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1. Introduction. If k denotes a number field and sm is the product of an elliptic curve 8
with itself m times over k, then for each prime n where e has non-degenerate reduction, the
zeta factor ((£„, s) can be expressed as

where | n | denotes the norm of n. It is a consequence of a conjecture of Tate [16] that if £ does
not have complex multiplications, then the numbers xn = $(sK + £„) are distributed according
to the density function

l(i-xy-. (i)

that is, the density of the set of primes n such that — 1 £ a ^ •£(£„+£„) ^ b ^ 1 is

According to Tate [16], machine calculations conducted by M. Sato support this conclusion.
Serre [13] (cf. [14], [15]) posed an analogous question for Ramanujan's function T. Put

A(z) = e2"'1 j f [ (l-e2-"2)!24, Imz > 0.

A is a cusp form of weight 12 for the classical modular group SL(2, l)l{±Id}, hence an eigen-
function of the ring of Hecke operators. If the Fourier expansion of A be written

A(z) = £ x{n)e2™\
n = l

then T(1) = 1, the function x : Z+ -• R, which is Ramanujan's function, is multiplicative, and
the associated Dirichlet series

Us) = t <n)n~°
n = l

t Supported in part by National Science Foundation grant GP19011.
X The reader is not likely to confuse use of the common symbol n to denote primes in a number field and the

ratio of circumference to diameter of a circle.
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admits the Euler product expansion

where p runs through the rational primes. A celebrated conjecture of Ramanujan [10]
asserted that

absz{p)<2p"l\ (3)

where abs denotes the absolute value. Deligne [2] showed that (3) is a consequence of Weil's
conjectures, and Deligne [3] has recently proved the latter; hence (3) is valid and therefore,
writing xp = T(/>)/2/?11/2, one has - 1 g xp g 1 and the factor (\-x(p)p~s+pll~2s) in (2)can
be written as (l-£pP11/2"s)(l-ep/>11/2"s), where abs sp = 1 and 2xp = ep+sp. Serre's
question ([13], pp. 14-15) is whether xp is also distributed according to (l) as p runs through
the rational primes. Lehmer [9] calculated the distribution of xp for the 1229 primes less than
104 and found, in his words, "pretty reassuring" agreement with the Sato-Tate distribution (l).

The principal purpose of this paper is to provide numerical evidence which supports the
Sato-Tate distribution for an analogue of Serre's question for Hilbert modular forms. The
graded ring of Hilbert modular forms associated with the number field Q(-\/5) is generated by
an Eisenstein series of weight 2, two cusp forms of respective weights 6 and 15 which are
unchanged when the argument variables are interchanged, and a "skew" cusp form Xs of
weight 5 which changes sign when its argument variables are interchanged [4], [11]. Since the
dimension of the C-linear space of cusp forms of weight 5 is 1, x5 is an eigenfunction of the
ring of Hecke operators associated with the Hilbert modular group [7], and it follows that
the Fourier coefficients of a suitably normalized Xs are multiplicative functions of the algebraic
integers in 0(^/5). Write the Fourier expansion of Xs in the form

Xs(Q=lc(v)e2*i°™^ (4)

where ( = (d , £2). Im (,• > 0, c denotes the trace (cf. §2) and v runs through those integers
in Q(-\/5) such that v/-v/5is totally positive.

Select e = (l + V5)/2 as fundamental unit of Q(\/5), and introduce the "Grossen-
charakter"

where the principal branch of the logarithm is chosen. A Dirichlet series associated with Xs is

UU)=I-<c(v)A(v)afeS|vr, (5)
(v)

where the sum runs over the ideals in the ring of integers in Q(V5); it is readily checked that
the individual summands are independent of the choice of representative generator v of (v).
A special case of a remarkable theorem of Hermann [7] asserts that CZ5 can be expressed by
the Euler product

£*,(*. *) = II (i- + ic(n)X{n) abs \n\-'+abs \n\4-2s)-1 (6)
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if Xs is so normalized that c(e) = 1 (the product runs over the prime ideals in the ring of
integers of Q(V5)). Moreover, CXi satisfies the functional equation (Hermann [7], Satz 15):

G(5-s,X)= -G(s,X),

where

Now suppose that the following analogue of Petersson's extension of Ramanujan's
conjecture is valid: if o(v) denotes the vth Fourier coefficient of a normalized cusp form of
weight wfor Hilbert's modular group associated with some number field, then for prime ideals n,

yw-1)/2. (7)
For Xs this becomes

abs c(n) ^ 2(abs \n\)2. (8)

Set

xw=c(n)l2(abs\n\)2;

then (8) implies that — 1 ^ xM ^ 1 and, in analogy to the above for the classical modular
form A, the factor (I + ic(n)A.(n)abs \n\~s+abs \n\*~2s) can be written as (l—eMabs\n\2~s)
(l-ein)abs |7i|2"s)whereabsew = 1 and (-tt(n))xn = (e(n)+e(n))/2. We are therefore led to
inquire whether the xM are distributed according to the Sato-Tate distribution (l) as (n) runs
through the prime ideals. The numerical evidence presented in the next section strongly
suggests an affirmative answer.

The authors thank F. J. Dyson for bringing Tate's conjecture to our attention. We are
indebted to J.-P. Serre for many helpful remarks and particularly for informing us of certain
omissions in a previous version of the work reported here.

The remainder of this paper is organized as follows. Section 2 presents a table of the
Fourier coefficients c(n) of Xs for the 305 prime ideals of norm ^ 4391, and also shows how
the c(v) can be expressed in terms of c(n) for arbitrary integral ideals (v); this interdependence
provides a check on the validity of the tabulated entries. Section 2 also presents several
statistical measures of the compatibility of the distribution of the x(n) for the tabulated values
with the Sato-Tate distribution. Calculation of the coefficients c(v) is not a straightforward
matter. Section 3 describes a connection between Siegel modular forms of degree two and
Hilbert modular forms associated with certain quadratic number fields which enables the
Fourier coefficients of particular Hilbert modular forms to be expressed as linear combinations
of the Fourier coefficients of Siegel modular forms. Specialization of this relationship yields
the formula by means of which the values tabulated in §2 were calculated. Section 4 applies
some of the results of §3 to Hilbert modular forms associated with quadratic fields other
than Q(V5).
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2. The Fourier coefficients of %5. Define a multiplication on C2 by the bilinear pairing
(a, /?) = ((a!, a2), (&, P2)) *-* (aift» a2^2) = a/? and introduce the trace a(a) = a x +a 2 and
the norm \a\ = a.x<x2 for <x e C2. If k is a real quadratic number field and a u a2 = a* are
conjugates in A:, put a = (ax, a2) e U2 <= C2; in this way k is embedded in C2 and the restric-
tion to the image of k in C2 of the trace and norm defined above are, respectively, the trace
and norm in k. Extend the conjugation map to C2 by defining *<x = *(aj, a2) = (a2, a j = a*
for a e C2. If a e R2, write a > 0 if ô  > 0, a2 > 0, and set 3tf = {C e C2 : Im £ > 0}.

Let k = Q(V5) and introduce the fundamental unit e, = (l + V5)/2; set e = (elf ej).
Since Xs 1S a skew Hilbert modular form of weight 5, Xs(e2nC) = {-)"Xs(() an<i /s(C*) =
— X5(C) for £e.?f; these conditions are equivalent to the following two conditions for the
Fourier coefficients c( v) of Xs '•

c(e2»v) = (-)"c(v), (9)

and

c(-v*) = -c(v). (10)

These equations have the consequence that it is only necessary to calculate the c(v) for those v
which lie in a fundamental domain for the action of the group S* generated by the transforma-
tions r\ H-> E2T\ and r\ i-» — r\* on the set of tj e R2 such that f//\/5 > 0. An element r) eU2

such that rjl\/5 > 0 is said to be reduced with respect to the group of units if

thus £ itself is reduced with respect to the group of units. The set g t of elements reduced with
respect to the group of units is easily seen to be a fundamental domain for the action of the
group of units defined above. Furthermore, g,,, = {q : r\2 ~§. r\x and q/VS > 0} is a funda-
mental domain for the involution t] H> —t\*. Then

[ fla ^2

is a fundamental domain for the jointly generated group 3* . Elements of g will be said to be
3*-reduced; c(v) can be calculated from (9) and (10) if c(n) is known, where n is reduced and
equivalent to v under the action of 3* .

If n is a prime in Q(V5), then there is a bijective correspondence between abs \n\ and the
3*-reduced element of the S*-orbit of nly/5; we may therefore write c(abs \n\) to un-
ambiguously denote c(n) where ft is the 3*-reduced element of the 3*-orbit of nl\/5 and
njy/5 > 0. The reader will remark that this bijective correspondence cannot be extended to
norms of non prime integers of Q(\/5); for instance, abs \ vv*| = afo|v2 | but v2 and vv* need
not belong to the same 3*-orbit.

The absolute values of the norms of primes, that is the norms of prime ideals (rt) <= 0 ( ^ 5 ) ,
are those primes congruent to 1 or 9 mod 10, those squares of primes congruent to 3 or 7
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mod 10, and 5, according as the norm is of the form abs nn* with (n) ^ (rc*), n is a rational
prime, or (n) = (n*) respectively. Table I below lists the 305 Fourier coefficients c(n) in the
form c(q) where q = abs \n\ ^ 4391, for primes n e Q(V5) such that nj^/5 is totally real and
3 ""-reduced.

TABLE I. FOURIER COEFFICIENTS OF THE NORMALIZED CUSP FORM OF WEIGHT 5 FOR HILBERT'S
MODULAR GROUP ASSOCIATED WITH Q(5*) FOR REDUCED PRIME CLASSES AND FOR THE REDUCED

UNIT CLASS

abs \n\ eOO abs \n\ c(n)

1
4
5
9

11
19
29
31
41
49
59
61
71
79
89

101
109
131
139
149
151
169
179
181
191
199
211
229
239
241
251
269
271
281
289
311
331
349
359
379
389
401
409
419
421
431
439
449
461
479

1
-10

0
120

-108
-140
810

-728
-1512
1400

-3780
4592
432
8840

-13230
3402
8320
9828
7420
10800
27352
2690

-58860
-14378
-50112

5600
-26308
-17290
44280
93688

-62748
45360

-106232
25272
166370
137592
-90028
-96950
-184680
-69260
28080

-33102
150920
86940
102832
223128
285320
59400

-165942
257040

491
499
509
521
529
541
569
571
599
601
619
631
641
659
661
691
701
709
719
739
751
761
769
809
811
821
829
839
859
881
911
919
929
941
971
991
1009
1019
1021
1031
1039
1049
1051
1061
1069
1091
1109
1129
1151
1171

-379188
-32500

-504630
328482
297560

-205738
374760

-165932
-421200
-26152
-23660
233672
182088
579420

-519008
-304612
-123552

266230
-446040
-315220
-291248
-600642

348110
-407970
1121092

-1026432
-1057840
-249480

908180
273672

-1126008
21440

-143640
407862

-153468
432688
25870

-1102140
-1022518

946728
547120

1256850
1787452
1804842

-1453760
1003212
-69930

-418760
1971648

-408668
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TABLE I—Continued

abs \n\ c(n) abs\K\ c(n)

1181
1201
1229
1231
1249
1259
1279
1289
1291
1301
1319
1321
1361
1369
1381
1399
1409
1429
1439
1451
1459
1471
1481
1489
1499
1511
1531
1549
1559
1571
1579
1601
1609
1619
1621
1669
1699
1709
1721
1741
1759
1789
1801
1811
1831
1849
1861
1871
1879
1889
1901
1931
1949
1951
1979
1999
2011
2029
2039
2069

1276128
-2307448
-2113290
-2305072
-2889250
2566620
-833560
-2259630
-1492988
1140048
-347760
-1825432
-2593458
2877410
1196672
1773800
3274830
1699360
-1597320
-753948
-1532020
-179968
306072
504280
1849500
-2632392
-11228
1628150
4256280
4198068
1027660
-2453598
3197320
-2495340
-3843382
1555190
3607100
-1754730
-555282
-1712438
-968120
1928630
-3562952
-2689092
1581472
6834200
2579542
2311632
1472240
52920

-189648
•5055372
•2948400
•5921552
•5885460
•3566000
4330108
4831190
•4146120
279990

2081
2089
2099
2111
2129
2131
2141
2161
2179
2209
2221
2239
2251
2269
2281
2309
2311
2339
2341
2351
2371
2381
2389
2399
2411
2441
2459
2521
2531
2539
2549
2551
2579
2591
2609
2621
2659
2671
2689
2699
2711
2719
2729
2731
2741
2749
2789
2791
2801
2809
2819
2851
2861
2879
2909
2939
2969
2971
2999
3001

7889778
-1917230
1568700
558792
543240
646828

-4043088
4796008
5579860
9695480

-6242032
4780720

-1563748
-8527360
-42728
1602720
3019592

-1411020
5017712

-3634848
-2680132
6395328

-3855830
-10168200

7905492
4222638
937980

-2159768
1874772

-9041620
7581600
5837048

-6603660
9918288

-7915320
-9135882
12907580
13555168
-8042680
7055100

-6239808
13725040
1302210
2145572
9680688

-11606000
-9087120
-4740512
-2550798
-3412030
-502740
142652
5911542
6483240
10450080
-3519180
6303960

-2876468
3780000

-10270498
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TABLE I—Continued

abs | re | c(n) abs |rr| c(n)

75

3011
3019
3041
3049
3061
3079
3089
3109
3119
3121
3169
3181
3191
3209
3221
3229
3251
3259
3271
3299
3301
3319
3329
3331
3359
3361
3371
3389
3391
3449
3461
3469
3491
3499
3511
3529
3539
3541
3559
3571
3581
3631
3659
3671
3691
3701
3709
3719
3739
3761
3769
3779
3821

13931892
11381140
-11341512
-5711150
-12755408
9204160

-2537730
-10265680
6261840

-2020382
3757810

-6563872
5025888

-10455480
-18067968
-5432960
-1385748
-11894620
15234232
12428100
-19591702
-13575760
-5408910
-1280972
-7960680
-4417208
-6422868
-3720330
-235088
-5556600
-13490442
-3150710
-9961812
21668500
3707392
14734190
-23407380
•16595488
-7434280
12551068
17827722
-21644672
13755420
-11361168
15754388
•17696448
•14947520
6708960

-1104220
•22450392
-7647640
22404060
14560182

3851
3881
3889
3911
3919
3929
3931
3989
4001
4019
4021
4049
4051
4079
4091
4099
4111
4129
4139
4159
4201
4211
4219
4229
4231
4241
4259
4261
4271
4289
4339
4349
4391

-3776652
4195422
167080

13858992
14889560
-5509890
-24795628
-6571530
21233502
4720140

-17402518
9799650

-18743452
-16548840

1831788
15955300

-14608208
-26422760
19859580

-13959920
19793198
18133308

-23343460
-27560790
14947072
4008312
33562620
-63392

-10622232
1449630

-32613980
-19666800

6527088

We have calculated the xw which correspond to the tabulated values and tested the
Sato-Tate conjecture in several ways. The first four moments of the distribution (l) and the
corresponding values obtained from the 305 values in Table I are:

https://doi.org/10.1017/S001708950000255X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000255X


76 H. L. RESNIKOFF AND R. L. SALDANA

TABLE II

Moment Distribution (1)

0
1/4 = 0-25

0
1/8 = 0125

Data from Table I

-00106
0-2494
00088
01231

The value of chi-squared for 19 degrees of freedom is 14-61. Moreover, application of the
Kolmogorov-Smirnov test leads to Figure 1. These three tests each signal a high degree of
compatibility of the tabulated data with the distribution (l). Figure 2 displays a histogram of
the X(n)-distribution and the Sato-Tate distribution which it approximates.

10 i—

>• 6
J3
(0
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t
;iv

e
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O
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distribution

•Cumulative
distribution
of X(u)

99% confidence band

•II I I I I I I I I 1 I I I I
_-1 _ . 8 —6 --4 —2

Kolomogorov-Smirnov test at 99%
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X(n)

FIGURE 1
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The reader will naturally want to know how the numbers in Table I were calculated, and
what checks were employed to verify that they are correct. The first question will be answered
in §3; some brief remarks concerning the second question will be made here.

40 r

35

30

25

u

§ 20
a-

15

10

\

T ' ' ' ' H
Histogram for x m ) and conjectured density function

FIGURE 2

The procedure used for calculating Table I actually produced all the c(v) such that
CT(V) < 60, and in addition, certain values for v with larger trace; the trace limitations were
due to the limited precision of computation. The values which correspond to non prime v
make possible checks of the validity of the c(rc) for prime n as a consequence of the following
considerations. Because Xs is an eigenfunction of the ring of Hecke operators associated with
the Hilbert modular group for Q( V5), the results of Hermann [7] can be applied. Now Satz 11
of [7] can be interpreted in the following way in the present situation. Define the quartic
character 0 on the multiplicative subgroup of Q(\/5) by the prescription

0(e) = Q(n) = 9(-K*) = i (11)
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if n is an S*-reduced prime, and extend multiplicatively. Further define c(n) for non totally
positive /t/-\/5 by c(en) = 0(e)c(/z). The eigenvalues of the Hecke operator T(v) which
corresponds to v are just 6( v)a(v)/a(l), where a(v) are the Fourier coefficients of eigenf unctions
of the Hecke ring; since c(e) = 1 for the Fourier coefficient of / 5 (cf. Table I), it follows that
- /0( v)c( v) is the eigenvalue of T( v). Then Satz 11 of [7] asserts that

In particular, if fi and v are relatively prime, then

= +ic(fiv)

= -c(env).

This multiplicative condition supplied a convenient test of the calculations which was applic-
able to all primes n such that 2n was within the range of our calculations. For instance, let n
be the S*-reduced prime of absolute norm 1009; then Table I gives c(n) = 25870, and
c(2e) = —10. Our calculations showed that the S*-reduced integer of absolute norm

22(l009) = 4036 is ju = 13+29V5 and c(n) = -258700. Since n = 1 3 + 2 9 ^ 5 = ^ w e

find that c(n) = c(2n) = - c(e(2e)(n)) by (9), = +c(2e)c(n), in agreement with (13).
The more complicated instances of (12), wherein powers of a prime occur, can be applied

to few of the tabulated entries because the norms of the powers rapidly grow beyond the
bounds of the data. But there are several opportunities. For example, n = 1 + 2-\/5 is an

S*-reduced prime and abs \K\ = 19, while \i = = e(n*)2 is also reduced and

evidently abs\\i\ = 361. Table I provides c(n) = -140 and the supplementary calculations
show c(n) = 110721. Application of (12) yields

= -c(sn2)+\n\*c(e);

from (9) and (10), c(en2) = -c(-e*n*2) = +c(-eh*n*2) = c(e7i*2) = c(/i), and indeed,
(-140)2 = -11O721+(19)4.

3. On calculating certain Fourier coefficients. A Hilbert modular form proportional to
X5 was first introduced by Gundlach [4] (cf. [11]) as the product of 10 theta functions associated
with the principal congruence subgroup of level 2 of Hilbert's modular group for Q(\/5)-
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Although it would be possible to calculate the coefficients c(v) directly from this definition, it is
neither the simplest, nor an informative, way. Our efforts proceeded along a different path,
thanks to an illuminating remark made to one of the authors (HLR) by A. Selberg in February
1973. Selberg remarked that automorphic forms in several complex variables give rise, in
certain cases, to automorphic forms attached to submanifolds by restricting a type of normal
derivative of the ambient form to the submanifold, and he adduced the following amusing
example: let the product of classical upper half planes be embedded in the Siegel upper half
plane of degree two as the diagonal matrices; the Cartesian product F 2 of the classical modular

group with itself acts on the image as a subgroup of Siegel's modular group. If z = I l 3

be a point in the Siegel upper half plane and <p is a Siegel modular form of weight w, then the

is a form of weight w+1 for F 2 . If w = 0 mod 2, then $ = 0, butrestriction <f> = -—
8z3

if w = 1 mod 2, then $ = (^x35 where $ is a Siegel modular form of even weight and x35 is a
23 = 0

23 = 0 dz->
the second factor

Z3 = 0

cusp form of weight 35. It follows that
8z3

is a skew cusp form of weight 36 for F 2 proportional, as one readily computes, to
{A(z1)A(z2)}

2{g12(z1)A(z2)—gl2(z2)A(z1)}, with gw(zk) the Eisenstein series of weight w and
A(zfc) the (normalized) cusp form of weight 12, both for the classical modular group.

The remainder of this section simply elaborates Selberg's remark in a restricted context
which is nevertheless more general than that necessary for the applications described in this
paper.

Let U denote a compact real Jordan algebra of rank 2 with unit element c, reduced trace
a I-* a(a) and reduced norm a i—• |a| (cf. [1] for definitions and uncited results concerning
Jordan algebras). Introduce L(x) and P(x) for x e It by L(x)y = xy, P{x) = 2L(x)2 -L(x2)
for all y s U, and extend these endomorphisms to U ® C in the natural way. ^T(U) =
U + J exp U is biholomorphically equivalent to a bounded symmetric domain of rank 2 [8],

00

where exp It = {exp a = £ a"/71!: a e U}. Let F be a discrete subgroup of the group Bih ££(U)
n = 0

of biholomorphic automorphisms of 5T(U) and let (F, w) denote the C-linear space of holo-
morphic functions $ : 2?(U) -* C such that

i-w/24

<£(z) (14)

where det I —— I denotes the Jacobian determinant and<7 = dimR ll/rank U. Let Jta

be the linear complex submanifold of codimension 1 in S'(U) defined by

J/a = {z e ar(U): <r(az) = 0} (15)

for a fixed a e U—{0}, and let Fa <= F be the subgroup of biholomorphic automorphisms of

which preserve Ma. The restriction of det I -— J to Jta defines a factor of auto-
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morphy on Jta, and we denote the C-linear space of ra-automorphic forms relative to this
factor of automorphy by (Fa, w). Evidently $ e (F, w) implies that $ \ Ma e (Fa, w).

Introduce the <r-gradient V by

{b) o{b,VJ)o{b,Vf), beU®C,

for differentiate/: 3T(lt) -> C; o(a, V/) is the gradient of/in a direction normal to Mtt. We
will investigate the restriction o(a, V$)\Ma for $ e (F, w). Recalling [8] that Bih %(VC) is
generated by maps of the form

zi->z+(, fel l ,

2 !-• Az, A G Aut It = automorphisms of II, (16)

—z"1,

we find that

<Ka,V$(z+0 «=<<*, V0)(*). (17)

Further,

o(a,Vfi(Az) = oia.Vjfoz); (18)

now use VAt = ^" 'V, and the fact that automorphisms are self-adjoint with respect to a
to obtain

= o{A-'a,Vz$){z).

Last, from V_z_, = P(z)Vz and ${-z~l) = \z\w$(z), we find that

a(a,V<?)(-z-1) = a(a,P(2)V2|z|^(z))

= \z\»<j{a, P(z)Vz$)(z) + $(z)o(a, P(z)V|z|w). (19)

One readily verifies that

V|z|w = wlz^z"1;

recalling that P(z) is self-adjoint with respect to o-, (19) becomes

( - 2 - ' ) = | z \wa(JP{z)a, V$)(z) + w\z \w$(z)o{a, z). (20)

Now restrict z in (19), (18), and (20) to^Ta and A to Aut UnF a . Then z e ^ o implies that
A~izeJKa; so 0 = o(a,A~1z) = a(A~1a,z), from which we conclude that A'1 a = a. The
restriction of (20) is

(21)
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where we assume that ZH — z~leTa. These relations show that a(a, V^)|^a will be a ra-
automorphic form if and only if there is a function X : U®C -> C such that

a{P{z)a, V<£)(z) = A(z)ff(a, V<?)(z). (22)

At this point we use the rank restriction on U: if well®C, then

u2-a(u)u+\u\c = 0. (23)

Let a* denote a square root of aeU-{0} and set u = P{ai)z. Then substitution in (23)
produces

(P(ai)z)2-o(P(ai)z)P(ai)z+ \ P(a*)z | = 0;

now use the well-known properties [1]:

u2 = P(u)c,

P(P(u)v) = P(u)P{v)P(u), Pn(u) = P(u%

W«>l = 1-1H
to conclude that

P(ai)P(z)P(ai)c-a(a, z)P(ai)z + \a\ \z\c = 0. (24)

Restriction of (24) to Mtt yields

P(z)a = -\a\\z\p-\a*)c = -\a\\z\a~\ (25)

and substitution of (25) in (22) provides the equality

a(P(z)a,
Jta

-\a\\z\<j(a-\V$) ^.

Hence, o(a, V$)|^,a will be an automorphic form if a"1 = fxa for some / I E H , that is

a2 e Re. (26)
We have proved

THEOREM 1. If a2 e Me and a ^ 0, then

The theorem can be applied to Hammond's embedding [6] of certain Hilbert modular
groups in Siegel's modular group of degree two. Let k denote a real quadratic number field
with discriminant A which is a sum of two squares:

A = «2 + t>2, v = 0mod2. (27)
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Let TA denote the corresponding Hilbert modular group acting on the product #C of halfplanes
in the usual way, and write £ = ( d , £2) e #? as in §1. Put

2 2 (28)

The map

VAz2 = -f|2Ci + i|iC2 (29)

embeds ^f onto the submanifold of codimension 1 in Siegel's upper half plane 2£ of degree
two which is given by

|e^:^(z1-z2)-t/z3 = oj. (30)

Identify 2£ with the half space ^T(U) corresponding to the Jordan algebra U of 2 x 2 symmetric
real matrices; then a denotes matrix trace and | • | denotes the determinant of a matrix. Set

v —wN

x - « -vj
then (30) can be written

Jlu, v = {ze &(U): a(az) = 0}. (32)

Observe that a2 = - — I I ; hence the theorem can be applied. It is known [6] that

the embedding (29) induces an isomorphism of FA into a subgroup of Siegel's modular group
d

of degree two F. Write dk = — ; then we have
8zk

THEOREM 2. If<f>e (F, w), then

(d1-d2)--d3>$ e (F A ) w+l ) .
- ^ I 41

J ""tu, v

Moreover, (p is skew, i.e.

Only the last assertion has not been proved. But note that

= $(z) ; hence <t>(£u C2) = $(
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by (29), whereas the differential operator <r(aV) changes sign, under z i-» z*. This completes
the proof.

Let the Fourier expansion of $ e (F, w) be

$(z) = £ c(i,)e2«te<«>; (33)
ngO

here the sum runs over all semi-integral semi-positive definite real symmetric matrices. Let

(34)

with a given by (31), and let the Fourier expansion of <j> be

0(0=2™ £ c(v)exp2™(^-Y (35)

where v runs through the integral elements oik such that v/VA is 0 or totally positive. Then
comparison of (33) with (34) yields

THEOREM 3.

(a) c(v) = £
ngO

where v runs through the integral elements ofk such that v/VA > 0;

(b) c(0) = 0;

(c) c(VA) = 0.

COROLLARY 4. If the discriminant A of a quadratic number field is a sum of two squares,
then there is a skew non-identically zero T^-cuspform of weight wfor every odd w ^ 5.

Proof. There is an Eisenstein series ^ o f weight w = 0 mod 2 for w ^ 4; the correr

sponding 4>w is a skew cusp form of weight w = w + l. 0wis not identically zero because

( 3 6 )

but c I J = ( - ) w / 2 —— , where Bw/2 is the Bernoulli number, ^ 0; this latter assertion
\0 0/ Bwl2

is valid because the Siegel 6-operator carries Eisenstein series to Eisenstein series of the same
weight.
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If u = v/2 = 1, then A = 5 and the normalized cusp form / 5 introduced in (4) turns out
to be

lid 240 M 1 . 1

= Zs, (37)

where #4 e (r, 4) is the normalized Eisenstein series of weight 4 and a = % I I; thus,

knowledge of the Fourier coefficients of $A enables one to calculate the Fourier coefficients of
Xs by using Theorem 3. The entries in Table I were calculated in this manner, making use
of the linear recursions given in [12] to calculate the coefficients of $4.

It is evident from Theorem 3 that the values of the Fourier coefficients of $ 4 also enable
one to calculate the coefficients of a non-identically zero skew cusp form in (FA, 5), but it is
not known whether this form spans the space (rA, 5) except for A = 5, 8, in which cases the
answer is affirmative [4], [5], [12]. Nevertheless, it may be of some interest to tabulate some of
these coefficients for fields with class number greater than 1. This question is taken up in §4
below.

Equation (36) shows that the sum in Theorem 3 telescopes to one term if v = (w + \/A)/2.
This example is a special case of a general identity theorem which it may not be out of place
to include here. Set Q){f) = {xeU: a(x) ^ r} n exp t l ; Qs{r) is a closed disk. The semi-
integral matrices n ^ 0 such that a(n) = r constitute the intersection of a lattice in U with

9{r). If we put U e x = I*1 *3 j , X=xi-x2, Y = 2x3, then ®(r) = {x: (xt-x2)
2 +

\X3 X2J
4*3 ^ r2 = (x1 +x2)

2} and the semi-integral matrices n ^ 0 in <2>{f) correspond to coordinate
pairs (X, Y) e I2 such that X = r (mod 2) and X2+ Y2 ^ r2. Moreover, we find from (30)
that 3i(r)nJ(UtV= {xe®(r):vX-uY = 0}. Now suppose that # e ( r , w); then
$\Muve(rA, w) and the Fourier coefficients c(v) of <?|̂ u_ „ can be expressed in terms of the
coefficients c(«) of $ by the formula

c(v) = V c(»);
ngO
n3v+nlrji-n2ri2 = v (38)

(cf. the analogous formula in Theorem 3). The condition n3u+«1»/i —n2r\2 = v is equivalent
to the pair

a(n) = (j(v/VA)
and

uM+vN = v+v*

where M = nx— n2, N = 2n3, and v* is the conjugate of v. The lattice points (M, N) in
®(r) consequently lie on a line perpendicular to 3)(r) n Jtu< „. It follows that if n is fixed, then
for all but a finite number of discriminants A, the line through n perpendicular to Ma „ will not
contain any other semi-integral matrix n ^ 0 and therefore

c(v) = c(n) with v = n3v + n1rj1-n2t]2 (39)

for all but a finite number of discriminants. This observation leads to
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THEOREM 5. There is an integer K depending only on w such that if<j>, $ e (F, w) and c( v)
are the Fourier coefficients of (J>—\fi)\Mu v, then, for all but a finite number of discriminants,
c{\) — Ofora(v/-v/A) < Kimplies that $ = $.

Proof. dimc(F, w) < oo implies the existence of a K which depends only on w such that
c{n) = 0 for o{n) < K gives | = 0, where the c(n) are the Fourier coefficients of <j> e (F, w).
Let SfK denote the set of slopes of the lines determined by pairs of semi-integral matrices
ri £ 0, n" ^ 0 such that cr(n') = a(n") < K. If A = u2 + v2 is the discriminant of the field
generated by a positive square free integer, then u and v can have at most the factor 2 in
common and therefore the set of slopes of the line segments {@(r) n Jtu<v: A = u2 + v2 is a
discriminant and v = 0 (mod 2)} is the set of distinct numbers {vj(2u): u2 + v2 is a discriminant
and t> = 0 (mod 2)}. Hence, for all but a finite number of discriminants, vj{2u) £ y K and
consequently (39) is valid for a(n) < K. It follows that c(v) = 0 for cr(u/\/A) < K implies
that $ = 0. Now replace $ by ($ — $) to obtain the statement of the Theorem.

Let c(v) denote the vth Fourier coefficient of </> = a(a, V$)\MUIV, a = •£( I. A

similar argument shows that there is a constant AT such that c(v) = 0 for a(v/\/A) < K implies

TABLE III. FOURIER COEFFICIENTS OF THE NORMALIZED CUSP FORM
MODULAR GROUP ASSOCIATED WITH Q(V10) FOR REDUCED

v = /t+/(20+V10).

FOR HILBERT'S

abs \v\

1
4
36
39
40
9
65
74
81
86
89
16
79
96
111
124
135
144
151
156
159
160
25
106
129
150
169

/

1
2
2
2
2
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5

-k

17
34
38
39
40
51
55
56
57
58
59
68
71
72
73
74
75
76
77
78
79
80
85
88
89
90
91

civ)

1
18
-6

-168
0
84

-630
-1152

756
2304
882
292

-392
-3024
-1512
4144
7560
5940

-4568
-15120
-12096

0
630

-3456
-6216

0
12474

abs \v\

186
201
214
225
234
241
246
249
250
36
104
135
164
191
216
239
260
279
296
311
324
335
344
351
356
359
360

/

5
5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

-k

92
93
94
95
96
97
98
99
100
102
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

c(v)

24192
10332

-25344
-37785
-24192
11592
48384
43092

0
252

-1008
-7560
-8316
5544
30240
31320

-10080
-65016
-83232
-24192
61488
98280
79776
-3528
-77364
-71856

0
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that <j> = 0. Indeed, according to Theorem 3 and the argument given above, for all but
finitely many discriminants, o(v/\/A) < ^implies that

c(v) = \l{nl-n2)-

with v = n3v+nirji—n2ri2- Thus c(v) = 0 but c(n) # 0 implies that (v/2)(nl—n2) = un3 in
this range. But one readily proves that a Siegel modular form cannot have all its non-zero
Fourier coefficients c(n), a(n) < K supported on a linear submanifold of positive codimension.

4. Applications with A = 40 and A = 229. In this section Theorem 3 is applied to obtain
the leading Fourier coefficients of Xs = O{G> ^^^)\MU,. f° r A = 40 and A = 229. These
cases are of special interest because the class number of the corresponding fields are greater

TABLE IV. FOURIER COEFFICIENTS OF THE NORMALIZED CUSP FORM XS FOR HILBERT'S
MODULAR GROUP ASSOCIATED WITH Q(229*) FOR REDUCED v/V229.

,/229+V229\
\ 2 ; •

abs \v\

v = k + ll

I -k c(v) abs \v\ -k c(v)

1
4

225
228
229
9

425
443
459
473
485
16
592
627
660
691
720
747
.772
900
907
912
915
916
25
729
781
831
879
925
969
1011
1051
1089
1299

1
2
2
2
2
•3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5

107
214
227
228
229
321
334
335
336
337
338
428
440
441
442
443
444
445
446
454
455
456
457
458
535
546
547
548
549
550
551
552
553
554
561

1
18

-15
-420

0
84

-1764
-3744
756
4896
2016
292

-1148
-9828
-8316
4144
14364
12852
1372
-270

-12960
-37800
-30240

0
630
-27

-11232
-24864
-18144
12474
42336
37296
14688

33
-21924

1321
1341
1359
1375
1389
1401
1411
1419
36
905
972
1037
1100
1161
1220
1277
1332
1385
1661
1700
1737
1772
1805
1836
1865
1892
1917
1940
1961
2025
2036
2045
2052
2057
2060
2061

5
5
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6

562
563
564
565
566
567
568
569
642
653
654
655
656
657
658
659
660
661
667
668
669
670
671
672
673
674
675
676
677
681
682
683
684
685
686
687

-86688
-105840
-78624
11592
102816
120960
94752
23436
1512

-3276
-27972
-45738
-19404
30240
63756
79002
40068
4284

-20448
-144648
-247968
-277056
-133056

61992
229824
362304
296352
165312
22752
-1260
-56700
-226800
-341460
-374220
-204120

0

https://doi.org/10.1017/S001708950000255X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950000255X


AN ANALOGUE OF A CONJECTURE OF SATO AND TATE 87

than 1. In fact, 40 is the least discriminant corresponding to a field of class number 2 which
is a sum of two squares, and 229 is the least discriminant of a field of class number 3 which is
prime and a sum of two squares. It is not known whether the Hilbert modular form Xs is an
eigenfunction of the Hecke ring in either of these cases.

A basis for the ring of integers of the field k& of discriminant A is, in any case, given by
1 and co = (A+v"A)/2. If v = k+lo, then

Tables III and IV above present some Fourier coefficients c(v) of Xs for A = 40 and A = 229

respectively. In both cases, v is constrained to lie in the domain <a: —1 > — > — >, where

tll = (u+y/A)/2, and (M, V) = (6, 4) for A = 40 and (u, v) = (15, 4) for A = 229. Note that
t]l is a fundamental unit in each case.
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