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A GENERAL HEWITT-YOSIDA DECOMPOSITION

TIM TRAYNOR

Introduction. In 1952, E. Hewitt and K. Yosida [3] proved that a bounded,
finitely additive real-valued set function has a unique representation as the
sum of a countably additive function and a ““purely finitely additive’”’ function.

Below, using a variation of the Carathéodory process we give a suitable
generalization to s-bounded vector-valued set functions. In fact, since the
methods do not rely on scalar multiplication, we give the result for commu-
tative Hausdorff topological groups.

It is interesting to note that the Carathéodory process gives an elegant
proof even for real-valued functions [1].

0. Notation. Throughout the paper,

N is the set of non negative integers,
A\B = {a € A : a ¢ B},

UK = UAEKAv

K, = {U,4.:4 is asequence in K{.

The symbol S denotes an abstract space and ¥, a commutative Hausdorff
topological group. We denote by #~ a base for the neighbourhoods of 0 in ¥
consisting of closed symmetric sets, and by H a ring of subsets of .S with
S € H,.

1. Preliminaries. For the basic definitions and preliminary results con-
cerning group-valued set functions we refer to Sion [7; 8]. However, except
for a few straight forward generalizations of the real-valued terminology, we
explain all the measure-theoretic concepts that we use.

We recall first that a function ¢ on H to V is s-bounded if and only if
¢(4,) — 0, whenever 4 is a disjoint sequence in H. If ¢ is finitely additive,
an equivalent condition is that ¢(4,) be Cauchy whenever 4 is an increasing
sequence in H (and hence, also, whenever 4 is a decreasing sequence in H).

We assume throughout that ¢ ¢s finitely additive and s-bounded on H to a complete
subset of V. (The completeness condition is of minor importance since we may
always complete ¥ if necessary. In any case, the condition is automatically
satisfied whenever Y is a locally convex space in which closed bounded sets
are complete, since an s-bounded finitely additive function to a locally convex
space is bounded. The proof follows Rickart [5; 2.4].)
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For purposes of ¢/2"-type arguments, given V in #”, we choose, by con-
tinuity of addition, neighbourhoods V, in#” such that for all # in N

Z_)OV,CV.

2. The Carathéodory process. We now describe the process of generating
an (outer) measure from an s-bounded finitely additive function. We impose on
¢ and H the conditions of the preceding sections.

2.1. Definitions. Let & be the collection of countable disjoint subfamilies
of H and, for 4 C S, let 2, be the collection of members of & covering 4,
directed by refinement. (£?, is never empty, since S € H,.)

(1) For P in P, $(P) = Y werd(E), whenever the sum converges uncondi-

tionally.

(2) For A C S, u(4) = limpep & (P), whenever the limit exists.

We notice that, since ¢ is finitely additive, ¢ (P) is the limit of ¢(\U A) as A
runs through the finite subsets of P directed upward by inclusion.
The fundamental theorem about u is the following:

2.2. THEOREM. Let ¢ be s-bounded and finitely additive on H to a complete
subset of Y. Then the u defined in 2.1 1is an Hq-outer measure on S to Y. That is,
u is defined on all subsets of S, is o-additive on a o-field containing H and is H,-
outer regular, i the sense that for each V in¥” and A C S, there exists A’ in H
containing A with u(B) € u(d) + V, whenever A C B C A'.

The proof consists in establishing the following lemmas.

2.3. LEMMAS.

(1) The sum 3 gepd(E M F) converges unconditionally, uniformly for F
in H; in particular, §(P) exists for all P in P.

(2) w(A4) exists for all A C S.

2.4. LEmMaAs.

(1) u is o-additive on H,.

(2) wis H,-outer regular.

(8) For any increasing sequence A of subsets of S, u(\U,4,) = lim,u(4,).

(4) The family of u-measurable sets 1s a o-field containing H on which u is
o-additive.

The Lemmas 2.4 are, in fact, valid whenever u exists on all subsets of .S,
even without the additivity and completeness assumptions.

Proof of 2.3. (1) In the contrary case, the partial sums would not form a
Cauchy net uniformly in F. Thus, for some V in’?”, we could extract a disjoint
sequence of finite A, C P and a sequence of elements F, € H such that
S gead(EM F,) € V. Since ¢ is finitely additive, this means that
¢(F, \'\U A,) ¢ V, contradicting s-boundedness.
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(2) If u(A4) does not exist, then ¢(P) does not form a Cauchy net as P runs
over Z 4. Hence, for some V in#”, there exists a sequence P in &, such that
for each # in N, P,y is finer than P, and ¢(Pny1) — 6(Pp) € V+ V + V.
We now proceed to construct a decreasing sequence B in H with the property
that for every n in N, &(P,) — ¢(B,) € V, for then, by s-boundedness,
eventually ¢(B,) — ¢(B,y1) € V so that

q;(Pn) - $(Pn+l) = é(Pn) - d’(Bn) + ¢(Bn) - ¢(Bn+l)
+ ¢(BTL+1) - $(Pn+1)
ceV+rV+7,

contradicting the choice of P.

To construct the B,, let V, be the neighbourhoods described in § 1. Using (1),
choose for each # in N a finite subset A, of P, such that for every F in H,
d(FMN U A\ U A,) € V,, whenever A is a finite subset of P,. (This implies
also that ¢(\J A,) — ¢(P,) € V,, since V, is closed.) Put 4, = U A, and
define B, = Ni=ed ;. To show that ¢(P,) — ¢(B,) € V, first note that for
each £ € N, ¢(FN A;11\4:) € V; for all F € H. Indeed, since Py is a
refinement of Py, there exists a finite A C Py such that 4,41 = U Ay C U A,
whence ¢ (F M Ag1\Ar) = ¢(F N Appa M (U A\ A;)) € V. Now for each
n in N we have

A, = B, U (Ni=i4d\4o) U (NT=24:\41) U ... U (4,\4,-1)
= B, U UiZo (Mizkp1 4:\4x),
so that
Thus the B, satisfy the required property and the lemma is proved.

Proof of 2.4. The proof of (1) depends upon the usual properties of inter-
changing limits and summation for unconditional convergence. These can
be proved in the usual manner, using the neighbourhoods V, described in
section 1.

Let A be a disjoint sequence in H,; say, 4, = \U Q,, where Q, € & for all
n in N. Put Q = U,Q, and B = U,4,. Now, u(B) = limp ¢(P) as P runs
over the elements of & finer than Q, and u(4,) = limp, ¢(P’) as P’ runs over

those elements of £,, finer than (Q,. These latter are of the form
P'={ENA,: E¢€ P}, for Pin &y finer than Q. Hence,

u(B) = limp 2 eep ¢(E)
= limp 2 pen 2 mep $(4n M E)
= 2 nen limp X pep (4, N E)
= 2 nen #(4n).

(2) Given 4 C Sand Vin?",let P € &, be such that $(P’) — u(4) € V
for all P’ € &, finer than P. Put A’ = \UP. Now if A CB C A’, and
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P’ € Py is finer than P, we have P’ ¢ P ,, so $(P') € u(4) + V. Taking
the limit as P’ runs in 5 we have u(B) € u(4) + V.

The proofs of (3) and (4) are essentially contained in section 5 of Sion [6];
we therefore omit them. They are also given in Sion [7].

3. The Hewitt-Yosida decomposition. In this section, in addition to the
assumptions of sections 0 and 1, we require that H be a field, i.e., that .S € H.
(This condition may be removed, for putting ¢(S\ 4) = —¢(4) for 4 in the
ring H extends ¢ to an s-bounded additive function on the field generated by H.)

We proceed to describe the Hewitt-Yosida decomposition of the s-bounded,
finitely additive function ¢ on H to Y. The real-valued version was proved by
Hewitt-Yosida [3] (see also [1;2, p. 163]).

We need two definitions.

3.1. Definitions. For ¢ and v, set functions on H to topological groups ¥ and
Z, respectively,

(1) ¢ and v are (topologically) singular, ¥ L ,v, if and only if given neigh-
bourhoods V and W of the origins in Y and Z, respectively, there exists such an
A in H that, for all E in H,

VENA)ETV and v(E\A) € W;

(2) ¢ is purely finitely additive if and only if ¥ is finitely additiveand 1 ,v
for every o-additive s-bounded v on H to a commutative topological group.

The general Hewitt-Yosida theorem is the following.

3.2. THEOREM. Every s-bounded finitely additive set function ¢ on the field H
with values in a complete subset of a topological group Y can be uniquely repre-
sented in the form ¢ = ¢, + ¢,, where ¢, is o-additive and s-bounded and ¢, 1s
purely finitely additive.

Proof. To prove the theorem, let u be the Carathéodory measure generated
by ¢ and H as in 2.1 and put

¢u=”|H7 ¢p=¢_¢a~
Since u is o-additive on H,, we have that ¢, is s-bounded. The theorem is now
a consequence of the following lemma.

3.3. LEMMA.

(1) ¢ s o-additive if and only if ¢, = ¢;

(2) @ is purely finitely additive if and only if ¢, = 0.

(Indeed, since ¢, is o-additive, ¢y, = p,, by 3.3(1). This implies that
(¢p)e = (¢ — ¢0)s = 0, so that ¢, is purely finitely additive, by 3.3(2). The
lemma also establishes uniqueness, for if ¢ = ¢ + ¢/ were another such
decomposition, then ¢, = ¢, + ¢’ = ¢.)

Proofs.

(1) Necessity is an immediate consequence of the definitions; sufficiency, of
Theorem 2.2.
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(2) If ¢ is purely finitely additive, then ¢ L ; ¢,. Thus, given any Vin¥",
there exists A in H such that (EMN A) € V and ¢,(E\A) € V for all E in H.
But if P € Pzna and P is finer than {E M A}, we have

$(P) = limap(EMN A N U A)

as A runs over the finite subsets of P, so ¢ (£) belongs to V. Taking the limit
as P runs in £ 4 we have ¢,(E M A) € V. Thus

¢ (E) = ¢ (EMA) + ¢ (ENA) € V + V.

But V was arbitrary, so ¢,(E) = 0.

On the other hand, suppose ¢, = 0 and let » be any o-additive s-bounded
function on H to a commutative topological group Z. If ¢ and v are not
singular, there exists ¥ in 7~ and a neighbourhood W of 0 in Z, such that
whenever 4 € A and v»(EMN A4) € W for all E € H, S\4A contains some
B € H with ¢(B) ¢ V 4+ V. We first show that ¢(B) ¢ V + T implies that
for any neighbourhood W' of 0 in Z,

(*) B contains some B’ € H such that ¢(B’) ¢ V and
v(B"ME) € W, for all E in H.

Indeed, since ¢,(B) = 0, there exists P € P with \U P = B such that
é(P) € Vy. Thus P contains a finite A such that ¢(\J A) € $(P) +
Ve C Vo4 Vo C V. Since » is g-additive and s-bounded, A may be chosen
so that »(EN B\\U A) € W', for all E in H (see Lemma 2.3(1)). Put
B’ = B\\U A. Then for all E in H, v(ENB') € W and ¢(B’) ¢ V, for
otherwise ¢(B) = ¢(B') + ¢(\J A) € V 4+ V.

Now, choose for # € N, neighbourhoods W, of 0 in Z such that
S0 W, C W. Since v(EMN @) =0 € W, for all E in H, S contains some B
in H with ¢(B) ¢ V + V, and hence, by (x*) a member 4, of H such that
¢(4o) ¢ V and v(EM 4o) € W,, for all E in H. Recursively, suppose
Ay, ..., A, € H have been chosen disjoint such that for each ¢ = 0, . . ., #,
¢6(A4;) ¢ V and v(EMNA,) € W, for all E in H. Then for all E in H,
v(EN Ul 4y) € 20 W, C W, so S\U"=o 4 contains some B in H with
¢(B) ¢ V+ V, and hence some A, € H such that ¢(4,.1) ¢ V and
v(ENM A,41) € Weyy, for all E in H. We have thus constructed a disjoint
sequence 4 in H such that ¢(4,) does not converge to 0, contradicting
s-boundedness of ¢.

4, Remarks. (The development of the gemeral Carathéodory process). In [6]
M. Sion presented the first construction of a group-valued outer measure,
starting with a o-additive function on a ring of sets under a monotone con-
vergence condition which is equivalent to s-boundedness.

In [9] we showed that a simple modification of the Phillips-Rickart inte-
gration process [4] makes the indefinite integral into a group-valued outer
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measure. M. Sion showed [7; 8] that this construction yields a reasonable
generalization of the Carathéodory process, even when one begins with a
function, not necessarily additive, with values in a commutative topological
semigroup with identity. (The construction necessarily coincides with that of
Sion [6] for s-additive functions defined on a ring.)

The important contribution of Phillips in this process was to remove the
necessity of considering unconditional convergence, using a certain double
limit instead of an iterated limit. In the present article, however, we did not
need the full strength of these methods, since a strong form of unconditional
convergence was guaranteed by s-boundedness (Lemma 2.3).
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