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ON THE ORDERING OF MULTI-POINT 
BOUNDARY VALUE FUNCTIONS 

BY 

A. C. PETERSON 

We are concerned with the «th-order linear differential equation 

(1) /*>+*! PAX)JP> = 0 
fc = 0 

where the coefficients are continuous. Aliev [1, 2] showed, in papers unavailable 
to the author that for «=4 

rsi(t)>r211(t) 
r2ii{t)>mm [r31{t\r22{t)] 

(see Definition 2). Theorems 1 and 5 give respectively «th-order generalizations of 
these two results. The results in this paper and the results in [3] also generalize the 
recent results of Mathsen [4] in the special context of the differential equation (1). 
In this paper we are concerned with the ordering of the boundary value functions 
rii...i/c(0- Fi r s t w e n e ed the following definition. 

DEFINITION 1. A nontrivial solution y(x) of (1) is said to have an (il9..., ik), 
2m=l *m=n, distribution of zeros on [t9 b] provided there are numbers t < tx < • • • < tk 

< b such that y(x) has a zero at each tm m = 1, . . . , k, with multiplicity at least im. 

DEFINITION 2. For any real number t, the number rili2_ik(t) is the infimum of 
the set of b > t such that there is a nontrivial solution of (1) having an (il9 i29..., h) 
distribution of zeros on [t, b]. If there is no such b we write rili2...ik(t)=co. 

For linear homogeneous differential equations the study of the distribution of 
zeros of solutions is closely related to the study of the uniqueness of solutions of 
boundary value problems. In particular, if t<t1< • • • <tk<rilt,Ak(t)9 then there 
is a unique solution of (1) satisfying the conditions 

y^Xtj) = Amjj 

where Amjj is a constant, 7 = 1 , . . . , k, mj=0,1,..., /y — 1. 
Azbelev and Caljuk [5] studied the functions r12(t) and r21(t) for third-order 

equations. Hanan [6] studied third-order equations when r12(t)=oo and when 
r2i(t)=co. Dolan [7] made a further study of these functions for third-order. In 
particular Dolan studied third-order equations when r12(t)<r21(t) and when 
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f"2i(0 < r12(t). The author [8] made a similar study for fourth-order equations. For 
more related results see [9], [10], [11]. 

As usual r)X(t) will denote the first conjugate point of (1) for x=t. Recall that [12] 

rj^t) = min ri3{t) 
i + j = n 

and [13], [14] 

m(t) = r1,..1(t). 

DEFINITION 3. A fundamental set of solutions {uj(x9 t)},j=0,..., n-l, is de­
fined by the initial conditions at x=t 

uf(t9 i) = Siy, ij = 0, 1 , . . . , « - 1 . 

THEOREM 1. For any real number t, 

''(n-i)i(O ^ r(n-2)ii(0 > > r21...i(0 
> 'i...i(0 = vi(t). 

Proof. Assume a = r(n_fc_1)1...1(0>r<n-fc)i...i(0> l<k<n-l. Then there is a 
solution u(x) of (1) with a (n-k9 1 , . . . , 1) distribution of zeros on [t, a). The 
solution u(x) has zeros at the points tl9.. ,9tk + 1 where t < t1 < t2 < • • • < tk +1 < « of 
multiplicities at least n—k9l9...9l respectively and no other distinct zeros on 
[tl9 a). Let XiE(ti9 ti+1)9 i=l9...9k and xk + 1 e(tk + l9 a), then since xk+1<a there 
is a unique solution of (1) satisfying 

v^fa) = 0, m = 0, 1,.. ,9n-k-2 
v(xt) = vl9 i = 1 , . . . , fc+1 

where 

(2) ^w(Xi) > 0, M < |w(*,)|, I = 1 , . . . , k+1. 

Since t>(x) has a zero of order at least «—A:— 1 at f̂  

n - l 

d=n-k-1 

where the ad, d=n — k— 1 , . . . , n— 1 are constants and wd(*, ^) are defined in 
Definition 3. Consider the k+1 equations in k+1 unknowns 

n - l 

2 cidud(xi9 h) = vi9 i = 1 , . . . , k+1. 
d = n - f c - l 

It is easy to see that we can pick the vi9 i = 1 , . . . , k+1 satisfying (2) so that tfn_fc_i 
# 0 . Hence tf(x) has a zero at fx of order exactly n — k— 1. Note then that either 
v(x) or w(x) —t;(x) has at least one zero in (tl9 x±). We will obtain a contradiction 
by showing that either v(x) or u(x) — v(x) has at least k+1 distinct zeros in (/1? a). 
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Let p be the number of distinct zeros of u(x) of even order in (tl9 a), then k—p is 
the number of distinct zeros of u(x) of odd order in (tl9 a). 

Observe that if u(x) has an even order zero at ti9 then there are three possibilities: 

(I) v(x) has at least two distinct zeros in (xj_i, Xi)9 

(II) u(x) — v(x) has at least two distinct zeros in (xi-l9 xt)9 

(III) u(x) and v(x) both have at least one zero in (*i_i, xt). 

Let / be the number of times that (III) occurs. If u(x) has a zero of odd order at ti9 

then both v(x) and u(x) — v(x) have a zero in fo-i, x*). These last two remarks 
account for the fact that v(x) and u(x) — v(x) have at least k—p + l distinct zeros in 
(tl9 a). Now if case (I) (II) holds more than the largest integer less than (p — l+1)/2 
times, then v(x){u(x)-v(x)} has at least k+1 distinct zeros in (tl9 a) which is a 
contradiction. The only possibility that remains is that p — / is an even integer and 
both cases (I) and (II) occur (p — /)/2 times. But in this case both v(x) and u(x) — v(x) 
have at least k distinct zeros in (xl9 a). But recall that either v(pc) or u(x) — v(x) has 
a zero in (tl9 xx) and so we again obtain a contradiction. 

A theorem similar to Theorem 1 is the following. 

THEOREM 2. For k= 1,..., n-2 

ri...un-k)(t) ^ min[r1...1(n-fc.1)1(0,r1...1<n-fc-1)(0]. 

Proof. The author would like to thank the referee for his suggestions concerning 
the following proof. Assume 

a = min [r1...1(n_fc_1)1(0,r1...1(n_fc_1)(0] > ^ . . .^ .^ (0 . 

Let u(x) be a solution of (1) with a ( 1 , . . . , 1, n—k) distribution of zeros on [t9 a). 
The solution u(x) has zeros at points tl9129..., tk+1 where t<t1<t2< - - <tk+1<a 
of multiplicities at least 1, 1, . . . , 1, (n—k) respectively and no other distinct zeros 
on [tl9 a). Let Xi e (ti9 ti + 1)9 i= 1, . . . , k and xk + 1 e (tk + l9 a) then define v(x) to be 
the solution of (1) satisfying 

^(m)fo + i) ==0, m = 0, 1,..., n-k-2 
v(xt) = vi9 i = !,..., k 

v(xk + 1) = u(xk + 1) ^ 0 

where 

(3) v^xd > 0, \vt\ < \u(Xi)\9 i = l9...9k. 

As in Theorem 1 one can show that you can pick vi9i=l9...9k satisfying (3) so 
that v(x) has a zero at tk + 1 of order exactly n—k—I. If 2<i<k and u has a zero 
of odd order at t% then v and v—u each have at least one zero in (x{-l9 x{) (Case A 
at tt)9 while if u has a zero of even order at tt then there are the following three cases 
at t{.—B: v has at least two zeros in (Xj_l5 xt); C: not case B and v — u has at least 

7—C.M.B. 
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two zeros in (X_l5 xt); D: not case B or case C then v and v — u each have one 
zero in (xt-l9 x4) (at tt). Suppose B occurs /x times, C occurs rj times, and D occurs 
v times. Then v and v — u have at least k — 1 +/* —̂  and fc— 1 + *? —/x distinct zeros 
respectively in (xl5 xk). One or the other gives an immediate contradiction if 
\H—T)\>2. If ft—77= —1 we obtain an immediate contradiction from v — u. If 
—̂77 = 1 either v has a zero in [tl9 xx) and we have a contradiction, or v — u does. 

Finally if ft—77=0, then both v and z; —w have at least k—\ distinct zeros on 
(xl9 xk). Since v — u has a zero at xfc+1, v — u cannot have a zero in (tl9 xx). Hence 2; 
has a zero in [fl5 xx) and therefore cannot have a zero in (xfc, ffc + i). It follows that 
v — u has a zero in (xfc, ^+ 1) which is a contradiction. 

THEOREM 3. Ifp>29 then 

rplq(t) > min [rip + 1)q(t)9rip_1)llq(t)]. 

Ifq>29 then 
rpU(f) > min[rp(fl + 1)(0, (01-

Proof. Assume 

a = min [r(p + 1)Q(0, r(p.1)llq(t)] > rplq(t). 

Let w(x) be a solution of (1) with a (/?, 1, #) distribution of zeros on [t9 a). Then 
u(x) has a zero at tx of order exactly /?, a zero at f2 of order at least one, a zero at 
t3 of order at least q, and no other distinct zeros on [tl913] where t < t± < t2 < t3 < a. 
Let xt e {ti9 ti + 1), i = l, 2, then since t3<a there is a unique solution v(x) of (1) 
satisfying 

vWfa) = 0, m = 0, l , . . . , / ? -2 
^ f e ) = 0, k = 0,l,...,q-l 

v(xi) = M*i) 
v(x2) = iu(x2) 

Clearly u(x) and v{x) are linearly independent and v{x) has a zero at t± of order 
either exactly;? — 1 or exactly/?. If the order of the zero of v(x) at tx is exactly/?— 1, 
then it is easy to see that either v(x) or u(x) — v(x) has a (/?— 1, 1, 1, #) distribution 
of zeros on [tl913] which is a contradiction. If r(x) has a zero at ^ of order exactly 
/?, then there is a nontrivial linear combination of u(x) and r(x) with a zero of order 
/?+1 at ^ and of order q at £3 which is a contradiction. The second inequality is 
proved similarly. 

It is very easy to prove a more general theorem than this by assigning v{x) to 
have the same zeros as u(x) to the left of tx and to the right of t3. In this case the 
first inequality in Theorem 3 becomes for ik > 2 

rh...iklik + 1..Av(
t) - m ^ n [rii...(ifc + l)ffc + i...lv(0> rii...«fc-l)llifc + 1 . . . fv(0] ' 

Some similar remarks will hold for some of the following theorems but these will 
be left to the reader to notice. 
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THEOREM 4. Letp>2 then 

rp2(t) > min [rp l l(0, r(p-i)3(0L 

and ifq> 3 then 

rpq\0 ^ m i n ViP-lXq + DVh rpl(q-l)\0> rpl(q-2)lV)]' 

Proof. Assume 

a = min [r(3,_1)(a + 1J(0, r„i<«-i)(0, rpl(g_2)1(0] > rpq{t) 

for q>3 (if q = 2, a==min |>pl l(0, r^-mit)])- Let w(x) be a solution of (1) with a 
zero of order p at tx and a zero of order q at f2 where t<t1<t2<a. Clearly u(x) ^ 0 
on (tl9 t2) and w(a)(f2)^0. Let v(x) be a solution of (1) satisfying for t1<x1<t2 

<x2<a the boundary conditions 

fl^fo) = 0, m = 0, l , . . . , / ? - l 

fl(*i) = M * i ) 
i?(*a) = Mx2) 

v™(t2) = 0, k = 09l,...,q-3. 

(If q=2 then there is no boundary condition prescribed at t2.) We can assume 
u(x)^0 for t2<x<x2. Since a<r (p_1)0z+1)(0, K*) h a s a z e r o a t *2 of order exactly 
q—2 or #— 1. If i;(x) has a zero at t2 of order exactly q—1 {q—2} then either i?(x) 
or u(x) — v(x) has a (p, 1, #—1) {(/?, 1,# —2, 1)} distribution of zeros on [tl9 a) 
which is a contradiction. 

THEOREM 5. 

rpi 

riiP(t) > min [r1(p + 1)(0, r2p(0J. 

Forq>2 

rplq(j) ^ m m V(p + l)q\t)> rp2(q-l)\t), r(p + l ) l ( a - l ) (0 j 

and for p>2 

rvU\t) — m i n KpOZ +1)(0> r(p-l)2q(0? r(p-l)l(<2 + l ) (0j -

Pïoof. Assume 

a = mm [r(p + Dg(0? rp2(q - D(0? r(P + DIOZ - D(0J > rpiq(0 

for #> 2 (if g = 1, a = min [r(p + 1)1(0, ^ ( 0 1 > rPii(0)- Let w(x) be a solution of (1) 
with a (/?, 1, #) distribution of zeros on [f, a). Then w(x) has a zero of order exactly 
p at tl9 of order exactly 1 at t2, and a zero of order at least q at t3 where ^</x 

< t2 < t3 < a. Since a < rip + 1)q(t), there is a unique solution v(x) of (1) satisfying 

^(m)('i) = 0, iw = 0 , l , . . . , /> 
^>(/3) = 0, fc = 0 , . . . , ? - 2 

^ - i > ( * 3 ) = 1 
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for q>2 (if q= 1, then the boundary condition at t3 becomes v(t3)=l). It follows 
from Theorem 1 [12] that there is a nontrivial linear combination of u(x) and v(x) 
with a double zero in (/2, 3̂) which is a contradiction. 

The key to the proof of Theorem 5 was to obtain a solution of (1) with a double 
zero which was a linear combination of two other solutions. Leighton and Nehari 
([15] Lemma 1.2) were the first to use such a technique. In fact their result gave 
a very simple proof of the Sturm separation theorem. Sherman ([12] Theorem 1) 
stated a more general result. Gustafson [16] then stated a result which enabled one 
to find a linear combination ofk solutions of (1) with certain distributions of zeros 
to have a zero of order k. A special case of Gustafson's result will be used in the 
following theorem to find a linear combination of three solutions with a triple 
zero. One could find many more results by using this same technique but we will 
be content here just to prove the following theorem. 

THEOREM 6. For any real number t, 

min [f*(p + Dii(0? fp2i(0* rps(j)] 
r2iP(t) > min [r11(p + 1)(0, rp21(t), rp3(t)] 
rP2i(0 > min [r(p + 1)11(0, rpl2(t), rp3(t)] 
ri2P(t) > min [r11(p+1)(0, r21p(0, r3p(t)] 

Proof. Assume 

a = min [r(p + Dii(0, rp21(t), rp3(t)] > rpl2(t). 

Let ux{x) be a solution of (1) with a (p, I, 2) distribution of zeros on [t, a). The 
solution Wi(x) has zeros at points tu t2, t3 where t<tx<t2<t3<a of multiplicities 
/?, 1, 2 respectively. Since a>rpl2(t) these multiplicities are exact and, since 
rPm(t)>a> wi(*) h a s n o other zeros on [tl9 a). We can assume u1(x)>0 on (t2, t3). 

Since rp21(t) > t3 there is a unique solution u2(x) of (1) satisfying 

u2
m)(t1) = 0, m = 0,...,p-l 

u2
l\t2) = 0, / = 0, 1 

u2(t3) = 1 

and w2(*)>0 on (t2, t3). Since rp3(t)>t3, it is easy to see that u2(t2)>0„ Since 
r(p + Dii(0> *3 there is a unique solution u3(x) of (1) satisfying 

ttg°('i) = 0, k = 09...,p 
u3(t2) = 1 
u3(t3) = 0. 

Since u3(t)>0 on [t2, t3), u3(t3) = 0, and rp3(0>*3, w3(^3)<0. Now let a)(x) 
= det (ulD(x)), i=l, 2, 3, 7 = 0, 1, 2. Since co(*2)>0 and o>(r3)<0, CD(X) has a zero 
at some point f G (t2, t3). It follows that there is a (nontrivial) linear combination 
of t/j(x), /= 1, 2, 3 with a triple zero at £. But this same linear combination has a 
zero of order p at tx which contradicts rp3{t) > t3. Hence 
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W) ^ min DWmW, W ) , rpS(t)]. 

The other three inequalities in this theorem are proved similarly. 
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