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FINITE PRANDTL NUMBER CONVECTION
WITH NEARLY INSULATING BOUNDARIES

N. RIAHI

Arbitrary Prandtl number convection in a layer with nearly

insulating boundaries is investigated. For S1'3 > 3.95P (P is

the Prandtl number and B being the ratio between the thermal

conductivities of the boundary and of the fluid) two-dimensional

rolls are stable. The heat transported by the stable rolls

reaches its peak at a critical P = B /5-77 beyond which the

heat flux decreases with increasing P . For B = 3-95P

rolls become unstable to disturbances in the form of rolls

oriented at a right angle to the original rolls. For

B < 3-95P square pattern convection represents the preferred

stable convection. The stable square pattern transports the

maximum amount of heat at a critical P = B /3.T •

I. Introduction

In two recent studies of finite amplitude convection in a layer with

nearly insulating boundaries Busse and Riahi [3] and Riahi [4], it was

found that for the Prandtl number P vanishingly small two-dimensional

rolls are the preferred stable convection pattern, while square pattern

convection represents the preferred stable convection for infinitely large

P . The present study is concerned with the arbitrary Prandtl number

convection case and includes a detailed analysis of the transition range
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340 N. Riahi

from rolls to square cells and vice versa. An important result of the

present study and in sharp contrast to the corresponding problem with

isothermal boundaries (Schluter et at [5]) is that the heat transported by

the preferred stable flow pattern exhibits a non-monotonicity behavior with

respect to P at a given Rayleigh number if in a low Prandtl number

fluid. The background, motivation and derivation of the governing

equations for the problem can be found in [3] and [4]. Consequently the

governing equations are derived briefly in Section II and only the

essential details of the finite amplitude convection are given and discuss

discussed in Section III.

II. Governing equations

We consider an infinite horizontal layer of fluid of depth d bounded

by two infinite half spaces with the thermal conductivity X which is

assumed to be small compared to the thermal conductivity X of the fluid.

In the steady static state, a constant heat flux traverses the system such

that the temperatures T and T? are attained at the upper and lower

boundaries of the fluid. Under the usual Boussinesqr approximation, the

non-dimensional forms of the equations for momentum, heat and conservation

of mass can be simplified by using the general representation for the

velocity vector as the sum of the poloidal VxVxXv and toroidal VxXty

vectors where X represents a unit vector in vertical direction. The

detailed analysis, though omitted here, indicates that the terms containing

ty in the basic equations are essentially insignificant, since the toroidal

component of the velocity vector is of the order of the mth power of the

amplitude e (m 2 3) and thus cannot enter the small amplitude analysis

discussed in this paper. Therefore, we simply set ty = 0 in the basic

equations for the subsequent analysis to be discussed in the next section.

Vertical component of the double curl of the momentum equation together

with the heat equation then yield the following governing equations

(la) Vkh2v - A29 - j£ 7
2A2u =

(lb) V29 - i?Aou - P || =

where 6 = VarVxX , 6 is the deviation of the temperature from i ts static
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value, R = a[T -T )gd p e/vX is the Rayleigh number, p = vp cX~ is the

Prandtl number, p is the reference density, a is the specific heat at

constant pressure, a is the coefficient of thermal expansion, v is the

kinematic viscosity, g is acceleration due to gravity and A- is the

horizontal Laplacian.

Following [3], the boundary conditions for v and 8 are

(2) v = £ = |f ± aBB = 0 at , - ±% ,

where a is the horizontal mere number of the linear planform function

N
w(x, y) = Y. ° exp(ik mt) , B = Xe/X , r is the position vector and

n=-N n n

the horizontal wave number vectors k satisfy the properties

(3) k -X = 0 , |k | = a , k = -k .

The coefficients a satisfy the conditions

N
ik) T a a* = 1 , a* = a

n=-N

where a* denotes the complex conjugate of a . The linear planform

function w and (3), CO are now standard in thermal convection theory.

The reader is referred to the recent review of the problem of thermal

convection, Busse [2], for details on the subject.

III. Finite amplitude convective motion

Since the linear problem of the present study is identical to that

discussed in [3], it is found again that the value a which minimizes R

1/3 p 2
is proportional to a . Thus it is assumed that a = n Y , where

y = B and r\ is of the order unity for the convection modes of

physical interest. We then seek solutions in terms of a double series in

powers of y and e :
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(5) © = I eV 7n) , R= I e". ..„
m '

As we mentioned above, the linear analysis has already been discussed

in [3]. It was found in D3] that

(6) e[0) = w(x, y) , v[0) = w{x, y)[z2-h)2/h\ ,

it£0) = 720 , ne = (1*62/17 )
1 / 3 .

The detailed analysis of the nonlinear problem in [3] and [4]

2 3 2
indicates that only the solutions in the orders z y and e y are needed

to form the necessary solvability conditions. It was found in [3] that

6_ was the significant solution which was needed in the nonlinear

analysis, while V and V were found in [4] to be significant.

Keeping the necessary leading order terms in P , it is found that 62

has essentially the same expression as in the case discussed in [4], except

a factor of P which is resulted from the present non-dimensionalization

(2)
procedure. 9 is found to be insignificant, and the expressions for

vr and v\ are essentially the same as in the case discussed in [4].

Their expressions are lengthy and are not given here. Since we are

interested in discussing the solutions for arbitrary P it is found that

the expression

(7) F = e Y#2 u y J j '

is turned out to be the largest non-zero term, in the nonlinear domain

(m > 1) , in the expansion (5) for R . The expression for R is found

after forming the solvability condition for the heat equation in the order

3 2 (2)
e Y • Similarly, R~ is found after forming the solvability condition

for the heat equation in the order e y . After some considerable

algebra, these conditions yield the following system of equations
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(8) Fe =
n 215.63.221 m,l,p

m I p n m I p 16.105 n

n = -N, ..., -1, 1, ..., N ,

where <t> = (k #k Ja and an angle bracket denotes total horizontal

average. The integral expression in (8) differs from zero only if

-k + k + k, + k = 0 .
n m I p

This condition yields a much simplified set of equations

-2.. N

m=-N nm m

where

(9) ' » - - * , ....-1,1, ....

otherwise.

Equations (9) and (U) represent an inhomogeneous system of 2/V + 1 non-

linear algebraic equations for the 2N coefficients e and the

n

expression F . The general solution of this system is not known, but a

simple set of solutions can be easily derived in the regular case, in which

all angles between two neighboring k-vectors are equal. The solution is

simply

(ID
2k.63N A

T = T + T , 1 < n 5 IV .
run nm n,-m

This result allows us to express the heat transport H by convection

in terms of [R-R ) for small values of the latter parameter. Using thec

approximate relationship
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39(1)

2(12) 33
3=%

we find in the case of two-dimensional rolls

• R ~ Ro = F

(13a) ff-1 : - ! _ _ . 7 n P /

in the case of square pattern

^squares

(13b) N = 2 : - £ _ - - lUnP/ 11^529

and in the case of hexagonal pattern

^hexagons

( l 3 c ) N . 3 :

It is clearly seen from (13) that, in contrast to the case discussed in
2

[3], rolls exhibit a higher heat transport than hexagons. For p » y ,

square cells transport more heat than rolls. The situation is reversed for

p « Y . For p = 0(y) , we must compare (13a) and (13b). We find that

square cells transport more heat than rolls, provided

(Ik) Y < 15.62P2 ;

otherwise, rolls transport more heat than squares. Another interesting

result which can be derived from (13) is that the heat transport exhibits a

a non-monotonicity behavior with respect to p at a given R . For

P 5 Y 15'11 > fl^° S increases with P and decreases with increasing P

in the range P > Y /5.7T • Similar behavior is exhibited by

For P < Y /3.95 , g^^uares increases with P and decreases with

hincreasing P in the range P > Y /3.95 . As the stability analysis to be

discussed next indicate #^ol l s and ̂ squares reach their peaks in the

ranges where rolls and squares are the stable flow patterns, respectively.

Hence the stable flow pattern, as expected, transports heat more
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efficiently than the unstable ones.

To distinguish the physically realizable solution among all possible

steady solutions, the stability of v, 6 must be investigated. The

equations for the time-dependent disturbances V, 6 are given by

(15a) V A v - A 6 - aV2A v = 6-(6u'V6u+6vV6u) ,

(15b) - i?A2t5 - Pad = P(fiy-ve+6u«ve) ,

where we have introduced a growth rate 0" by d/dt = O . The equations

(15) are soluved by the following expansion

(16)
n=l,m=0

a = enyma{m)

n,m=O

As in [3], the investigation of the order e ym of (15) yields a:. « 0

if n = n . Restricting the attention to the most dangerous disturbances,

we assume a = 0 . Using the representation

(IT) , y) =

M=-°°
a exp(ik -r)

for the horizontal dependence of the general three-dimensional disturbance,

we consider (15) in higher orders of e . The possibility of a non-

vanishing positive coefficient(s) a appears first in the order e y ,

where the solvability condition yields the following systems of equations

(18a)

where

(18b)

PGo +
n

2 2
lie Y

N

m=-N
T c*c o = 0 ,
nm m m n

e Y
(2)

Following Schluter et at [5], it follows that N eigenvalues G of the

characteristic equation for the system (18) are zero. Restricting our

attention to regular solutions satisfying (11) and following [3], we find

that all the solutions with N > 3 are unstable. Discarding the N
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eigenvalues G = 0 , the characteristic equation for (l8) can tie written in

the form

(19) D e t t P ^ ^ ^ J = 0 , », m = 1, . . . , N .

For N = 1 , the root G of the equation (19) is negative. For square

pattern, the steady motion is stable only if

(20) T1± > T±2 > 0 .

Using (10), we find that (20) holds only when the condition (lU) (with the

sign < replaced by 5 ) is satisfied.

So far the analysis was restricted to disturbances whose wave number

vectors were coincided with those of the steady motion. We now examine the

stability of the steady motion with respect to disturbances whose wave

number vectors are not coincided with the basic vectors of steady motion.

Defining a disturbance vector k , the expression for the maximum growth

rate G in the case N = 1 leads to the following equation

PG -

It is readily seen from (21) that the maximum positive eigenvalue G is

obtained when (lit) holds and <$>. = 0 implying that rolls are unstable to

disturbances in the form of rolls oriented at a right angle to the original

rolls. Hence as Y "*" 15-62P^ there is a pattern transformation from rolls

to squares or vice versa. The result that the preferred stable flow

pattern is squares or rolls depending on whether (lit) holds or not implies

that the realized convection pattern transports maximum amount of heat at

least in the weakly non-linear regime. This result has already been shown

to hold in a layer with isothermal boundaries [/]. It is expected that in

the strongly non-linear convection regime the flow field still has the

tendency to maximize the heat transport.

https://doi.org/10.1017/S0004972700004871 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004871


Finite Prandtl number convection 347

References

[J] F.H. Busse, "The stability of finite amplitude cellular convection and

its relation to an extremum principle", J. Fluid Meah. 30 (1967),

625-21+9.

[2] F.H. Busse, "Non-linear properties of thermal convection", Rep. Progr.

Phys. 41 (1978), 1929-1967.

[3] F.H. Busse and N. Riahi, "Nonlinear convection in a layer with nearly

insulating boundaries", J. Fluid Mech. 96 (1980), 21*3-256.

[4] N. Riahi, "On convection with nearly insulating boundaries in a low

Prandtl number fluid", Z. Angew. Math. Phys. 31 (1980), 261-266.

[5] A. Sen I iiter, D. Lortz and F.H. Busse, "On the stability of steady

finite amplitude convection", J. Fluid Mech. 23 (1965), 129-lM.

Department of Theoretical and Applied Mechanics,

College of Engineering,

University of Illinois at Urbana-Champaign,

Urbana,

I I I i no i s 61801,

USA.

https://doi.org/10.1017/S0004972700004871 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700004871

