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A PROBABILISTIC ALGORITHM FOR FINDING THE RATE
MATRIX OF A BLOCK-G//M/1 MARKOV CHAIN
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Abstract

An efficient probabilistic algorithm is presented for the determination of the rate matrix of
a block-G//M/l Markov chain. Recurrence of the chain is not assumed.

1. Introduction

Following the work of Neuts, consolidated in his book [16], there has been con-

siderable interest in the structure and application of b l o c k - G / / M / l Markov chains.

Such a chain is customarily taken as one whose one-step transition matrix may be

partitioned as

Q =

D , Co 0 0

D2 C, Co 0

D 3 C2 C, Co

D 4 C3 C2 C,
(1.1)

m>0 Cm is stochastic and irreduciblewhere each matrix Cm is k x k, the matrix C : =

and the block D 2 is nonzero. The sets of states corresponding to successive blocks are

envisaged as constituting levels, and the states within each block phases.

Neuts remarked on a number of special cases that appear in the literature, par-

ticularly various elaborations of the basic G / / M / 1 queueing model. With such
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applications, the primary question is again the determination of the invariant probabil-
ity measure in the case when the chain is positive recurrent. This may be determined
through the use of an auxiliary parameter, the rate matrix R.

Denote by Rjv the expected number of visits made by the process to state (i + 1 , v)
before the first revisit to level / > 0, given it begins in the state (i,j). Since the
chain is skip-free from below, we may argue by homogeneity to the right that Rjv is
well-defined and independent of i and is the minimal nonnegative solution to

i=0

This result was given by Neuts [16, Lemma 1.2.3] for the positive recurrent case,
but careful examination reveals that the proof does not actually depend on positive
recurrence or indeed even recurrence.

As before, denote the invariant probability measure in the positive recurrent case
by 7r = (7r0, TT\, ...), with each nt a /t-vector. Neuts [16, Theorem 1.2.1] has shown
that

• 7r,+i = KjR for / > 0;

• the matrix D(R) := YlTLo & Dj+\ ' s stochastic and n0 an invariant measure
on it;

• the matrix / — R is invertible and 7To is normalised by no(I — R)~*e = 1.

Knowing R is thus central for the determination of the invariant probability measure of
a positive recurrent block-G//M/l Markov chain. Neuts has provided an algorithm
[16, p. 13] based on (1.2) for the evaluation of R, but this can converge very slowly.
Our present aim is to provide a more efficient algorithm, which we shall call H*. The
notation is chosen to provide consistency in a subsequent companion article where
we demonstrate a natural duality, manifested by use of *, with Algorithm H* dual to
Algorithm H, a procedure presented in [11]. The role of Algorithm H in evaluating
the fundamental matrix G in a block-A// G/l Markov chain (see, for example, [6,17])
is comparable to that of Algorithm H* for determining R in the present article.

In fact we shall see via the duality how to construct some further efficient algorithms
for calculating R and G in the case of a quasi-birth-and-death process. We shall also
find relations between Algorithm H*, the logarithmic reduction algorithm of Latouche
and Ramaswami [12] and the cyclic reduction algorithms of Bini and Meini (see,
for example, [7-9] and [15]). Further, duality provides results on convergence rates.
Accordingly we defer for the present comparison of Algorithm H* with those other
algorithms relating to the QBD case.

In the following two sections we set up the probabilistic ideas involved in our
construction. These ideas are drawn together for a succinct formulation of Algorithm
H* in Section 4. The remainder of the article is concerned with five extended nu-
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merical experiments comparing Algorithm H* with algorithms other than those that

will be considered in connection with duality. These are invariant subspace methods,

introduced in Section 5 and applicable when C(z) is rational and the chain positive

recurrent, and the Neuts method.

2. Preliminaries

As with finding G in a structured M/G/l Markov chain, it proves convenient to

label the levels of the chain tf as — 1, 0, 1, 2 , . . ' . , so that *£ is homogeneous in the

one-step transition probabilities into all nonnegative levels. In evaluating R we are

concerned with the numbers of visits of *& to states of level 0 from initial level - 1 ,

with —1 as a taboo level. We may thus, without loss of generality, replace ^ with a

chain ^ with levels — 1 , 0, 1, 2 , . . . and structured one-step transition matrix

0 Q, 0 0 ••

0 Ci Co 0 ••

pi — 0 C2 C\ Co • •

0 C3 C2 C, ••

Our analysis will be mostly in terms of the (substochastic) subchain <&0 with levels

0, 1, 2 , . . . and structured one-step transition matrix

p*(0) _

C, Co 0 0

C2 C, Co 0

C3 C2 C\ Co

The assumption that ^ is irreducible entails that every state in a nonnegative-

labelled level has access to level —1. Hence all the states of ^0 are transient or

ephemeral.

For t = 0, 1, 2 , . . . , denote by X,, Y, respectively the state and level of ^0 at time

t. For r, s € Jf := {1, 2, . . . , k) we define

Ur,s : = P ( ( J {X, = (0, s), Yu>0(0<u< t)} \Xo = (0, r) J .
\/>o /

Thus UrtS is the probability that, starting in (0, r), the process % revisits level 0 at

some subsequent time and does so with first entry into state (0, s).

The matrix U := (f/fJ) may be regarded as the one-step transition matrix of a

Markov chain <2c on the finite state space Jtf. The chain °U is a censoring of %>. No
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state of % is recurrent, for if r e Jf were recurrent, the state (0, r) in %> would be
recurrent, a contradiction. Since no state of W is recurrent, / — U is invertible and

1=0

The matrix U is also strictly substochastic.
By elementary Markov chain theory, the (m, s) entry in (/ — f/)"1 gives the

expected number of visits made by %> to (0, s), given ^o begins in (0, m). In #', any
path whose probability contributes to Rrs begins in (—1, r), moves immediately to
some state (0, m) and then makes one or more visits to state (0, s). Allowing for all
possible choices of m, we derive that

Rr,s= X ! (
\ 1=0

so that

R = COJ2U" =
n=0

We proceed to determine R via U.
For I > 0, we write U{1) for the matrix whose entries are given by

[X, = (0, s), 0 < Yu < I (0 < u < t)) \X0 = (0, r) )
V>o /

for r, s e Jf. Thus U{t) corresponds to U when the trajectories in % are further
restricted not to reach level I or higher before a first return to level 0.

We may argue as above that / — U(i) is invertible and

oo

/-£/(£)=£( 1/(0)'.
;=o

Further, since U is finite, U(l) t U and [/ - U(t)]~l t [/ - t^"1 as £ ^ oo.
The probabilistic construction we are about to detail involves the exact algorithmic

determination (to machine precision) of U{1) for t of the form 2N with N a nonnegative
integer. This leads to an approximation

T* := Co [I - f/(2/v+1)]"1

for R. We have

T* t R as /V - • oo.

The matrix 7]̂  may be interpreted as the contribution to R from those trajectories from
level —1 to level 0 in ^ that are restricted to pass through only levels below 2N+l.
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461

We construct a sequence (%)j>o of censored processes, each of which has as
its levels the nonnegative integers. For j > 1, the levels 0, 1,2,... of "^ are
respectively the levels 0, 2, 4 , . . . of ^}_i, that is, ^ is "&}_! censored to be observed
in even-labelled levels only. Thus ^ is a process that has been censored,/ times. By
the homogeneity of one-step transitions in cf, a straightforward induction gives that
'tfj has a structured one-step transition matrix of the form

p*U) _

C0
0) 0 0

0

2 L l M)

that is, each chain 'tfj is of structured GI/M/l type. We have

We shall construct below the block entries of p*(J+l) in terms of those of P*o).
In the previous section we saw that ^o contains no recurrent states, so the same must

be true also for the censorings %, %, Thus the substochastic matrices D ^ \ C^
formed by restricting ^ to levels 0 and 1 respectively thus also contain no recurrent
states. Hence / - D,0) and I - C^ are both invertible.

We now consider how to derive the block entries in p*<J+l) from those in Ptij).
First we extend our earlier notation and write X^\ Y^ respectively for the state and
level of % at time t € {0, 1, . . . } . For n > 0, define the it x k matrix Lj/+1) by

r i := P | J {X^ = (21 + 1, s), Y^ - Y™ even (0 < u < t)}
L(>0

Xo
o) = (2£ + In, r)

for r, s € JXf. By the homogeneity of the one-step transition probabilities in ^ for
transitions into positive-labelled levels, the right-hand side is independent of the value
of I > 0, justifying its absence from the notation on the left-hand side.

We may express the transitions in *^+i in terms of those in ^ and the matrices
LCZ+i) by a n enumeration of possibilities. Suppose i > 0. A single-step transition
from state (i — 1 + n, r) to (/, s) (n > 0) in ^-+1 corresponds to a transition from
(2(/ — 1 -f- «), r) to (2i, s) in ^ in one or more steps without passage through any
intermediate state in an even-labelled level. For n > 0, this can occur in a single step,
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with probability (C^Li ),-,*• For a transition involving more than one step, we may
condition on the last step. This gives

m=0

For n — 0, the transition always requires more than one step and we have

C(/+»=LO+.)C(/) ( 3 2 )

Similarly we derive

m=l

The determination of the matrices Lj/+1) proceeds in two stages. For n > 0, define
the & x /t matrix K</+1) on ^ by

(K<f+1))rii :=P\{J {*,0) = {It + 1, s), Y^ - Y^ even (0 < u < t)}
\_l>0

X%} = (2l + 2n+l,r)\

for r, s e Jf. Again the left-hand side is independent of I.
Any path in ^ contributing to Lj/+1) involves an initial step to an odd-labelled

level followed by a sequence of steps avoiding even-labelled levels. By conditioning
on the first step, we derive

( ) ( w > 0 ) . (3.4)
m=0

To complete the specification of P*i+X) in terms of Pt<J\ we need to determine the
matrices K^+l). We have by definition that

(Koa+1)) = P \\J [xr = QJL + 1, 5), Y}» - 7 ^ even (0 < u < t)}
r~s L'>o

1, r) .X0
0) = (2€ + 1,

Since ̂  is skip-free to the right, trajectories contributing to K^+l) do not change level
and so

f ^ y ^ ) " 1 . (3.5)
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For n > 0, paths contributing to Kj/+ I ) involve at least one change in level and do
not visit even-labelled levels. We may condition on the last step involving a change
of levels to obtain the recursive relation

* T } = E K2+ I ) C2°(L.)+1Ko0+1) (» > 1). (3.6)
m=0

We may also develop a recursion by conditioning on the first jump between levels.
This gives the alternative relation

Kjf+I> := £ K o O + 1 ) C 2
o a _ m ) + 1 K r > (» > 1). (3-7)

m=0

Since level 1 in 1^N corresponds to level 2N in ^o, paths in ^N from (0, r) to (0, s)
that stay within level 0 correspond to paths from (0, r) to (0, s) in ^ 0 that do not reach
level 2N or higher. Hence (D\N))rs = (U(2N))rs for r, s <= JXT, or D\N) = U(2N).
Thus the recursive relations connecting the block entries in p*^ + 1 ) to those in P*(j)

for j = 0,1, ... , N — I provide the means to determine U(2N) and so lead to an
approximation for R.

4. Algorithm H*

In the last section we considered the sequence i?o. ̂ i . • • • . ̂ v of censored pro-
cesses. The determination of D\N) requires only a finite number of the matrix entries
in each Pt(J) to be determined. For the purpose of calculating T£, the relevant parts
of the construction may be summarised as follows.

The algorithm requires initial input of Co, Ci, . . . , C2"~\. First we specify

Df = Cn (n = 1 , . . . , 2"),

We determine D^\ D%\ ... , D^., and Co°\ C , 0 ) , . . . , C$,1, _, recursively for j =
\,2,... ,N as follows. For obtaining the block matrices in ^ + ) from those in "^,
first find the auxiliary quantities

with

m=0

https://doi.org/10.1017/S144618110001350X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110001350X


464 Emma Hunt [8]

for/z = 1,2 2N~J-1 - l a n d

m=O

for/i = 0, 1, . . . ,2N-J-x - 1.
Calculate Co

o+1) = LO
U+1)CO

O) and

m=\

m=O

forn = 1,2, . . . ,2"-J-1 - 1.
The above suffices for the evaluation of D\N\ The algorithm may be specified as a

short MATLAB program.

5. Invariant subspace approaches

A number of invariant subspace techniques have been developed in connection with
the solution of the matrix Riccati equation. Akar and Sohraby have adapted two of
these for the determination of the rate matrix. For brevity we refer to these simply as
TELPACK and Schur factorisation. Both apply only in the positive recurrent case.

5.1. TELPACK TELPACK can be used to determine R when C(z) is rational in a
way parallel to its use for the determination of G when A (z) is rational.

Three Gl/M/l examples were also provided in the TELPACK package, two of
which we consider below in our numerical experiments. The example omitted relates
to the case of 1 x 1 matrices.

5.2. Schur factorisation A second approach for determining the left-invariant
subspace of a matrix is the so-called Schur approach. Akar, Oguz and Sohraby have
implemented this for evaluating R in the special case of a QBD. Details are given in
[1,2] and [4].

The approach uses the fact that a real matrix X is orthogonally similar to a quasi-
upper triangular matrix [10]. The term "quasi-upper" signifies that the (block) diagonal
consists of 2 x 2 matrices corresponding to complex-conjugate eigenvalues of X and
the l x l blocks to its real eigenvalues.

Its numerical implementation [14] includes balancing X, casting it into upper-
Hessenberg form, obtaining the real Schur form using the double Francis QR iteration

https://doi.org/10.1017/S144618110001350X Published online by Cambridge University Press

https://doi.org/10.1017/S144618110001350X


[9] A probabilistic algorithm for finding the rate matrix

TABLE 1. Experiment 1
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Algorithm
Neuts
Schur

TELPACK
H*

Iterations /
268

-
7
8

| |K-*iD»
7.1054e-15
1.2648e-16
1.9429e-16

0

CPU Time (sec.)
0.010
0.050
0.070
0.006

and ordering the eigenvalues appropriately using orthogonal transformations. The
approach is numerically stable.

In the following section, all outputs designated as being TELPACK (the in-
variant subspace approach) or Schur (the Schur factorisation method) have been
obtained running C programs downloaded from Khosrow Sohraby's home page
h t t p : / / w w w . c s t p . u m k c . e d u / o r g / t n / t e l p a c k / h o m e . h t m l .

6. Numerical experiments

We now consider some numerical experiments. All code for the Neuts and H*
Algorithms has been implemented by us in MATLAB.

No iteration counts are given for the Schur factorisation technique as these are not
provided by the TELPACK package.

6.1. Experiment 1. A TELPACK QBD example Our first example comes from
the infinite QBD section of TELPACK (ex-QBD-1). We have chosen it because its
simplicity enables us to calculate R exactly, and thus to use as an error measure the
supremum norm of the difference between the exact and estimated values of R.

The defining transition matrices for the system are given by

o oi
0.8J •

o o.i o.9 o

The results are displayed in Table 1. The stopping criterion used was the difference
between two iterations being less than e = 10~14. We note that this example is a QBD
and as such can be expected to favour the Schur factorisation method. The accuracy
of all four algorithms considered is comparable, but CPU times are much longer for
the Neuts Algorithm, Schur factorisation and TELPACK.

6.2. Experiment 2. An M/M/l queue in a random environment Our second
example is drawn from Latouche [13] and Bini, Latouche and Meini [9]. The process
is that of an M jMj 1 queue in a random environment featuring 8 environmental phases.
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TABLE 2. The four sets of service rate values for Experiment 2

[10]

Case || ft

1
2
3
4

2
1

0.4
0.2

2
1

0.4
0.2

2
1

0.4
0.2

2
1

0.4
0.2

2
5
10
13

2
5
2
1

2
1
2
1

2
1

0.4
0.2

The matrix infinitesimal generator of the process is given by

- 1

1

1
- 1 1

- 1 . . .

. . . .

•

- 1 1
- 1

The process cycles through the 8 phases in order from 1 to 8 and then starts again
at phase 1. The process remains in each phase for an interval with exponential
distribution and unit mean. Arrival rates are given by the vector

X = ,0(0.2, 0.2, 0.2,0.2, 13, 1, 1, 0.2)r.

We consider four sets of values for the service rates in each phase (see Table 2).
It is noted in [13] that this process may model a situation where the arrival process

occasionally experiences a sharp increase during a short period (note that for Cases
2-4 the sharp increase in arrival rate is matched in varying degrees by a sharp increase
in service rate). We note that for all four cases the overall arrival rate is otk = 2p
customers per unit of time, where a is the stationary probability vector for the phase
process. The four queues are positive recurrent if and only if p < 1. This process is
continuous-time, but discretisation is simple.

Results are shown in Table 3. The stopping rule used was that the difference between
two iterations be satisfied to within 10~8. We note that this experiment is again a QBD
system, which can be expected to favour the Schur factorisation method. For this
experiment all methods except for the Neuts Algorithm had comparable accuracy.
CPU times for the Schur factorisation method were twice as long on average as those
for Algorithm H* and CPU times for TELPACK were 8.5 times longer on average.
The Neuts Algorithm was the worst performer with respect to both accuracy and CPU
time.

6.3. Experiment 3 Our third experiment concerns a QBD problem with 16 x 16
transition matrices Co = Q = S and Ci = S + SI, where S is a matrix with zero
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TABLE 3. Results for Experiment 2
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Case
1

2

3

4

Method

Neuts
TELPACK

Schur
H*

Neuts
TELPACK

Schur
H*

Neuts
TELPACK

Schur
H*

Neuts
TELPACK

Schur
H*

Iterations /

4110
11
-
12

3386
11
-
12

1871
10
-
10

1644
10
-
10

ll*/-C(tf/)lloo
9.9969e-09
2.4328e-13
1.4384e-14
9.5847e-13
9.9925e-09
2.8538e-13
8.4030e-15
8.8818e-16
9.9700e-09
2.6035e-14
2.0067e-14
4.3280e-12
9.9736e-09
1.7153e-13
2.6645e-14
4.6629e-14

CPU Time (sec.)

5.020
0.080
0.030
0.010
3.890
0.090
0.020
0.010
2.080
0.080
0.020
0.010
1.8000
0.090
0.010
0.010

TABLE 4. Results for Experiment 3

S \

IO-1

i6-2

io-3

10~4

io-r

Method
Neuts

TELPACK
Schur

H*
Neuts

TELPACK
Schur

H*
Neuts

TELPACK
Schur

H*
Neuts

TELPACK
Schur

H*
Neuts

TELPACK
Schur

H*

Iterations /

136
8
-
6

1133
11
-
9

8353
13
-
12

52940
16
-
15

226944
18
-
18

\\Ri -C(Ri)\\oo
6.9597e-13
2.2413e-15
7.0083e-16
3.4694e-17
6.6986e-13
1.1595e-14
2.6298e-15
4.8572e-17
6.6669e-13
1.3251e-12
2.0720e-14
6.9389e-17
6.6662e-13
1.0926e-10
2.8047e-13
4.1633e-17
6.6668e-13
9.8710e-09
3.2004e-12
4.1633e-13

CPU Time (sec.)

0.393
0.017
0.070
0.008
3.247
0.023
0.012
0.012
24.370
0.250
0.070
0.020
228.45
0.270
0.070
0.018

2125.800
0.290
0.070
0.022
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TABLE 5. Results for Experiment 3 continued

[12]

io-6

io-7

io- s

io-9

io-10

| Method
Neuts

TELPACK
Schur

H*
Neuts

TELPACK
Schur

H*
Neuts

TELPACK
Schur

H*
Neuts

TELPACK
Schur

H*
Neuts

TELPACK
Schur

H*

Iterations /
*

23
-

21
*

34
-

24
*

25
-

27
*

41
-

28
*

20
-

28

D*/-C(tf,)||eo
*

8.1815e-07
4.1806e-ll
2.7756e-17

*
6.9935e-05
2.4769e-10
8.3267e-17

*
0.0023

3.9794e-09
4.1633e-17

*
0.0037

7.3487e-09
4.1633e-17

*
2.3243

5.0173e-06
6.9389e-17

CPU Time (sec.)
*

0.290
0.060
0.028

*
0.420
0.080
0.030

*
0.310
0.070
0.030

*
0.510
0.070
0.030

*
0.260
0.080
0.030

TABLE 6. Results for Experiment 4

Method
TELPACK

H*

Iterations /
7
9

11*/ -C(R,) ||«,
3.3307e-16
5.551 le-17

CPU Time (sec.)
0.060
0.010

diagonal and constant off-diagonal entries. The traffic intensity for this problem is
p = 1 — 8, where 8 ranges between 10~' and 10~10.

This QBD model is a block-G//M/l version of a block M/G/l example of
Meini [15]. We have nfi* = 1 + 8 in the usual notation, so that the condition n/3* > 1
for positive recurrence (see Neuts [16, Theorem 1.3.2]) is satisfied. This process, like
the example in [15], is close to the null recurrent limit.

Results are shown in Tables 4 and 5. The stopping criterion used was that the
difference between two iterations was less than 10~12.

TELPACK does not perform well in this experiment, with errors of several orders
of magnitude greater than those for the other algorithms as well as much larger CPU
times. The errors increase considerably in size as the value of 8 decreases. This
parallels TELPACK's behaviour in Meini's M/G/l example.
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Again, as expected, the Neuts Algorithm is the worst performer with respect to
both time and accuracy. The asterisks appearing in the Neuts column signify that we
did not run the algorithm for values of S < 10~5.

6.4. Experiment 4 Our fourth experiment comes from the TELPACK suite of
examples. Here

Cn =
(10/101) (1/101)" (4/21) (1/21)" (7/50) (4/5)"
(90/101) (1/101)" (1/21) (1/21)" (1/100) (4/5)"
_(30/101) (1/101)" (2/7) (1/21)" (2/25) (4/5)" _

0
0

for n > 0. This gives

C(z) = 0
0

1/10 2/10 7/10'
9/10 1/20 1/20
3/10 3/10 4/10

The reason for our choice is that this example provides a very simple form of
rational C(z) for which every Cn is nonzero. This example can therefore be expected
to favour TELPACK. As can be seen from Table 6 however, Algorithm H* has superior
CPU time with comparable accuracy.

6.5. Experiment 5 The numerical experiments above all involve matrix functions
C{z) of rational form. We could find no examples in the literature for which C(z)
is not rational. The following is an original example showing how Algorithm H*
performs in the general case when C(z) is not rational.

A two-stage queueing system consists of k — 1 homogeneous servers as a first stage
and an overflow pool of unlimited capacity with a separate service facility as a second.
An arrival is taken up by one of the first-stage servers if a free server is available;
otherwise it overflows to the pool. During the time between consecutive arrivals to
the system, each customer in the first stage has its service completed with probability
p (whereupon it departs) and not completed with probability q = 1 — p (whereupon
it remains).

The number of pool customers that (if available) can be served (and depart) in an
inter-arrival interval of the system has a Poisson distribution with mean r.

We may model this system as a block-G//M/l chain in which the level represents
the number of customers in the pool and the phase the number (0, 1,... ,k — 1) of
busy first-stage servers. The time points are taken immediately before arrival epochs.
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We then have

where

and

0

0

We remark that

2/7?

n\
^

(n -

0

(« > 1).

0
0

0
0

C(z) :=
m=0

< 1),

so that C(z) is irrational, irreducible for 0 < z < 1 and stochastic for z = 1.
With the choice £>„ := Yl™=n ^ (" — 0. the chain ^ is irreducible and

D(R) :=Y2Dn+iR" > D\ =C-CQ = n0(l-e-r) + n1.
n=0

Hence D(R) is irreducible. By the form of Dn it is also finite and so has a strictly
positive left-invariant probability measure. Also C = £20 + ^i is irreducible and
stochastic.

By Neuts [16, Theorem 1.3.2], a necessary and sufficient condition for tf to be
positive recurrent is that nTfi* > 1, where nT = (n0,... , nk_\) is the left-invariant
probability measure of C and yS* := YlT=in^-"e-

We have

re,
n=l

so P* = (1, 1 1, 0) r + re and TTTP* = (1 - 7rt_i) + r. Hence with the above
scenario, r = 1 is a sufficient (but not necessary) condition for positive recurrence for
all p with 0 < p < 1.
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TABLE 7. Experiment 5: matrices of size 2 x 2

k
2

p || Method
0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H'

Neuts
H*

Neuts
W

Neuts
H*

Iterations /

283
8

147
6

75
6

50
5

36
5

28
4

22
4

18
4

14
3

10
3

8
2

5.8487e-13
1.1102e-16

6.1617e-13
1.7553e-13

5.6666e-13
2.2204e-16

4.0212e-13
2.2204e-16

5.0676e-13
1.1102e-16

3.0442e-13
2.2204e-16

3.7170e-13
1.1102e-16

1.7308e-13
2.7756e-17

1.9862e-13
5.5511e-16

4.1589e-13
1.1102e-16

3.2707e-13
1.2623e-13

CPU Time (sec.)J

3.430
0.008

1.810
0.007

0.950
0.007

0.620
0.004

0.490
0.004

0.340
0.003

0.280
0.003

0.230
0.003

0.180
0.003

0.130
0.003

0.120
0.002
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T A B L E 8. E x p e r i m e n t 5: m a t r i c e s of s i ze 3 x 3

k

3

p || Method
0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H'

Neuts
H*

Neuts
H*

Neuts
H'

Neuts
H*

Neuts
H*

Neuts
H'

Neuts
H*

Iterations /

148
7

76
6

38
5

25
4

18
4

14
3

11
3

8
3

7
2

5
2

4
1

||/?7 - C(/?/)Hoo

5.6544e-13
1.1102e-16

5.5345e-13
1.1102e-16

4.5275e-13
5.5511e-17

2.5380e-13
5.5511e-17

2.5985e-13
5.5511e-17

1.1086e-13
1.9429e-15

6.6003e-14
5.5511e-17

5.5556e-13
2.7756e-17

1.8929e-14
1.6098e-15

4.4464e-14
5.5511e-17

4.463 le-14
1.8974e-13

CPU Time (sec.)

1.860
0.007

1.030
0.007

0.490
0.003

0.330
0.002

0.240
0.002

0.180
0.002

0.160
0.002

0.120
0.002

0.120
0.002

0.080
0.002

0.070
0.001
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TABLE 9. Experiment 5: matrices of size 4 x 4

k

4

p || Method

0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H'

Neuts
H*

Neuts
H*

Neuts
H*

Iterations /

101
6

51
5

25
4

16
3

12
3

9
3

7
2

6
2

5
2

4
1

3
1

WRi-CiR,)^

5.1015e-13
5.4210e-20

5.5744e-13
2.7756e-17

4.1073e-13
5.5511e-17

4.2949e-13
4.2866e-13

9.9615e-14
5.5511e-17

1.3001e-13
2.7756e-17

1.4144e-13
3.4667e-14

2.3120e-14
5.5511e-17

5.8842e-15
2.7756e-17

7.2164e-16
3.8858e-15

6.7724e-15
6.9389e-18

CPU Time (sec.)

1.690
0.006

0.810
0.003

0.430
0.002

0.270
0.002

0.210
0.002

0.150
0.002

0.130
0.001

0.110
0.001

0.100
0.001

0.080
0.001

0.070
0.001
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T A B L E 10. E x p e r i m e n t 5: m a t r i c e s of s i ze 5 x 5

A
5

P
0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.95

| Method
Neuts

H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Neuts
H*

Iterations /
76
6

39
5

19
4

12
3

9
3

7
2

6
2

5
2

4
1

3
1

2
1

HRi-CiRMn
5.99O8e-13
3.3307e-16

3.2402e-13
5.5511e-17

2.1871e-13
1.3878e-17.

2.3789e-13
2.2204e-16

7.0111e-14
8.3267e-17

6.7696e-13
2.4286e-14

8.8124e-15
2.7756e-17

4.4686e-15
5.5511e-17

4.0523e-15
2.1982e-14

3.1641e-15
3.4694e-18

6.2450e-13
1.1102e-16

CPU Time (sec.)
1.360
0.006

0.770
0.004

0.340
0.002

0.230
0.002

0.170
0.002

0.150
0.001

0.120
0.001

0.100
0.001

0.080
0.001

0.070
0.001

0.050
0.001
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The calculations were performed with r = 1. The stopping criterion used was that
the difference between two iterations was less than 10~12. Results for the Neuts and H*
Algorithms are given in Tables 7-10. We note that these are the only two algorithms
which can be applied here. As expected, the Neuts Algorithm is less accurate with
much greater CPU times.
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