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On the root number of representations

of orthogonal type

Erez M. Lapid

Dedicated to Hervé Jacquet

Abstract

Let π be a generic irreducible representation of either a symplectic group or a split special
even orthogonal group over a local field of characteristic zero. We prove that ε(1

2 , π, ψ) =
π(−1).

1. Introduction

Let F be a local field of characteristic zero and let G be either a symplectic group or a split even
special orthogonal group. For any generic irreducible representation π of G(F ), the L-factor L(s, π)
and the root number ε(s, π, ψ) with respect to the ‘standard’ representation of the L-group of G
were defined by Shahidi [Sha90b]. Here ψ is a fixed non-trivial character of F . Our main theorem
is the following.

Theorem 1. For π as above we have

ε(1
2 , π, ψ) = π(−1). (1)

This is an analogue of a result of Deligne [Del76] under the local Langlands reciprocity conjecture.
Deligne proved that the triviality of the root number of a representation φ : WF → SO(n,C) of
the Weil–Deligne group is equivalent to the possibility to lift φ to the double cover Spin(n,C)
of SO(n,C). By Langlands’ conjecture, φ corresponds to a representation π (or more precisely, an
L-packet) of either Sp(n − 1, F ) or the split SO(n,F ), depending on whether n is odd or even.
The lifting condition on φ becomes the descent of π to either PSp(n − 1, F ) or PSO(n,F ) which,
in turn, is equivalent to the triviality of π(−1).

The local Langlands conjecture for GLn was proved not too long ago by Harris, Taylor and
Henniart. It is quite deep (cf. [Car00, Rog00]), and not sufficient by itself to prove Theorem 1
(cf. [PR99]). In any case, our proof of Theorem 1 is more elementary.

Now let k be a number field, A = Ak its ring of adèles and G a symplectic group or a split even
orthogonal group over k. Theorem 1 immediately implies the following.

Theorem 2. Let Π be a generic cuspidal automorphic representation of G(AF ). Then ε(1
2 ,Π) = 1.

In fact, we will first prove Theorem 2 in a special case, which will imply Theorem 1 (and, hence,
Theorem 2 in general). We do so by a variant of the argument of [LR03], where we use Eisenstein
series on classical groups and, in particular, the inner product formula for their residues. To obtain
poles we use the theta correspondence. To analyze the theta correspondence locally we use the
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On the root number of representations of orthogonal type

results of Muic and Savin [MS00]. Globally, we utilize the work of Mœglin [Moe97a, Moe97b] and
Ginzburg, Rallis and Soudry [GRS97].

It is an intriguing question whether it is possible to give a purely local proof of Theorem 1.
The possibility of such a proof (cf. [BH99] and [LR03, Lemma 4]) is suggested by the doubling
method of Piatetski-Shapiro and Rallis [PSR86].1 A possible advantage would be to remove the
condition of genericity, or even splitness from the assumptions.

The analogue of Theorem 2 for orthogonal representations of the absolute Galois group of k
(which follows from Deligne’s result) had been proved by Frölich and Queyrut [FQ73]. There is also
a result of Saito for orthogonal motives [Sai95]. On the automorphic side, several cases are discussed
in [PR99].

Now let π be a cuspidal representation of GLn(A). We say that π is orthogonal if the symmetric
square (partial) L-function LS(s, π, sym2) has a pole at s = 1. In [GRS99], Ginzburg et al. con-
structed an explicit descent map from orthogonal cuspidal representations of GLn(A) with trivial
central character to cuspidal generic representations of either Sp(n− 1,A) or SO(n,A), depending
on whether n is odd or even. At this stage, not all the expected properties of the descent map are
proved (unlike the case of the descent to SO(2n+1), cf. [GRS01]). In particular, it is not clear to the
author whether it is known that epsilon factors are preserved under the descent map. However, these
issues are likely to be resolved in the near future. Granted the preservation of epsilon factors, we will
get that ε(1

2 , π) = 1 if π is cuspidal orthogonal with trivial central character. The central character
condition would also be eliminated once the descent formalism handles the endoscopic case as well,
as it does in the SO(2n+ 1) case. This is because root numbers of quadratic characters are known
to be one. The conclusion would be a generalization (but not a new proof) of Gauss’ celebrated
theorem on the signs of quadratic Gauss sums. We point out that we do not expect a simple formula
for the local root numbers of an orthogonal representation of GLn which avoids the descent.

2. Reduction to the supercuspidal case

Let F be a local field of characteristic zero and fix a non-trivial additive character ψ of F . For any
n let Sp(2n) be the symplectic group with respect to(

0 Jn

−Jn 0

)
and let SO(2n) be the special split orthogonal group with respect to(

0 Jn

Jn 0

)
.

Here Jn is the matrix with ones on the non-principal diagonal and zero elsewhere. We set

Gn =

{
Sp(n− 1) n odd
SO(n) n even.

The L-group LGn of Gn is SO(n,C). We often denote an algebraic group and its F -points by the
same letter. For an irreducible representation π of Gn we let ωπ be the scalar π(−1). Similarly,
for an irreducible representation π of GLn we let ωπ(·) be the central character of π. We also set
ωπ = ωπ(−1) in this case. If π1, π2 are representations of GLn, GLm, respectively, we denote by
π1 × π2 the parabolically induced representation of GLn+m (normalized induction). Similarly, if τ
is a representation of GLm and π is a representation of Gn we denote by τ � π the parabolically
induced representation of Gn+2m as in [Mui01]. This is somewhat ambiguous if n = 0, since in that

1This will appear in a forthcoming paper of the author with S. Rallis.
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case there are two non-conjugate parabolic subgroups with Levi subgroup isomorphic to GLm, but
they differ by an outer involution and this ambiguity will not have any effect in what follows. We
use ×, � as functors, i.e. also for the induction of intertwining operators. Consider the parabolic
subgroup P = MU of Gn+2 whose Levi subgroup M is isomorphic to GL1 ×Gn. The action of LM
on the Lie algebra of LU is given by 1⊗std, where std is the ‘standard’ n-dimensional representation
of LGn. By Shahidi [Sha90b] we can define the local factors L(s, π), ε(s, π, ψ), γ(s, π, ψ) for any
irreducible generic representation π of Gn (with respect to some non-degenerate character of the
maximal unipotent). In the case of GLn, the same procedure applies and the local factors obtained
agree with the ones defined by Godement and Jacquet in [GJ72] (cf. [Sha84]). They will also be
denoted by L(s, π), ε(s, π, ψ), γ(s, π, ψ). Recall that if π is an irreducible generic representation of
GLn, then

ε(s, π, ψa) = |a|n(s− 1
2
)ωπ(a)ε(s, π, ψ).

where for a ∈ F ∗, we set ψa(·) = ψ(a·) [Jac79]. In particular,

ε(s, π, ψ−1) = ωπε(s, π, ψ). (2)

Similarly, if π is an irreducible generic representation of Gn, then

ε(s, π, ψa) = |a|n(s− 1
2
)ε(s, π, ψ). (3)

This is deduced from a similar property for the gamma factor, which follows from its defining
properties [Sha90b, Theorem 3.5] and the properties of the gamma factors for GL1. In particular,
the left-hand side of (1) does not depend on the choice of ψ. Also, since std is self-dual, we have
(cf. [Sha90b, pp. 307–308])

L(s, π̃) = L(s, π), (4)
ε(s, π̃, ψ) = ε(s, π, ψ). (5)

If π is an irreducible generic representation of either GLn or Gn, then

γ(s, π, ψ) = ε(s, π, ψ)L(1 − s, π̃)/L(s, π) (6)

γ(s, π, ψ)γ(1 − s, π̃, ψ−1) = 1 (7)

ε(s, π, ψ)ε(1 − s, π̃, ψ−1) = 1 (8)

[Sha90b, (3.10) and (7.4)]. If, in addition, π is unitary, then

L(s, π) = L(s, π̃) (9)

ε(s, π, ψ) = ε(s, π̃, ψ) (10)

[Sha90b, Proposition 7.8].
We first point out that Theorem 1 is trivial in the case n = 0, 1. For n = 2, Gn is isomorphic to

a torus and if χ is a character of Gn, then

εSO(2)(s, χ, ψ) = εGL1(s, χ, ψ)εGL1(s, χ−1, ψ).

Thus,

εSO(2)(1
2 , χ, ψ) = εGL1(1

2 , χ, ψ)εGL1(1
2 , χ

−1, ψ)

= χ(−1)εGL1(1
2 , χ, ψ)εGL1(1

2 , χ
−1, ψ−1) = χ(−1)

as required. Suppose that π is a generic irreducible representation of Gn with n > 2. Then π is a
Langlands quotient of τ �σ where τ is a generic representation of GLk and σ is a tempered generic
representation of Gn−2k. It follows from the definition of the local factors in this case [Sha90b, § 7]
that

L(s, π) = L(s, τ)L(s, τ̃ )L(s, σ)
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and

ε(s, π, ψ) = ε(s, τ, ψ)ε(s, τ̃ , ψ)ε(s, σ, ψ).

In particular, by (8) and (2) we get

ε(1
2 , π, ψ) = ε(1

2 , τ, ψ)ε(1
2 , τ̃ , ψ)ε(1

2 , σ, ψ)

= ε(1
2 , τ, ψ)ε(1

2 , τ̃ , ψ
−1)ωτε(1

2 , σ, ψ) = ωτε(1
2 , σ, ψ).

Since ωπ = ωτωσ, Theorem 1 is reduced to the tempered case.
Assume that π is tempered and, hence, a subrepresentation of τ � σ where τ is tempered and σ

is square-integrable and generic. By using the multiplicativity of L and ε-factors [Sha90a], the same
argument as before reduces Theorem 1 to the square-integrable case. In particular, we are done in
the case F = C.

To reduce to the supercuspidal case we prove the following lemma.

Lemma 1. Suppose that π is a generic square-integrable representation of Gn which is a sub-
representation of π1 × · · · × πk � σ where πi and σ are supercuspidal (and generic). Then for all i

πi �= |·|m− 1
2 (a representation of GL1) for any m ∈ Z. (11)

Proof. In the case F = R this follows from Harish-Chandra’s classification of discrete series
(e.g. Proposition 1.14 of [Ada83] and, in particular, the integrality condition (1.9)). In the p-adic,
we use Muic’ characterization of discrete series [Mui01, Theorem 3.1]. Applying it to σ, we obtain
that

γ(s, σ × δ, ψ)γ(2s, δ,∧2 , ψ)

is holomorphic with at most a simple zero at s = 0 for any square-integrable representation δ
of GLr. Assume, on the contrary, that m is the largest integer for which πi = |·|±(m− 1

2
) for

some i. We take δ to be the Steinberg representation of GL2m. Then γ(s, δ,∧2, ψ) is zero at s = 0
(e.g. [Sha92, Proposition 8.1]) and γ(s, σ × δ, ψ) is holomorphic at s = 0 [CS98, Theorem 4.1].
It follows that

γ(s, σ × δ, ψ) is holomorphic and non-zero at s = 0. (12)

Similarly, applying Muic’ criterion to π (as well as [CS98, Theorem 4.1]) we obtain that

γ(s, π × δ, ψ) is holomorphic and non-zero at s = 0. (13)

On the other hand, by the multiplicative properties of the gamma factors (cf. [MS00, Proposition
3.1]) we have

γ(s, π × δ, ψ) = γ(s, σ × δ)
∏

i

m− 1
2∏

j=−m+ 1
2

γ(s+ j, πi, ψ)γ(s + j, π̃i, ψ). (14)

For any i, j

γ(s + j, πi, ψ)γ(−s − j + 1, π̃i, ψ) = ωπi (15)

by (8) and (2). From (12)–(15), it follows that
∏

i γ(s, πi, ψ)γ(s, π̃i, ψ) is holomorphic and non-zero
at s = −m+ 1

2 . However, by our definition of m, γ(s, πi, ψ)γ(s, π̃i, ψ) is holomorphic at s = −m+ 1
2

for all i and is zero there for at least one i. We obtain a contradiction.

Let π, πi, σ be as in the lemma. It follows from (11) that γ(s, πi, ψ), γ(s, π̃i, ψ) are holomorphic
at s = 1

2 . On the other hand, by [Sha90b, Proposition 7.2], L(s, π) and L(s, σ) are holomorphic for
Re(s) > 0 and, in particular, at s = 1

2 . Thus, using (4) and (6) we have ε(1
2 , π, ψ) = γ(1

2 , π, ψ) and
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similarly for σ. Again, using the multiplicativity of γ-factors we obtain

ε(1
2 , π, ψ) = γ(1

2 , π, ψ) = γ(1
2 , σ, ψ)

∏
i

γ(1
2 , πi, ψ)γ(1

2 , π̃i, ψ)

= ε(1
2 , σ, ψ)

∏
i

γ(1
2 , πi, ψ)γ(1

2 , π̃i, ψ
−1)ωπi = ε(1

2 , σ, ψ)
∏

i

ωπi.

Since ωπ = ωσ
∏

i ωπi , the reduction to the supercuspidal case follows from the subrepresentation
theorems of Jacquet and Casselman. In particular, if F is archimedean, Theorem 1 is proved.

Assume from now on that F is p-adic and π is an irreducible generic supercuspidal representation
of Gn, n > 2. By [Sha90b, § 7], the local factors are unchanged if we conjugate π by an F -rational
element of Gn/± 1. Thus, we may assume that π is ψ-generic, i.e. it is generic with respect to the
character

χ((xi,j)) =

{
ψ(x1,2 + · · · + x(n−1)/2,(n+1)/2) n odd
ψ(x1,2 + · · · + xn/2−1,n/2 + xn/2−1,n/2+1) n even.

In the notation of [Sha90b] this is the character χ0 defined by ψ and the standard splitting of Gn.
Note that if n is even, then the property of being ψ-generic does not depend on the choice of ψ.

We now use the results of Muic and Savin [MS00] to reduce to the case where the Howe lift
(i.e. local theta-lift) with respect to ψ of π to Gn−1 is zero. Indeed, suppose that the theta-lift to
Gn−1 is non-zero and let π′ be an irreducible quotient of it. Then π′ is supercuspidal and ψ-generic
and ε(1

2 , π, ψ) = ε(1
2 , π

′, ψ) [MS00, Theorems 2.1 and 2.2 and Proposition 5.1]. It is also clear
that ωπ = ωπ′ because the theta-lift is defined via a homomorphism from Gn × Gn−1 to a bigger
symplectic group whose kernel is Z/2Z imbedded diagonally in the centers of Gn−1, Gn. Thus, for
the proof of Theorem 1 we may replace π by π′. (Note that the theta-lift of π′ to Gn−2 is zero by
[Kud86, Theorem 2.1].)

3. Local intertwining operators

In this section, we make a digression and recall some facts about normalized intertwining operators.
Let F be a local field of characteristic zero as before and let π be a ψ-generic irreducible repre-
sentation of Gn. Consider the maximal parabolic subgroup P = MU of Gn+2 whose Levi part is
isomorphic to GL1 ×Gn and the representation I(π, s) = |·|s � π induced from |·|s ⊗ π (viewed as
a representation of P ) to Gn+2. If n is even, let

εn = ε =


1n/2−1

0 1
1 0

1n/2−1

 .

Conjugation by ε defines a non-trivial outer automorphism of Gn which preserves the standard
splitting and χ. For n odd we set ε = 1. Let πε be the representation of Gn on the same space as π
obtained by twisting the action by ε. We choose a representative w = wn of the Weyl group of Gn+2

such that wMw−1 = M and w /∈ M by the recipe given in [Sha85] with respect to the standard
splitting. Specifically,

w =

 (−1)(n+1)/2

−1n−1

(−1)(n−1)/2


278

https://doi.org/10.1112/S0010437X03000034 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000034


On the root number of representations of orthogonal type

if n is odd and

w =

 (−1)n/2

−ε
(−1)n/2


if n is even.2 On U we take the Haar measure which is self-dual with respect to ψ. The intertwining
operator

M(π, s) : I(π, s) → I(πε,−s)
is defined by

M(π, s)ϕ(g) =
∫

U
ϕ(w−1ug) du

for Re(s) sufficiently large. It admits a meromorphic continuation in the usual sense. Shahidi defined
the normalization factors

m(π, s, ψ) =
L(s, π̃)

ε(s, π̃, ψ)L(s + 1, π̃)
.

The normalized intertwining operators R(π, s, ψ) are given by

M(π, s) = m(π, s, ψ)R(π, s, ψ).

If π is unitary, then it follows from (9), (10), (4), (5) that

m(π, s, ψ) = m(π, s, ψ) = m(π, s, ψ). (16)

Assume that n is even and πε � π. Then we can define canonical local intertwining maps ιπ : πε → π
by W �→W ε on the Whittaker model of π with respect to ψ where, as usual, the superscript ε means
conjugation by ε. By the uniqueness of the Whittaker model, ιπ does not depend on the choice of
the Whittaker model. Neither does it depend on ψ, since upon changing ψ to ψa, the Whittaker
model is left-translated by the diagonal matrix t = diag(an/2−1, . . . , a, 1, 1, a−1, . . . , a−n/2+1), and
tε = t. If π is unramified, then ιπ fixes the unramified vector since if the conductor of ψ is the ring
of integers of F , then the unramified Whittaker function is non-zero at the identity [CS80].

For n even or odd, we set

B(π, s, ψ) = ιπ,−s ◦R(π, s, ψ) : I(π, s) → I(π,−s)
where ιπ,s = 1 � ιπ : I(πε, s) → I(π, s) is induced from ιπ, i.e. ιπ,sϕ(g) = ιπ(ϕ(g)). (If n is odd we
simply take ιπ = 1.)

Lemma 2. Let π be a generic irreducible representation of Gn, such that πε � π. Then we have the
following.

1) B(π,−s, ψ)B(π, s, ψ) = I.

2) Assume that B(π, s, ψ) (respectively L(s, π)) is holomorphic at s = 0 (respectively s = 1).
Then B(π, 0, ψ) has a non-trivial +1-eigenspace (cf. [KS88, § 6]).

3) Suppose that π is unitary. Then B(π, s, ψ)∗ = B(π, s, ψ). Thus, B(π, s, ψ) is unitary and, in
particular, holomorphic for Re(s) = 0.

Proof. Fixing a Whittaker functional λ on π, we define a Whittaker functional Wλ(π, s) on I(π, s)
for Re(s) 	 0 by

Wλ(π, s)ϕ =
∫

U
λ(ϕ(w−1u))χ(u) du.

2There is a misprint in the representatives given in [Sha02, § 1].
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It is proved in [Sha81] that Wλ(π, s) extends to an entire function (in s) and Wλ(π, s) �≡ 0 for all s.
We can view λ as a Whittaker functional on πε, since χε = χ. By definition λ = λιπ. Thus, Wλ(πε, s)
is well defined and we have

Wλ(πε, s) = Wλ(π, s)ιπ,s.

The local coefficients are the proportionality constants in the functional equation

Wλ(π, s) = c(π, s, ψ)Wλ(πε,−s)M(π, s).

(They are clearly independent of λ.) By Theorem 3.5 of [Sha90b], applied to this case they are given
by

c(π, s, ψ) = ε(s, π̃, ψ)L(1 − s, π)/L(s, π̃).

(In fact, this relation is used to define L, ε.) We obtain

Wλ(π,−s)B(π, s, ψ) = Wλ(π,−s)ιπ,−sm(π, s, ψ)−1M(π, s)

= m(π, s, ψ)−1Wλ(πε,−s)M(π, s) = m(π, s, ψ)−1c(π, s, ψ)−1Wλ(π, s)
= L(1 + s, π)/L(1 − s, π)Wλ(π, s)

by (4) and (3).
The first two parts of the lemma follow immediately from this relation. To prove the last part, we

identify the Hermitian dual of π with itself by choosing an invariant positive-definite inner product.
We claim that ιπ is Hermitian. Indeed, since ιπ is an intertwining operator, it must preserve the
inner product up to a scalar. This scalar is ±1 since ιπ is an involution. On the other hand, it is
also positive. Hence it is one. We conclude that ι∗π,s = ιπε,−s, where ∗ denotes the Hermitian dual.
It is also easy to check the relation

M(πε, s)ιπε,s = ιπ,−sM(π, s).

Finally, M(π, s)∗ = M(πε, s). We infer that

(ιπ,−sM(π, s))∗ = M(π, s)∗ι∗π,−s = M(πε, s)ιπε,s = ιπ,−sM(π, s).

Thus,

B(π, s, ψ)∗ = B(π, s, ψ)

by (16).

Proposition 1. Under the conditions of the previous lemma, suppose that F is p-adic and π is
supercuspidal. Then:

1) B(π, s, ψ) is holomorphic and not identically zero for Re(s) � 0;

2) B(π, s, ψ) is non-degenerate for 0 � s < 1.

If, in addition, L(s, π) has a pole at s = 0, then B(π, 1, ψ) is positive semi-definite.

Proof. For Re(s) > 0, the first part follows from the corresponding statements for M(π, s) [Sil79,
Theorem 5.4.2.1] and m(π, s, ψ) [Sha90b, Proposition 7.2, part a]. For Re(s) = 0, this follows from
the previous lemma.

The second part follows from the fact that I(π, s) is irreducible for 0 < s < 1 [Sha90b, Theorem
8.1]. To prove the last part note that the condition on the L-function is equivalent to the irreducibility
of I(π, 0) [MS00, Lemma 6.1]. It follows from Lemma 2 that B(π, 0, ψ) = 1. Fix a small congruence
subgroup K. Then on the K-fixed part of I(π, s), B(π, s, ψ) is a continuous family of Hermitian
forms for 0 � s � 1 which is non-degenerate for 0 � s < 1 and positive-definite at s = 0. Hence,
B(π, 1, ψ) is positive semi-definite.

280

https://doi.org/10.1112/S0010437X03000034 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000034


On the root number of representations of orthogonal type

4. The global argument

Recall that we reduced Theorem 1 to the case where π is a supercuspidal, irreducible generic
representation of Gn whose theta-lift to Gn−1 is zero. Assume that this is the case. Then the
theta-lift π′ of π to Gn+1 is irreducible, generic supercuspidal and L(s, π′) has a pole at s = 0
[MS00, Theorems 2.1 and 2.2 and Proposition 5.1].

Choose a totally complex number field k of discriminant Dk and a place v0 of k such that
kv0 � F [MS00, Lemma 5.2]. Let Π = ⊗Πv be a globally generic cuspidal representation of Gn(Ak)
with respect to ψ = ⊗ψv such that Πv0 = π and Πv is unramified for all finite v except v0 [Sha90b,
Proposition 5.1]. We will prove Theorem 2 for this Π. Since

ε(1
2 ,Π) = ε(1

2 , π)
∏
v|∞

ε(1
2 ,Πv), ωπ =

∏
v|∞

ωΠv ,

and we already know Theorem 1 in the archimedean case, we will obtain Theorem 1 for π.
By our assumption on π, the theta-lift of Π to Gn−1(A) is zero (cf. [MS00]). Thus, as in [GRS97],

the theta-lift of Π to Gn+1(A) is cuspidal and generic. It will soon be shown to be irreducible, but
for the time being, let Π′ be a generic irreducible constituent of it.

Let EΠ(g, ϕ, s) be the Eisenstein series on Gn+2 induced from |·|s⊗Π. Whenever it is regular it de-
fines an intertwining map from the induced space I(Π, s) to the automorphic forms on Gn+2(A). Let
EΠ′(g, ϕ′, s) be the analogous Eisenstein series on Gn+3. Denote by M(Π, s) : I(Π, s) → I(Πεn ,−s)
the intertwining operator defined by

M(Π, s)ϕs(g) =
∫

U(A)
ϕs(w−1

n ug) du

where wn is as in §3. Similarly for M(Π′, s). By the general theory of Eisenstein series (e.g. [MW94]),
it is known that EΠ(g, ϕ, s) and M(Π, s) are holomorphic for Re(s) = 0 and have finitely many poles
for Re(s) > 0, all of which are real and simple. They can only occur if Πεn � Π. The poles of E(g, ϕ, s)
and M(Π, s) coincide. Similarly for Π′.

Following Shahidi, we write the intertwining operator as

M(Π′, s) = m(Π′, s)R(Π′, s)

where

m(Π′, s) =
L(s, Π̃′)

ε(s, Π̃′)L(s+ 1, Π̃′)
=

L(s,Π′)
ε(s,Π′)L(s + 1,Π′)

and R(Π′, s) = ⊗Rv(Π′
v, s, ψv) is the ‘global’ normalized intertwining operator. (This is well defined

since Rv(Π′
v , s, ψv) fixes the unramified vector for almost all v. As the notation suggests, R(Π′, s)

does not depend on ψ.)
We claim that

m(Π′, s) = m(Π, s) × ζk(s)|Dk|s− 1
2

ζk(s+ 1)
(17)

and more precisely

L(s,Π′
v) = L(s,Πv)L(s,1v) (18)

ε(s,Π′
v , ψv) = ε(s,Πv , ψv)ε(s,1v , ψv) (19)

for all v. Indeed, for v|∞ this follows from [AB95]. For v = v0, this follows from the main result of
[MS00]. Let v be a finite place different from v0. The relation (18) follows from [Ral82]. By (3), it is
enough to check (19) in the case where ψv is unramified, in which case both sides are equal to one.
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Lemma 3. The Eisenstein series EΠ′(g, ϕ, s), the intertwining operator M(Π′, s) and the normal-
ization factor m(Π′, s) have a simple pole at s = 1. On the other hand, EΠ(g, ϕ, s), M(Π, s) and
m(Π, s) are holomorphic near s = 1.

Proof. By [Kim02, Proposition 4.9], R(Π, s) and R(Π′, s) are holomorphic and non-zero for
Re(s) � 1. Thus, by (17) it is enough to check that m(Π, s) is holomorphic and non-zero at s = 1.
If m(Π, s) were not holomorphic at s = 1 then m(Π′, s) and, hence, M(Π′, s) would also have at
least a double pole at s = 1, which is impossible.

By [GRS97], the partial L-function LS(s,Π) (with S containing the archimedean places and v0)
is holomorphic for Re(s) � 1 since the theta-lift of Π to Gn−1 is zero. The same will be true for
L(s,Π) by [Kim02, Proposition 4.9].

It remains to show that L(1,Π) �= 0. This follows from the relation (3.4) of [Sha88] and the
holomorphy of EΠ(g, ϕ, s) at s = 0.

Lemma 4. The Eisenstein series EΠ(g, ϕ, s) and intertwining operators M(Π, s) are holomorphic
for Re(s) � 0.

Proof. Suppose that the conclusion of the lemma is false and let s0 > 0 be the rightmost pole of
EΠ(g, ϕ, s). By the main result of [Moe97a], s0 is an integer and the theta-lift of Π to H is non-zero
where H is either Gn−2s0+1 or an inner form of it (if n is odd).3 By Propositions 2.4 and 3.3 of
[GRS97], the local Howe lift of Πv to Gn−2s0+1 is zero if s0 > 1. Since H splits almost everywhere,
we get that s0 = 1. This contradicts the previous lemma.

Since EΠ′(g, ϕ, s) has a pole at s = 1, we have Π′ � Π′ε where ε = εn+1. The representation Π′ε

has an automorphic realization on the space {ϕε : ϕ ∈ VΠ′} where ϕε(g) = ϕ(gε). We claim that
the two spaces Π′ and Π′ε of automorphic forms on Gn+1\Gn+1(A) are ‘physically’ equal. Indeed,
if n is odd (the only non-trivial case) then the theta-lift Θ of Π to O(n + 1,A) is cuspidal and,
hence, irreducible [Moe97b]. Locally, the restriction of an irreducible representation of O(2r, F ) to
SO(2r, F ) is either irreducible, or a sum of two inequivalent but ε-conjugate representations. It
follows that the (abstract) restriction of Θ to SO(n + 1,A) is irreducible, since it contains Π′ and
Π′ε � Π′. Thus, Θ = Π′ as spaces and, hence, Π′ = Π′ε as required.

Let ιΠ′ : VΠ′ → VΠ′ be the map ϕ �→ ϕε. Then ιΠ′ defines an intertwining map Π′ε → Π′. This
is compatible with the local maps defined in § 3 in the sense that ιΠ′ =

∏
v ιΠ′

v
.

We are now going to exploit the positivity of the inner product of residues of Eisenstein series
as done in [LR03]. Let E−1(g, ϕ) (respectively M−1) be the residue of EΠ′(g, ϕ, s) (respectively
M(Π′, s)) at s = 1. Then E−1(g, ϕ) is square integrable and (with an appropriate normalization of
measures)

(E−1(·, ϕ), E−1(·, ϕ)) = (ιΠ′,−1 ◦ M−1ϕ,ϕ)
where on the left-hand side we take the inner product on L2(Gn+3(F )\Gn+3(A)) and on the right-
hand side we take the pairing I(Π′,−1) × I(Π′, 1) → C. (The role of ιΠ′ is to identify Π′ and
Π′ε through their common automorphic realization, cf. [MW94, II.1.9].) We may write M−1 =
m−1R(Π′, 1) where m−1 = ress=1m(Π′, s). We conclude that

B(Π′, 1) = ⊗Bv(Π′
v, 1, ψv) (20)

defines a semi-definite form (also denoted by B(Π′, 1)) on I(Π′, 1), which is of the same sign as m−1.
On the other hand, by (17),

m−1 =
L(1,Π)

ε(1,Π)L(2,Π)
ress=1ζk(s)|Dk| 12

ζk(2)
.

3We note the following misprint in [Moe97a, p. 203]: θY (π ⊗ η) �= 0 should be replaced by θY (π ⊗ χ) �= 0.
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The relation (3.4) of [Sha88] together with Lemma 4 imply that L(s,Π) �= 0 for Re(s) > 1 (cf. the
proof of Proposition 4.9 in [Kim02]). We have already noted that L(s,Π) is holomorphic for
Re(s) � 1. Since both L(s, π) and ε(s,Π) are real for s ∈ R and the latter is an exponential
function, we conclude that the sign of m−1 agrees with ε(1

2 ,Π).
It remains to show that B(Π′, 1) is positive semi-definite. We will show that

Bv(Π′
v , 1, ψv) is positive semi-definite (21)

for all v. (We already know by Lemma 2, part 3 that Bv(Π′
v , 1, ψv) is Hermitian and by (20) it is

semi-definite.)
For v �= v0 finite this is clear, since in that case Bv(Π′

v, s, ψv) fixes the unramified vector for
all s. For v = v0, (21) follows from Proposition 1, since Π′

v0
= π′.

It remains to consider the case where v is complex. Since Πv is generic, it is an irreducible
principal series [Vog78]. It follows from [AB95] that Π′

v = χ1 × · · · × χ[n/2] � 1 where χi are
characters of C

∗ and 1 denotes the trivial character of either SO(2) if n is odd or Sp(0) if n is even.
Since Π′

v is irreducible we may permute the χi and change any χi to χ−1
i . Since Π′

v is unitary, it is
Hermitian and, hence,

{χ±1
1 , . . . , χ±1

[n/2]} = {χ1
±1, . . . , χ[n/2]

±1} (22)

as multi-sets. Note that if χ = χ−1 then χ is unitary, while if χ = χ then χ = |·|α for some α ∈ R.
Thus, again up to inverting some of the χi, the χi consist of pairs κj , κj

−1 together with unitary
characters and unramified characters of the form |·|tk for tk ∈ R. Separating the unramified χi from
the ramified ones, we can write Π′

v as τ � σ where:

1) τ = λ1|·|α1 × λ1|·|−α1 × · · · × λr|·|αr × λr|·|−αr × µ1 × · · · × µs where λi and µj are unitary
ramified characters of C

∗ and αi ∈ R�0;

2) σ = |·|β1 ×|·|−β1 × · · ·× |·|βt ×|·|−βt ×|·|γ1 × · · ·× |·|γl �1 where β1, . . . , βt ∈ C and γ1, . . . , γl ∈
R ∪ iR.

In particular, τ and σ are Hermitian. Since Π′
v is unitary and irreducible, both τ and σ are unitary

(cf. [Tad93, p. 20]). By the same argument, λi|·|αi × λi|·|−αi is a unitary representation for GL2(C)
for any i. This implies that αi <

1
2 (e.g. [Wal79]). Let m = 2r + s, so that τ is a representation of

GLm(C).
To analyze Bv(Π′

v , 1, ψv), we write w = wn+1 as w = u2wn+1−2mu1, where wn+1−2m ∈ Gn+3−2m

is defined in § 3 and

u1 =


−1

. . .
−1

1

 , u2 =


(−1)m

1
. . .

1

 ∈ GLm+1.

We view GLm+1 and Gn+3−2m as subgroups of Gn+3 – the former via

g �→
g 1n+1−2m

Jm+1
tg−1Jm+1


and the latter via

g �→
1m

g
1m

 .

This decomposition of w is reduced. There is a decomposition of M(Π′
v, s, ψv) corresponding to it
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as

(Mu2(−s, τ) � 1) ◦ (1 �M(σ, s)) ◦ (Mu1(s, τ) � 1).

Here Mu1(s, τ) is the intertwining operator |·|s × τ → τ × |·|s of GLm+1 corresponding to u1 and
similarly Mu2(−s, τ) is the intertwining operator τ × |·|−s → |·|−s × τ . Note that Mu1(s, τ)

∗ =
ωτMu2(−s, τ). The factor ωτ comes from the fact that

u−1
2 u1 =

(
(−1)m

−1m

)
.

Similarly, we have the factorization

m(Π′
v, s, ψv) = m(τ, s, ψv)m(τ̃ , s, ψv)m(σ, s, ψv),

where

m(τ, s, ψv) =
L(s, τ̃)

ε(s, τ̃ , ψv)L(s+ 1, τ̃ )
.

Note that

m(τ, s, ψv) = m(τ̃ , s, ψv) = ωτm(τ̃ , s, ψv).

It also clear from the definition that ιΠ′
v

= 1 � ισ. All in all,

Bv(Π′
v, s, ψv) = (1 � ισ,−s)(m(τ̃ , s, ψ)−1Mu2(−s, τ) � 1)

× (1 �R(σ, s, ψv))(m(τ, s, ψ)−1Mu1(s, τ) � 1)

= (m(τ̃ , s, ψ)−1Mu2(−s, τ) � 1)(1 � B(σ, s, ψv))(m(τ, s, ψ)−1Mu1(s, τ) � 1)
= (Ru1(s, τ) � 1)∗(1 � B(σ, s, ψv))(Ru1(s, τ) � 1) (23)

where Ru1(s, τ) = m(τ, s, ψ)−1Mu1(s, τ).

We claim that |·|s × τ is irreducible at s = 1 and that Ru1(s, τ) is holomorphic and invertible at
s = 1. The first assertion follows from the much more general Proposition I.9 of [MW89]. Here we
use the fact that λi, µj are ramified and αi <

1
2 . (In the language of [MW89], the parameters of λi,

µj are non-zero.) For the second assertion we can assume that m = 1 by decomposing Ru1(s, τ) into
m normalized intertwining operators for GL2. The case m = 1 follows from [MW89, Lemma I.5,
part ii].

Thus, it follows from (23) that Bv(σ, s, ψv) is holomorphic and semi-definite at s = 1 and its sign
agrees with that of Bv(Π′

v, 1, ψv). This implies (21) since Bv(σ, s, ψv) fixes the unramified vector.

Thus, (21) holds for all v and the proof of Theorem 2 for Π is complete.
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