + δ4), for p = 1024 and different values of n. (a) p/n = 1/4,

(b) p/n = 1/2, (c) p/n = 2, and (d) p/n = 4. Code on web: MATLAB and Python.

support of the Marc̆enko–Pastur law μ and thus does not isolate. However, as soon as
�i >

√
c, λ̂i converges to a limit beyond the right-edge of μ and thus does isolate from

the Marc̆enko–Pastur support. Note in passing that the transition is smooth as the limit
of λi as �i → √

c indeed coincides with (1+
√

c)2, so there is no “sudden jump” of
the limiting eigenvalue location at the �i =

√
c transition point.

With a physics inspiration, this phenomenon is often referred to as the phase
transition of the spiked models.

From a statistical viewpoint, the fact that the ith eigenvalue λ̂i of the sample covari-
ance matrix 1

n XXT “macroscopically” exceeds or not the other eigenvalues depending
on whether �i >

√
c or �i ≤ √

c can be interpreted as a test of whether the “signal
strength” �i of the low-rank structure exceeds the minimal detectability threshold

√
c:

This can be achieved if the signal strength �i is itself strong enough, or alternatively
if the number of observed independent data n is large enough (so that c = lim p/n is
small), as common sense would suggest. Indeed, if �1 <

√
c, the eigenvalues of 1

n XXT

are all asymptotically compacted in the support [(1 −√
c)2,(1+

√
c)2] and thus it is

theoretically (asymptotically) impossible to tell whether C = Ip or C is more struc-
tured from the mere observation of the eigenspectrum 1

n XXT. This phase transition
effect, for all successive spikes, is well illustrated in Figure 2.11.
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Remark 2.13 (The case of negative �is). Baik and Silverstein [2006] in fact gen-
eralized the result in Theorem 2.13 to account for possibly negative �is, that is,
�i ∈ (−1,0). In this situation, the following interesting phenomenon occurs: (i) if c < 1
and �i < −√

c, there exists an associated eigenvalue of 1
n XXT, which converges to

1+�i+c(1+�i)/�i ∈ (0,(1−√
c)2) so on the left-hand side of the limiting Marc̆enko–

Pastur support; (ii) if c < 1 and �i ≥ −√
c, the associated eigenvalue converges to the

left edge (1−√
c)2); (iii) if c > 1 (so, in particular, since �i > −1, one cannot have

�i < −√
c), the corresponding eigenvalue tends to 0: So it is never possible to find

isolated eigenvalues in the “empty space” (0,(1−√
c)2)) when c > 1.

This negative-�i setting in effect finds no practical applications that we are aware
of, and would additionally be cumbersome to integrate (due to heavier indexing) into
a more general statement of Theorem 2.13.

Proof of Theorem 2.13. When it comes to assessing the eigenvalues of a given matrix
M, the first thing that comes to mind is to solve the determinant equation det(M −
λ̂I) = 0. This approach is not convenient for M = 1

n XXT of increasing dimensions
and we have seen that the Stieltjes transform and resolvent method is an appropriate
substitute in that case. Here, since the low-rank matrix P only induces a low-rank
perturbation of 1

n ZZT, the use of Sylvester’s identity, Lemma 2.3, will turn the
large-dimensional determinant equation into a small (fixed)-dimensional one, and the
determinant equation method can then be applied. This is the approach we pursue here.

Specifically, let us seek for the presence of an eigenvalue λ̂ of 1
n XXT that is asymp-

totically greater than (1+
√

c)2. Our approach is to “isolate” the low-rank contribution
due to P from the “whitened” sample covariance matrix model 1

n ZZT with identity

covariance. To this end, we write, with X = C
1
2 Z,

0 = det

(
1
n

XXT − λ̂Ip

)

= det

(
1
n
(Ip +P)

1
2 ZZT(Ip +P)

1
2 − λ̂Ip

)

= det(Ip +P)det

(
1
n

ZZT − λ̂(Ip +P)−1
)
.

Since det(Ip + P) �= 0, the first determinant can be discarded. For the second
determinant, first recall from the resolvent identity, Lemma 2.1, that

(Ip +P)−1 = Ip − (Ip +P)−1P,

so that we can isolate the (now well-understood) resolvent of the “whitened” model.
That is, letting Q(λ̂) = ( 1

n ZZT − λ̂Ip)−1, we write

0 = det

(
1
n

ZZT − λ̂Ip + λ̂(Ip +P)−1P
)

= detQ−1(λ̂)det
(
Ip + λ̂Q(λ̂)(Ip +P)−1P

)
. (2.50)
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Thanks to Theorem 2.11, inverting the matrix 1
n ZZT − λ̂Ip is (almost surely) licit for

all large n,p as we demanded λ̂ > (1+
√

c)2. Now, considering the spectral decompo-
sition P = ULUT with L = diag{�1,. . . ,�k} and U = [u1,. . . ,uk ] ∈ R

p×k , we further
have

(Ip +P)−1P = (Ip +ULUT)−1ULUT = U(Ik +L)−1LUT.

Plugging into (2.50), this is

0 = detQ−1(λ̂)det
(

Ip + λ̂Q(λ̂)U(Ik +L)−1LUT
)

= detQ−1(λ̂)det
(

Ik + λ̂UTQ(λ̂)U(Ik +L)−1L
)
,

where in the last equality we applied Sylvester’s identity, Lemma 2.3. Since
detQ−1(λ̂) = det( 1

n ZZT− λ̂Ip) does not vanish for all large n,p at λ̂ > (1+
√

c)2, we
finally have, for all large n,p, the following determinant equation for a much smaller
matrix (of size k × k)

0 = det
(

Ik + λ̂UTQ(λ̂)U(Ik +L)−1L
)
.

Applying Theorem 2.4 entry-wise to each entry of the k × k matrix UTQ(λ̂)U (this is
the step where it is fundamental that k remains finite as n,p → ∞), we now know that

UTQ(λ̂)U = m(λ̂)Ik + o‖·‖(1)

almost surely, for m(z) the Stieltjes transform of the Marc̆enko–Pastur law μ (the term
Ik arises from the fact that UTU = Ik ). Consequently, by continuity of the determinant
(this is a polynomial of its entries), we have

0 = det
(
Ik + λ̂m(λ̂)(Ik +L)−1L

)
+ o(1)

and thus, if such a λ̂ exists, it must satisfy

λ̂m(λ̂) = −1+ �i
�i

+ o(1),

for some i ∈ {1,. . . ,k}.
We thus need to understand when the above equation has a solution. To this end,

observe that the function R\ supp(μ)→R, x �→ xm(x) =
∫ x

t−x μ(dt) is increasing on
its domain of definition and that xm(x) → −1 as x → ∞. Note from Theorem 2.4

zcm2(z)− (1− c− z)m(z)+1 = 0 ⇔ zm(z) = −1+
1

1− z − czm(z)
, (2.51)

so that we can express zm(z) as a function of c and z (alternatively, we could use the
explicit solution for m(z) in the proof of the Marc̆enko–Pastur law, but this is slightly
more cumbersome), so to obtain

lim
x∈R↓(1+√

c)2
xm(x) = −1+

√
c√

c
.

Thus, xm(x) increases from − 1+
√
c√

c
to −1 on the set ((1+

√
c)2,∞). The equation

λ̂m(λ̂) = − 1+�i
�i

thus has a solution if and only if �i >
√

c for some i ∈ {1,. . . ,k}.
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Assuming this holds, we may then use again (2.51) (replacing zm(z) by −(1+�i)/�i )
to obtain

λ̂i → λi = 1+ �i + c
1+ �i
�i

,

which concludes the proof of Theorem 2.13.

Figure 2.11 depicts the eigenvalues of 1
n XXT versus the Marc̆enko–Pastur law, in

the scenario where C = Ip+P with P of rank four, for various ratios p/n. As predicted
by Theorem 2.13, the number of visible “spikes” outside the limiting Marc̆enko–Pastur
law support varies with p/n: As the ratio decreases, less spikes are visible. We also
note that, for fixed p, the asymptotic characterization in Theorem 2.13 becomes less
accurate as n decreases.

2.5.2 Isolated Eigenvectors

From a practical standpoint, we have seen that the presence of isolated eigenvalues in
the spectrum of the sample covariance 1

n XXT reveals the presence of some “structure”
in the population covariance C in the sense that C �= Ip . We have however also seen
that the converse is not true: assuming a spiked model for C, the absence of isolated
eigenvalue does not always imply C = Ip .

More interestingly, whether this “structure” is detected or not, one may won-
der whether it can be estimated at all. More specifically, for C = Ip +P with P =

∑k
i=1 �iuiuT

i , are the eigenvectors û1,. . . ,ûk of 1
n XXT associated with its k largest

eigenvalues λ̂1 ≥ ·· · ≥ λ̂k good estimators of u1,. . . ,uk?
Not surprisingly, as in Theorem 2.13 for the spiked eigenvalues, the answer is here

again twofold: (i) if �i ≤ √
c, then ûi tends to be totally uncorrelated from and thus

asymptotically orthogonal to ui ;34 while (ii) if �i >
√

c, ûi is, to some extent, aligned
to ui . The following theorem, due to Paul [2007], quantifies this “to some extent.”35

Theorem 2.14 (Spiked eigenvector alignment, Paul [2007]). Under the setting of The-
orem 2.13, let û1,. . . ,ûk be the eigenvectors associated with the largest k eigenvalues
λ̂1 > · · · > λ̂k of 1

n XXT. Further assume that �1 > · · · > �k > 0 are all distinct. Then,
for a,b ∈ R

p unit norm deterministic vectors

aTûi ûT
i b−aTuiuT

i b · 1− c�−2
i

1+ c�−1
i

·1�i>
√
c

a.s.−−→ 0. (2.52)

34 In the “unstructured” case of C = Ip and Gaussian Z (i.e., the so-called Gaussian orthogonal ensemble,
GOE), it is known that the eigenvectors of the resulting Wishart matrix are uniformly distributed on the
unit sphere S

p−1 [Anderson et al., 2010, Section 2.5.1] (or equivalently, according to the Haar measure,
see more details in Section 2.6.2) that is close to, for p large, a Gaussian distributed random vector with
i.i.d. entries. The same holds for the eigenvectors of Wigner matrix in Theorem 2.5.

35 Here again, a large body of literature and modernized tools were set in place to study asymptotic eigen-
vector behaviors. Some of them are only valid (or only convenient) for rank-one spike models [Paul,
2007, Benaych-Georges and Nadakuditi, 2011, 2012], but the techniques now widely used (such as the
contour-integral method presented in this book) generally apply to an arbitrary (but fixed) number of
spikes [Couillet and Hachem, 2013, Baik et al., 2005].
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In particular, with a = b = ui , we obtain

|uT
i ûi |2 a.s.−−→ ζi ≡

1− c�−2
i

1+ c�−1
i

·1�i>
√
c . (2.53)

Proof of Theorem 2.14. We first write that, for all large n,p almost surely and �i >
√

c,

aTûi ûT
i b = − 1

2πı

∮
Γλi

aT
(

1
n

XXT− zIp

)−1

b dz,

for Γλi a small contour enclosing only the almost sure limit λi = 1+�i +c 1+�i
�i

of the

eigenvalue λ̂i of 1
n XXT given in Theorem 2.13. Isolating 1

n ZZT from 1
n XXT as in the

proof of Theorem 2.13, we have

aT
(

1
n

XXT − zIp

)−1

b

= aT
(

1
n
(Ip +P)

1
2 ZZT(Ip +P)

1
2 − zIp

)−1

b

= aT(Ip +P)−
1
2

(
1
n

ZZT − zIp + z(Ip +P)−1P
)−1

(Ip +P)−
1
2 b

with Q(z) = ( 1
n ZZT − zIp)−1, where we used (Ip +P)−1 = Ip − (Ip +P)−1P from

Lemma 2.1. It then follows from the spectral decomposition that (Ip + P)−1P =

U(Ik +L)−1LUT for U = [u1,. . . ,uk ] ∈ R
p×k and L = diag{�i}ki=1 so that

aT
(

1
n

XXT − zIp

)−1

b

= aT(Ip +P)−
1
2 Q(z)(Ip +P)−

1
2 b

− zaT(Ip +P)−
1
2 Q(z)U

(
Ik +L−1 + zUTQ(z)U

)−1
UTQ(z)(Ip +P)−

1
2 b

= aT(Ip +P)−
1
2 Q(z)(Ip +P)−

1
2 b

− zaT(Ip +P)−
1
2 Q(z)U

(
L−1 +(1+ zm(z))Ik

)−1
UTQ(z)(Ip +P)−

1
2 b+ o(1),

where we used Woodbury identity, Lemma 2.7, for the first equality, and UTQ(z)U =

m(z)Ik + o‖·‖(1), as per Theorem 2.4, for the second equality.
Note here that the complex integration of Q(z) on the contour Γλi only brings a

nontrivial residue for the second right-hand side term owing to the inverse (L−1 +

(1+ zm(z))Ik )−1, which is singular at z = λi according to the proof of Theorem 2.13.
We thus finally have

aTûi ûib =
1

2πı

∮
Γλi

zm2(z)aTU(Ik +L)−
1
2 (L−1 +(1+ zm(z))Ik )

−1

× (Ik +L)−
1
2 UTb dz+ o(1).
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This expression can then be evaluated by residue calculus at z = λi , the only
singularity of the integrand, as

lim
z→λi

(z − λi)(L−1 +(1+ zm(z))Ik)
−1 =

eieTi
m(λi)+ λim′(λi)

with ei ∈ R
k the canonical basis vector defined as [ei ] j = δi j . Using the (here most

convenient) form

m(z) =
1

−z+ 1
1+cm(z)

of the Stieltjes transform of the Marc̆enko–Pastur law gives36

m′(z) =
m2(z)

1− cm2(z)
(1+cm(z))2

from which we obtain, in particular, that m(λi) = −1/(�i + c) and m′(λi) =

�2
i (�i + c)−2(�2

i − c)−1. We finally get

aTûi ûT
i b = aTuiuT

i b · 1− c�−2
i

1+ c�−1
i

+ o(1),

which concludes the proof of Theorem 2.14.

Figure 2.12 compares, in a single-spike scenario, the theoretical limit ζ1 of |ûT
1u1|2

versus its empirical value for different �1 and different p,n with constant ratio p/n.
It is important to note that the theoretical asymptotic phase transition phenomenon at
�1 =

√
c corresponds to a sharp nondifferentiable change in the function �1 �→ ζ1 =

(1 − c�−2
1 )/(1+ c�−1

1 ) · 1�1≥
√
c ; a local analysis in the limit of �1 =

√
c + ε reveals

that ζ1 (and thus |ûT
1u1|2 in the large n,p limit) is locally equal to ζ1 � 2ε√

c(1+
√
c)

and
therefore, for sufficiently large n,p,

|ûT
1u1| =�1=

√
c+ε

√
2√

c(1+
√

c)
·
√
ε+O(ε),

which has an infinite derivative as �1 ↓ √
c. On real data of finite size, this sharp transi-

tion is only observed for extremely large values of n,p. This, in particular, means that,
in practice, residual information of u1 is still present in û1 below the phase transition
threshold.

2.5.3 Limiting Fluctuations

Theorem 2.13 on the limiting presence and position of isolated eigenvalues in
the spectrum of 1

n XXT establishes that it suffices to evaluate whether the largest

36 In passing, note that m′(z) assumes an explicit form as a function of z and m(z). While not surprising
in the Marc̆enko–Pastur case, this turns out to be also true of more elaborate models, where m(z) does
not have an explicit expression.

https://doi.org/10.1017/9781009128490.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009128490.003


110 2 Random Matrix Theory

0
√

c 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Population spike �1

|û
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p = 512
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Figure 2.12 Empirical versus limiting |ûT
1 u1|2 for X = C

1
2 Z, C = Ip + �1u1uT

1 and standard
Gaussian Z, p/n = 1/3, for different values of �1. Results obtained by averaging over 200 runs.
In black dashed line the local behavior around

√
c. Code on web: MATLAB and Python.

eigenvalue λ̂1 of 1
n XXT “isolates from the other eigenvalues λ̂2 > · · · > λ̂p” to

determine the presence of a structure in the population covariance C (in the sense
that C �= Ip).

However, in practice, from the finite-dimensional observations λ̂1,. . . , λ̂p , how can
one decide whether λ̂1 is isolated? On a random realization of X, λ̂1 may haphazardly
be found “rather far” from λ̂2 by a mere finite-dimensional probability effect. The nat-
ural question is then to determine whether the rate of occurrence of such “haphazard”
events can be evaluated.

A whole line of works, based on rather different tools from the Stieltjes transform
approach adopted in this book,37 settles this question by evaluating, for C = Ip or
C = Ip+P with the eigenvalues of P below the phase transition threshold, the asymp-
totic probability for λ1 to escape its limiting value (1 +

√
c)2. The main result of

importance is the following.

37 Unlike the Stieltjes transform method, these tools start from the explicit (finite-dimensional) formula of
the joint eigenvalue distribution of Wishart or Wigner matrix, which is known in the Gaussian case (and
only in this case) and given by (2.57). Exploiting the theory of orthogonal polynomials and determinantal
processes, Equation (2.57) can be marginalized so to retrieve the exact (finite-dimensional) law of one or
several specific eigenvalues (inside the bulk or on the edge). Taking the large-dimensional limit relates
the law of the eigenvalues to the determinant of a specific kernel [Soshnikov, 2000] (Airy kernel for the
edge eigenvalues [Johnstone, 2001, Soshnikov, 1999], sine kernel in the bulk [Arous and Péché, 2005,
Erdös et al., 2010]). Details on these techniques can be found in Anderson et al. [2010].
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Theorem 2.15 (Fluctuation of the largest eigenvalue, Baik et al. [2005]). Under the
setting of Theorem 2.13, assume 0 ≤ �k < · · · < �1 <

√
c. Then,

n
2
3
λ̂1 − (1+

√
c)2

(1+
√

c)
4
3 c− 1

6

→ TW1

in law, where TW1 is the (real) Tracy–Widom distribution, historically defined in Tracy
and Widom [1996].38

Specifically, the theorem is placed here under the setting, where the “population
spikes” �is are below the phase transition and thus asymptotically not isolated (from
the main bulk), as per Theorem 2.13. In this setting, the largest empirical eigenvalue
λ̂1 thus converges to the right edge (1+

√
c)2 of the Marc̆enko–Pastur law and more

precisely behaves, according to the theorem, as λ̂1 = (1+
√

c)2 + n− 2
3 T , where T is a

(scaled) Tracy–Widom random variable.
This result is of practical interest as it allows one to estimate, for sufficiently large

n,p, the probability for λ̂1 to be found away from its theoretical limit (1+
√

c)2 below
the phase transition.

Precisely, the result shows that the limiting fluctuations of λ̂1 are not Gaussian but
follow the Tracy–Widom distribution and that, possibly surprisingly, the rate of this
fluctuation is of order O(n−2/3) (instead of O(n−1/2) or O(n−1) as one would usually
expect). This rate is strongly related to the following observation, initially made by
Silverstein and Choi [1995]: Close to the right-edge of its support, the Marc̆enko–
Pastur law behaves proportionally to

√
(1+

√
c)2 − x. As such, the typical number of

eigenvalues in a space of size ε in the neighborhood of the edge is

∫ (1+
√
c)2

(1+
√
c)2−ε

√
(1+

√
c)2 − x dx ∝ ε

3
2 .

This explains the typical O(n−2/3) fluctuation of the eigenvalues in this neighborhood.
See Exercises 6 and 7 for more discussions on this point.

The original result from Baik et al. [2005] also provides the limiting fluctuations
of λ̂1,. . . , λ̂k beyond the phase transition (i.e., when �i >

√
c). Interestingly, above the

transition, the fluctuation of λ̂1 is now a classical central limit-type of order O(n−1/2).
The surprising “transition” from O(n−2/3) to O(n−1/2) of the fluctuations of λ̂1 (which
has little meaning or interpretability for finite n,p) is often referred to as the BBP
phase transition after the names of Baik et al. [2005]. Couillet and Hachem [2013] go
beyond these considerations by providing the joint fluctuations of the eigenvalues and
eigenvector projections as follows.

38 The Tracy–Widom distribution does not have an explicit form. Several works have provided approxi-
mated forms as well as tables of TW1 [Chiani, 2014, Ma, 2012].
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Theorem 2.16 (Joint fluctuations beyond the phase transition, Couillet and Hachem
[2013]). Under the setting and notations of Theorems 2.13 and 2.14, assume
�1 > · · · > �k >

√
c and define L =

√
p[λ̂1 − λ1,. . . , λ̂k − λk ]

T and V =
√

p[|uT
1 û1|2 −

ζ1,. . . ,|uT
k ûk |2 − ζk ]

T. Then, as p,n → ∞ with p/n → c ∈ (0,∞),

(
L
V

)
→ N

⎛
⎜⎜⎝02k ,BlockDiag

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

c2(1+�i )2
(

1+c
(1+�i )

2

(c+�i )
2

)

(c+�i )2(�2
i−c)

(1+�i )3c2

(�i+c)2�i
(1+�i )3c2

(�i+c)2�i

c(1+�i )2(�2
i−c)

�2
i

⎤
⎥⎥⎦

⎫⎪⎪⎬
⎪⎪⎭

k

i=1

⎞
⎟⎟⎠

in law, where BlockDiag(·) is the “block-diagonal” operator.

The theorem notably states that, in the large n,p limit, while each eigenvalue–
eigenvector projector pair fluctuates together, the k pairs fluctuate independently
(which would no longer be the case if some �is had multiplicity larger than one; the
request �1 > · · · > �k >

√
c in the theorem statement avoids this technical difficulty,

which is treated in Bai and Yao [2008], Couillet and Hachem [2013], but gives rise to
more complex results).

Remark 2.14 (Tracy–Widom law: beyond the real field and universality). The Tracy–
Widom law was first introduced in the context of Wigner random matrices in Theo-
rem 2.5. More precisely, Tracy and Widom [1996] showed that the fluctuation of the
largest eigenvalue of a real Gaussian Wigner random matrix (i.e., 1√

n
X with X ∈R

n×n

of i.i.d. zero-mean and unit-variance Gaussian entries up to symmetry) asymptotically
follows a Tracy–Widom distribution in the sense that

n
2
3 (λ1 −2)→ TW1.

The Tracy–Widom law also extends beyond the largest eigenvalue: It holds true for the
finitely many largest as well as smallest eigenvalues of the Wigner and the Wishart
matrix (in the latter case only if c = lim p/n < 1). It also goes beyond real-valued sym-
metric Gaussian matrices (often referred to as the GOE) and the real-valued Wishart
random matrices, to complex (Gaussian unitary ensemble, GUE) and quaternionic
(Gaussian symplectic ensemble, GSE) Gaussian matrices: In these scenarios, the lim-
iting laws are respectively the TW2 and TW4 Tracy–Widom distributions [Tracy and
Widom, 2000]. See Figure 2.13 for an illustration.

The Tracy–Widom law has also been proven, to some extent, to be universal with
respect to the distribution (of the entries) of random matrices. Soshnikov [1999] and
Erdös [2011] proved that, for fast decaying distributions, it is sufficient to match the
first two moments of the entries to obtain asymptotic Tracy–Widom fluctuations.

Finally, while the fluctuations of the (finitely many) largest or smallest eigenval-
ues of 1

n XXT are not independent (they give rise, both for the k largest or for the
k smallest, to joint fluctuations), Bianchi et al. [2010] showed that the fluctuations
of the one largest and one smallest eigenvalues of 1

n XXT are independent. This last
result has the interesting consequence that the fluctuations of the condition number
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Figure 2.13 (a) Empirical histogram of n
2
3
λ̂1−(1+

√
c)2

(1+
√
c)

4
3 c− 1

6
for p = 256, n = 512 and standard

Gaussian Z, versus the real Tracy–Widom law TW1. Histogram obtained over 5000
independent runs. (b) Tracy–Widom distribution TWβ for β = 1 (real), 2 (complex), and 4
(symplectic). Code on web: MATLAB and Python.

of 1
n XXT (defined as the ratio between largest and smallest eigenvalues) around (1+√

c)2/(1 −√
c)2 are easily obtained, using, for instance, the so-called delta method

[Vaart, 2000].

2.5.4 Further Discussions and Other Spiked Models

The “spiked model” terminology goes beyond sample covariance matrix models with
C = Ip +P, for P a low-rank matrix. In the literature, spiked models loosely refer to
as “low rank perturbation” models in the following sense: There exists an underlying
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random matrix model X, the spectral measure of which converges to a well-defined
measure with compact support (e.g., the Marc̆enko–Pastur or semicircle law) and hav-
ing eigenvalues converging to the support (i.e., no single eigenvalue isolates as in
Theorem 2.11), which is then modified in some way by a low-rank perturbation matrix
P; the resulting matrix has the same limiting spectral measure as that of X but with
possibly a few spurious (isolated) eigenvalues.

Baik and Silverstein [2006] were the first to study spiked models, but their approach
relied on the well-established results for sample covariance matrix models (i.e., The-
orem 2.6) and was limited to the specific case of C = Ip +P. This approach indeed
requires a full understanding of a “more complex” statistical model before partic-
ularizing it to a low-rank perturbation. Pursuing on Footnote 33 that introduces
Theorem 2.13, more modern tools launched a second wave of advances in spiked mod-
els, mostly triggered by the ideas found in Benaych-Georges and Nadakuditi [2012]
(with a free probability approach), which is based on relating the spiked matrix model
after perturbation to the underlying simple and nonperturbed matrix; this is mathe-
matically simpler and opened the path to a broader scope of generalizations to more
advanced random matrix models.

Among the popular spiked models, we have the following cases:

• the information-plus-noise model of the type

1
n
(X+P)(X+P)T

with X ∈ R
p×n having i.i.d. standard entries (zero mean, unit variance, and finite

fourth-order moment) and P ∈R
p×n deterministic (or at least independent of X) of

fixed rank k � min(n,p);
• the additive model of the type

M+P

where M ∈ R
p×p is either of the type M = 1

n XXT, X ∈ R
p×n with standard i.i.d.

entries, or of M = X/
√

n with X symmetric having standard i.i.d. entries above
and on the diagonal and P ∈ R

n×n a deterministic matrix of low rank.

Each of these models has its own phase transition threshold (i.e., the value that eigen-
values of P must exceed for a spike to be observed), dominant eigenvalue limits, and
eigenvector projections. These can all be determined with the aforementioned proof
approaches, see more examples in Exercises 11 and 12 of Section 2.9.

However, we will see in several applications in Chapter 4 that, in machine learning
practice, we will be confronted with more general forms of low-rank perturba-
tion models that do not fit this conventional “random matrix X and deterministic
perturbation P” assumption.

In particular, P will often be a (possibly elaborate) function of X. Also, the random
matrix X itself, which will often stand for the “noisy” part of the data model (while
P will in general comprises both the relevant information and possibly some extra
noise), may induce its own isolated eigenvalues. For instance, we shall see later in
Section 4.2.4 that, depending on the ratios p/n and trC4/(trC2)2, the random matrix
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{[XTX]2i j · δi �= j}ni, j=1, where X = C
1
2 Z and Z with i.i.d. standard entries, may have

two isolated eigenvalues even when all the eigenvalues of C remain in their limiting
support. Also, in the context of robust estimation of covariance matrices to be dis-
cussed in Section 3.3, it will not be natural for the statistical model to impose that all
its population eigenvalues converge to their limiting support (in particular, to mimic
the action of a few outliers).

Yet, despite these technical differences, the proof approaches of Theorems 2.13
and 2.14 remain essentially valid. We thus propose here to generalize the notion of
“spiked models” to models of the type X + P, where X is some reference, well-
understood, random matrix model (possibly inducing its own spikes) and P is a
low-rank matrix, possibly depending on X.

With this definition, the aforementioned sample covariance, information-plus-noise
and additive models are in fact all equivalent to an additive model. Precisely, we may
write

1
n
(X+P)(X+P)T = M+P′

with M =
1
n

XXT, P′ =
1
n
(XPT+PXT+PPT)

and

1
n
(Ip +P)

1
2 XXT(Ip +P)

1
2 = M+P′

with M =
1
n

XXT, P′ =
1
n
(XP′′T+P′′XT+P′′P′′T)

where we introduced P′′ = U((Ik +L)
1
2 − Ik )UTX with P = ULUT. In the remainder

of the book, we shall systematically exploit this unified approach to treat all spiked
models.

2.6 Information-plus-Noise, Deformed Wigner, and Other Models

2.6.1 Why Focus on the Sample Covariance Matrix Model?

The previous sections have mostly been concerned with the sample covariance matrix
(as well as more marginally with Wigner matrices), as an instrumental statistical model
for the introduction of the main technical tools of interest to the book: the Stieltjes
transform and resolvent method, the spiked model approach, and statistical inference
based on contour integrals, presented here in the form of their associated deterministic
equivalents.

Several other classical random matrix models, of interest in statistics, will be listed
in this section. The technical methods required to study these models are however
not very different and thus not worth detailing in this book. Only pointers to relevant
references will be provided here for the interested reader.
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It is, in particular, important to stress that many statistical models arising in machine
learning applications are so specific that they may not (strictly) fall in any of the con-
ventional models discussed above. Yet, up to some additional fine-tuning and tricks,
the analytical tools required to study these models are in general not much different
from those presented in this chapter. Among examples met in the next chapters of this
book, we may list:

• Graph Laplacian matrices (to be discussed in Chapter 7) of the form

D−A, D− 1
2 AD− 1

2 , D−1A

for A ∈ R
n×n a symmetric matrix with independent entries (up to symmetry) and

D = diag(A1n). The dependence between A and D makes these random matrices
slightly different from deformed Wigner matrices (see Section 2.6.2) of the type
A+D, where A has independent entries and D is deterministic.

• Kernel random matrices of the inner-product or distance type

K = { f (xTi x j)}ni, j=1, K = { f (‖xi −x j‖2}ni, j=1,

to be discussed in Chapter 4. There, the nontrivial dependence between the entries
of K differs significantly from sample covariance models (except of course for the
linear kernel function f (t) = t in the inner-product case).

• Robust estimators of scatter Ĉ in Section 3.3 defined as the solutions to

Ĉ =
1
n

n

∑
i=1

u

(
1
p

xTi Ĉ−1xi

)
xixTi

for some nonincreasing function u(t). There, due to the implicit nature of Ĉ,
sample covariance matrix results cannot be applied directly.

• F-matrix models Ĉ−1
1 Ĉ2 and product models Ĉ1Ĉ2 for Ĉa = 1

n XaXT
a , a ∈ {1,2},

with X1,X2 independent (notably Gaussian) random matrices, used in whitening
methods [Yin et al., 1983], or in covariance matrix distance evaluation (e.g., Fisher
distance, KL divergence, Wasserstein distance, etc., see Section 3.2). By
successive conditioning, these models are more directly related to the sample
covariance matrix models, although not strictly equivalent.

• Generalized sample covariance matrices of the type 1
n ZDZT for diagonal

D ∈R
n×n that depends on Z (the independent case is handled in Theorem 2.6), but

in an asymptotically “weak” manner, for instance, with D = diag{ f (wTzi)}ni=1 for
some deterministic w ∈ R

p , zis columns of Z, and f : R → R. This family of
random matrix models arises in many machine learning applications, for example,
the Hessian matrix of the popular generalized linear model [Nelder and
Wedderburn, 1972] can be shown to take this form [Liao and Mahoney, 2021], the
spectral behavior of which is closely connected to the convergence rate of various
optimization methods, see the concrete example of phase retrieval in Section 6.4.

The models and applications listed above appear to be strongly related, in one
way or another, to sample covariance matrices. Among the examples above, kernel
matrices, robust estimators, F-matrices and sample covariance products, as well as
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Hessian-type matrices, all relate to sample covariance matrices. The graph Laplacian
(as well, to some extent, as the kernel random matrix models) is more connected to
Wigner matrices. This justifies the particularly focused vision of this chapter.39

2.6.2 Other Models

Advanced Sample Covariance Matrices
From a historical standpoint, the model studied by Silverstein and Bai [1995] is
slightly more general than that presented in Theorem 2.6. This model indeed assumes
the presence of an additional deterministic matrix A:

A+
1
n

XTCX

for random X ∈ R
p×n with independent entries and A,C deterministic matrices (in

fact, C was imposed to be diagonal in Silverstein and Bai [1995] but this assumption
was later relaxed).

The bi-correlated (or separable covariance) model of the type 1
n C

1
2 XC̃XTC

1
2 dis-

cussed in Theorem 2.7 was later studied in Paul and Silverstein [2009], where not
only the limiting spectrum but also the condition for the exact separation of eigenval-
ues was derived. The extension of the spectral analysis of Silverstein and Choi [1995]
for this model was then provided in Couillet and Hachem [2014]: A convenient explicit
Stieltjes transform inverse z(m̃) no longer exists in this case (due to the presence of
a coupled system of equations), but inverse mapping theorems guarantee its existence
and lead to similar results.

For wireless communication purposes, the bi-correlated model was further
extended in Couillet et al. [2011] to

k

∑
i=1

1
ni

R
1
2
i XiTiXT

i R
1
2
i

where Ti ∈R
ni×ni and Ri ∈C

p×p are symmetric nonnegative definite matrices stand-
ing respectively for the transmit (T) and receive (R) correlation matrices at each end
of a communication channel between k devices equipped with n1,. . . ,nk antennas and
a single receiver equipped with p antennas. Establishing the limiting spectral mea-
sure of this model allows one to estimate the maximally achievable communication
rates between k simultaneously transmitting mobile terminals (phones, laptops, IoT
devices) and a local base station. Further extensions of this model were then proposed
to account for more involved wireless communication models, but they mostly consist
in summing independent versions of Gram matrices ZiZT

i , where Zi is a Gaussian
(or beyond Gaussian) random matrix with possibly nonzero mean, side correlations, a

39 To the best of our knowledge, most, if not all, random matrix results directly related to machine learning
applications boil down, in simple data model settings at least, to combinations (usually sums, sometimes
products) of asymptotically independent matrices of the Wishart (Marc̆enko–Pastur related) and Wigner
(semicircle related) types.
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variance profile, etc.; see, for example Wen et al. [2013], Hachem et al. [2007], Wag-
ner et al. [2012], Papazafeiropoulos and Ratnarajah [2015] out of a much longer list
of articles on the topic.

Of interest to statistics is also the information-plus-noise model of the type

1
n
(X+A)(X+A)T,

which is the sample “correlation” matrix between non-centered independent data
X+A. This model also finds interest in wireless communications, where [X+A]i j
models the statistical link between transmit antenna j and receive antenna i, which
may not be at the same mean-distance (controlled by Ai j ) than another antenna pair.
This model was first studied by Dozier and Silverstein [2007] who established the
(unique) canonical equation ruling the limiting spectral measure of the model, as a
function of the limiting Stieltjes transform of μA. Surprisingly enough, this model
induces specific technical difficulties that left open for long the question of the exact
location of the eigenvalues. Only much later in Loubaton and Vallet [2011] for the
Gaussian case and then in Capitaine [2014] for the generic i.i.d. setting was the
result fully obtained: that is, as for the sample covariance matrix in Theorem 2.11,
under compactness assumption on the eigenvalues of A, none of the eigenval-
ues of 1

n (X + A)(X + A)T asymptotically escapes the limiting support with high
probability.

Yet, for practical applications, if the vectors of means A·1,. . . ,A·n in the model X+

A are equal (to say vector μ ∈ R
p), then A = μ1Tn reduces to a rank-one matrix, and

1
n (X+A)(X+A)T is merely a spiked model, which does not necessitate the technical
intricacies in the aforementioned articles. If instead the entries Ai js are distinct with
no specific (e.g., low-rank) structure, then it is in general not natural to assume that the
Xi js have equal variance (as the variance should scale with the mean). To handle this
setting, Hachem et al. [2007], Dumont et al. [2010] studied the generic noncentered
variance profile model

1
n
(B�X+A)(B�X+A)T

where B is a symmetric matrix and � is the entry-wise Hadamard product. There is
no natural limiting spectral measure for this model (even when the spectra of A,B are
assumed to converge) but deterministic equivalents (e.g., of its resolvent matrix and
of the associated Stieltjes transform) can be established, which generally rely on a
set of pn fixed-point equations. To our knowledge, no result on the conditions for the
exact spectrum separation has been obtained in this setting. In the “separable case”
where B = b1bT

2 for some vectors b1,b2 (in which case B�X = diag(b1)Xdiag(b2)),
the solution reduces to two fixed-point equations and the exact asymptotic location
of the eigenvalues is almost a direct application of the “no-eigenvalue outside the
support” theorem for the bi-correlated and the information-plus-noise models (i.e., the
extension of Theorem 2.11 to these models).
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Advanced Wigner Matrices
The generalizations of the Wigner random matrix model ( 1√

n
X with X having i.i.d.

zero mean and unit variance entries) have been studied quite in parallel to the gen-
eralizations of the sample covariance matrix model 1

n XXT, as the technical tools and
proofs are quite alike (if not simpler).

The first extended model of historical interest was that of the deformed (i.e.,
nonzero mean) Wigner model of the type

1√
n
(X+A)

for A symmetric and deterministic [Khorunzhy and Pastur, 1994]. Yet again, of utmost
interest in practice is the case where the independent entries of X have differing
variances, which brings forth the model

1√
n
(B�X+A).

The set of the n2 canonical implicit (Stieltjes transform-related) equations induced for
this model, or for its separable version (B = b1bT

2), have been thoroughly investigated
in Ajanki et al. [2019].

In practice, these models are directly applicable to the adjacency matrices of ran-
dom graphs ([X+A]i j is the connectivity between node i and node j) with independent
linking probabilities. The elementary case of such random graph models is the so-
called Erdős–Rényi graph for which X + A has i.i.d. Bernoulli {0,1} entries with
parameter p. In this case, A = p1n1Tn is a rank-one matrix and X has i.i.d. {−p,1− p}
entries such that P(Xi j = 1− p) = p,P(Xi j = −p) = 1− p and therefore E[Xi j ] = 0
with Var[Xi j ] = p(1 − p). X+A thus boils down to a spiked model. Assuming that
the graph has heterogeneous degrees, in the sense that every particular node has its
own probability qi to connect to any other arbitrary node in the graph, we end up with
the model diag(q)Xdiag(q) +A with q = [q1,. . . ,qn ], Xi j ∈ {−qiqj ,1 − qiqj} and
Ai j = qiqj . Here again A = qqT is a rank-one matrix. See Chapter 7 for more detailed
discussions on these random graph models.

(Real) Haar Random Matrices
Many algorithms and techniques in machine learning and data processing involve ran-
dom projections, in general onto a lower dimensional subspace. This naturally calls
for the study of random isometric matrices U ∈ R

p×n , n ≤ p, such that UTU = In
(because then UUT ∈ R

p×p is a projector on the n-dimensional subspace spanned by
the columns of U). These can be alternatively seen as concatenating the n columns of
an underlying orthogonal matrix Ũ ∈ R

p×p .
Assuming Ũ to be drawn uniformly in the space of unitary p× p matrices (this is

called the Haar measure), U ∈ R
p×n is an orthogonally invariant random matrix, in

the sense that V1UV2 has the same law as U for any pair of deterministic orthogonal
matrices V1 ∈ R

p×p ,V2 ∈ R
n×n . However, unlike Gaussian random matrices Z ∈

R
p×n , which are also orthogonally invariant, the entries of U are not independent
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as they must satisfy UTU = In . This makes the study of the family of Haar random
matrices more involved than the standard Gaussian (or i.i.d.) case.

Yet, strong analogies exist between the Gaussian and the Haar random matrices.
To start with, note that U can be constructed from standard Gaussian random matri-
ces by letting U = Z(ZTZ)−

1
2 where Z ∈ R

p×n ,n ≤ p, is a random matrix with i.i.d.
standard Gaussian entries (it suffices to verify that UTU = In). Using this property, the
fundamental trace lemma, Lemma 2.11, can be extended to a Haar-matrix equivalent
[Debbah et al., 2003, Couillet et al., 2012].

Lemma 2.16 (Trace lemma for isometric matrices [Couillet et al., 2012, Lemma 5]).
Let U ∈ R

p×n be n < p columns of a p × p Haar random matrix and u ∈ R
p be a

column of U. Then, for X ∈R
p×p a matrix function of the columns of U, except u, and

of bounded operator norm,

E

[∣∣∣∣uTXu− 1
p− n

trΠX

∣∣∣∣
4
]

≤ C
p2 ,

where Π = Ip − UUT+uuT (i.e., a projector on the complementary to the subspace
spanned by the columns of U, except u) and C a constant depending only on the
operator norm ‖X‖ and the ratio n/p.

Of course, since UUT is a projection matrix, all its eigenvalues are 1 and 0 and there
is thus no interest in studying the spectrum of UUT itself. The above trace lemma how-
ever becomes handy when dealing with more structured models, such as C

1
2 UUTC

1
2

for some deterministic C matrix; the latter may be seen as a generalization of the
sample covariance matrix model of Theorem 2.6. Specifically, we have the following
result, which provides a deterministic equivalent for this model.

Theorem 2.17 (Haar sample covariance [Couillet et al., 2012, Theorem 1]). Let X =

C
1
2 U ∈R

p×n , where U ∈R
p×n are the n < p columns of a p× p Haar random matrix,

and let C ∈ R
p×p be symmetric nonnegative definite with bounded operator norm.

Then, for z < 0, as p/n → c ∈ (1,∞), letting Q(z) = ( pn XXT − zIp)−1, we have

Q(z)↔ Q̄(z) = −1
z
(Ip + m̃p(z)C)−1 ,

where m̃p(z) is the unique positive solution to

m̃p(z) =

(
−z+(1+ zc−1m̃p(z)) ·

1
n

trC(Ip + m̃p(z)C)−1
)−1

. (2.54)

In the statement of the theorem, we used a “correction” factor p
n in front of XXT to

ensure the correspondence between E[UUT] = n
p Ip and the setting of Theorem 2.6,

where E[ 1
n ZZT] = Ip . Indeed, it is quite interesting to observe the close relation

between Theorems 2.6 and 2.17 which, despite the major difference imposed by
the strongly dependent structure of U versus the independent structure of Z, leads
almost to the same deterministic equivalent. The only difference lies in the extra term
zc−1m̃p(z) in the defining equation (2.54) for m̃p(z).
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Similar to the case of random matrices with i.i.d. entries versus Gaussian entries,
it is also, in the case of Haar matrix models, sometimes more convenient to work
with Gaussian-specific identities rather than the “independence”-related trace lemma
above. Specifically, an equivalent for Stein’s lemma, Lemma 2.13, also exists for Haar
matrices.

Lemma 2.17 (Stein’s lemma for Haar matrices [Pastur and Shcherbina, 2011, Chap-
ter 8]). Let Ũ ∈ R

p×p be a Haar matrix and f : Rp×p → R a function admitting an
analytic extension in the neighborhood of the set of unitary matrices in R

p×p . Then
we have, for all j, j ′ ∈ {1,. . . ,p},

E

[
p

∑
i=1

f ′
i j(Ũ)Ũi j ′ − f ′

i j ′(Ũ)Ũi j

]
= 0,

where f ′
i j is the classical derivative with respect to Ũi j (not accounting for the depen-

dence of the other entries in Ũ). In the complex case (Ũ ∈ C
p×p and f (Ũ) ∈ C), this

reduces to40

E

[
p

∑
i=1

f ′
i j(Ũ)Ũi j ′

]
= 0.

Similarly a Nash–Poincaré inequality, Lemma 2.14, for Haar matrix models is
defined.

Lemma 2.18 (Nash–Poincaré for Haar matrices). Under the setting of Lemma 2.17,
we have

Var( f (Ũ))≤ 1
p

p

∑
i, j=1

E
[
| f ′

i j(Ũ)|2
]
.

Although seemingly less exploitable, the above Stein’s lemma for Haar matrices
is in fact quite convenient and easily leads to results such as the aforementioned
Theorem 2.17 (for instance, by considering matrix functions of the form f (ŨD) for
D ∈ R

p×p diagonal with Dii = δi≤n – so that f (ŨD) only selects n < p columns of
Ũ ∈ R

p×p). Exercise 13 proposes to retrieve the result of Theorem 2.17 using both
Gaussian (so applying Lemmas 2.17 and 2.18) and i.i.d. (so applying Lemma 2.16)
approaches.

As a major difference between the i.i.d. (as in Theorem 2.6) and the Haar settings,
note that Theorem 2.17 is stated under the constraint that z be real negative. In effect,
Couillet et al. [2012] showed that it is far from trivial to extend the result to z ∈C away
from the negative real axis: in particular, unlike in the classical sample covariance
setting of Theorem 2.6, in the “Haar sample covariance” of Theorem 2.17, the fixed-
point iteration in (2.54) fails to converge for z = x + ıε with x > 0 and ε � 1. This

40 Similar to what we saw in Remark 2.5, it is in practice more convenient to work under a complex (unitary)
U setting, even in the real (orthogonal) case, as deterministic equivalents are universal with respect to
the underlying field (real or complex) of the entries of U.
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particularly makes it difficult to exploit the result to retrieve (both theoretically41 and
numerically) the limiting spectral measure of C

1
2 UUTC

1
2 , at least in its present form

of (2.54).
There in fact exists a whole other branch of tools in the random matrix litera-

ture, called free probability theory [Voiculescu et al., 1992], which much more easily
recovers Theorem 2.17 (under a different formulation though) and as well obtains the
limiting spectral measure of C

1
2 UUTC

1
2 : Specifically, using an interesting extension

to random matrices of classical probability theory on scalar random variables, free
probability theory demonstrates that this limiting measure is the so-called free multi-
plicative convolution (see Section 2.6.2 for a proper definition) of the limiting spectral
measure ν of C and of the limiting spectral measure of UUT (i.e., the discrete mea-
sure δ1 +(c−1)δ0). The next section provides a short introduction to free probability
theory.

Turning to machine learning applications of results on (derivatives of) Haar ran-
dom matrix models, to the best of our knowledge, very few works have so far fully
exploited the strength of these identities. For this reason, we will not elaborate much
more on these aspects and will only, in the following section, briefly introduce free
probability theory, which has many advantages (especially when dealing with Haar or
permutation-invariant random matrices) but also strong limitations when compared to
the Stieltjes transform and resolvent approach. We thus point the interested reader to
the (in fact rich) literature for more details on this topic. Those tools may nonetheless
reveal fundamental insight in the future into specific random projection or random
permutation-based methods with isometric constraints in machine learning and AI.

The Free Probability Approach
Free probability theory is a drastically different approach to study random matrices. It
is particularly efficient in some scenarios, such as when the sum or product of random
matrices are involved. The theory was developed in parallel to the Stieltjes transform
method discussed in this book and originates from the works of Voiculescu et al.
[1992], who originally aimed to describe a theory of probabilities on noncommuta-
tive algebras. A detailed introduction of the theory is beyond the scope of this book
and we refer the interested readers to Hiai and Petz [2006], Biane [1998] and Couillet
and Debbah [2011, Chapters 4 and 5]. Although free probability theory is rooted in
a combinatorial approach (see, e.g., Nica and Speicher [2006]), it also contains some
elegant analytic results, which can be related to the Stieltjes transform: In the sequel,
we emphasize those useful results.

For μ and ν two probability measures compactly supported on [0,∞), Hiai and Petz
[2006] proved that there always exist two free random variables a and b in some
noncommutative probability space having distributions μ and ν, respectively. The dis-
tribution of a+ b and ab depend solely on μ,ν and can be associated with probability

41 One may claim that, since convergence holds for all z < 0, as per Vitali’s convergence theorem (Theo-
rem 2.3), it can then be extended to all of C\R+. This is however not so simple as it is difficult to ensure
that m̃p(z) in Theorem 2.17, as defined through its fixed-point equation, is indeed analytic in a certain
cone {z = eıθ | θ ∈ (−θ◦, θ◦)\{0}} (θ◦ ∈ (0, π)).
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measures called free additive convolution and free multiplicative convolution of the
distributions μ and ν, denoted μ� ν and μ� ν, respectively. These measures are both
compactly supported on [0,∞) [Voiculescu et al., 1992].

These free additive and multiplicative convolutions satisfy convenient analytic
expressions, through the so-called R- and S-transforms introduced below.

Definition 5 (R- and S-transform). Let μ be a probability measure with support
supp(μ) and Stieltjes transform mμ(z), for z ∈ C

+. The R-transform of μ, denoted
Rμ , is defined as the solution to

mμ(Rμ(z)+ z−1) = −z

or equivalently

mμ(z) =
1

Rμ(−mμ(z))− z
.

Next, let ψμ(z) be defined as

ψμ(z) =
∫

zt
1− zt

μ(dt) = −1− z−1mμ(z
−1)

and let χμ be its unique functional inverse, analytic in the neighborhood of zero, that
is, χμ(ψμ(z)) = z for |z| small enough. Then, the S-transform of μ, denoted Sμ , is
given by

Sμ(z) = χμ(z)
1+ z

z
.

In particular, Sμ(z) satisfies

mμ

(
z+1

zSμ(z)

)
= −zSμ(z).

The main property of R- and S-transforms is summarized below, and requires the
notion of freeness between noncommutative random variables. Freeness is not an easy
notion, and is defined through a series of moment conditions and combinatorial cal-
culus, which we will not go into detail on here (see again Hiai and Petz [2006], Biane
[1998]). One needs to just remember at this point that freeness extends the notion of
independence to noncommutative random variables.

Lemma 2.19 (R- and S-transforms of sums and products). For a and b two free ran-
dom variables with compactly supported distributions μ and ν, respectively, the law
μ� ν of a+ b satisfies

Rμ�ν(z) = Rμ(z)+ Rν(z).

Similarly, the law μ� ν of ab satisfies

Sμ�ν(z) = Sμ(z)Sν(z).

Of interest to the present book is that “asymptotically large random matrices” are
typical examples of noncommutative random variables for which freeness can be
ensured. To avoid dealing with infinite-size linear operators, it is more appropriate to
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define a notion of asymptotic freeness for finite-dimensional random matrices, which
translates the freeness of their respective limiting operators.42

As such, the main result of interest to us is the following: for A ∈ R
n×n and

B ∈ R
n×n two asymptotically free random matrices with respective limiting spectral

measures μA and μB , the limiting spectral measure μA+B (A+ B is here merely a
notation with no formal meaning) of A+B exists and satisfies

μA+B = μA� μB , RA+B(z) = RA(z)+ RB(z),

for RA(z),RB(z), and RA+B(z) the R-transforms of μA, μB , and μA+B , respectively.
Similarly, μAB , the limiting spectral measure of the matrix product AB, exists and
satisfies

μAB = μA� μB , SAB(z) = SA(z)SB(z),

for SA(z),SB(z), and SAB(z) the S-transforms of μA, μB , and μAB . The above
equalities should be understood to hold in the almost sure sense.

Clearly, the asymptotically freeness assumption plays a key role in relating the lim-
iting spectrum of A+B or AB to that of A and B, which unfortunately in practice only
applies easily to a limited range of random matrices. In essence, A and B are asymp-
totically free if they are both independent and if the distribution of their respective
eigenvectors are sufficiently “isotropic” with respect to one another: So essentially,
when one of the two matrices is invariant by left and right multiplying by arbitrary
unitary matrices. As a consequence, the two major cases of matrix pairs known to be
asymptotically free are: (i) a standard Gaussian random matrix and any other indepen-
dent random matrix (for instance, a deterministic matrix or another standard Gaussian
random matrix, independent of the first), and (ii) a Haar random matrix and any other
independent random matrix. One may, for instance, easily determine the limiting spec-
tral measure of models of the type X+A for X a Wigner matrix or a Wishart matrix
and A deterministic, or of XAXT with X Gaussian or Haar distributed. These objects
are however limited and it is technically difficult to establish asymptotic freeness,
the formal definition of which is a matter of heavy combinatorial calculus (see, e.g.,
Biane [1998, Section 3]). As a result, free probability theory can be more complex to
use when summing or multiplying two random matrices with structured eigenvectors,
such as simple models like X � B+A for X a Wigner matrix and B a deterministic
variance profile: These matrices are not free with respect to deterministic matrices,
so that the R- and S-transform formulas cannot be exploited, at least directly; this

42 One must be careful that, in the whole book, we never define large-dimensional random matrices as
being of “infinite” dimensions (which would turn them, when correctly defined, into operators in an
infinite-dimensional Hilbert space): All the objects treated throughout the book are finite-dimensional
objects, some functionals of which are studied when the size of the matrices increases. For actual works
on operators, seen as limit of random matrices in infinite-dimensional spaces, see Pastur and Figotin
[1992] on almost-periodic random operators. Aside from a few exceptions though [Hachem et al., 2015],
these elegant works find little practical applications in systems and software engineering. This being
said, it is theoretically interesting to observe that the Stieltjes transform approach thoroughly developed
in the present book shares many common grounds with the more general theory of linear operators in
Hilbert spaces [Akhiezer and Glazman, 2013].
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very fact has strongly limited the (rigorous) reach of the free probability approach
in the past decade.

A fundamental result to efficiently use the addition and product rules in
Lemma 2.19 are the basic forms of the R- and S-transforms of elementary random
matrix models. Specifically, the R- and S-transforms of the Marc̆enko–Pastur and
semicircle distributions are known in closed forms.

Lemma 2.20 (R- and S-transforms of Marc̆enko–Pastur and semicircle law). The R-
transform RMP,c(z) and S-transform SMP,c(z) of the Marc̆enko–Pastur law μMP,c of
parameter c, that is, of the limiting spectral measure of 1

n ZZT, Z ∈ R
p×n with i.i.d.

zero-mean, unit-variance entries, as p/n → c ∈ (0,∞), given explicitly by (2.10), read

RMP,c(z) =
1

1− cz
, SMP,c(z) =

1
1+ cz

. (2.55)

As for the R-transform RSC(z) and S-transform SSC(z) of the semicircle law μSC,
given by (2.30), we have

RSC(z) = z, SSC(z) =
1√
z
. (2.56)

With Lemma 2.20, one is able to derive, with a free probability approach, the
limiting spectral measure of the information-plus-noise-type random matrix model
M = A+ 1

n XXT for X ∈ R
p×n having i.i.d. standard Gaussian entries and A ∈ R

p×p

a deterministic matrix. Specifically, calling μA and μM the limiting spectral measure
of A and M as n,p → ∞ with p/n → c, we have

μM = μA� μMP,c, RM (z) = RA(z)+ RMP,c(z)

so that, by Definition 5 and Lemma 2.20,

mM (z) =
1

RM (−mM (z))− z
=

1

RA(−mM (z))+ 1
1+cmM (z) − z

or equivalently

RA(−mM (z))+
1

−mM (z)
= z − 1

1+ cmM (z)

which, by taking the Stieltjes transform mA(·) of the limiting law of A on both sides,
together with Definition 5, gives

mM (z) = mA

(
z − 1

1+ cmM (z)

)
.

The same result would have been more painstaking to derive using a purely Stielt-
jes transform approach (see, e.g., Silverstein and Bai [1995]). However, since very
few matrix models can be easily shown to be asymptotically free, the free probability
framework quickly fails to operate for more structured random matrix models.

Recent works try to cope with these limitations as well as open the range of applica-
bility of free probability theory to handle sums and products of matrices under weaker
forms of asymptotic freeness conditions (to characterize, for instance, the limiting
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spectrum of the sum of random matrices with row and columns permutation invari-
ance [Au et al., 2018], or to extend the notion of deterministic equivalents to a free
probability setting [Speicher and Vargas, 2012]). Despite these efforts, when dealing
with random matrix models with involved structures arising from machine learning
applications, the resolvent and Stieltjes transform approaches turn out more flexible;
they are thus the focus of this book.

Full Circle Law, β-Ensembles, Sparse Random Matrices, etc.
Mathematicians have long been intrigued by the “simplest” random matrix model in
appearance, that is, X/

√
n ∈ R

n×n (nonsymmetric) with i.i.d. zero-mean and unit-
variance entries. Being a nonsymmetric matrix (at least with high probability), the
eigenvalues of X/

√
n are complex and they have long been known to spread uniformly

on the unit complex disc {z ∈C, |z| < 1}. Surprisingly though, despite its simple state-
ment, this result, known as the full circle law or the circular law, has only been proven
in full generality very recently by Tao and Vu [2008]. To explain the difficulties: (i)
the Stieltjes transform method cannot be applied directly as the spectrum is complex
(and thus taking a limit z → z0 for z0 in the support does not allow to “enter” the com-
plex support as in the real eigenvalue case); there the solution was provided earlier by
Girko [1985] who introduced the alternative V-transform; (ii) the V-transform involves
the limit of an integral form on the logarithm of the singular values of X which, being
square, tends to have a lot of singular values tending to zero (the singular values of X
are the square roots of the eigenvalues of XXT with X of size p× n, where p = n: that
is, this is the technically most difficult hard-edge scenario of the Marc̆enko–Pastur
law depicted in Figure 2.2 with c = 1); this technical difficulty, previously worked
around by invoking the existence of high-order moments for Xi j was solved by Tao
and Vu by means of the ε-net technique, popular today in compressive sensing and
high-dimensional statistics [Vershynin, 2018].

From the perspective of the present book, the eigenvalues of nonsymmetric mod-
els are of marginal interest. These could be used for the analysis of directed random
graphs although, to our knowledge, not much work exists in this direction.

Another more mathematical interest relates to the fact that Gaussian random
matrices are much better known than random matrices with i.i.d. entries and, con-
sequently, come along with a host of other technical tools. In particular, not only
the limiting spectral measure, but actually the exact finite-dimensional joint distri-
bution P(λ1,. . . ,λn) of (real, complex, or quaternionic) Gaussian symmetric random
matrix X and 1

n XXT (with X having i.i.d. standard Gaussian entries) is known. The
expressions of P(λ1,. . . ,λn) for these different cases are quite related.

In particular, the joint eigenvalue distribution for the Gaussian Wigner matrix X ∈
R

n×n is explicitly given by

P(λ1,. . . ,λn) ∝
n

∏
i=1

e− 1
4 βnλi ∏

1≤i< j≤n

|λi − λ j |β , (2.57)

for real Gaussian X when β = 1 (recall from Remark 2.14 that this is the GOE),
complex Gaussian X when β = 2 (GUE), and quaternionic Gaussian X when β = 4
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(GSE). Much work has been devoted to the study of the asymptotics of the joint law of
this now called β-ensemble of random matrices. In particular, the Tracy–Widom law
for the largest eigenvalue introduced in Theorem 2.15 is obtained by marginalizing the
joint measure to obtain the probability P(λ1 > x). See Anderson et al. [2010] for an
introduction to these quite different methods.

Most of the aforementioned random matrix models however share as a common
denominator their relying on O(n2) “degrees of freedom,” in the sense that they are
designed out of order O(n2) independent random variables. For the sample covariance

matrix model 1
n XXT, we have X = C

1
2 Z ∈ R

p×n with Z made of np independent
entries. For the Wigner model, X ∈ R

n×n has n(n+ 1)/2 independent entries on and
above the diagonal. This large number of degrees of freedom is the major asset of ran-
dom matrix theory, as presented in this book: they trigger (i) concentration properties
that do not appear if p is fixed and only n → ∞ (such as quadratic form concentration
1
p ‖zi‖2 a.s.−−→ 1 for zi ∈R

p having i.i.d. entries with zero mean and unit variance as in
Lemma 2.11), (ii) fast convergence rates with typical central limit theorem of order up
to O(1/n) and, possibly most importantly, (iii) universality with respect to the under-
lying distribution of the independent entries (i.e., asymptotic statistics loosely depend
on the actual law of the entries), which simplifies the analysis and provides robustness
of the studied objects to deviations from the statistical model.

Yet, a host of practical random matrix models demand less degrees of freedom.
Realistic networks, for instance, (social nets, brain connectivity, molecular networks,
etc.) are naturally modeled by sparse random (say symmetric) adjacency matrices
A ∈R

n×n with typical number of nonzero elements scaling as O(n) rather than O(n2).
Every row/column ai of A typically has O(1) nonzero elements (corresponding to
the neighbors or contacts of node i in the underlying graph), and thus ‖ai‖ does not
concentrate as n → ∞. Kernel random matrices K = { f (‖xi − x j‖2)}ni, j=1 of finite-
dimensional vectors x1,. . . ,xn ∈ R

p with p small (e.g., in the context of classification
or clustering of 2D or 3D data points) are also more challenging to study than their
large-p counterpart, as every entry of K remains a random variable, which does not
concentrate in the large-n alone limit. The consequences are numerous: (i) the analysis
of these objects is more difficult, if doable at all, (ii) universality and robustness to
model assumptions are lost: large-n asymptotics remain a function of the law of, not
only the “statistical structure,” but also the precise distribution of the entries of ai and
xi . These hard-to-obtain results thus hardly lead to simple and rich insight offered by
the proposed random matrix analysis.

Nevertheless, a branch of random matrix theory focuses on these important mod-
els. Stieltjes transform methods are here mostly ineffective and one has to rely on
moment approaches and combinatorics. A particularly interesting approach when it
comes to sparse random graphs of size n is that, as n → ∞, the graph has a “tree-like”
structure; indeed, with a probability O(1/n) for each node to reach out to any another
node, the probability of the presence of cycles in the graph is vanishingly small. This
has motivated the independent development of a graph-based random matrix frame-
work, strongly pushed by Bordenave and Lelarge [2010], Bordenave et al. [2011]. The
results are however generally “weak” from a practical standpoint. For instance, while
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it has long been known that the spectral measure of a dense Erdős–Rényi random
graph A with Bernoulli i.i.d. entries (i.e., with O(n2) degrees of freedom) converges
to the semicircle law, it is still unknown to which measure a sparse random graph
A converges: the limiting law is known to exist, to be decomposed as the sum of
a (known) discrete measure and a (unknown) continuous measure, and to have an
unbounded support (as opposed to the semicircular distribution as in Theorem 2.5)
[Salez, 2011].

The specific kernel random matrix K = {‖xi − x j‖2}ni, j=1 with xi of fixed dimen-
sion, known as a Euclidean random matrix, has also been studied in Bordenave [2008],
but again with results of limited practical reach.

Aside from side comments, the book will not dig into these fundamentally differ-
ent problems, tools, and results. We exclusively concentrate on dense random matrix
models.

2.6.3 Other Statistics

Most of the statistics of practical interest in the application chapters are directly
related to deterministic equivalents of the resolvent of random matrices and to their
linear statistics. For instance, we shall see that the performance of classification meth-
ods (measured by classification accuracy) of n data vectors x1,. . . ,xn in a k-class
(C1,. . . ,Ck ) problem can in general be estimated from the k-dimensional matrix of
quadratic forms

1
n

JTQ(z)J

(or some closely related statistics), where Q(z) is the resolvent of the underlying affin-
ity matrix of the data (kernel, graph Laplacian, etc.) and J = [j1,. . . ,jk ] ∈ R

n×k with
[ja ]i = δxi∈Ca the canonical vector of class Ca .

Yet, some specific results (such as the classification rate of some random neural
networks, the exact proof of the asymptotic Gaussian behavior of the entries of the
dominant eigenvector in graph adjacency and kernel matrices, etc.) demand more than
just first-order limiting statistics. A further common statistics of interest lies in the
second-order fluctuations, that is, in central limit theorems, of the objects under study.

These statistics have long been studied in the random matrix literature, starting from
the works of Bai and Silverstein [2004] who, under the sample covariance setting of
Theorem 2.6, established a central limit of the type

n
∫

f (t)(μ 1
n XXT − μ)(dt)→ N (M( f ),σ2( f ))

for all analytic functions f . This result (and all similar results for related models) has
the following noteworthy properties:

• the convergence rate is of order O(n−1). This however only holds for linear
statistics of the eigenvalues; bilinear forms aT(Q(z)− Q̄(z))b fluctuate at a slower

O(n− 1
2 ) rate;
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• the mean (or bias term) M( f ) and variance σ2( f ) depend on E[|Zi j |4] (which,
thus, must be assumed finite). Both write as the sum A+ κB with κ the kurtosis of
the entries Zi j . The mean M( f ), in particular, vanishes in the complex Gaussian
case and the variance in the complex Gaussian case is twice as large as that in the
real Gaussian case.

Many results on central limit theorems for a vast spectrum of linear statistics of
random models have been established, for instance, in Hachem et al. [2008] for sample
covariance matrices 1

n XXT with X having a variance profile, in Lytova and Pastur
[2009] to Wigner matrix model for less smooth functions f (five times differentiable),
or in Zheng et al. [2017] for F-matrix models of the type ( 1

n1
X1XT

1)
−1 1

n2
X2XT

2 . A
generalization to three times differentiable f is proposed in Najim and Yao [2016].
Central limit theorems for bilinear forms are found for instance in Kammoun et al.
[2009]. Fluctuations of the isolated eigenvalues and eigenvector projections in a spiked
random matrix model can also be found in Baik et al. [2005], Bai and Yao [2008],
Couillet and Hachem [2013]. These fluctuations are at a slower O(n−1/2) rate.

A central limit result for the linear statistical inference method of Theorem 2.12
has also been established in Yao et al. [2013]. There again it is shown that the con-
vergence speed is of order O(n−1) with a bias and a variance of the form A+ κB
with κ the kurtosis of the underlying distribution (and, again, the bias vanishes in the
complex Gaussian case). An estimation method is also proposed for the means and
variances, which is of practical interest to empirically assess the confidence interval of
the estimator.

Due to a strong motivation from the field of wireless communications, some specific
linear statistics have been particularly widely studied in the random matrix literature.
This is notably the case of the logarithm function. Statistics of the type∫

log(1+ st)μ 1
n XXT(dt)

for s > 0 are particularly important in wireless communications as they give access to
the achievable communication rate over a linear wireless communication channel X.
This log(1+ st) term arises from the entropy of Gaussian random variables and is also
found in many other applications, such as with the estimation of the Kullback–Leibler
divergence between two multivariate Gaussian vectors to be discussed in Section 3.2.
A particularly convenient feature of the integral form

∫
log(1+ st)μ(dt) is that its

derivative with respect to s (i.e.,
∫

t/(1+ st)μ(dt)) is immediately related to the Stielt-
jes transform of μ.43 It is thus not required to use a complex contour integral method to
assess these quantities (a real integration is sufficient). See Tulino and Verdú [2004],
Couillet and Debbah [2011] for a detailed account of these findings.

In technical terms, there are essentially two major methods to obtain central limit
theorems of random matrix quantities. Recalling that linear functionals u(Q) of the
resolvent Q = (X− zIn)−1 of the random matrix X under study (e.g., bilinear forms
aTQb or traces trAQ), as our central object of interest, cannot in general be expressed

43 Specifically,
∫
t/(1+ st)μ(dt) = s−1(1− s−1mμ(−s−1)).
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as a sum of independent random variables. Instead, Bai and Silverstein [2010] pro-
pose to use the martingale difference approach, which we previously exploited in the
detailed proof of the Marc̆enko–Pastur theorem, Theorem 2.4. More precisely, for X
having independent columns, it is convenient to write

u(Q)−E[u(Q)] =
n

∑
i=1

Ei−1[u(Q)]−Ei [u(Q)],

where Ei is the expectation conditioned on the columns x1,. . . ,xi of X, with the
convention E0[u(Q)] = u(Q). This is a sum of martingale differences, for which
Billingsley [2012, Theorem 35.12] provides a central limit theorem (see also Bai and
Silverstein [2010, Chapter 9]).

Alternatively, Pastur proposes to use Gaussian techniques, which we also explored
in the alternative proof of Theorem 2.4, along with a characteristic function approach
(see examples in Pastur and Shcherbina [2011]) to show that

E

[
e−ıtu(Q)

]
→ e−ıtM− 1

2 t
2σ2

,

which is the Gaussian characteristic function. To reach this convergence, the approach
consists in exploiting Stein’s lemma, Lemma 2.13, on the differentiated (along t) left-
hand expectation, that is,

E

[
−ıu(Q)e−ıtu(Q)

]
.

Exploiting the fact that u is linear and that Q = − 1
z In + 1

z QX, this expectation
can be reduced as a function of the type E[X f (X)] on which Lemma 2.13 can be
applied. The objective is then to show that this differentiated characteristic func-
tion converges to the derivative of the limiting Gaussian characteristic function, that
is, (−ıM − tσ2)e−ıtM− 1

2 t
2σ2

. This can be achieved, for instance, by controlling the
difference using the Nash–Poincaré inequality, Lemma 2.14.

2.7 Beyond Vectors of Independent Entries: Concentration of Measure
in RMT

2.7.1 Limitations of the i.i.d. Assumption

In the previous sections, we have shown that the Stieltjes transform and resolvent
approaches are quite versatile tools which, in a way, form a surrounding “complex
analysis and linear algebra core” for random matrix theory analysis. This core, how-
ever, must be independently supplemented by appropriate probabilistic tools (which
ensure the necessary convergences for linear algebra and complex analysis methods to
be applied).

When it comes to these probabilistic methods, we have seen that a major driver
for most of the results lies in exploiting the independence both in samples (n) and
features (p) of the underlying random matrix X. It is thus no wonder that a natu-
ral and long-standing assumption in the early works in random matrix theory was to
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request for X to have all independent (or “linearly dependent” as in models of the type
X = C

1
2 ZC̃

1
2 + A) entries. Most generalizations of these results usually assume

mere deviations from this setting (by allowing weak, or asymptotically vanishing,
correlation between the entries, for instance).

However, while for random graphs it is largely conceivable to request independent
“noise” associated with each link, and for random vector observations it is natural to
ask for these observations to be independent, requesting that every single observation
made of independent entries is very constraining. Note, in particular, that what we
referred to as the sample covariance matrix model in Theorem 2.6 is in fact a very
restricted model, where each observation xi needs to be of the form xi = C

1
2 zi for

some random vector zi having independent entries. This model is mostly convenient
only in the Gaussian case where zi ∼N (0,Ip) and as a result xi ∼N (0,C). Most mul-
tivariate random vectors xi with zero mean and covariance C (elliptical distributions,
correlated vectors of Bernoulli entries, etc.) cannot be factorized under this form.

Most importantly, the “real data” xi (images, sounds, videos, DNA sequences,
population features, etc.) met in machine learning applications tend to live in (pos-
sibly very contorted) manifolds that cannot be linearly “whitened” into a vector of
independent entries by merely operating C− 1

2 xi .

2.7.2 Concentrated Random Vectors as the Answer

El Karoui [2009] and Pajor and Pastur [2009] were the first to realize (or at least
to fully exploit the fact) that, from a probability standpoint, the proof of the sample
covariance matrix result in Theorem 2.6 from Silverstein and Bai [1995] only relies
on (i) the independence between the (column) vectors xi composing X = C

1
2 Z (and

thus not necessarily of all the entries), and (ii) the convergence

1
n

xTi Q−i(z)xi −
1
n

trQ−iC → 0 (2.58)

in some probabilistic sense, where Q−i(z) = ( 1
n XXT− 1

n xixTi − zIp)−1. For the latter,

it is sufficient but not necessary for zi = C− 1
2 xi to have standard i.i.d. entries. In

particular, El Karoui showed that this convergence also holds if xi is a concentrated
random vector: A fundamental property at the core of our present concern and which,
we will show, has far-reaching consequences to the application in real-world machine
learning and AI.

In a nutshell, the concentration of measure theory, extensively developed by Ledoux
[2005], considers random vectors x ∈ R

p having the property that every 1-Lipschitz
functional φ : Rp →R of x is “predictable,” in the sense that there exists a determinis-
tic value Mφ ∈ R such that the random variable φ(x) remains in the neighborhood of
Mφ , and that the diameter of this neighborhood vanishes as p → ∞. This notion must
not be confused with the fact that the random vector x itself converges, which is in
general largely wrong: only the scalar observations φ(x) of x converge, and we will
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say in this case that x “concentrates.”44 More formally, assuming Mφ = O(1) with
respect to p (otherwise, it needs to be appropriately scaled), there exists a function
α(t,p) decreasing to zero in both t and p such that

P(|φ(x)− Mφ | > t)≤ α(t,p). (2.59)

Of particular interest is the case α(t,p) = e−tβ pγ for some β,γ > 0 which, since
the exponential grows faster than any polynomial, provides a more powerful and
much more flexible inequality than the moment bounds introduced in the proof of
the Marc̆enko–Pastur law.45 The mapping xi → 1

n xTi Q−i(z)xi in (2.58) is however not
Lipschitz, and thus more profound technical considerations are requested to show that
Theorem 2.6 indeed extends to the case where the xis are independent concentrated
random vectors. This is performed in an intricate manner in El Karoui [2009]. A more
systematic approach has been recently developed in Louart and Couillet [2018], the
basics of which will be discussed in the next section.

Paradoxically, very few “classical” multivariate distributions are known to produce
concentrated random vectors, and yet, this is enough to bring an outstanding practi-
cal competitive advantage against vectors with independent entries, when it comes to
modeling real data in machine learning practice.

Among popular distributions, only the Gaussian random vector x ∼ N (0,Ip), the
uniformly distributed vector on the unit sphere x ∼ S

p−1, and the vector x with i.i.d.
entries with bounded support (i.e., |xi | < K for some K > 0) are known to be con-
centrated random vectors. Worse, for the latter, the definition (2.59) only holds for all
1-Lipschitz and convex maps, which is practically inconvenient (since, as opposed to
Lipschitz maps, Lipschitz-convex functions are not stable through composition).

Let us thus stick for the moment to the example of x ∼ N (0,Ip). The major advan-
tage of being a concentrated random vector is that this concentration property is stable
under any 1-Lipschitz map f : Rp → R

q . So, if x is concentrated, so is x′ = f (x),
which, as opposed to C

1
2 x, can be a vector with intricate nonlinear dependence

between its entries (as we shall see right after, this intricate dependence may be such
that photo-realistic images, able to deceive the human eyes, can be generated from
Lipschitz maps of standard Gaussian random vectors).

Now, the key reasons why the class of random vectors { f (x)} spanned by
1-Lipschitz maps f is so fundamental to machine learning are that

(i) there exist machine learning techniques that learn to produce artificial but highly
realistic data, exclusively based on Lipschitz maps. The most popular of these
methods are the generative adversarial networks proposed by Goodfellow et al.

44 As a matter of fact, as we will see, the concept of concentration is even more general in that it allows
one to control the fluctuations of φ(x), for arbitrary φ : Rp → R

q for generic q ≥ 1, even when φ(x)
does not converge. Lipschitz operators being stable through composition, iterated controls of Lipschitz
functions with various Lipschitz constants enable a thin tracking of the behavior of sometimes intricate
nonlinear functionals of x (such as through the layers of a neural network).

45 Of course, as a compensation for this simplification, this imposes more technical constraints on the
entries of the random vector x, such as the existence of moments of all orders. But, as far as practical
statistical machine learning considerations are concerned, this is far from a heavy request.
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[2014]. Those are feedforward neural networks which, after training, generate
highly realistic data f (x) from a standard Gaussian input x ∼ N (0,Ip) (so
realistic that even human beings cannot tell synthetic data from real ones, see
again samples in Figure 1.8). Since a feedforward neural network is a sequence
of linear operators (inter-layer connections and convolution operators) and
Lipschitz nonlinear activation functions (sigmoid, rectified linear, etc.), f (·) is
indeed Lipschitz (as the composition of Lipschitz operators remains Lipschitz);

(ii) feature extraction procedures in machine learning are also mostly Lipschitz
maps. The most popular of these today are convolutional neural networks, which
are again feedforward neural nets and thus, by definition, Lipschitz maps of the
input data. But this is also mostly true for many “classical” machine learning
methods, such as support vector machines, semi-supervised graph learning,
spectral clustering, etc.

As a consequence of (i) and (ii), since real data can be trust-worthily approximated
by outputs x′ of some Lipschitz function x′ = f (x) of random Gaussian vectors x, the
class of concentrated random vectors encompasses a broad “set of (almost) realistic
data.” Furthermore, in practice, the features exploited by most machine learning algo-
rithms can be seen as yet another Lipschitz mapping g(x′) of the data x′. Since x′ takes
the form of x′ = f (x) for standard Gaussian x ∼ N (0,Ip), x′′ = (g ◦ f )(x) is again a
Lipschitz map of a standard Gaussian vector and thus a concentrated random vector.

It then becomes natural to model a wide range of realistic data, and their corre-
sponding features extracted by, say, modern neural networks, as concentrated random
vectors, for example, as Lipschitz functions of standard Gaussian vectors.

Remark 2.15 (Concentration inequalities versus concentration of measure theory).
The concentration of measure theory developed by Ledoux [2005] provides as corol-
laries a list of popular concentration inequalities such as Gaussian concentration
inequalities, Bernstein’s and Talagrand’s inequalities for random variables with
bounded entries,46 McDiarmid’s inequalities for functionals of bounded deviations
of independent random variables, etc. These results, quite popular in statistics, can
however only marginally be used as a full-fledged concentration of measure-oriented
random matrix framework. As an instance, quadratic forms of the type xTAx are not
naturally handled by these concentration inequalities (for which the Hanson–Weight
inequality provides an answer, see Rudelson and Vershynin [2013] and Exercise 15).
More importantly, while quadratic form concentration is essentially sufficient to
prove the convergence of Stieltjes transforms, proving the resolvent convergence
E[Q]− Q̄ → 0 under a concentration inequality setting actually demands to further
expand the works of Ledoux, as will be shown next.

It must also be stressed that Tao [2012], Vershynin [2012] provided an introduction
to what Vershynin refers to as nonasymptotic random matrix theory based on con-
centration inequalities. The approach followed by the authors however significantly

46 To be more exact, Talagrand’s work was developed in parallel to Ledoux’s theory and is rather
complementary than a consequence of one another.
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differs from the present n,p → ∞ with p/n → c ∈ (0,∞) large-dimensional random
matrix considerations. In nonasymptotic random matrix theory, the variables n,p are
left “free” (to grow at any relative speed to infinity) and the use of concentration
inequalities aims at retrieving bounds on, for instance, the largest or smallest
eigenvalue or singular value of the underlying random matrices, without resorting to
the Stieltjes transform approach. For Tao, this control step is the crux of the proof of
the circular law (based on the ε-net theory developed by the author) for nonsymmetric
matrices X with i.i.d. entries. For Vershynin, these nonasymptotic spectrum controls
are exploited in applications to compressive sensing, where random matrix theory
also plays a key role – for instance, in providing “typical” matrices fulfilling the
popular restricted isometry property [Candès, 2008].

The approach proposed in this book also provides a set of inequalities, where n,p
have an untied growth to infinity, but the application of these convergence results is
mostly of interest in a joint growth rate for n,p. Besides, additional tools to Ledoux’s
original framework, such as the notion of linear concentration, will be needed.

Remark 2.16 (Limitations of the concentration of measure framework). It is impor-
tant to raise here (somewhat ironically) that the concentration of measure framework,
which finds important corollaries to the field of compressive sensing [Donoho, 2006,
Baraniuk, 2007], is, as presented here, at odds with the compressive sensing frame-
work. Indeed, compressive sensing is a major field of research in large-dimensional
statistics and machine learning, which assumes that large-dimensional data are intrin-
sically of low dimension. That is, in the simplest linear setting, data vectors x ∈R

p can
be written as x = Ay for some matrix A ∈ R

p×q (generally unknown) and y ∈ R
q for

q � p. From there, the idea of compressive sensing is that meaningful statistical infer-
ence on y can be performed based on few independent realizations n � p (which is
convenient if p is extremely large). There, concentration inequalities are mostly used to
deal with the (usually random) observation matrix A, rather than with the underlying
(low-dimensional) y.

In the present random matrix framework, concentration of measure is used to model
the data, not the data operating matrices. These data however must not be of intrinsic
low dimension q � n. Or, at least, if they were, we would impose in our framework
that n ∼ q and n,q,p → ∞ with a small but O(1) ratio q/p. If instead q = O(1) � n,
then we would fall back under the (technically more difficult) sparse regime discussed
at the end of Section 2.6.2, where the present framework is mostly ineffective.

As shall be seen in concrete applications presented in this book, high-resolution
images are very appropriately modeled by concentrated random vectors of intrinsi-
cally large dimensions. However, feature vectors such as bag-of-words (also known
as tf*idf features) for text classification [Manning et al., 2008], which are very large
but extremely sparse vectors, cannot be handled by the random matrix framework
presented here.

This however does not mean that compressive sensing is complementary to random
matrix theory. Compressive sensing indeed tackles the “difficult” problem analyzing
sparse recovery algorithms by somehow “loose” inequalities and bounds: that is, it
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cannot accurately predict the exact performance of a given algorithm (however, it
can ensure its convergence and its efficiency as n → ∞ at a certain rate with respect
to p, while q is in general fixed). Random matrix theory instead requests that the
intrinsic dimension q → ∞, even slowly so, but manages in exchange (by exploiting the
q degrees of freedom in the feature space) to provide accurate performance estimates
of machine learning algorithms for all finite (but at least moderately large) n,q.

2.7.3 Elements of Concentration of Measure for Random Matrices

We recall here basic elements of the concentration of measure theory of immediate
interest to random matrix applications. More advanced considerations can be found
in Ledoux [2005] from a mathematical standpoint, and in Louart and Couillet [2018]
with a more random matrix-oriented flavor.

Concentration of Random Variables
Before getting into generic multivariate concentration of measure theory, we need to
start with the concept of concentration of a (uni-variate) random variable. Concentra-
tion of measure can be defined in two parallel ways.

Definition 6 (Concentration of a random variable). Let α : R+ → [0,1] be a nonin-
creasing function with α(∞) = 0. A random variable x is α-concentrated and we write
x ∝ α if, for an independent copy x′ of x, and all t > 0,

P(|x − x′| > t)≤ α(t).

The definition suggests that any two independent realizations of x cannot live far
from one another. Alternatively, we may define x as concentrated if there exists a
deterministic pivot a close to which x remains.

Definition 7 (Concentration around a pivot). Let α : R+ → [0,1] be a nonincreasing
function and a ∈ R. Then, x is α-concentrated around the pivot a, denoted x ∈ a ±α,
if for all t > 0,

P(|x − a| > t)≤ α(t).

These two definitions are not formally equivalent. However, we have the implica-
tion

x ∝ α ⇒ x ∈ Mx ±2α ⇒ x ∝ 4α(·/2),

where Mx ∈ R is a median of x, that is such that P(x ≥ Mx)≥ 1/2 and P(x ≤ Mx)≥
1/2. The loss of a factor 1/2 arises here from the bound P(|x − x′| > t) ≤ P(|x −
a| > t/2)+P(|x′ − a| > t/2). As a result, up to constants, it is then possible to use
either definition interchangeably (the proofs of subsequent results are usually more
accessible to one or the other definition).
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A particularly appealing result is that 1-Lipschitz maps f : R→R of a concentrated
random variable x maintain the concentration, that is,

x ∝ α ⇒ f (x) ∝ α. (2.60)

This is a particularly fundamental result which suggests that every “smooth” function
of sub-linear growth of x satisfies the same concentration property. This result natu-
rally arises from the fact that | f (x)− f (x′)| ≤ |x − x′| and thus P(| f (x)− f (x′)| >
t)≤ P(|x − x′| > t).

Evidently, sums of concentrated random variables are also concentrated:

x1 ∝ α, x2 ∝ β ⇒ (x1 + x2) ∝ α(·/2)+ β(·/2)
x1 ∈ a ±α, x2 ∈ b± β ⇒ (x1 + x2) ∈ (a+ b)± [α(·/2)+ β(·/2)],

where in the first line the factor 1/2 again unfolds from the bound P(|x1 + x2 − x′
1 −

x′
2| > t)≤ P(|x1 − x′

1| > t/2)+P(|x2 − x′
2| > t/2), and similarly for the second line.

However, products, particularly of dependent random variables, are less obvious to
tackle, as one needs to avoid conditioning. The problem can be worked around using
the following two relations

x1x2 − ab = (x1 − a)(x2 − b)+ a(x2 − b)+ b(x1 − a)

|x1 − a||x2 − b| > t ⇒ (|x1 − a| >
√

t) or (|x2 − b| >
√

t)

so to obtain

x1 ∈ a ±α, x2 ∈ b± β ⇒ x1x1 ∈ ab±⎧⎨
⎩

α(
√

·/3)+α(·/3|b|)+ β(
√

·/3)+ β(·/3|a|), a,b �= 0
α(

√
·/2)+α(·/2|b|)+ β(

√
·/2), a = 0, b �= 0

α(
√·)+ β(

√·), a = b = 0.

For large t, the probability P(|x1x2| > t) is here dominated by the terms α(
√·) and

β(
√·), which is not surprising. In the particular case where x1 = x2 = x, or more

generally for powers xk of concentrated random variables x, we have

x ∈ a ±α ⇒ xk ∈ ak ±
[
α(·/2k |a|k−1)+α((·/2) 1

k )
]

(2.61)

with α(·/0) = α(∞) by convention, which is based on noticing that

|xk − ak | ≤ (2|a|)k
(

|x − a|
|a| +

|x − a|k
|a|k

)
.

This result will be particularly useful for random matrix applications to quadratic
forms.

Remark 2.17 (Exponential concentration). Of utmost interest is the case where
α(t) = Ce−(t/σ)q for some C,σ,q > 0. In particular, it is known that standard random
Gaussian variables x satisfy

x ∼ N (0,1) ⇒ x ∈ 0±2e−(·)2/2.
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Exponential concentrations are fast and induce a lot of convenient properties. In par-
ticular, using the formula E[|x|k ] =

∫ ∞
0 P(|x|k > t)dt, it appears that all (absolute)

moments of exponentially concentrated random variables exist. In particular,

x ∝ Ce−(·/σ)q ⇒ x ∈ E[x]± e
Cq

q e−(·/2σ)q (2.62)

so that an exponentially concentrated random variable concentrates around its mean.
But most importantly, we have the implications

x ∈ a ±Ce−(·/σ)q ⇒ ∀r ≥ q, E[|x − a|r ]≤ CΓ(r/q+1)σr

⇒ x ∈ a ±Ce−(·/σ)q/e

with Γ the gamma-distribution. Thus, exponential concentration is “equivalent” to
controlled growth by σr of all moments r ≥ q. This is particularly appealing when
moments occasionally turn out more convenient to deal with than bounds on tail
probabilities.

Concentration of Random Vectors
The concept of concentration of random variable x, stating that x does not deviate
much from a given pivot a, cannot be straightforwardly extended to that of random
vectors. Indeed, random vectors (in particular, large dimensional ones) rather tend
to “avoid” their statistical means or medians: for example, Gaussian random vectors
x ∼ N (0,Ip) are of zero mean but they “concentrate” on a O(1)-thick layer around
the sphere in R

p of diameter
√

p (see, e.g., Figure 1.6 for an illustration).
Instead, for a normed vector space (E,‖ · ‖), we will consider that a random vector

x ∈ E is concentrated for some class of functions F : Rp → R if, for all f ∈ F , f (x)
is a concentrated random variable. Depending on the “broadness” of the class, being a
concentrated random vector can be more demanding. Ledoux [2005] originally defined
two such classes F : the class of 1-Lipschitz maps (appropriate for Gaussian or random
unitary vectors) and the class of convex (or weakly convex) 1-Lipschitz maps (adapted
to vectors of independent bounded entries). There, the Lipschitz property (i.e., the
fact that | f (x)− f (y)| ≤ ‖x − y‖) is with respect to the norm ‖ · ‖ in E, and thus
the concentration rates may depend on ‖ · ‖. In order to better encompass random
matrices in the concentration of measure framework, a looser additional class F will
be introduced here: that of unit-norm linear functionals.

Linear Concentration
Linear concentration is an important concept in random matrix theory as it provides
a quite general and flexible definition for the key notion of deterministic equivalents
(recall Definition 4) of great significance in this book.

Definition 8 (Linear concentration). A random vector x ∈ E is linearly α-concentrated
around the deterministic equivalent x̄, with respect to the norm ‖·‖ in E, if, for all unit
norm linear functional u : E → R (i.e., |u(x)| ≤ ‖x‖),

u(x) ∈ u(x̄)±α.
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The expectation being a linear operator (from E to E), an advantage of linear
concentration is that, upon existence, E[x] is a deterministic equivalent for the con-
centrated random vector x. In particular, if Q is a random matrix (e.g., the resolvent of
some other underlying random matrix) in the “vector space” (Rp×p ,‖ · ‖), with ‖ · ‖
the operator norm, and that Q is linearly concentrated with respect to ‖ · ‖, then, as
already mentioned in Remark 2.2, EQ is a deterministic equivalent for Q and we have,
in particular, for all A ∈ R

p×p and a,b ∈ R
p of bounded (operator and Euclidean)

norms,

1
p

trA(Q−EQ)→ 0, aT(Q−EQ)b → 0,

where the convergence is in probability and, if α(t) = Ce−tq for some q > 0, the
convergence is also almost sure.47 This result implies that the newly defined notion of
deterministic equivalents from a linear concentration standpoint automatically induces
the former Definition 4.

Lipschitz Concentration
Lipschitz concentration is the most popular type of concentrations (due to its compati-
bility with (2.60)). This notion is even in general merely called “concentration” (rather
than Lipschitz concentration) and is defined as follows.

Definition 9 (Lipschitz concentration). A random vector x ∈ E is Lipschitz α-
concentrated with respect to the norm ‖·‖ if, for every 1-Lipschitz function f : E →R,
we have either of the conditions

f (x) ∝ α, denoted x ∝ α

f (x) ∈ Mf ±α, denoted x
M∝ α

f (x) ∈ E[ f (x)]±α, denoted x
E∝ α

holds, where Mf is a median of f (x).

Similar to the concentration of random variables, the three notions are not fully
equivalent. For generic α-concentration, we have

x ∝ α ⇒ x
M∝ 2α ⇒ x ∝ 4α(·/2)

and, in the case of exponential concentrations, the expectation is well defined and we
further have

x
M∝ Ce−(·/σ)q ⇒ x

E∝ eC
q/qe−(·/2σ)q ⇒ x

M∝ 2eC
q/qe−(·/4σ)q .

The most fundamental result at the very heart of the concentration of measure
theory is that Gaussian random vectors x ∼ N (0,Ip) are Lipschitz concentrated in
(Rp ,‖ · ‖) for ‖ · ‖ the Euclidean norm, that is

47 Here we exploit the fact that, for u(Z) = 1
p trAZ, |u(Z)| ≤ ‖Z‖ when ‖A‖ ≤ 1 and that, for u(Z) =

aTZb = tr(baTZ), |u(Z)| ≤ ‖Z‖ for ‖a‖, ‖b‖ ≤ 1.
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x ∼ N (0,Ip)⇒ x
M∝ 2e−(·)2/2 and x

E∝ 2e−(·)2/2.

A fundamental fact about the above concentration is that it does not depend on the size
p of the ambient space (neither in the tail nor in the head parameters). As such, arbi-
trarily large standard Gaussian vectors (and thus concatenation of independent n such
vectors, as well as matrices X = [x1,. . . ,xn ] built from independent standard Gaussian
vectors xi endowed with the Frobenius norm) also concentrate with no dependence
on p,n.

This is in fact far from natural as, even for independent vectors x1,. . . ,xn , all of
which being concentrated, the joint concentration of (x1,. . . ,xn) with respect to the
Euclidean norm in the product space generally comes along with a loss of concentra-
tion rate proportional to n. Besides, if the vectors x1 and x2 are both concentrated but
not independent, the concatenation vector (x1,x2) may not even be concentrated.

Remark 2.18 (On the location of Gaussian vectors). To clearly understand the rela-
tion between a standard Gaussian random vector x ∼ N (0,Ip) and its dimension,
note that, ‖x‖ having a chi-distribution with median

√
p+O(1/

√
p), its exponential

concentration precisely implies

P(|‖x‖−√
p| > t)≤ 2e−(t+O(1/p))2/4.

Thus, x ∈ R
p is a random vector that essentially lives close to a sphere of radius

O(
√

p) and thickness O(1) or, equivalently, x/
√

p is a random vector distributed
close to S

p−1, the unit sphere in R
p , with actual distance to the sphere vanishing as

O(1/
√

p). The vector x is thus nowhere near its expected value 0 (see again Figure 1.6
for an illustration).

This remark is fundamental as it disrupts with the small-dimensional mental image,
where x lives close to its mean. In 1D to 3D, one indeed visualizes that (independent)
Gaussian random vectors are densely “concentrated” around their mean (close to the
center of the bell-shaped distribution). The intuitive extension of this visualization to
larger dimensions would, however, be erroneous.

As for concentrated random variables, Lipschitz concentrated random vectors are
stable through Lipschitz mapping in the sense that, for all 1-Lipschitz φ : E → E′ with
respect to norms ‖ · ‖E and ‖ · ‖E ′ ,

x
M∝ α ⇒ φ(x)

M∝ α. (2.63)

Convex (Lipschitz) Concentration
To define convex concentration, we need to recall the notion of quasi-convex functions:
f : E →R is quasi-convex if, for all t ∈R, the sets {x ∈ E | f (x)≤ t} are convex sets,
that is, for all t ∈ [0,1] and x,y ∈ E, f (tx+(1− t)y)≤ max{ f (x), f (y)}. In particular,
convex functions are quasi-convex (thus the notion generalizes convexity) and, for
E = R, all monotonous functions (even concave ones) are quasi-convex.

Then, we have the following definition of convex concentration.
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Definition 10 (Convex concentration). A vector x ∈ E is (Lipschitz) convexly concen-
trated for the norm ‖ · ‖ if, for any 1-Lipschitz and quasi-convex function f : E → R,
we have either of the conditions

f (x) ∝ α, denoted x ∝c α

f (x) ∈ Mf ±α, denoted x
M∝c α

f (x) ∈ E[ f (x)]±α, denoted x
E∝c α

holds, where Mf is a median of f (x).

Obviously, all Lipschitz convex functions being Lipschitz, Lipschitz concentration
implies convex concentration (which itself implies the even less demanding linear
concentration); for instance, in the case of exponential concentration,

x
E∝ Ce−(·/σ)q ⇒ x

E∝c Ce−(·/σ)q ⇒ x ∈ E[x]± e−(·/σ)q .

The interest for convex concentration is related to the following result due to Tala-
grand [1995, Theorem 4.1.1]: Let x ∈ {0,1}p be a random vector of independent
entries, then

x
M∝c 4e−(·)2/4.

However, convex concentration has the major limitation that quasi-convex functions
are not stable by composition. This prevents the simple adaptation of numerous results
obtained for Lipschitz (or linear) concentration. Yet, for f quasi-convex and g affine,
f ◦g is still quasi-convex.

Nonetheless, the results necessary to our present random matrix analysis of sample
covariance matrix models can fortunately be extended.

Convex Concentration Transversally to a Group Action
A last convenient notion of concentration, dedicated to random matrix theory, consists
in transferring concentration from X to the vector of its singular values. This will help
transfer concentration from the data to linear statistics of the eigenvalues of the sample
covariance matrix. To this end though, convex concentration is too demanding and we
need to further restrict the space of functions as follows.

Definition 11 (Convex concentration transversally to group action). Let x ∈ E and G
a group acting on E. Then, x is convexly α-concentrated transversally to the action of
G if, for all quasi-convex 1-Lipschitz and G-invariant function f (i.e., f (g ·x) = f (x)
for g ∈ G), f (x) ∝ α. This is denoted x ∝T

G α.

In particular, denote σ(X) = (σ1(X),. . . ,σmin{p,n}(X)) the vector of the singular

values of X ∈R
p×n (i.e., σi(X) =

√
λi(XXT) for i ≤ min{p,n}), and define the group

Op,n = {(U,V)∈R
p×p×R

n×n orthonormal} acting on R
p×n by (U,V) ·M=UMVT

and the group Sp of permutations of size p acting on R
p by τ · y = (yτ(1),. . . ,yτ(p)).
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Then, we have the following result, inspired by Davis [1957],

X ∝T
Op,n

α ⇔ σ(X) ∝T
Smin{p,n}

α. (2.64)

2.7.4 A Concentration Inequality Version of Theorem 2.6

Equipped with these elementary results, we can now provide an extension of the
fundamental Theorem 2.6 to the case of concentrated (random) data vectors.

Before getting to the main result, we introduce some preliminary lemmas, which
generalize classical random matrix results to the concentration of measure frame-
work. Most of these results and there corresponding proofs can be found in Louart
and Couillet [2018].

Trace Lemma
A first result of importance concerns the extension of the “quadratic-form-close-to-
the-trace” lemma, Lemma 2.11, from a moment-based version to a concentration
of measure setting. The result consists in a generalization of a popular result in
concentration of measure theory known as Hanson–Wright’s theorem (see, e.g., Ver-
shynin [2018, Theorem 6.2.1] for a version of random vectors having independent
subGaussian entries).

Lemma 2.21 (Trace lemma for concentrated vectors). Let A ∈R
p×p and x ∈R

p such

that x
E∝c Ce−(·/σ)q . Then,

xTAx ∈ tr(E[xxT]A)±C′
(

e−(·/4σ‖A‖·E[‖x‖])q + e−(·/2‖A‖σ2)
q
2

)

for some constant C′ > 0 depends only on C and q.

This lemma follows almost automatically from two elementary ingredients of the
concentration of measure theory: (i) assuming first that A is nonnegative definite,
xTAx = ‖A

1
2 x‖2 with ‖A

1
2 x‖ a concentrated random variable (it is a Lipschitz and

convex function of x) which, (ii) from the concentration of powers of concentrated
random variables (2.61) for k = 2, gives the concentration result, however around
(E[‖A

1
2 x‖])2. It then suffices to apply, for example Ledoux [2005, Proposition 1.9]

which states that, if a random variable exponentially concentrates around some con-
stant ((E[‖A

1
2 x‖])2 here), then up to a change of constant, it also exponentially

concentrates around its expectation. For generic A, it suffices to write A as the sum of
its symmetric nonnegative and symmetric negative parts.

This lemma particularly stresses the technical convenience of the concentration of
measure framework. The key random matrix results, such as Lemma 2.11 for vectors
of i.i.d. entries, often rely on dedicated tools and possibly heavy (combinatorial) proof
techniques. Here, the concentration of measure alternative to Lemma 2.11 follows
from a mere few-line argument (once the elementary tools of the theory are in place).
Besides, the exponential rate of convergence is very versatile and particularly ensures
the uniform convergence of {xTi Axi , i = 1,. . . ,n}, for n any polynomial in p; using
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the moment method would demand to systematically compute high-order moments of
xTi Axi to obtain uniform convergence over large n (e.g., with Markov’s inequality).

Concentration of the Stieltjes Transform
Next, we generalize the convergence of Stieltjes transforms in a generic concentration
of measure form.

Lemma 2.22 (Trace of Resolvent). For X ∈R
p×n equipped with the Frobenius norm,

and Q(z) = ( 1
n XXT − zIp)−1 for z < 0,

X ∝c α in (Rp×n ,‖ · ‖F ) ⇒ trQ(z) ∝ 2α

( √
n|z|3(·)

8min{p,n}

)
.

To prove this lemma, first recall that X ∝c α ⇒ σ(X) ∝T
Sd

α with d = min{p,n}.

Also, trQ(z) = ∑d
i=1 f (σi(X)/

√
n) for f : R+ → R, s �→ 1/(s2 − z). This func-

tion f is (2|z|−3/2)-Lipschitz (checked by bounding its derivative) and the mapping
(s1,. . . ,sd) �→ ∑d

i=1 si is evidently Sd-invariant. However, f is not quasi-convex but
can be written as the sum f = g− h of two quasi-convex 4|z|−3/2-Lipschitz func-
tions (h(s) = (s/|z| − 1/

√
|z|)2 · 1{s∈[0,

√
|z|]} and g = f + h). Consequently, since

X ∝c α ⇒ X ∝T
Op,n

α, we have from (2.64) both the concentration of ∑i g(σi(X))

and of ∑i h(σi(X)), and it then remains to apply the result on the concentration of the
sum of two concentrated random variables to obtain the result.

Again here, the proof is elegant and immediate, although the mapping X �→ trQ(z)
is highly nontrivial from a statistical standpoint. Note, in particular, that the techni-
cal difficulty raised by the nonconvexity of f would not have been a problem if we
had rather assumed Lipschitz concentration X ∝ α for X (which we recall is more
demanding for X and would in particular exclude the case of X with bounded i.i.d.
entries).

Concentration of the Resolvent Q and its Deterministic Equivalents
The approach followed in the previous lemma uses the convenient decomposition of
f : R+ → R as f = g− h for two convex and Lipschitz functions g and h. It does
not seem that the mapping f (X) = Q 1

n XXT(z) from R
p×n to R

p×p can be treated
similarly, as no such Lipschitz function division can be exploited. One must there
resort to the additional strength of exponential concentration to divide the space Rp×n

into a compact space for the operator norm {X | ‖X‖ ≤ K
√

n}, where f will be shown
to be automatically Lipschitz (as its image is bounded) and the complement space
{X | ‖X‖ > K

√
n} which is of vanishing probability for all large K > 0.

Regrouping these two results, we have the following concentration for the resolvent.

Lemma 2.23 (Concentration of Q 1
n XXT ). For X ∈ R

p×n and z < 0, let Q(z) =

( 1
n XXT − zIp)−1. Then, we have the following two results

X ∝ α ⇒ Q(z) ∝ α

(√
n|z|3(·)/2

)

X
E∝c Ce−(·/σ)q ⇒ Q(z) ∈ EQ(z)±2Ce

−
(√

n|z|3(·)/4σ
)q
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where the left-hand side concentrations are understood in (Rp×n ,‖·‖F ) and the right-
hand side in (Rp×p ,‖ · ‖F).

This result is in fact quite powerful and automatically induces (and vastly gen-
eralizes) the notion of deterministic equivalent of Definition 4, that is, it implies
that 1

n trA(Q −EQ)
a.s.−−→ 0 and aT(Q −EQ)b a.s.−−→ 0 for all A,a,b of unit norm,

as n,p → ∞. Indeed, first recall that the first statement (of Lipschitz concentration)
implies that

X
E∝ α ⇒ Q(z) ∈ EQ(z)±α

(√
n|z|3(·)/2

)

(since Lipschitz concentration around the mean implies linear concentration around
the mean). Next, note that the linear concentrations of Q (under either Lipschitz or
convex-Lipschitz-exponential concentration for X) hold here with respect to the Frobe-
nius norm of X ∈ R

p×n . That is, for A ∈ R
p×p of unit Frobenius (rather than only

spectral) norm,48

trA(Q−EQ) = O(n− 1
2 ).

In particular, letting p/n → c > 0, from ‖A‖F ≤
√

rank(A) ·‖A‖ (with ‖·‖ the operator
norm) and ‖A‖ ≤ ‖A‖F , we have (i) if A = abT is of unit rank with a,b of unit
norm, then trabT(Q−EQ) = aT(Q−EQ)b = O(n−1/2), while (ii) if A is of arbitrary

rank (say rank(A) = p) and of unit spectral norm, then we have p− 1
2 trA(Q−EQ) =

O(n−1/2) so that 1
p trA(Q−EQ) = O(n−1).

Of course, since ‖ ·‖ ≤ ‖·‖F in R
p×p , Lemma 2.23 applies to Q in (Rp×p ,‖ ·‖) in

a spectral norm sense as well.
The proof of the first part of the lemma is again rather straightforward, once the

basic concentration of measure arguments are in place. Here, we simply use the fact
that the mapping f : Rp×n → R

p×p , X �→ Q(z) is (2/
√

|z|3n)-Lipschitz. Indeed, by
the resolvent identity, Lemma 2.1,

f (X+H)− f (X) = −1
n

f (X+H)((X+H)HT+HXT) f (X)

so that, from ‖ f (X)X‖ ≤
√

n/|z|, ‖ f (X)‖ ≤ 1/|z|, and ‖AB‖F ≤ ‖A‖ · ‖B‖F (where
‖ · ‖ is the operator norm), we have ‖ f (X+H)− f (X)‖F ≤ 2‖H‖F/

√
|z|3n and thus

the result.
The proof of the second part is less immediate. Since the result is a linear concen-

tration of the resolvent, one needs to control the concentration of the random variable
trAQ obtained for arbitrary A ∈ R

p×p with ‖A‖F ≤ 1. This is obtained by consid-
ering the mapping f : X �→ trAQ, with the major difference from Lemma 2.22 that
f (Q) is now not a mere combination of the singular values of Q. The function f is not
convex (as already discussed in Lemma 2.22) but can again be divided as f = h − g

with g : X �→ 1
n|z|2 trXXT and h = f +g both convex, with h Lipschitz and g Lipschitz

48 One must be careful not to confuse the steps of the proof which use a smart division of R
p×n into

bounded and unbounded operator norm ‖X‖/√n, and the fact that the ultimate concentration results
hold with respect to the Frobenius (instead of spectral) norm.
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on the bounded region {X | ‖X‖ ≤ K
√

n}. Using a truncation method by consider-

ing (XK )i j = min{1, K
√

n|z|3
‖X‖F }[X]i j for growing K , one obtains that the sequence of

concentrated random variables trAQK = trA( 1
n XK (XK )T − zIp)−1 converges in law

to trAQ, which can then be shown to imply that trAQ is also a concentrated random
variable.

Main Result
Let us rephrase the setting of Theorem 2.6 by letting x1,. . . ,xn ∈R

p be n i.i.d. random
vectors with law L such that

X = [x1,. . . ,xn ] ∝ Ce−(·)q/c

for some C,c,q > 0 with respect to the Frobenius norm (which implies in particular,
by the action of the 1-Lipschitz mapping f : (x1,. . . ,xn) �→ xi , that each xi is itself
concentrated). This request of joint rather than individual (vector) concentration may
be considered demanding, but is at least satisfied by (i) xi = φ(yi) with 1-Lipschitz
maps φ : Rp′ → R

p for (i-a) yi ∼ N (0,Ip′) or (i-b) yi uniformly distributed on the√
p′-radius sphere of Rp′

, or (ii) for xi composed of (an affine mapping of) i.i.d. entries
supported on [−1,1], see Louart and Couillet [2018, Remark 3.2].

With the above results, and some specific technical arguments, we have the
following concentration of measure version of Theorem 2.6.

Theorem 2.18 (Sample covariance of concentrated random vectors). Let X =

[x1,. . . ,xn ] ∝ Ce−(·)q/c with i.i.d. xi ∈R
p , and z < 0. Further assume that E‖xi‖/

√
p

(or, if q ≥ 2, simply ‖E[xi ]‖/
√

p), trΦ/p with Φ = 1
nE[XXT], as well as p/n are all

bounded. Then, for all large n,

Q(z) ∈ Q̄(z)±C′e−(
√
n·)q/c ′

in (Rp×n ,‖ · ‖)

for some C′,c′ > 0, where

Q̄(z) =

(
Φ

1+ δ(z)
− zIp

)−1

and δ(z) is the unique positive solution to δ(z) = 1
n trΦQ̄(z).

Remark 2.19 (On real z < 0). It must be noted here that the concentration framework
devised in this section is only valid for real-valued matrices and thus Theorem 2.18
holds here for z < 0 only. Using additional arguments (of complex analytic extension
of Q(z) and Q̄(z)), Theorem 2.18 can be naturally extended to all z ∈ C\R+.

Denoting δ(z) = −1 − 1
zm̃p (z)

and Φ = C, it comes immediately that the deter-

ministic equivalent Q̄ in Theorem 2.18 above has the same “formal statement” as in
Theorem 2.6; we shall see that using δ(z) rather than m̃p(z) is more convenient under
the concentration of measure framework. Yet, there are a few key differences to raise
between both theorems. First, Φ = 1

nE[XXT] is not a covariance matrix as the present
concentration of measure on X does not impose that E[X] = 0. Also, the deterministic
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equivalent Q̄(z) comes along with a convergence speed and an exponential tail, which
are both more practical than a mere almost sure convergence of specific statistics.

Theorem 2.18 unfolds from the same idea introduced in the proof of the Marc̆enko–
Pastur law (Theorem 2.4), by successively introducing two deterministic equivalents.
We provide here the basic arguments of the proof. We already know from Lemma 2.23
that Q(z) ∈ EQ(z)±Ce−c(

√
n·)q for some C,c > 0 and it only remains to show that

‖EQ(z)− Q̄(z)‖ is small.
To this end, we introduce the first deterministic equivalent

¯̄Q(z) =

(
Φ

1+ δ′(z)
− zIp

)−1

,

where δ′(z) = 1
nE[x

TQ−(z)x] = 1
n tr(ΦEQ−) for Q− ∈ R

p×p the resolvent of
1
n XXT − 1

n xxT and x any column of X. Applying the same ideas as in the proof of
Theorem 2.4, we obtain (we discard the argument zs for readability)

EQ− ¯̄Q = E

[
Q
(

Φ
1+ δ′

− 1
n

XXT
)]

¯̄Q

=
1
n

n

∑
i=1

E

[
Q
(

Φ
1+ δ′

−xixTi

)]
¯̄Q = E

[
Q
(

Φ
1+ δ′

−xxT
)]

¯̄Q

which, along with Q=Q−− 1
n

Q−xxTQ−
1+ 1

n xTQ−x
and Qx= Q−x

1+ 1
n xTQ−x

from Lemma 2.8, gives

EQ− ¯̄Q = E[E1]−E[E2],

E1 = Q−

(
Φ

1+ δ′
− xxT

1+ 1
n xTQ−x

)
¯̄Q, E2 =

1
n(1+ δ′)

Q−xxTQΦ ¯̄Q.

To bound ‖EQ− ¯̄Q‖ it suffices to bound |aT(EQ− ¯̄Q)a| for any unit norm a. Applying
Cauchy–Schwarz inequality twice we have

|aTE[E1]a| =
∣∣∣∣∣E
[

aTQ−xxT ¯̄Qa ·
1
n xTQ−x− δ′

(1+ δ′)(1+ 1
n xTQ−x)

]∣∣∣∣∣
≤ E

[
|aTQ−x| · |xT ¯̄Qa| ·

∣∣∣∣1n xTQ−x− δ′
∣∣∣∣
]

≤
√

E

[
|aTQ−x|2 ·

∣∣∣∣1n xTQ−x− δ′
∣∣∣∣
]
·E
[
|xT ¯̄Qa|2 ·

∣∣∣∣1n xTQ−x− δ′
∣∣∣∣
]

= O(n− 1
2 )

where we used here: (i) aT ¯̄Qx ∝ Ce−(·)q and aTQ−x ∝ Ce−c(·)q (from which
E[|aT ¯̄Qx|k ] = O(1) and E[|aTQ−x|k ] = O(1)) and (ii) 1

n xTQ−x ∈ δ′ ±Ce−c(n·)q/2
+

Ce−c(
√
n·)q (from which E[| 1

n xTQ−x − δ′|k ] = O(n− k
2 )). The concentration results

(i) and (ii) themselves unfold from the previous generic results on concentration of
vectors and bilinear forms. Similarly,

|aTE[E2]a| ≤
1
n

√
E[|aTQ−x|2] ·E[|xTQ−Φ ¯̄Qa|2] = O(n−1).
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We thus find that ‖EQ− ¯̄Q‖ = O(n− 1
2 ). Integrated into Q(z) ∈ EQ(z)±Ce−c(

√
n·)q ,

this gives Q(z) ∈ ¯̄Q±Ce−c(
√
n·)q .

It thus remains to show similarly that ‖Q̄− ¯̄Q‖ is small. Note that

‖Q̄− ¯̄Q‖= |δ′ − δ|
(1+ δ)(1+ δ′)

‖Q̄Φ ¯̄Q‖ ≤ |δ− δ′|
|z|

and it thus suffices to control δ− δ′, which, by the implicit form of δ, satisfies

|δ− δ′|= 1
n
| trΦ(Q̄− ¯̄Q+ ¯̄Q−EQ+E[Q−Q−])|

≤ 1
n
| trΦ(Q̄− ¯̄Q)|+ 1

n
trΦ‖ ¯̄Q−EQ‖+ 1

n
trΦ‖E[Q−Q−]‖

≤
√

1
n(1+ δ)2 trΦ2Q̄2 ·

√
1

n(1+ δ′)2 trΦ2 ¯̄Q2 · |δ− δ′|+O(n− 1
2 )

where we used trAB ≤ ‖B‖ · trA for symmetric and nonnegative definite A ∈ R
p×p ,

and ‖E[Q−Q−]‖= O(n−1/2), which unfolds from

‖E[Q−Q−]‖=
1
n

∥∥∥∥∥E
Q−xxTQ−

1+ 1
n xTQ−x

∥∥∥∥∥=
1
n

∥∥∥∥E[Q−ΦQ−]

1+ δ′

∥∥∥∥+O(n− 1
2 ).

The prefactor of |δ−δ′| is strictly less than 1 for all large n, and thus |δ−δ′|=O(n− 1
2 ),

which concludes the proof.

2.8 Concluding Remarks

This section explored basic to advanced spectral properties of a family of random
matrix models, with a strong emphasis on the sample covariance matrix model (The-
orem 2.6), in the regime of large and commensurable data number n and dimension
p. Despite the simplicity of its definition, we saw that the limiting spectral measure
of the sample covariance matrix is far from trivial, that advanced techniques from
complex analysis can be used to perform statistical inference, and that, unlike in the
classical n → ∞ and p fixed regime, phase transition phenomena arise, below which
some inference problems are asymptotically insoluble.

Fortunately, even if the statistical models used in concrete machine learning appli-
cations are often more involved, we will see, in the remainder of the book, that the
main techniques and tools used to understand and improve various machine learning
methods are essentially the same as those presented so far. In particular, we will see in
the following sections that:

• in (not necessarily linear) regression problems, the resolvent (of sample covariance
matrices, of kernel matrices, of the Gram matrix of nonlinear random feature
maps, etc.) will systematically appear as the central object of interest (which is
reminiscent of the fact that regression is an inverse problem);
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• in classification problems, the spectrum of kernel random matrices and Laplacian
random matrices (for spectral clustering or spectral community detection), or
different types of functionals of these kernel and Laplacian random matrices (for
supervised or semi-supervised graph-based learning) will play an important role;
the performance achieved by these methods, given in terms of misclassification
rates, probability of false alarms, etc., will, in particular, demand the evaluation of
the limiting means and variances of these functionals;

• in the specific case of spectral or subspace methods, such as PCA, manifold-based
clustering, spectral clustering, or community detection, the aforementioned phase
transition phenomena will arise and show that there exist “strict” limitations for
these methods: In particular, a minimal samples-over-dimension ratio exists below
which no detection or classification is possible;

• even for optimization-based machine learning problems, such as generalized linear
models [Nelder and Wedderburn, 1972], that rarely offer a solution explicitly
defined from (the resolvent of) a particular random matrix, their large-dimensional
(limiting) performance will be shown ultimately to depend, in an almost explicit
way, on some slightly more involved random matrices; there, the twist will be to
realize that some random quantities (not always easy to identify) converge and can
asymptotically be replaced by deterministic equivalents obtained from a
perturbation analysis (e.g., some sort of a local “linearization”).

Before delving into these applications, it is important to recall that we shall pur-
posely place ourselves under the “realistic” situation, where the number of samples n
cannot be chosen arbitrarily large (samples never really come for free in practice) and
particularly not overwhelmingly larger than the typical dimension p of the data. More
importantly, we also impose that the problem being addressed is not “asymptotically
trivial,” that is, for p,n realistically large, the misclassification probability or the cost
to be minimized will not vanish. This way, the asymptotic analysis (n,p → ∞) will be
a realistic representative of the finite (but not too small) dimensional and moderately
difficult machine learning problem. This is quite different from many parallel theo-
retical machine learning works, which often aim at concluding (usually through the
evaluation of error bounds, rather than exact results) that the algorithm under anal-
ysis provides an asymptotic perfect performance (vanishing misclassification rate or
cost) in a certain growth regime of n with respect to p. Our vision instead is that, in
the (more) realist large dimensional regime, n and p must be considered as both fixed
(only not to too small values).

As such, to best appreciate the many results to come in the next chapters, these must
be seen through this “finite-dimensional and realistic” lens.

2.9 Exercises

In this section, we provide short exercises to familiarize the reader with various useful
notions and properties of random matrix calculus discussed this far in Chapter 2, with
detailed solutions provided at https://zhenyu-liao.github.io/book.
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2.9.1 Properties of the Stieltjes Transform

Exercise 1 (Stieltjes transform and moments). Show that the Stieltjes transform
mμ(z) defined in Definition 3, of a probability measure μ with bounded support (and
thus finite moments), is a moment generating function in the sense that, for all z ∈ C

such that |z| > max{| inf(supp(μ))|,|sup(supp(μ))|},

mμ(z) = −1
z

∞

∑
k=0

Mk z−k ,

where Mk =
∫

tk μ(dt).
From this formulation, propose a method to evaluate the successive moments of μ

using mμ .

Exercise 2 (Nonimmediate Stieltjes transforms). Let X ∈R
n×n be a symmetric matrix

and Q(z) = (X− zIn)−1 its resolvent. Show that, for any u ∈R
n of unit norm ‖u‖= 1

and any A nonnegative definite and such that trA = 1, the quantities uTQ(z)u and
trAQ(z) are also Stieltjes transform of probability measures.

What are these measures and what are their supports?

Exercise 3 (Stieltjes transform and singular values). Let μ be a probability measure
on R

+ and ν,ν′ be the measures defined by∫
f (t)ν(dt) =

∫
f (

√
t)μ(dt)

∫
f (t)ν′(dt) =

1
2

(∫
f (t)ν(dt)+

∫
f (−t)ν(dt)

)

for all bounded continuous f .
What are ν and ν′ when μ= 1

n ∑n
i=1 δλi for some λ1,. . . ,λn ≥ 0?

Show that the Stieltjes transform mν ′ of ν′ satisfies

mν ′(z) = zmμ(z
2).

Letting X ∈ R
n×p and μ be the empirical spectral measure of XXT as in Def-

inition 2, relate the Stieltjes transform of the empirical spectral measure of the
matrix

Γ =

[
0n×n X
XT 0p×p

]
∈ R

(n+p)×(n+p)

to that of the measure μ, and conclude on the nature of this Stieltjes transform for
n = p.

Exercise 4 (Proof of Lemma 2.9: a special case). For A,M ∈ R
p×p symmetric

nonnegative definite matrices, u ∈ R
p , τ > 0 and z < 0, show that∣∣∣∣trA

(
M+ τuuT− zIp

)−1
− trA(M− zIp)

−1
∣∣∣∣≤ ‖A‖

|z| .

Exercise 5 (Proof of Nash–Poincaré inequality, Lemma 2.14). The objective of the
exercise is to show that, for x ∼ N (0,C) with C ∈ R

p×p and f : Rp → R of bounded
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first- and second-order derivatives,

Var[ f (x)]≤ E

[
(∇ f (x))TC∇ f (x)

]
.

To this end, it is convenient to first define an “interpolating” Gaussian vector x(t) =√
tx1 +

√
1− tx2 for t ∈ [0,1] with x1 ∼ N (0,C1), x2 ∼ N (0,C2) independent, and

show, by applying successively the chain rule and Stein’s lemma, Lemma 2.13, that
for twice differentiable g,

E[g(x1)]−E[g(x2)] =
∫ 1

0

d
dt
E[g(x(t))]dt

=
1
2

∫ 1

0
E

[
∇g(x(t))TC1∇g(x(t))−∇g(x(t))TC2∇g(x(t))

]
dt .

From there, apply the result to the vectors x1 = [yT,yT]T ∈ R
2p and x2 = [yT1 ,y

T
2 ]

T ∈
R

2p for y,y1,y2 ∼ N (0,C) independent, and g([aT,bT]T) = f (a) f (b). Conclude by
an application of Cauchy–Schwarz inequality on the expectation under the resulting
integrand and the observation that the bound on the integrand is constant with respect
to t.

2.9.2 On Limiting Laws

Exercise 6 (The
√

|x − E| behavior of the edges). Show that both the semicircle law
(Theorem 2.5) and the Marc̆enko–Pastur law (Theorem 2.4, for c �= 1) have a local√

|x − E| behavior at each of the edges E of their support.
Conclude on the typical number of eigenvalues of the Wishart matrix 1

n XXT ∈
R

p×p (with Xi j ∼ N (0,1) independent) and the Wigner 1√
n

X ∈ R
n×n (with say

Xi j = X j i ∼ N (0,1) independent up to symmetry) found near the edges of their
respective supports.

Relate this finding to the Tracy–Widom distribution of the fluctuations of the largest
and smallest eigenvalues in Theorem 2.15.

What happens for the left edge of the support of the Marc̆enko–Pastur law and to the
associated smallest eigenvalues of Wishart matrices when lim p/n = c = 1? How many
eigenvalues are then found close to the left edge in this so-called “hard-edge” setting?
Conclude on the typical fluctuations of these eigenvalues and confirm numerically.

Exercise 7 (The
√

|x − E| behavior in elaborate models). We here seek to extend the

results in Exercise 6 to the sample covariance matrix model 1
n XXT where X = C

1
2 Z

with Z having independent entries of zero mean, unit variance and C having a bounded
limiting spectral measure ν with fast decaying tails. We denote m̃(z) the Stieltjes
transform of the limiting spectral measure μ̃ of 1

n XTX.
Using Figure 2.5 as a reference and recalling the formulation for functional inverse

x(m̃) = − 1
m̃

+ c
∫

tν(dt)
1+ tm̃

extensively discussed in Section 2.3.1, visually justify that x′′(m̃) can be (complex)
analytically extended in the neighborhood of the local extrema of x(m̃) (i.e., each
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point m̃ where x′(m̃) = 0) into a function z(m̃), which must locally coincide with the
inverse Stieltjes transform of m̃(z).

Deduce that m̃(z) must be of the form
√

z − E near an edge E and conclude.

Exercise 8 (Further results on x(m̃)). We aim in this exercise to justify some of the
visual observations in Figure 2.5 with the help of

x(m̃) = − 1
m̃

+ c
∫

tν(dt)
1+ tm̃

.

Show that, for m̃1 �= m̃2 such that x′(m̃1),x′(m̃2) > 0, we cannot have x(m̃1) =

x(m̃2): that is, the increasing segments of x(m̃) never “overlap.”
Besides, show that, if m̃1 < m̃2 are both of the same sign, and x′(m̃1),x′(m̃2) > 0,

then x(m̃1) < x(m̃2): that is, the increasing segments of x(m̃) never “swap.” To this
end, we may prove the intermediary result

(m̃1 − m̃2)

(
1−

∫
cm̃1m̃2t2ν(dt)

(1+ tm̃1)(1+ tm̃2)

)
= m̃1m̃2(x(m̃1)− x(m̃2))

and use Cauchy–Schwarz inequality to control the left-hand side term.
Finally show that, if ν has bounded support, then x(m̃) → 0 as m̃ → ±∞.
As a final remark, note that the only important observation about Figure 2.5, which

we have not shown here is the fact that the points m̃ where x′(m̃) = 0 must exist. In
fact, this is not always the case and heavily depends on the nature of the tails of the
measure ν. Justify in particular that, for some ν, there may be no asymptote on the
edges of the domain of definition of x(·) (as opposed to what is seen in Figure 2.5).

2.9.3 On Eigen-Inference

Exercise 9 (Alternative estimates of 1
p tr( 1

n XXT)2). Let X = C
1
2 Z for Z ∈R

p×n with
independent standard Gaussian entries, and C deterministic symmetric nonnegative
definite, of bounded operator norm, and limiting spectral measure ν.

Determine the limit, as n,p → ∞ and p/n → c ∈ (0,∞) of the (empirical) second-
order moment

M2 =
1
p

tr

(
1
n

XXT
)2

as a function of the moments of ν.
Retrieve the same result from the results of Exercise 1 along with the expression of

the Stieltjes transform m(z) of the limiting spectrum μ of 1
n XXT. It may be useful to

first show that m(z) is also solution to

m(z) =
∫

ν(dt)
−z(1+ ctm(z))+(1− c)t

.

Exercise 10 (Location of the zeros of m̃(z)). Figure 2.7 and Remark 2.12 both show
that the zeros η1,. . . ,ηn of mX(z), the Stieltjes transform of a symmetric matrix X ∈
R

n×n , are interlaced with the eigenvalues λ1,. . . ,λn of X.
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In the sample covariance matrix case X = 1
n ZTCZ with Z ∈R

p×n having indepen-
dent standard Gaussian entries and C with limited spectral measure ν of bounded and
connected support, this means that (up to zero eigenvalues) the roots ηi of m 1

n ZTCZ(z)

are all found in the limiting support of the empirical spectral measure μ̃ of 1
n ZTCZ,

at the possible exception of the leftmost η1.
Using a change of variable involving m̃(z) of the formula

0 =
1

2πı

∮
Γ

dw
w

for all Γ not enclosing zero, then the approximation m̃(z) = m 1
n ZTCZ(z) + o(1)

and finally the residue theorem show that no zero of m 1
n ZTCZ(z) can be found at

macroscopic distance from the limiting support of μ̃.
This conclusion is of practical interest to statistical inference applications dis-

cussed in Section 2.4.1 and in particular, to the explicit expression in (2.45)
from (2.44), for which case this result ensures the existence of a valid contour that
circles around all the λi poles and ηi poles, at least almost surely for sufficiently large
n,p. (And the leftmost η1 is not a problem.)

2.9.4 Spiked Models

Exercise 11 (Additive spiked model). Similar to Theorem 2.13, the phase transition
threshold for the additive model 1

n XXT+P for X having i.i.d. entries of zero mean,
unit variance and low rank P = ∑k

i=1 �iuiuT
i with �1 > · · · > �k > 0 is determined by

the condition

�i >
√

c(1+
√

c)

with c = lim p/n as p,n → ∞. Under this condition, show that the (almost sure) limiting
value of the corresponding isolated eigenvalue λ̂i of 1

n XXT+P is given by

λ̂i
a.s.−−→ λi = 1+ �i +

c
�i − c

.

Further show, similar to Theorem 2.14 that, letting ûi be the eigenvector associated
with λ̂i , we have

|ûT
i ui |2 a.s.−−→ 1− c

(�i − c)2 .

Exercise 12 (Additive spiked model: the Wigner case). Let X be symmetric with [X]i j ,
i ≥ j, i.i.d. with zero mean and unit variance. As in Exercise 11, show that the “spiked”
phase transition threshold for the model X/

√
n+P with P = ∑k

i=1 �iuiuT
i , with �1 >

· · · > �k > 0 is determined by the condition

�i > 1

and that, under this condition, the isolated eigenvalue λ̂i of 1√
n

X+P associated with
�i satisfies

λ̂i
a.s.−−→ λi = �i +

1
�i
.
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Show finally that, for ûi the eigenvector associated with λ̂i , we have

|ûT
i ui |2 a.s.−−→ 1− 1

�2
i

.

2.9.5 Deterministic Equivalent

Exercise 13 (Sketch of proof of Theorem 2.17). Inspired by the (sketch of) proof of
Theorem 2.6, prove Theorem 2.17 using

(i) the trace lemma adapted to Haar random matrices, Lemma 2.16; and
(ii) Stein’s lemma adapted to Haar random matrices, Lemma 2.17.

Exercise 14 (Higher-order deterministic equivalent). Theorem 2.4 provides a deter-

ministic equivalent for the resolvent Q =
(

1
n XXT − zIp

)−1
for X ∈R

p×n having i.i.d.
zero-mean and unit-variance entries, which, according to Notation 1, provides access
to the asymptotic behavior of aTQb. In many machine learning applications, however,
the object of natural interest (e.g., the mean squared error in a regression context
and the variance in a classification context) often involves the asymptotic behav-
ior of aTQAQb, which requires a deterministic equivalent for random matrices of
the type QAQ, for some A independent of Q. In particular, for Q ↔ Q̄ (such that
‖E[Q]− Q̄‖ → 0), Q̄AQ̄ is in general not a deterministic equivalent for QAQ. This is
due to the fact that

E[QAQ] �� E[Q]AE[Q].

Instead, prove that, in the setting of Theorem 2.4, one has

Q(z)AQ(z)↔ m2(z)A+
1
n

trA · m′(z)m2(z)
(1+ cm(z))2 Ip .

As a sanity check, using the fact that ∂Q(z)/∂z = Q2(z) and taking A = Ip in the
equation above, confirm that

Q2(z)↔ m′(z)Ip

for m′(z) = m2(z)

1− cm2(z)
(1+cm(z))2

obtained from differentiating the Marc̆enko–Pastur equation

(2.9).

2.9.6 Concentration of Measure

Exercise 15 (Concentration of matrix quadratic forms). Recalling the definitions and
notations of Section 2.7, let X ∈ R

p×n be a random matrix satisfying

X ∝ Cec·
2
, and ‖E[X]‖ ≤ K

for some K,C,c > 0. Given A ∈ R
p×p deterministic, we aim to prove the linear con-

centration of XTAX in (Rn×n ,‖ · ‖F ). To this end, we consider a deterministic matrix
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B ∈ R
n×n such that ‖B‖F ≤ 1 and study the behavior of tr(BXTAX). Consider first

the singular value decomposition

A = UAΛAVT
A, B = UBΛBVT

B,

with UA,VA ∈ R
p×p and UB,VB ∈ R

n×n orthogonal matrices, ΛA ∈ R
p×p , ΛB ∈

R
n×n diagonal matrices, and define X̃1 = UT

AXVB,X̃2 = VT
AXUB ∈ R

p×n . In the
sequel, the constants K ′,C′,c′ > 0 are understood only depending on K,C,c and might
change from line to line.

First show that there exist K ′,C′,c′ > 0 such that, for t > K ′√log(np) and
X̃ ∈ {X̃1,X̃2}

P
(
‖X̃−E[X̃]‖∞ ≥ t

)
≤ C′e−c ′t2/ log(np).

Deduce from the bound ‖E[X]‖≤ K that there exists a constant K ′ > 0 depending only
on K,C,c such that

E[‖X̃‖∞] ≤ K ′√log(np).

This established, introduce the set Aθ = {X ∈ R
p×n ,max{‖X̃1‖∞,‖X̃2‖∞} ≤ θ} ⊂

R
p×n and show that for all θ ≥ K ′√log(np) with K ′ > 1, we have

P(X ∈ Ac
θ )≤ C′e−c ′θ2

and that the mapping X �→ tr(BXTAX) is θ‖A‖F -Lipschitz on Aθ .
Introduce M, a median of tr(BXTAX), and note that

P

(∣∣∣tr(BXTAX)− M
∣∣∣≥ t,X ∈ Aθ

)
≤ C′e−c ′t2/(θ‖A‖F )2

.

Conclude by carefully choosing the parameter θ ≥ K ′√log(np) and showing that

XTAX ∈ E[XTAX]±C′e−c ′·2/(log(np)‖A‖2
F ) +C′e−c ′·/‖A‖F .

2.9.7 Beyond Matrices

Exercise 16 (Towards spiked models in random tensors). Let Y ∈R
n×n×n be a three-

way symmetric tensor, i.e., such that [Y]i jk is constant to exchanges of its indexes,
defined by

Y = �x⊗x⊗x+
1√
n
W

where W ∈ R
n×n×n has independent N (0,1) entries up to symmetry, deterministic

x ∈ R
n of unit norm, and [a⊗b⊗ c]i jk = aibjck .

A possible definition of the “eigenvalue-eigenvector” pair (λ̂,û) (without loss of
generality such that λ̂ ≥ 0 and ‖û‖= 1) of a symmetric tensor Y is the solution to Lim
[2005]

Y · û · û = λ̂û,
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where A·a ·b = ∑i j [A]i j ·aibj ∈ R
n is the contraction of the tensor A on the vectors

a,b ∈ R
n . The objective here is to characterize the (possible) spike λ̂ as well as the

associated eigenvector alignment |ûTx| between the dominant eigenvector and x.
Show first that the matrix Yx = Y ·x = ∑n

i=1 Yi··xi ∈ R
n×n takes the form

Yx = �xxT+
1√
n

n

∑
i=1

xiWi ,

where Wi ∈R
n×n is the ith “layer” matrix of the tensor W such that [Wi ]ab =Wiab .

Using the Gaussian method discussed in Section 2.2.2, show that the limiting spec-
tral measure of Yx is the semicircle law supported on [−2,2] (we may discard the
rank-one matrix �xxT to retrieve this result). Then, using a spiked model analysis as
in Section 2.5, show that

• for all � > 0, there must exist an isolated eigenvalue λ̂x of Yx (thus no phase
transition) asymptotically equal to (with high probability)

λ̂x → λx =
√
�2 +4;

• the eigenvector ûx associated with λ̂x satisfies (again with high probability)

|ûT
xx|2 → �√

�2 +4
.

Conclude on an asymptotic upper bound for the quantity λ̂|ûTx|.
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