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If L is a distributive lattice in which every element is the join of finitely
many join-irreducible elements, and if the set of join-irreducible elements of
L satisfies the descending chain condition, then L satisfies the descending
chain condition: this follows easily from the results of Chapter VIII,
Section 2, in the Third (New) Edition of Garrett Birkhoff's 'Lattice
Theory' (Amer. Math. Soc, Providence, 1967). Certain investigations
(M. S. Brooks, R. A. Bryce, unpublished) on the lattice of all subvarieties
of some variety of algebraic systems require a similar result without the
assumption of distributivity. Such a lattice is always join-continuous:
that is, it is complete and (A-^0 vy = /\{zvy:xe X} whenever X is a
chain in the lattice (for, the dual of such a lattice is complete and
'algebraic', in Birkhoff's terminology). The purpose of this note is to present
the result:

THEOREM. Let L be a join-continuous modular lattice. The descending
chain condition is satisfied by L if (and obviously only if)

(i) every element of L is a join of finitely many join-irreducible elements,
and

(ii) the set M of join-irreducible elements of L satisfies the descending
chain condition.

It would be interesting to know whether this remains a theorem if the
assumption of modularity (and/or of join-continuity) is omitted.

Use will be made of a lemma, which states what the proof of Theorem 2
of Birkhoff (loc. cit.) shows; however, it will be established here by an
apparently simpler argument.

LEMMA. Let M be a partially ordered set satisfying the descending chain
condition, and let ^V be the set of those finite subsets of M which consist of
mutually incomparable elements. Define a partial order fS, on ^V by putting

A^B if VaeA .3beB .a^b.

Then JV satisfies the descending chain condition.
l
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PROOF. It is easy to check that the relation sS defined on JV is indeed
a partial order. Suppose the Lemma is false, and

is an infinite properly descending chain (of type m) in JV. Then \JiAt is
infinite. Consider the sequences

(a) ax 5g • • • ^ at 25 • • • at e A{

which are maximal: that is, either infinite, or finite with last term an such
that An+1 has no element an+1 with an S; an+i- As each element of the infinite
set \JiAt occurs in some such sequence while each sequence has only finitely
many distinct terms, there must be infinitely many such sequences. Given
a positive integer k, there are only finitely many (not necessarily maximal)
sequences of length k which can occur as initial segments of the sequences
(a): thus at least one sequence of length k, say

bx^---^bk b.eA,,

is the initial segment of infinitely many sequences (a). Of these, infinitely
many must have the same initial segment of length k-\-\, say

Inductively, one obtains the existence of an infinite sequence

( b ) & i ^ • • • ^ & * ^ - - - bieAi

such that each initial segment of (b) is also the initial segment of infinitely
many other (maximal) sequences. Now (b) must be constant from some
term on: say, bm = bm+1 = • • •. Let (a) be another sequence with initial
segment 6X Sg • • • =5 bm; that is, with ax = blt • • •, am = bm. As (a) is
maximal, it cannot be an initial segment of (b); hence there will be an integer
n with am+n ^ bm+n, but of course with

« m + n ^ am = bm = bm+n:

so that am+n < bm+n, contrary to the fact that Am+n consists of mutually
incomparable elements. This contradiction completes the proof.

PROOF OF THE THEOREM. Suppose that x1 S: • • • S; xt S: • • • is a
descending chain (of type a>) in L, and put x = f\iXt. The first step is to
show that the dual ideal D generated by x also satisfies the hypotheses:
the rest of the argument can be carried out in D, or, still more conveniently,
it can be assumed without loss of generality that x is the least element of L.

Obviously, D is modular and join-continuous. It also inherits (i),
for y -> x v y is a join-homomorphism of L onto D which maps join-
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irreducibles to join-irreducibles: if a is join-irreducible in L, it is certainly
join-irreducible in the interval [x A a, a], and so — by the isomorphism
theorem of modular lattices — x v a is join-irreducible in [x, x v a] and
hence also in D. Suppose that dx 3: • • • ^ dt 2: • • • is a descending chain
of join-irreducible elements of D. Write dx as a join of join-irreducibles
ax, • • -, am of L; then dx is also the join of their images in D, and hence one
of these images is dx: say, dx = x v ax. Put d'x = ax. Next, suppose that
d( = xv d'{ with d\ join-irreducible in L. Then, as dt 2: d{+1 S2 x and L
is modular, di+1 = xv (di+1 A d'>\. Write d<+1 A d\ as a join of join-irreducibles
of L: say, of bx, • • •, bn. As i i + 1 is the join of their images in D, one such
image must be di+1 itself: say, di+1 = xvbx. Put d'i+1 = bx; note that
d\ =s ^i+i- Inductively, it is possible to select a descending chain
d'x ^ • • • S? ̂  ^ • • • of join-irreducibles of L such that

^x = x v ^ i , • • •, dt = x v d't, • • -.

As M satisfies the descending chain condition, from some term on
d'k = d'k+1 = • • •, and hence dk = dk+1 = • • •. Tnis proves that D inherits (ii).

From now on it will be assumed that x is the least element of L.
Let !F be the set of all finite subsets of L, quasi-ordered by the relation

A ^ B if VaeA. 3b e B . a ^ b .

Let J be the set of all those finite non-empty subsets J oi M which
give their joins irredundantly: that is, if a e J then either \JJ =£ V(J\{a})
or J — {x}. (The join of the empty subset of L is interpreted as the least
element of L.) Note that */ is contained in JV which in turn is contained in
SF', and the partial order of ^V is just the restriction of the quasi-order
of &'. By the Lemma, J satisfies the descending chain condition with respect
to this partial order ^ . Moreover, it is an easy consequence of (i) that

(*) VA e^ .^JeJ .J ^A & V / =

Let y be any element of L, and / a minimal element of the set
{/ e */ : y ^ VJ} (note that, on account of (i), this set cannot be empty).
The next step is to show that if a e J and / ' = J\{a} then V / = (V/') v V-
To this end, consider a* = a A ((V/') v y) and A = J' u {a*}. By con-
struction, A ts= J- By the modular law,

\JA = (V/') v a* = (V/') v (a A ((V/') v y))

= (V/) A ((V7) v y) = (V/') v y ^ y.

According to (*), 3 / * e J . J* ^ A ^ J & V/* = \JA^y. The minimal
choice of / now implies that J* = J, thus V / = \M> a n c i it has already
been shown that \M = (V/') v V-
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For the final step, let J1 be a minimal element of the set
{/ e / : % ^ VJ}- If Ji has already been chosen so that x{ 5g \/Jf, then
the set {/ e J : xi+1 ^ V / & / = /<} *s non-empty; choose / t + 1 as a
minimal element from it. Inductively one obtains a descending chain
7i ^ • • • ^ /* ^ • • ' in J such that xt ^ V/ i and, if at e Jt, J'{ = Jt\{a,},
then (V/i) v xt = \JJi. As J satisfies the descending chain condition,
Jm = Jm+n for some m and every n; now it is possible to choose
«m+i, • • •. «m+n. • • • all equal to am, so that J'm = • • • = J^+ n = • • •, and
then \JJm = {yj'J v xm+n for every ». Put X = {xm, • • •, xm+n, • • •} and
use that L is join-continuous:

(V/J v x = (VA) v (AX) = A.((V/;) v xm+n) = V/m-

Since x is the least element of L, this means that \JJ'm = V/m- As / m gives
its join irredundantly, this can only happen if Jm = {x}. Thus x = \JJm ^ xm

yields that xm = • • • = xm+n = • • • = x, and the proof is complete.
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