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Abstract. In this paper we determine the irreducible components of the Hilbert schemes H4;g
of locally Cohen-Macaulay space curves of degree four and arbitrary arithmetic genus g: there
are roughly � ðg2=24Þ of them, most of which are families of multiplicity structures on lines.
We give deformations which show that these Hilbert schemes are connected. For g4� 3 we
exhibit a component that is disjoint from the component of extremal curves and use this to
give a counterexample to a conjecture of Aı̈t-Amrane and Perrin.
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1. Introduction

Liaison theory has played a prominent role in classifying algebraic curves in P
3 since

the pioneering work of Max Noether. It has only recently become clear that locally

Cohen-Macaulay curves are the natural objects of study, even if one is only interes-

ted in smooth connected curves. This is because each biliaison class is generated (via

a rather explicit procedure known to the expert as the Lazarsfeld–Rao property

[4, 16]) by an essentially unique minimal curve, which need only be locally

Cohen–Macaulay. For example, in the classification of smooth irreducible curves

of degree 8 and genus 5 [7], one family of curves is in the biliaison class of double

lines of genus �2 (non-reduced curves) and another is in the biliaison class of the

disjoint unions of a line and a twisted cubic (nonconnected curves). This explains

the interest in Hilbert schemes Hd;g parametrizing locally Cohen–Macaulay curves

in P
3 of degree d and arithmetic genus g.

In general, we know that the Hilbert scheme Hd;g is non-empty precisely when

g ¼ 1
2 ðd� 1Þðd� 2Þ (plane curves) or when d>1 and g4

1
2 ðd� 2Þðd� 3Þ [10, 3.3

and 3.4] and that Hd;g is reducible for d53 and g4 1
2 ðd� 3Þðd� 4Þ with the excep-

tions ðd; gÞ ¼ ð3; 0Þ and ð3;�1Þ [18]. More recently it has been shown that Hd;g is

connected for g> d�3
2

� �
� 2 [1, 23, 26] and that H3;g is connected for all g [20].

The connectedness results above were obtained by deforming curves to extremal

curves as introduced by Martin-Deschamps and Perrin [17]: these are the curves C
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which have the largest Rao function h1ICðnÞ with respect to d and g. Geometri-
cally speaking, the extremal curves are precisely the curves of degree d which con-

tain a planar subcurve of degree d� 1 (unless C is planar or ðd; gÞ2fð3; 0Þ; ð4; 1Þg)

and they form an irreducible component E	Hd;g [18]. The existence of a compo-

nent of curves with the largest Rao function led Hartshorne to ask the following

questions:

QUESTION 1. Is Hd;g connected for all d and g?

QUESTION 2. Does each irreducible component B	Hd;g meet the extremal

component E?

Hartshorne showed that extremal curves can be connected to various families of

curves, for example smooth rational and elliptic curves, smooth curves of degree

d5gþ 3, arithmetically Cohen–Macaulay curves and many others [11]. Perrin
showed that any curve with a Koszul Rao module can be deformed to an extremal

curve [25]. Related to this is a conjecture of Aı̈t-Amrane and Perrin stating that if X

is a family of curves whose cohomology does not exceed that of a family X0 and the

Rao module of the general curve in X is a flat deformation of a subquotient of the

Rao module of curves in X0, then �XX \ X0 6¼ ;: they have shown [2] that semi-

continuity alone is insufficient.

Now consider curves of degree d ¼ 4. The Hilbert scheme H4;3 parametrizes plane

curves and is smooth irreducible of dimension 17; H4;1 is smooth irreducible of

dimension 16 by [6] and [10, 3.3 and 3.5], its general member being a complete inter-

section of two quadrics. The Hilbert scheme H4;0 has two irreducible components,

whose general members are respectively rational quartic curves and disjoint unions

of a plane cubic and a line. Hartshorne first noticed that these two families can be

connected; now there are several published proofs: [11, 13, 20]. One of our motiva-

tions is to extend the systematic study of these Hilbert schemes and complete the

picture when d ¼ 4.

Our first theorem describes the irreducible components of H4;g and gives their

dimensions. Our method is to first identify components whose general curve C is

special in the sense that C is contained in a quadric surface (h0ðICð2ÞÞ51) or has large
speciality (h1ðOCð�1ÞÞ52). There are very few such components: if the general curve
C of a family lies on a quadric, then either C is an extremal curve, a subextremal

curve (these are the curves with largest Rao function among the nonextremal curves

[21]) or a double conic. If the general curve C of an irreducible component of H4;g
has large speciality but does not lie on a quadric, we show (Proposition 4.3) that

C is either a thick 4-line or the union of a conic and a double line meeting at a double

point. A thick 4-line [3] is a curve of degree 4 supported on a line L and containing

the first infinitesimal neighborhood of L in P
3.

Having disposed of these very special components, it is relatively easy to list those

remaining. Their general member is either (a) a quasiprimitive (i.e. nonthick [3])
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4-line, (b) the disjoint union of a line and a general curve of an irreducible

component of H3;g, or (c) the disjoint union of two double lines. Asymptotically

H4;g has �ðg
2=24Þ irreducible components, most of which arise from curves suppor-

ted on lines. For example, from Table III we find that H4;�100 has 530 components

(377 of these are families of 4-lines) while H4;�1;000 has 42755 components (of which

41252 arise from 4-lines).

Our second theorem states that H4;g is connected when it is not empty. The main

novelty for g4� 3 is the presence of a component G4 consisting entirely of thick
4-lines. We prove the connectedness theorem by showing that each irreducible com-

ponent can be connected either to the extremal component E or to G4, and that the

component of subextremal curves meets both E and G4. Specifically, the quasi-primi-

tive 4-lines and the curves with large speciality deform to thick 4-lines (Sections 2 and

4). We show that a disjoint union of double lines specializes to a quasi-primitive

4-line on a double quadric surface in Section 3. Section 5 is devoted to showing that

families of unions of triple lines and reduced lines can be connected to the extremal

component.

The component G4 of thick 4-lines turns out to be rather interesting. Since these

curves are scheme-theoretically (although not cohomologically) the most special,

they cannot specialize to extremal curves, answering Question 2 in the negative.

Since their Rao modules are flat deformations of subquotients of the Rao modules

of extremal curves (Example 6.7), we obtain a counterexample to the conjecture of

Aı̈t-Amrane and Perrin above. Question 1 remains open.

Throughout the paper we work over an algebraically closed field k of arbitrary

characteristic. A curve for us is a locally Cohen–Macaulay scheme over k of pure

dimension 1. We will freely use the sentence ‘the family of curves of degree d and

genus g with property P is irreducible of dimension m’ to mean that there is a

(unique) irreducible m-dimensional constructible subset S of the Hilbert scheme

Hd;g whose closed points parametrize the curves of degree d and genus g with pro-

perty P. Note that, since S is constructible, the closure of S in the Hilbert scheme

is also an m-dimensional irreducible subset.

2. Multiplicity Four Structures on Lines

In this section we study locally Cohen–Macaulay curves in P
3 which are supported

on a line; we will simply call these d-lines, where d is the degree of the curve.

We begin with the general theory of Banica and Forster [3, x 3]. Let C be a locally

Cohen–Macaulay curve on a smooth threefold X with smooth support Y. Letting

Y ðiÞ be the subscheme of X defined by I iY and Ci be the subscheme of X obtained
by removing the embedded points from C \ Y ðiÞ, we obtain the Cohen–Macaulay fil-

tration for C:

Y ¼ C1	C2	� � �	Ck ¼ C ð1Þ
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for some k51. The quotients Lj ¼ ICj=ICjþ1 are vector bundles on Y and the multi-
plicity is given by mðC Þ ¼ 1þ

P
rankLj. The natural inclusions ICiICj	 ICiþj

induce generically surjective multiplication maps Li � Lj ! Liþj and in particular

we obtain generic surjections Lj1 ! Lj.

As in [3, x 4], the curve C is said to be thick if Y ð2Þ 	C; this is equivalent to the

condition that C has embedding dimension three at each point. In terms of filtration

(1) above, this says that C2 ¼ Y
ð2Þ, in which case L1 ¼ IY=I2Y is the conormal bundle

of Y on X. If further mðC Þ ¼ 4, then rank L2 ¼ 1 and there is an exact sequence

0�!
IC
I3Y
�!

I 2Y
I 3Y
�!L2�! 0: ð2Þ

For a line Y	P
3, we obtain the following.

PROPOSITION 2.1. For g41, the thick 4-lines in H4;g form an irreducible closed

subset of dimension 9� 3g.

Proof. The condition that C contain Y ð2Þ is clearly closed. If C is a thick 4-line

with support Y	P
3, then mðCÞ ¼ 4; I2Y=I 3Y ffi OYð�2Þ

�3 and L2 ffi OYð�g� 1Þ

(because PicY ffi Z). It follows from sequence (2) above that giving such a curve C is

the same as giving a surjective morphism OYð�2Þ
�3
! OYð�g� 1Þ modulo an

automorphism ofOYð�g� 1Þ. Thus the set of thick 4-lines of genus g is parametrized

by an open subset of a P
5�3g-bundle over the Hilbert scheme of lines in P

3. &

On the other hand, a curve C is quasiprimitive if it is not thick, which is equi-

valent to having generic embedding dimension two. In this case rank L1 ¼ 1 and

the generic surjections Lj1! Lj yield effective divisors Dj such that Lj ffi L
j
1ðDjÞ;

the multiplication maps show that Di þDj4Diþj. If C is a quasiprimitive 4-line
in P

3, then the Cohen-Macaulay filtration takes the form Y	D	W	C where Y

is a line, D a double line and W a triple line. Setting a ¼ degL1; b ¼ degD2 and

c ¼ degD3, the triple ða; b; cÞ is the type of C. Since the surjection IY ! OY ðaÞ fac-

tors through the conormal bundle IY=I2Y ffi OYð�1Þ
2, we necessarily have a5� 1,

while by construction b; c50. That C has arithmetic genus paðC Þ ¼ �6a� b�

c� 3 follows from the isomorphisms IY;D ffi OYðaÞ, ID;W ffi OYð2aþ bÞ and

IW;C ffi OYð3aþ cÞ.

The following lemma helps us construct 4-lines from quasiprimitive 3-lines.

LEMMA 2.2. Let W	P
3 be a quasiprimitive 3-line of type ða; b; cÞ with support Y

and underlying double line D. Set J ¼ IWIY þ I 2D. Then in the short exact sequence

0�!
IYID
J �!

IW
J �!

IW
IYID

�! 0

we have isomorphisms

IYID
J ffi OYð3aþ bÞ and

IW
IYID

ffi OYð�a� b� 2Þ:
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In particular, when a50, the sequence is split exact.
Proof. On the open set where W has embedding dimension two, the quotient

IYID=J is an invertible OY-module. It follows that the multiplication map

IY;D �OY
ID;W!

m
IYID=J is an isomorphism (it is surjective a priori; if ker m 6¼ 0,

then the image has finite support) and IYID=J ffi OYð3aþ bÞ. Further, ID=IYID ffi
OYð2aÞ �OYð�a� 2Þ by [20, 2.3] and the exact sequence

0! IW=IYID! ID=IYID ! OYð2aþ bÞ ! 0

shows that IW=IYID ffi OYð�a� b� 2Þ. When a50, the sequence must split
because

Ext1YðOYð�a� b� 2Þ;OYð3aþ bÞÞ ffi H
1ðY;OYð4aþ 2bþ 2ÞÞ ¼ 0: &

If a quasiprimitive 4-line C has type ða; b; cÞ with a ¼ �1, then C necessarily lies in

a double plane and, hence, is a flat limit of double conics [14, 8.1 and 8.2]. Since we

are mainly interested in families that form irreducible components of the Hilbert

scheme, we will assume that a50 in the sequel. The following proposition is based
on [3, x 3.8].

PROPOSITION 2.3. Let ða; b; cÞ be a triple of integers satisfying a50 and 04b4c.
Then the quasiprimitive 4-lines of type ða; b; cÞ in H4;g form an irreducible constructible

subset of dimension 9aþ 2bþ 2cþ 13.

Proof. The set of double lines of type a is parametrized by an open subscheme V2
of a P

2aþ3-bundle over the Grassmannian of lines in P
3 [20, 1.6]. Indeed, to give a

double structure D of type a on a line Y is equivalent to give a surjective morphism

IY=I 2Y ffi OYð�1Þ
2
!
½f g�

OY ðaÞ modulo an automorphism of OYðaÞ.

Similarly, the quasiprimitive triple lines of type ða; bÞ which contain a double line

D 2 V2 are determined by surjective morphisms ID=IYIDffi
t
OYð2aÞ� OYð�a� 2Þ

!
½p q�

OYð2aþ bÞmodulo automorphisms ofOYð2aþ bÞ, the isomorphism t being given
in [20, 2.3]. It follows that the set of triple lines of type ða; bÞ is parametrized by an

open subscheme V3 of a P
3aþ2bþ3-bundle over V2, hence is irreducible of dimension

5aþ 2bþ 10.

In the same way, the 4-lines of type ða; b; cÞ which contain a fixed quasiprimitive

3-line W of type ða; bÞ with support Y are determined by surjections IW=IYIW!
f

OYð3aþ cÞ. Since I2D	IYIW on an open set, the image of I 2D in IW=IYIW is torsion
so that f factors through IW=J , where J ¼ IYIW þ I 2D, allowing us to use Lemma
2.2. Thus the surjections �ff: IW=J ffi OYð3aþ bÞ �OYð�a� b� 2Þ!

½r s�
OYð3aþ cÞ

modulo automorphisms of OYð3aþ cÞ are parametrized by an open subset V4 of a

P
4aþ2cþ3-bundle over V3, that is, by an irreducible variety of dimension 9aþ 2bþ

2cþ 13.

We now show that each surjection �ff gives a quasiprimitive 4-line. Since W is

quasiprimitive, there are local coordinates s and t on an open set with IY ¼ ðs; tÞ,

ID ¼ ðs; t
2Þ, and IW ¼ ðs; t

3Þ [3, 2.1]. In particular, ðs; tÞ3 ¼ I3Y 6	J ¼ ðs2; st; t3Þ so that
the image of I3Y is nonzero in IYID=J ffi OYð3aþ bÞ and for any surjection f,

HILBERT SCHEMES OF DEGREE FOUR CURVES 173

https://doi.org/10.1023/B:COMP.0000005083.20724.cb Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000005083.20724.cb


the induced map OYð3aþ bÞ ! OYð3aþ cÞ is injective, whence the image of I3Y is
nonzero in OYð3aþ cÞ and so C 6	Y

ð3Þ: from this it follows that C is quasiprimitive

via the Cohen-Macaulay filtration. &

The following result is an important ingredient in our connectedness theorem 6.4.

PROPOSITION 2.4. Let ða; b; cÞ be a triple with a50 and c5b50. Then there exists
a flat family of curves C	P

3
k½t� such that

ð1Þ the fibre Ct is a quasiprimitive 4-line of type ða; b; cÞ for t 6¼ 0

ð2Þ the fibre C0 is a thick 4-line.

Proof. The outline of the proof is as follows. Fixing a double line Z of type ðaÞ

supported on the line L, we have seen above that a quasiprimitive triple line of type

ða; bÞ containing Z is determined by a surjective morphism IZ!
c
OLð2aþ bÞ. We

construct a family of such surjections ct for t 6¼ 0 whose limit at t ¼ 0 is a morphism
c0: IZ ! OLð�a� 2Þ �OD where D is an effective divisor on L. Then kerct defines
a family Wt whose general fibre is a quasiprimitive 3-line of type ða; bÞ, while the

special fibre W0 is the first infinitesimal neighborhood of L plus some embedded

points along D. We construct the desired family Ct by picking a morphism

IWt
! OLð3aþ cÞ in such a way that the ‘extra line’ in C0 covers the embedded

points of W0, so that C0 is locally Cohen–Macaulay.

Fix coordinates so that P
3
¼ Proj ðk½x; y; z;w�Þ and let L0 be the line with equa-

tions x ¼ y ¼ 0. Let Z0 be the double structure on L0 defined by the homogeneous

ideal ðx2; xy; y2; xg� yf Þ where f ¼ zaþ1 and g ¼ waþ1, thus Z0 is a double line of

genus �a� 1. Now consider the trivial families L ¼ L0 �A
1 and Z ¼ Z0 �A

1 over

A
1
¼ Spec k½t� and let IZ denote the ideal sheaf of Z in P

3
�A

1. Then we have an

isomorphism IZ �OL ffi OLð�a� 2Þ �OLð2aÞ in which the natural epimorphism

p: IZ ! IZ �OL ffi OLð�a� 2Þ �OLð2aÞ sends xg� yf to ð1; 0Þ and x
2, xy and y2

to ð0; f 2 Þ, ð0; fgÞ, ð0; g2Þ [20, 2.3].

Consider the injective morphism

w:OLð�a� b� 2Þ !

h
twb

z3aþbþ2

i
OLð�a� 2Þ �OLð2aÞ

and set G ¼ cokerðwÞ. Note that G is flat over A
1 because w remains injective on the

fibres over A
1. Now let c: IZ ! G be the composite surjection

IZ!
p OLð�a� 2Þ �OLð2aÞ ! G

and define W by IW ¼ kerðcÞ.
It is clear that W is a flat family of closed subschemes over A

1. For t 6¼ 0,

Gt ¼ G� kðtÞ is isomorphic to OL0ð2aþ bÞ so that Wt is a quasiprimitive triple line

of type ða; bÞ. On the other hand, G0 is isomorphic to OL0ð�a� 2Þ �OD, where D

is the divisor in L0 defined by the global section s ¼ z
3aþbþ2 of OL0 ð3aþ bþ 2Þ. By

construction W0 contains L
ð2Þ
0 and I

L
ð2Þ
0
;W0
ffi OD.
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We now claim that, over the coordinate ring R ¼ k½t�½x; y; z;w� of P
3
k½t�, the

saturated ideal IW of W	P
3
k½t� has a free graded resolution

0! F3!
M3
F2!

M2
F1!

M1
F0 ¼ R;

where

F1 ¼ Rð�3Þ
�4
� Rð�a� 3Þ�2 � Rð�a� b� 2Þ;

F2 ¼ Rð�4Þ
�3
� Rð�a� 4Þ�4 � Rð�a� b� 3Þ�2;

F3 ¼ Rð�a� 5Þ
�2
� Rð�a� b� 2Þ;

and the maps are defined by the matrix transposes

Mt
1 ¼

x3

x2y
xy2

y3

xðxg� yfÞ
yðxg� yfÞ

x2zaþb þ twbðxg� yfÞ

2
666666664

3
777777775
; Mt

3 ¼

g 0 zaþb

�f g 0
0 �f 0
y 0 0
�x y 0
0 �x 0
0 y �twb

0 0 �y
0 0 x

2
6666666666664

3
7777777777775

;

Mt
2 ¼

y �x 0 0 0 0 0
0 y �x 0 0 0 0
0 0 y �x 0 0 0
�g f 0 0 x 0 0
0 �g f 0 y 0 0
0 0 �g f 0 y 0
0 0 0 0 �y x 0
zaþb 0 0 0 twb 0 �x
0 zaþb 0 0 0 twb �y

2
6666666666664

3
7777777777775

; Pt ¼

�tf 3zc�bwb

�tf 2gzc�bwb

�tfg2zc�bwb

�tg3zc�bwb

z4aþcþ3

z3aþcþ2waþ1

w4aþbþcþ2

2
666666664

3
777777775
:

(In the second line we have included a matrix P which will be used a few lines below).

We use the Buchsbaum-Eisenbud criterion [5] to see that the complex above is

acyclic. For this it is enough to observe that the ideal I3ðM3Þ generated by the

3� 3 minors of M3 contains the regular sequence ðx
3; y3; z3aþbþ2Þ and that I6ðM2Þ

contains the regular sequence ðx6; y6Þ. Therefore the complex is a resolution of the

ideal J defined by M1, hence J is the saturated homogeneous ideal of a closed

subscheme of P
3
k½t�. It is clear that J � IW, and comparing the Hilbert polynomials

we see J ¼ IW. This proves the claim.

We now construct a family C of 4-lines as in the statement of the Proposition.

Recalling that f ¼ waþ1 and g ¼ zaþ1, one checks that the map F1!
P
Rð3aþ cÞ satis-

fies PM2 ¼ 0 mod IL, where IL ¼ ðx; yÞ is the ideal of L (here P is the matrix above).

We thus obtain a map IW!
�PP
Tð3aþ cÞ where T ¼ R=IL ffi A½z;w�. Sheafifying,

we obtain a morphism f: IW ! OLð3aþ cÞ and IC ¼ kerf defines C. Since ft is
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surjective for all t 2 A
1, we see from the proof of Proposition 2.3 above that Ct is a

quasiprimitive 4-line of type ða; b; cÞ for t 6¼ 0.

Finally, we check that C0 is a thick 4-line. To this end, observe that

I3L0	IW0
	I 2L0

and that f0 vanishes on I 3L0 , hence factors through IW0
=I 3L0 . On the other hand,

looking at the presentation of IW � T, we see that IW0
=I 3L0 is isomorphic to

OL0 ð�a� 3Þ
�2
�OL0ð�a� b� 2Þ:

Thus we have a commutative diagram of short exact sequences:

0 ! IC0=I3L0 ! IW0
=I 3L0 !

�f0f0 OL0 ð3aþ cÞ ! 0
# #a #z3aþbþ2

0 ! I �CC=I 3L0 ! I2L0=I
3
L0
!
b

OL0ð6aþ bþ cþ 2Þ ! 0

where, identifying IW0
=I 3L0 with OL0 ð�a� 3Þ

�2
�OL0ð�a� b� 2Þ and I2L0=I

3
L0
with

OL0ð�2Þ
�3, the morphisms are

a ¼
waþ1 0 zaþb

�zaþ1 waþ1 0
0 �zaþ1 0

2
4

3
5; bt ¼

z2aþ2w4aþbþcþ2

zaþ1w5aþbþcþ3 � z6aþbþcþ4

w6aþbþcþ4 � 2z5aþbþcþ3waþ1

2
4

3
5;

�f0f0 ¼ z4aþcþ3 z3aþcþ2waþ1 w4aþbþcþ2
	 


:

Since a is injective and

deg ðI2L0=I
3
L0
Þ � deg ðIW0

=I 3L0Þ ¼ 3aþ bþ 2;

we see that C0 ¼ �CC is a thick 4-line, and this concludes the proof. &

Remark 2:5. We don’t know what kind of specializations might occur between

quasiprimitive four-lines in general, but we formulate the following necessary

condition: if a family of quasiprimitive four-lines of type ða; b; cÞ specializes to a

four-line of type ða0; b0; c0Þ, then a04a. To see this, consider the deformation of the
underlying double line Z: the general such Z has genus �1� a, hence the limit Z0

consists of a double line of genus �1� a0 and possibly some embedded points. Since

the arithmetic genus is constant, we conclude that a04a. Similarly, if a family of
triple lines of type ða; bÞ specializes to another of type ða0; b0Þ, then a04a. Examples of
both types of specialization are seen in [20, 3.6 and 3.10].

3. A Deformation on the Double Quadric

In this section we apply results from our general study of curves on double surfaces

[24] to show that a disjoint union of double lines specializes to certain quasiprimitive

4-lines on a double quadric.
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Let Q	P
3 be a smooth quadric surface and let X	P

3 be the effective divisor 2Q.

For a curve C	X, let P be the curve part of the scheme-theoretic intersection C \Q.

We may write

IC\Q;Q ¼ IZ;Qð�PÞ

where Z is zero-dimensional. The inclusion P	C \Q generates the commutative

diagram

0 0 0
# # #

0 ! IRð�QÞ !
f

IC ! IZ;Qð�PÞ ! 0
# # #

0 ! O
P
3 ð�QÞ !

f
IP ! OQð�PÞ ! 0

# #f #

0 ! ORð�QÞ !
s L ! OZð�PÞ ! 0

# # #

0 0 0

ð3Þ

in which f is the equation for Q	P
3. This diagram defines the residual curve R to C

in Q and we obtain a triple TðCÞ ¼ fZ;R;Pg in which R � P are effective divisors on

Q. Using depth arguments and results on generalized divisors [9] as in [14], Z is a

Gorenstein divisor on R, L ffi ORðZ�QÞ is a rank one reflexive OR-module, and

s gives the section of LðQÞ defining Z as a generalized divisor on R [24, x 2]. The
arithmetic genus of C is given by the formula

gðC Þ ¼ gðPÞ þ gðRÞ þ degRORðQÞ � degðZÞ � 1: ð4Þ

PROPOSITION 3.1. Let C	P
3 be a general quasiprimitive 4-line of type ð0; b; cÞ

with Cohen-Macaulay filtration L	D	W	C. Then there exists a smooth quadric

surface Q	P
3 such that

ð1Þ D	Q and C	2Q.

ð2Þ The triple associated to C	2Q has form TðC Þ ¼ fZ;D;Dg, where Z consists of

c� b simple points and bþ 2 double points, none of which is contained in L.

ð3Þ H1ðODðZþD�QÞÞ ¼ 0.

Proof. That D is contained in a smooth quadric Q is [20, 1.5], hence I 2Q	I2D	
IC and C	2Q. The definition of type of C gives rise to the top row in the diagram:

0 ! IW ! ID !
c

OLðbÞ ! 0
p # ½p q� "

ID �OL !
� OL �OLð�2Þ

ð5Þ

in which c factors through p and the isomorphism along the bottom row takes

the equation f for Q to the generator of the summand OLð�2Þ [20, 2.3]; thus

HILBERT SCHEMES OF DEGREE FOUR CURVES 177

https://doi.org/10.1023/B:COMP.0000005083.20724.cb Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000005083.20724.cb


cðf Þ ¼ q 2 H0OLðbþ 2Þ and in particular q 6¼ 0 since W 6	Q. Now W	2Q and its

associated triple has the form fZW;L;Dg for a zero-dimensional subscheme

ZW	L. Interpreting diagram (3) for W, the middle column is simply the top row

of diagram (5), L ffi OLðbÞ, and the map s is multiplication by q; in particular,
degZW ¼ bþ 2.

The triple for C has form fZ;D;Dg (Z	D a zero-dimensional subscheme) and the

inclusionW	C induces a morphism from diagram (3) for C to diagram (3) forW in

which the middle rows coincide. Thus the maps along the bottom row are surjective

and when we assemble these along with their kernels we obtain the commutative

diagram

0 0 0
# # #

0 ! IL;Dð�QÞ !
a IW;C ffi OLðcÞ ! IZW;Zð�DÞ ! 0

# # #

0 ! ODð�QÞ ! ID;C ! OZ ð�DÞ ! 0
# # #

0 ! OLð�QÞ ! ID;W ffi OLðbÞ ! OZW ð�DÞ ! 0
# # #

0 0 0

ð6Þ

We immediately deduce the vanishing in statement 3: indeed, the long exact coho-

mology sequence associated to the middle row shows that H1ðID;CÞ ¼ 0, but in view
of the discussion following diagram (3) and the fact that D2 ¼ 0 on Q we have

ID;C ffi ODðZ�QÞ ffi ODðZþD�QÞ

so that H1ðODðZþD�QÞÞ ¼ 0.

Now we analyze the map a, which arises from the natural inclusion

ILð�2Þ ,!
f
ILID	IW by taking quotients. Thus a factors as

IL=IDð�2Þ !
b

ILID=J ! IW=J ! IW=IC
# # # #

OLð�2Þ !
q

OLðbÞ ! OLðbÞ �OLð�b� 2Þ !
½r s�

OLðcÞ

ð7Þ

where J ¼ IYIW þ I 2D and the vertical maps are isomorphisms via Lemma 2.2. We
conclude that a is multiplication by the global section qr 2 H 0ðL;OLðcþ 2ÞÞ so that

IZW;Z ffi OL=ðqrÞ. For a general 4-line C of type ð0; b; cÞ, the form qr has simple zeros.

Now twist diagram (6) by ODðQÞ ¼ ODð�2Þ and apply HomOD
ð�;ODÞ ¼ ð�Þ

_.

As D is a local complete intersection (hence locally Gorenstein), OL is a reflexive

OD-module because it has local depth one [9, 1.6]. In particular

Ext
1
OD ðOL;ODÞ ¼ 0 and the columns remain exact. The leftmost column becomes

0! ðOLÞ
_
! ðODÞ

_
! ðOLÞ

_
! 0

(recall that IL;D ffi OL). It’s easy to check on stalks that ðOLÞ
_ is a locally free

OL-module; the sequence above shows that the image of 12H
0ðODÞ

_ is a global
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generator, hence ðOLÞ
_
ffi OL. Since the dual of the reflexive sheaf ID;CðQÞ ffi ODðZÞ

is IZ;D, we obtain

0 0 0
" " "

0  OL=ðqrÞ  OL  
qr

OLð�c� 2Þ  0
" " "

0  OZ  OD  IZ;D  0
" " "

0 ! OL=ðqÞ ! OL  
q

OLð�b� 2Þ  0
" " "

0 0 0

ð8Þ

This diagram shows that Z consists of bþ 2 double points supported at the isolated

zeros of q and c� b reduced points. &

We end this section showing that a general quasiprimitive 4-line as in Proposition

3.1 is a specialization on X ¼ 2Q of a disjoint union of double lines having arithmetic

genera �1� b and �1� c, a fact we will later use in Theorems 6.2 and 6.4. The idea

is to lift families of triples to families of curves on X. In [24] we construct the Hilbert

scheme Hz;r;p of curves C	X having triples fZ;R;Pg such that the Hilbert polyno-

mial of Z (resp. R and P) is z (resp. r and p). If Dz;r;p is the Hilbert flag scheme for the

corresponding triples, there is a natural map p:Hz;r;p! Dz;r;p assigning a curve to its

triple. The structure of this map is partially described as follows:

THEOREM 3.2 ([24], Theorem 3.1). Let V	Dz;r;p be the open subset of triples

fZ;R;Pg for which H1ORðZþ P� FÞ ¼ 0. Then the induced map p�1ðV Þ ! V is

surjective and has the structure of an open immersion followed by an affine bundle

projection.

We apply this machinery to prove:

PROPOSITION 3.3. Let C be a general quasiprimitive 4-line of type ð0; b; cÞ lying on

the double quadric surface 2Q. Then there is an irreducible flat family of curves on

2Q with special fibre C and general member a disjoint union of two double lines of

respective arithmetic genera �1� b and �1� c.

Proof. As in Proposition 3.1, let fZ;D;Dg be the triple associated to C. Let

p1; p2; . . . ; pc�b be the reduced points of Z, and choose planes Hj transverse to L, one

containing each double point zj of Z. Let fLt: t 2 P
1
g be the family of rulings on Q

with L0 ¼ L and define

Zt ¼ f p1; . . . ; pc�bg [
[bþ2
j¼1

½Hj \ ðLt [ L0Þ�:
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Setting Rt ¼ Lt [ L0, we obtain a family of triples fZt;Rt;Rtg specializing to

fZ;D;Dg. Moreover, for t 6¼ 0 we have the vanishing

H1ORt ðZt þDt �QÞ ffi H
1ðOL0ðcþ 2� 2ÞÞ �H

1ðOLt ðbþ 2� 2ÞÞ ¼ 0:

Thus we obtain a map f:P1! Dz;r;p with image contained in the open set V of

triples for which H1ORðZþ P�QÞ ¼ 0. Over V the natural map p:Hz;r;p! Dz;r;p
is surjective and has the structure of an open immersion followed by an affine bundle

projection by Theorem 3.2, hence the restriction U ¼ p�1ðfðP1ÞÞ!
p

P
1 has the same

structure and is irreducible. We obtain the desired familyW by pulling back the uni-

versal family over Hz;r;p to U: C2U by construction, and Wu is a disjoint union of

double lines of respective genera �1� b and �1� c whenever pðuÞ 6¼ 0 by Equation
(4) (cf. [24, Example 2.8 (3)]). &

4. Curves of Degree Four with Large Speciality

In this section we study curves which have large speciality. We express the speciality

of a curve C by its spectrum [28], which can be defined as the nonnegative function

hCðnÞ ¼ D2h0ðOCðnÞÞ ¼ h
0ðOCðnÞÞ � 2h

0ðOCðn� 1ÞÞ þ h
0ðOCðn� 2ÞÞ:

We represent this by the t-uple of integers with exponents fnhCðnÞg. The extremal

curves, which by definition achieve the upper bounds on the Rao function

h1ðICðnÞÞ given in [17], also have the largest speciality and comprise an irreducible
component E	H4;g of dimension 15� 2g [18, Theorems 2.5 and 3.7]. For d ¼ 4

and g40 they may be characterized as (a) nonplanar curves containing a plane cubic
curve or (b) curves with spectrum fgg [ f0; 1; 2g [21, 2.2].

Similarly, there are sharp upper bounds on the Rao function for nonextremal

curves: the curves achieving these bounds are called subextremal and have spectrum

fgþ 1; 0; 12g, although they are not characterized by this fact [21, 2.11, 2.14 and

2.15]. We characterize curves of degree four with subextremal speciality as follows:

LEMMA 4.1. Let C be a curve of degree 4 and genus g4�2. Then C has spectrum
fgþ 1; 0; 12g if and only if C contains a subcurve T of degree 3 and genus 0.

Proof. If C contains such a curve T 2 H3;0, then the principal spectrum spectrum

f0; 12g of T is contained in that of C [28, x 3] and the remaining element gþ 1 is

determined by the genus of C.

On the other hand, suppose that C has spectrum fgþ 1; 0; 12g. Then h0OC

ðgþ 1Þ ¼ 1 and choosing 0 6¼ a 2 H 0OCðgþ 1Þ gives a map OC !OCðgþ 1Þ with

image OD for some closed subscheme D	C. The local depth of D is one because

OD	OCðgþ 1Þ, hence D is a locally Cohen–Macaulay curve. The inclusion above

also shows that h0ODð1Þ42: for g <�2 this is because h0OCðgþ 2Þ ¼ 2. If g ¼ �2,

then h0OC ¼ 3 and the inclusion H
0ðODð1ÞÞ	H

0ðOCÞ is strict, as otherwise we obtain
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a surjection ODð1Þ ! OC, which is absurd. It follows that D ¼ L is a line. This yields

an exact sequence

0! OLð�g� 1Þ ! OC ! OT! 0 ð9Þ

for a closed subscheme T	C of degree 3 and genus 0.

If T is not purely one-dimensional, then the purely one-dimensional part P	T is

planar because gðPÞ>0 and degP ¼ 3 [10, 3.1], but this is not possible because C is

not extremal. Thus T is locally Cohen–Macaulay, finishing the proof. &

PROPOSITION 4.2. Let C be a curve of degree 4 and genus g4� 1 having spectrum
fgþ 1; 0; 12g. Then there is a line L such that the Rao module MC ¼ H

1
�ðICÞ is a

graded module over the coordinate ring S ¼ H 0
� ðOLÞ with resolution

0! Sð�jÞ � Sð j� 5þ gÞ!
s
Sð�2Þ�3 ! Sð�g� 1Þ !MC ! 0 ð10Þ

for some integer 24j4nðgÞ ¼ b5�g2 c. The cohomology of C is determined by the integer
j and we denote the corresponding family of curves by Hj.

Proof. First we suppose that g4� 2; then C contains a curve T of degree 3 and
genus 0 by Lemma 4.1. In particular, T is arithmetically Cohen–Macaulay and the

total ideal IT is generated by three quadrics [10, 3.5]. Moreover, the proof of Lemma

4.1 produces a line L such that IT;C ffi OLð�g� 1Þ. Thus we obtain the composite

surjection Oð�2Þ�3! IT ! OLð�g� 1Þ: factoring this map through OLð�2Þ
�3 and

writing the kernel of the induced map as OLð�jÞ �OLð j� 5þ gÞ for some integer

j 2 ½2; bð5� gÞ=2c�, we obtain resolution (10).

Now assume that g ¼ �1. The spectrum shows that C is neither ACM (because

hCð0Þ>1) nor extremal, hence [21, Theorem 2.11] gives the bounds h1IC41,
h1ICð1Þ42 and h1ICð2Þ41. The first two of these are equalities in view of the Euler
characteristics (since h3IC ¼ h3ICð1Þ ¼ 0) and the vanishing h2ICð1Þ ¼ 0, which may
be read from the spectrum. If h1ICð2Þ ¼ 1, then C is subextremal by definition and
has (a degenerate form of ) resolution (10) with j ¼ 2.

If h1ICð2Þ ¼ 0, then IC is 3-regular (hence h1ICðnÞ ¼ 0 for n52) and
h0ICð2Þ ¼ h2ICð2Þ ¼ 0. The condition h1IC ¼ 1 implies that h1ICðnÞ ¼ 0 for n < 0
[19, 2.8], hence the Rao module MC has a generator m in degree 0. If m does not

generate MC as a module over the homogeneous coordinate ring S ¼ k½x; y; z;w�

of P
3, then m is annihilated by 3 independent linear forms, which implies that C lies

on a quadric by [27, 3.4.5], a contradiction. Thus m generates the Rao module and

MC ffi S=ðx; y; z
2; zw;w2Þ after a change of coordinates, so that MC has resolution

(10) for IL ¼ ðx; yÞ with j ¼ 3. &

Finally, we describe the families Hj and how they fit together in the Hilbert

scheme. We let G4	H4;g denote the closed family of thick 4-lines. By Proposition

2.1 G4 is irreducible of dimension 9� 3g.
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PROPOSITION 4.3. For fixed g4�1, let Hj be the family of curves defined in

Proposition 4:2. Then

ð1Þ The family H2 is irreducible and meets G4. It consists of subextremal curves and

has dimension 13� 2g ðresp. 16 if g ¼ �1Þ.

ð2Þ The family H3 is irreducible and meets G4. It has dimension 13� 2g ðresp. 16 if

g ¼ �1Þ. If g ¼ �1 or �2, then G4	H3.

ð3Þ Suppose g4� 3. The families Hj are contained in G4 for 3< j4nðgÞ and
G4 ¼ HnðgÞ.

Proof. We consider the last statement first: suppose that C 2 Hj for 3< j4nðgÞ.
Sequence (10) shows that h1ICð3Þ ¼ �g� 3, hence h0ICð3Þ ¼ 4. If L and T are as in
the proof of Proposition 4.1 above, then dimðILITÞ344 because ILIT	IC and so
IT ¼ I

2
L by Lemma 4.5 below. It follows that C is a thick 4-line supported on L, hence

Hj	G4. As we saw in Proposition 2.1, the thick 4-lines supported on L are

parametrized by the open subset

U	HomOðIT;OLð�g� 1ÞÞ ffi HomOL
ðOLð�2Þ

3;OLð�g� 1ÞÞ

corresponding to surjective maps. For j ¼ 2 and 3, the specific surjections given by

ðw1�g;w3�g�jz j�2; z1�gÞ show that G4 meets Hj. Since IC is determined by its image

in IT=ILIT ffi SLð�2Þ
3 (and hence by the image of the first map in sequence (10)

above), we find by counting dimensions that Hj is irreducible of dimension

5þ 2j� 2g (except if 2j ¼ 5� g, when the dimension is 4þ 2j� 2g). For

j ¼ nðgÞ ¼ b5�g2 c, the closure ofHnðgÞ is irreducible of dimension 9� 3g, hence is equal

to G4.

If j ¼ 2, thenHj consists of subextremal curves: indeed, for C 2 H2, resolution (10)

gives Rao function rCðnÞ ¼
n�g
1

� �
� 2 n�1

1

� �
þ nþg�2

1

� �
, which agrees with the subextre-

mal bound in [21, 2.11]. In particular, these curves are obtained from extremal curves

of degree 2 and genus g0 ¼ g� 1 by a height one biliaison on a quadric surface

[21, 2.14]. Let then g, r (resp. g0, r0) be the gamma and Rao functions for the extre-
mal curves of degree 2 and genus g� 1 (resp. subextremal curves of degree 4 and

genus g). Letting Bg;r;2;1 denote the universal biliaison scheme of Martin-Deschamps

and Perrin [16, VII x 4], we have smooth irreducible projections

Bg;r;2;1 !
q2

Hg0;r0

q1 #

E ¼ Hg;r

to the spaces Hg;r (resp. Hg0;r0 ) of curves with constant cohomology. The family

E ¼ Hg0;r0 of extremal curves is irreducible of dimension 7� 2g [18, 2.5] and using

[16, VII, 4.8] we compute that the fibre dimension of q1 is 8 (resp. 9 if g ¼ �1)

and the fibre dimension of q2 is 2, hence the family Hg;r of subextremal curves is irre-

ducible of dimension 13� 2g (resp. 16 if g ¼ �1).

182 SCOTT NOLLET AND ENRICO SCHLESINGER

https://doi.org/10.1023/B:COMP.0000005083.20724.cb Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000005083.20724.cb


For j ¼ 3, we take an indirect approach. Consider the family of arithmetically

Cohen-Macaulay curves D with resolution of the form

0! Oð2g� 1Þ �Oðg� 2Þ ! Oðg� 1Þ3! ID ! 0:

It is irreducible of dimension 2 �gþ33
� �

þ �gþ2
2

� �
þ 2 (resp. 12 if g ¼ �1) by [6] and the

general member is smooth and irreducible (the numerical character has no gaps).

Let D be a general such curve in this family. Then a general (disjoint) union D [ L

with a line L lies on an integral surface of degree �gþ 2; To see this, we consider the

map

t:P3 �D� L!
D

P
3
�D� P

3
� L! P

2
� P

1

given by the linear systems PH 0IDð�gþ 1Þ and PH 0ILð1Þ. The fibres of t are
the intersections fS \H:S 2 H 0IDð�gþ 1Þ; H 2 H 0ILð1Þg, which are generally of
dimension one, and hence the image of t has dimension two. Composing with the
Segre embedding P

2
� P

1,!P
5, we apply Jouanolou’s Bertini theorem [15, 6.10]

to see that the general surface of degree �gþ 2 containing D [ L is irreducible.

Furthermore, the resolution for ID shows that H1OD[Lðð�gþ 2Þ � 4�ðgþ 1ÞÞ 6¼ 0

and we find that [16, III, 2.7(b)] D [ L can be bilinked on a surface of degree

�gþ 2 with height gþ 1 to a curve C, which lies in H3 by direct calculation.

Let g; r (resp. g0; r0) be the gamma and Rao functions for curves in H3 (resp.
D [ L). Letting Bg;r;�gþ2;�g�1 be the universal biliaison scheme [16, VII Section 4],

we obtain smooth irreducible projections

Bg;r;�gþ2;�g�1 !
q2

Hg0;r0

q1 #

H3 ¼ Hg;r

From the last paragraph, the image of q2 is dense in the irreducible component

consisting of the closure of the family of disjoint unions D [ L considered above.

Using the resolutions given, we compute the dimension of the fibres of q1 and q2
via [16, VII 4.8] and conclude that H3 is irreducible of dimension 13� 2g (resp. 16

if g ¼ �1). &

Remark 4:4. One can check by a dimension count that the general members of the

families H2 and H3 are described as follows.

1. For g ¼ �1, the general member of H2 is a disjoint union of conics. For g4� 2,
the general member of H3 is the union of a double line Z of genus g� 2 and two

disjoint lines L1 and L2, each meeting Z in a scheme of length 2.

2. For g ¼ �1, the general member of H3 is a disjoint union of a line and a twisted

cubic curve. For g4� 2, the general member of H3 is the union of a double line
of genus g� 1 and a smooth conic meeting in a scheme of length 2.

The following lemma and its proof are well known:
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LEMMA 4.5. Let L	P
N be a linear subvariety of codimension two and let

V	H 0ðP
N;Oðd ÞÞ be a subspace of dimension r generating the homogeneous ideal

I. Then the image W under the multiplication map V�H 0ðP
N; ILð1ÞÞ !

H 0ðP
N;Oðdþ 1ÞÞ satsifies dimðW Þ5rþ 1 with equality if and only I ¼ I r�1L f for

some form f of degree d� rþ 1.

Proof. Let S ¼ Sym H 0ðP
N; ILð1ÞÞ ffi k½x; y� be the symmetric algebra and set

P
1
¼ ProjðSÞ. Let F denote the image of the sheafification of the natural map

V�k S!
L

nH
0ðP

N;OðnÞÞ of free graded S-modules. This yields an exact sequence
0! E! Or

P
1 ! F ! 0 of locally free O

P
1 -modules. Since h0ðEÞ ¼ 0 by hypothesis

and we have rankðEÞ4r� 1, so

E ffi
Ms
i¼1

O
P
1 ð�aiÞ

with s4r� 1 and ai>0, hence h
0
ðEð1ÞÞ4r� 1. Since H0ðEð1ÞÞ is the kernel of the

surjection V� S1!W, we see that dimðW Þ5rþ 1 with equality if and only if
s ¼ r� 1 and ai ¼ 1 for 14i4r� 1, which is equivalent to saying that

F ffi O
P
1 ðr� 1Þ. &

5. Triple Lines Union a Line

In this section we are interested in unions C ¼W [ L of a quasi-primitive triple line

W of type ða; bÞ and a reduced line L, where W \ L is nonempty. The arithmetic

genus of C is given by

gðC Þ ¼ �3a� 3� bþ lengthðW \ LÞ:

Fix g and a50 and let Z	W denote the underlying double line of genus �1� a.

Then we have four families of such curves C in H4;g as shown in Table I.

The main results of this section are that families F1 and F3 are irreducible (Pro-

position 5.2) and that the other two families lie in their closures (Proposition 5.4).

Our arguments hinge on the following construction: fix a double line Z	P
3 of

type a50 with support Y and let b50 be an integer. Let h 2 H 0IZðaþ bþ 2Þ be
the equation of a surface S which does not contain the first infinitesimal neighbor-

hood Y ð2Þ of Y. Removing the embedded points from the scheme cut out by

Table I. Families of unions W [ L, W a triple line of type (a, b)

Label Length ðW \ LÞ Length ðZ \ LÞ Relation

F1 3 2 b¼�3a�g
F2 2 2 b¼�3a�g�1
F3 2 1 b¼�3a�g�1
F4 1 1 b¼�3a�g�2
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I ¼ ðIYIZ; hÞ yields a locally Cohen–Macaulay curveW supported onY. SinceY
ð2Þ 6	S,

the surface S is smooth at a general point p of Y, so as in Section 2 we may find local

equations s ¼ hp and t for Y at p such that ID;p ¼ ðs; t2Þ, and IW;p ¼ ðs; t
3Þ. It follows

thatW is quasiprimitive of degree three. Thus we obtain the map

F: fh 2 H 0ðIZðaþ bþ 2ÞÞ : h =2 I2Yg ! fQuasiprimitive 3-linesW ! Zg:

LEMMA 5.1. Let F be the map above. Then

ð1Þ The image of F is the set of quasiprimitive 3-lines W ! Z of type ða; b0Þ with b04b.
ð2Þ For h as above, set I ¼ ðIYIZ; hÞ. Then the following are equivalent.

ðaÞ W ¼ FðhÞ has type ða; bÞ.
ðbÞ The scheme defined by I is locally Cohen–Macaulay.

ðcÞ h is irreducible modulo IYIZ.

If any of these conditions hold, then I ¼ IW is saturated.

Proof. For h 2 fðIZÞaþbþ2: h =2 I
2
Yg, let W be the purely one-dimensional part of

the scheme V defined by the ideal I ¼ ðIYIZ; hÞ. Since W is quasi-primitive and

contains Z, W has type ða; b0Þ for some b05a and the total ideal may be written
IW ¼ ðIYIZ; h

0Þ with h0 of degree aþ b0 þ 2 by [20, 2.3]. The inclusions

ðIYIZ; hÞ	IV	IW now show that b04b. On the other hand, if W is a quasi-

primitive 3-line of type ða; b0Þ with b04b, then writing IW ¼ ðIYIZ; h0Þ as above
and choosing a hypersurface F of degree b� b0 with equation f meeting Z

properly, we see that Fð f h0Þ ¼W.
For the equivalences in statement 2, let C be the scheme defined by I ¼ ðIYIZ; hÞ so

that W ¼ FðhÞ is obtained from C by removing possible embedded points.

ðaÞ ) ðbÞ If W has type ða; bÞ, then by [20, 2.3] the total ideal for W takes the form

IW ¼ ðIYIZ; h
0Þ with deg h0 ¼ aþ bþ 2 ¼ deg h. The inclusions I	IC	IW show that

all three ideals are equal, so C ¼W is locally Cohen–Macaulay.

ðbÞ ) ðcÞ Suppose that h ¼ h0t modulo IYIZ. If T is the surface with equation t, then

we may assume T meets Y properly (since if both t 2 IY and h
0 2 IY, then h 2 I

2
Y,

contrary to hypothesis). In this case ðIYIZ; tÞ defines a scheme of length 4 degT

(because IYIZ defines a locally Cohen–Macaulay 4-line) and if C is locally Cohen–

Macaulay, then ðI; tÞ defines a scheme of length 3 degT; since ðIYIZ; tÞ ¼ ðI; tÞ, we

must conclude that C is not locally Cohen-Macaulay.

ðcÞ ) ðaÞ IfW has type ða; b0Þ for b0 < b, then IW ¼ ðIYIZ; h
0Þ with deg h0 ¼ aþb0 þ 2.

The inclusion I	IW shows that there exists t of degree b� b0 such that h ¼ h0t

modulo IYIZ. &

PROPOSITION 5.2. With the notation of Table I, we have

ð1Þ The family F1	H4;g is irreducible of dimension 11� 2g� a if 04a4�
g
3 and

empty if a>�ðg=3Þ.
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ð2Þ The family F3	H4;g is irreducible of dimension 10� 2g� a if 04a < ð�g� 1Þ=3
and empty if a5ð�g� 1Þ=3.

Proof. We first prove statement 1, then indicate the changes to obtain statement 2.

Let H	H3;�a be the family of unions Z [2P L. By [20, 3.2(a)], H is irreducible of

dimension 9þ 2a. For b ¼ �3a� g we interpret H 0O
P
3 ðaþ bþ 2Þ as an affine

scheme. Pulling back the universal family over H we obtain a diagram

Z [ L	P
3
�H�H 0ðO

P
3 ðaþ bþ 2ÞÞ

& #

H�H 0ðO
P
3ðaþ bþ 2ÞÞ:

Consider the closed subset

V ¼ fðZ [ L; hÞ 2 H�H 0ðO3Pðaþ bþ 2ÞÞ : h 2 IZ \ ðI 3Y; ILÞg ð11Þ

with first projection V!
p1
H. The fibres of p1 are vector subspaces of dimension

aþbþ5
3

� �
� 3a� 2b� 7. Indeed, after a change of coordinates we may write

IZ ¼ ðx
2; xy; y2; xg� yf Þ ([20, 1.4(c)]) and IL ¼ ðx; zÞ, when the fibre is identified

with the kernel K of the composite map

H 0ðIZðaþ bþ 2ÞÞ,!ðx; z; y2Þaþbþ2 ! ððx; z; y2Þ=ðx; z; y3ÞÞaþbþ2 ð12Þ

(the inclusion has the correct target because Z meets L in the double point 2P). Since

IZ is ðaþ 2Þ-regular,

h0ðIZðaþ bþ 2ÞÞ ¼ wIZðaþ bþ 2Þ ¼
aþ bþ 5

3


 �
� 3a� 2b� 6

and p1:V! H is an affine bundle with fibres of dimension aþbþ5
3

� �
� 3a� 2b� 7. In

particular, V is irreducible.

Consider the open subset U ¼ fðZ [ L; hÞ 2 V : h 62 I2Yg. The correspondence of

Lemma 5.1 shows that elements of U determine unions W [ L in which W is a

quasiprimitive 3-line. If S	P
3
�U is the family of surfaces with equation h, we

obtain flat families

Y;Z [ L;S	P
3
�U

& #

U

where Y is the support of Z. The ideal sheaf IF ¼ IYIZ defines a flat subscheme

F	P
3
�U whose fibres are thick 4-lines of genus �2a� 1 (easy calculation on the

fibres). The subscheme W	P
3
�U defined by the ideal sheaf IW ¼ IYIZ þ IS is

also flat over U. To see this, observe that the relative ideal sheaf IW;F ¼ IW=IF
is an OY-module, whose fibre over the point u ¼ ðZ [ L; hÞ is generated by the

equation h. This gives a right exact sequence

OYu ð�a� b� 2Þ!
h OFu ! OWu

! 0:

From the choice of V and U (and the construction of the map C) we know that the
fibre Wu is a scheme of degree 3. In considering the degree of the Hilbert
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polynomials, we see that the map h is injective and that Wu has Hilbert polynomial

pðzÞ ¼ 3zþ 3aþ bþ 3 independent of u, so W is flat [8, III, 9.9].

Finally, let U0 	U be the open set for which the fibres of W are locally Cohen-

Macaulay, taken with the induced reduced scheme structure. This is precisely the

set for which the fibres of W are quasiprimitive 3-lines of type ða; bÞ by Lemma 5.1.

The curves used in the proof of Corollary 5.5 show that U0 is non-empty; the double

line Z with total ideal IZ ¼ ðx
2; xy; y2; xzaþ1 � ywaþ1Þ has the line L ¼ fx ¼ w ¼ 0g

as a double tangent and h ¼ zbðxzaþ1 � ywaþ1Þ � x2waþb ¼ 0 satisfies the conditions

above. The definition of V above makes it clear that the fibres ofW meet the lines L

in triple points, so the familyW [ L is also flat over U0. The universal property of the
Hilbert scheme gives a map U0 ! H4;�3a�b whose image is precisely the family F1 of

unions W [3P L. In particular, F1 is irreducible.

The structure of the map U0 ! H shows that U 0 has dimension
aþbþ5
3

� �
� a� 2bþ 2. On the other hand, ifW is a triple line arising in the construc-

tion above, then IW is ðaþ bþ 2Þ-regular [20, 2.4], hence dimH 0ðIWðaþ bþ 2ÞÞ ¼
aþbþ5
3

� �
� 6a� 4b� 9. Subtracting this redundancy shows that the family has dimen-

sion 5aþ 2bþ 11 ¼ 11� 2g� a.

The proof of statement 2 goes through via the same outline. The main differences

are as follows. The family H	H3;�a�1 is now the family of unions Z [P L, which is

irreducible of dimension 10þ 2a by [20, 3.2(b)]. In definition (11) of V, I 3Y is replaced

by I 2Y and in map (12) the exponents of y should be reduced by one. To see that U
0 is

nonempty, we can use the same triple line W as in the proof above, but instead use

the line L given by fx ¼ z ¼ 0g. The remaining modifications are clear. &

Remark 5:3. Since the family of triple lines W is irreducible of dimension

10þ 5aþ 2b [20, 2.6], we expect that the natural map fW [3P Lg!
F
fWg which forgets

the line L has generically one dimensional fibres. However, there are triple lines W

for which the fibre F�1ðWÞ has larger dimension. For example, the triple lines

constructed in characteristic p>0 by Hartshorne [10, 2.3] have a two-dimensional

family of triple tangent lines.

PROPOSITION 5.4. With the notation above, we have

ð1Þ F2	F1 if 04a <
�g� 1
3

and is otherwise empty.

ð2Þ F4	F3 if 04a <
�g� 1
3

and is otherwise empty.

Proof. Let W0 [2P L be a curve in the family F2, so that the underlying double

line Z	W0 satisfies length ðZ \ LÞ ¼ 2. IfW0 has type ða;�3a� g� 1Þ and support

Y; we may write IY ¼ ðx; yÞ, IZ ¼ ððx; yÞ
2; xg� yf Þ, IL ¼ ðx; zÞ and IW0

¼ ðIYIZ; h0Þ

in suitable coordinates [20, 2.3]. If K	H 0ðIZð�2a� gþ 2ÞÞ is the vector subspace
considered in the proof above, then zh0 2 K. Fixing a member ðZ [ L; hÞ 2 U

0 as

above, the deformation ð1� tÞzh0 þ th gives a map A
1
!
c
K, which yields

c�1ðU 0Þ ! H4;g.This extends to a map �cc:T ¼ c�1ðU0Þ [ f0g ! Hilbg4 into the full
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Hilbert scheme: by construction, it’s clear that the limit curve �ccð0Þ containsW0 [ L.

Since this curve has genus g, it is equal to �ccð0Þ, completing the proof. The limit of the
triple lines Wt is the triple line W0 along with an embedded point, which is

conveniently covered up by the line L. Statement 2 is similar. &

COROLLARY 5.5. The closure of family F1;a in H4;g contains extremal curves.

Proof. Following [20, 3.6], the family of ideals It below give a deformation from a

triple line W of type ða; bÞ to an extremal curve of the same arithmetic genus.

It ¼ ððx; yÞ
3; ðx; yÞðxzaþ1 � tywaþ1Þ; zbt2ðxzaþ1 � tywaþ1Þ � x2waþbÞ:

We simply observe that the line L ¼ fx ¼ w ¼ 0g is triple tangent to the triple line

Wt defined by It for all t 6¼ 0 and that this same line is a triple tangent to the limit

extremal curve having ideal

I0 ¼ ðx
2; xy; y3; xz3aþbþ3 � y2w3aþbþ2Þ: &

Remark 5:6. The closure of the family F3 above forms an irreducible component

of the Hilbert scheme (Theorem 6.2) with one exception: We will show that the

curves C0 ¼W0 [2P L 2 F3 with W0 of type ð0; bÞ are flat limits of curves

Ct ¼ L [2P Zt [ Lt, where Zt is a double line and Lt is a line disjoint from L

(compare with [20, 3.3]).

Recall that the underlying double line Z0	W0 lies on a smooth quadric with

equation q ¼ 0 [20, 1.5] and that the ideal of W0 may be written IW0
¼ ððx; yÞ3;

xq; yq; h ¼ pq� ax2 � bxy� cy2Þ [20, 2.6]. The double point 2P ¼W0 \ L is not

contained in Z0 since C0 2 F3.

Letting Lt be the ruling fxþ wt ¼ yþ zt ¼ 0g of Q for t 2 A
1, the flat family

Dt ¼ Lt [ L0 has limit D0 ¼ Z0 (linear equivalence on Q) and the flat family of

subschemes Et ¼ Dt [ 2P has limit Z0 [ 2P. Since dimH
0IEt ð�gþ 1Þ is constant,

p�ðIEð�gþ 1ÞÞ is locally (and hence globally) free on A
1 by Grauert’s theorem

[8, III, 12.9], where E	P
3
�A

1
!pA

1 is the total family. Now E1 is contained in

a smooth surface of degree �gþ 1 (in fact, E1	D1 [ L and D1 [ L is contained

in a smooth surface of degree �gþ 1 by [22, 2.6(a)]) with equation s1. Thus we

can find a section st extending s1 with s0 ¼ h and we let St be the corresponding

family of surfaces.

Now consider the family Ct ¼ L [ ðSt \ L
f2g
0 Þ [ LtÞ. For t 2 U, U	A

1 a nonempty

open subset, Ct is the disjoint union of Lt and Zt [2P L, where Zt is a double line of

genus g. Since IZt ¼ ððx; yÞ
2; stÞ and Lt	Q \ St, we obtain the containment

ððxþ wt; yþ ztÞðx; yÞ2; ðx; yÞq; stÞ	IZt \ ILt

and conclude that limt!0 Zt [ Lt	W0 in taking the limit as t! 0. It follows that

limt!0 Ct	W0 [ L in the full Hilbert scheme. Since the Hilbert polynomials agree,

W0 ¼ limCt.
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6. The Hilbert Schemes H4;g

In this section we prove the main results of the paper. The first of these is

Theorem 6.2 that describes the irreducible components of the Hilbert schemes

H4;g. The second is the fact 6.4 that H4;g is connected. The cases when g50 are well
known and described in the introduction. We begin with the case g ¼ �1, since it has

a somewhat different statement due to the existence of more reduced curves.

PROPOSITION 6.1. The Hilbert scheme H4;�1 is connected and has irreducible

components as shown in Table II.

Proof. If a curve C 2 H4;�1 is not extremal, then its spectrum is necessarily

f02; 12g, in which case C is in one of the families H2 or H3 of Proposition 4.2. These

families have general members as described in Remark 4.4 and meet because both

contain thick 4-lines. Finally, H2 meets the family of extremal curves by [23] or

[14]. &

THEOREM 6.2. The Hilbert schemes H4;g have irreducible components as shown in

Table III for g4� 2.
Proof. In the table Gj denotes the closure in the Hilbert scheme H4;g of the set of

curves described in the corresponding row. The outline of the proof is as follows.

First we show the families listed in the table are irreducible of the stated dimension.

Then we show there is no inclusion relation among them. Finally, we prove every

curve of degree 4 and genus g4�2 belongs to one of these families. The restrictions
given in the table are necessary to ensure that a given family exists and is not con-

tained in another family of the list.

The family G1 consists of extremal curves, and is an irreducible component of the

Hilbert scheme of dimension 15� 2g by [18, 4.3]. G2, G3 and G4 are the closures of

the families H2, H3 and HnðgÞ of Proposition 4.3, and are therefore irreducible of the

stated dimension. Note that G2 contains the subextremal curves and G4 consists of

thick 4-lines. Since any double conic lies on a double plane (if the double conic C

has support Y, then C	Y ð2Þ, i.e. I 2Y	IC), the closure G5 of the family of double con-

ics of genus g is irreducible of dimension 13� 2g because the family of such curves in

a fixed double plane 2H is irreducible of dimension 10� 2g by [14, 2.1 and 4.3]. The

Table II. Irreducible components of the Hilbert scheme H4;�1

Label General curve Dimension

H1 extermal curve 17
H2 disjoint union of two conics 16
H3 disjoint union of line and

twisted cubic
16
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families G7;a and G8;a are the closures of F1;a and F3;a from Proposition 5.2 and are

therefore irreducible of the stated dimension. The irreducibility of G11;a;b is proven in

Proposition 2.3.

Finally, families G6, G9;a and G10;m are irreducible components of H4;g because the

curves defining them are disjoint unions of curves that are general in their respective

Hilbert schemes. The dimensions of these families can be computed out of [20, 1.6,

3.4, 3.5].

This shows all families in the statement are irreducible, and we now prove there

are no inclusion relation among them. We have just seen that G1, G6, G9;a and

Table III. Irreducible components of the Hilbert scheme H4;g for g4 � 2

Label General curve Dimension Restrictions

G1 D [ Z
D smooth conic 15�2g none
gðZÞ ¼ g� 3, length ðD \ ZÞ ¼ 4

G2 L1 [2P Z [2Q L2
L1 \ L2 ¼ ; 13�2g none
gðZÞ ¼ g� 2

G3 D [2P Z

D smooth conic 13�2g none
gðZÞ ¼ g� 1

G4 general thick 4-line 9�3g g4�3
G5 double conic 13�3g none
G6 Z [2P L1 _[[L2 11�2g g4�3

gðZÞ ¼ g

G7;a W quasiprimitive 3-line
of type ða;�3a� gÞ

11�2g� a g4�3
0 < a4 �g

3

G8;a W [2P L g4�6
W quasiprimitive 3-line
of type ða;�1� 3a� gÞ

10�2g�a 0 < a4 �g�1
3

G9;a W _[[L g4�6
Wquasiprimitve 3-line
of type ða;�3� 3a� gÞ

8�2g�a 0 < a4 �g�3
3

G10;m D1 _[[D2
deg ðD1Þ ¼ 2; gðD1Þ ¼ �m d(�m)þ d(gþmþ1) 04m4 �q�1

2

deg ðD2Þ ¼ 2; gðD2Þ ¼ gþmþ 1

g4�9
G11;a;b Quasiprimitive 4-line

of type ða; b;�6a� b� g� 3Þ
7� 2g� 3a

¼ 9aþ 2bþ 2cþ 13

0 < a4 �g�3
6

04 b4 �6a�g�3
2

Notation: The letter L denotes a line, the letter Z denotes a double line, and _[[ indicates a disjoint union.
L [nP C stands for the union of a line L and a curve Cwhich intersect along the divisor nP on L. In the tenth
entry we have dð�mÞ ¼ dimH2;�m equals 5þ 2m ifm>1, and 8 ifm ¼ 0orm ¼ 1.
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G10;m are irreducible components of H4;g, so certainly none of them can be contained

in any other family of the list.

The families G2, G3 and G5 could only be contained in G1 or G4 by reason of

dimension. However, none of them is contained in G1 by semicontinuity, and none

of them is contained in G4 because curves in G4 are supported on a single line.

In the table, the only families of dimension larger than that of G4 consist of curves

C with h0ICð2Þ 6¼ 0. These cannot specialize to a general thick 4-line T because
h0ITð2Þ ¼ 0 for g4�3 by Proposition 4.3. Thus G4 is not contained in any of
the other families. Note however that G3 contains all thick 4-lines when g ¼ �2.

We now treat the case of G7;a and G8;a. The general curves in G7;a and G8;a are not

supported on a line, so they can’t be contained in G4 or G11;a;b. G7;a and G8;a are not

contained in G1, G2 G3 or G5 by semicontinuity – curves in the latter families have

larger speciality by Proposition 4.3.

G7;a and G8;a are not contained in G6 or G10;m because when two lines collapse

the resulting double line has genus 5� 1, hence a40 contradicting the restriction
imposed.

If G7;a0 	G9;a, then a
04a by Remark 2.5, which in turn implies that dimG7;a0 ¼

11� 2g� a0>8� 2g� a ¼ dimG9;a, a contradiction. Similarly G8;a0 6	G9;a.

It remains to show that neither G7;a and G8;a contains the other. There can be

no containment G7;a0 	G8;a, because then a04a by Remark 2.5 and hence

dimG8;a ¼ 10� 2g� a < 11� 2g� a0 ¼ dimG7;a, a contradiction. Now suppose

that G8;a0 	 G7;a. Remark 2.5 tells us again that a
04a, and since dimG8;a0 <

dimG7;a we conclude that a
0 ¼ a. In particular, the limit of the underlying family

of double lines Z has no embedded points. This is not possible because the limit

double line meets L in one point while the general member meets L in a double

point.

Finally, G11;a;b cannot be contained in any of the families Gj with j410 by semi-
continuity: indeed, since a>0, every 4-line C in G11;a;b satisfies h

1OCð�2Þ ¼ 1, while

for any other curve D2H4;g we have h
1ODð�2Þ52. On the other hand, there are no

containments among the families G11;a;b: if G11;a;b	G11;a0;b0 , then by Remark 2.5 we

would have a4a0, while

7� 2g� 3a0 ¼ dimG11;a0;b0>dimG11;a;b ¼ 7� 2g� 3a

would yield a0< a, a contradiction.

To finish the proof, we still have to show our families cover the Hilbert scheme.

Let C 2 H4;g have support B ¼ Cred.

Case 1. degB ¼ 4

Here C ¼ B is reduced, and all reduced curves of degree 4 satisfy g5� 1 with the
following two exceptions: either (a) C is the disjoint union of a conic (possibly degen-

erate) and two lines, when g ¼ �2 and C 2 G10;0 or (b) C is the disjoint union of four

lines, g ¼ �3 and C 2 G10;1.
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Case 2. degB ¼ 3

In this case C ¼ Z [D, where Z is a double line with support L and D is a reduced

curve of degree 2. In particular, B ¼ L [D.

First suppose that D is planar and let l ¼ lengthðD \ LÞ. If l ¼ 0, then C 2 G10;0.

If l ¼ 1, then gðBÞ ¼ 0 and C belongs to one of the families G2, G3 or G4 by

Proposition 4.3. If l ¼ 2, then B is planar and hence C is extremal by [21, 2.2].

The other possibility is that D ¼ L1 [ L2 is a disjoint union of lines. If D does not

meet Z, then C 2 G10;1. If Z meets L1 but not L2, then Z [ L1 is a specialization of a

double line meeting L1 in a double point by [20, 3.2], so C lies in G6. If Z meets both

L1 and L2, then gðBÞ ¼ 0 and C again belongs to one of the families G2, G3 or G4 by

Proposition 4.3.

Case 3. degB ¼ 2

If B is a smooth conic, then C belongs to G5, so we suppose that B ¼ L [ L
0 is a

union of two lines. If C is a union of double lines, then either (a) the lines are disjoint

and C 2 G10;m for m ¼ �maxfgðZ1Þ; gðZ2Þg or (b) the lines meet and hence C is con-

tained in a double plane; in this case C 2 G5 by [14, 8.1 and 8.2].

The remaining possibility is that C ¼W [ L, where L is a line andW is a triple line

which is quasi-primitive because gðW Þ4� 1 (the only thick triple line has genus 0).
If W has type ða; bÞ, let Z be the underlying double line and set l ¼ lengthðW \ LÞ.

If l ¼ 3, then necessarily lengthðZ \ LÞ ¼ 2. If a ¼ �1, then Z [ L is planar and C

is extremal. If a ¼ 0, then Z [ L 2 H3;0 and C belongs to one of the families G2, G3
or G4 by Proposition 4.3. If a>0, then C belongs to G7;a.

Suppose l ¼ 2. If lengthðZ \ LÞ ¼ 2 and a ¼ �1 or 0, we argue as in the case l ¼ 3

above. If lengthðZ \ LÞ ¼ 2 and a>0, then C 2 G7;a by Proposition 5.4. Thus we may

assume Z \ L ¼ P a reduced point. If a ¼ �1, then Z [ L 2 H3;0 and C 2 G2 [ G3 by

Proposition 4.3, while if a ¼ 0, then C 2 G6 by Remark 5.6. If a>0, then C 2 G8;a.

Suppose l ¼ 1. Then either (a) a>0 so that C 2 G8;a by Proposition. 5.4 (b) a ¼ 0

and C 2 G6 by Proposition 5.4 and Remark 5.6 or (c) a ¼ �1, Z [ L 2 H3;0 and

C 2 G2 [ G3 by Proposition 4.3.

If l ¼ 0, then C ¼W [ L withW a quasi-primitive 3-line of type ða;�3� 3a� gÞ.

Now either (a) a ¼ �1, W is extremal and C 2 G6 by [20, 3.2] or (b) a ¼ 0 and

C 2 G5;0 by [20, 3.3] or (c) a>0 and C 2 G9;a.

Case 4. degB ¼ 1

If C is thick, then C 2 G4. If C is a quasiprimitive 4-line, then C has type ða; b; cÞ for

some integers a5� 1 and c5b50. If a ¼ �1, then the underlying double line Z is
planar and C lies in a double plane, hence C 2 G5 by [14, 8.1 and 8.2]. If a ¼ 0, then

C is in G10;m for m ¼ �1� b by Proposition 3.3. Finally, if a>0, then C 2 G11;a;b.

EXAMPLE 6.3. As the restrictions in Table III imply, some of the components do

not show up if the genus g is not small enough. The five irreducible components of

H4;�2 appear in Table IV:

192 SCOTT NOLLET AND ENRICO SCHLESINGER

https://doi.org/10.1023/B:COMP.0000005083.20724.cb Published online by Cambridge University Press

https://doi.org/10.1023/B:COMP.0000005083.20724.cb


We can now prove H4;g is connected:

THEOREM 6.4. The Hilbert scheme H4;g is connected if nonempty.

Proof. We may assume g4�2, and it suffices to show that all the irreducible
components can be connected to the component G1 of extremal curves. The families

G2 and G3 meet the family G4 of thick 4-lines by Proposition 4.3, and G2 meets G1
by [1, 14], or [23]. In particular, thick 4-lines belong to the connected component of

extremal curves, and it is enough to show that all other components can be con-

nected to either G1 or G4. G5 meets G1 by [14, 5.1 and 8.2]. That G6 meets G1 follows

immediately from [11, 2.1] and [20]. G7;a meets G1 by Corollary 5.5 and G8;a meets G1
by Proposition 5.4 and [11, 2.5]. One can connect G9;a to G1 by applying [20, 3.8]

and [11, 2.1]. The families G11;a;b meet G4 by Proposition 2.4. Applying Proposition

3.3, we see G10;m contains G11;0;m�1 for m>0 and, hence, meets G4 as well. Lastly,

we consider G10;0. By definition this family contains curves C ¼ Z [ L1 [P L2 where

Z has degree two and Li are meeting lines. Since Z is extremal, C specializes to an

extremal curve E 2 G1 by [11, 2.1 and 2.5]. &

As an application of our results, we can now give a counterexample to a conjecture

of Aı̈t-Amrane and Perrin [2]. The conjecture regards the following question, which

has been a recurring theme of this paper:

QUESTION 6.5. Let X and X0 be two irreducible families of curves in Hd;g having

constant cohomology. Under what conditions do we have a nonempty intersection
�XX \ X0 6¼ ; in Hd;g?

We have been lucky in that whenever we suspected the existence of such a defor-

mation, we could actually prove it. In general, this question is difficult. Semicontinu-

ity [8, III, Section 12] gives a necessary condition: If tiðnÞ ¼ hiðP3; ICðnÞÞ for all
C 2 X and ti0ðnÞ ¼ h

iðP
3; IC0 ðnÞÞ for all C0 2 X0, then whenever �XX \ X0 6¼ ; we must

Table IV. Irreducible components of H4;�2

Label Description Dimension

G1 Conic meeting a double line
in a scheme of length 4

19

G2 L1 [2P Z [2Q L2 Li lines,Z a
double line ofgenus�4

17

G3 Conic meeting a double line
in a double point

17

G5 Double conic 17
G10;0 Disjoint union ofa conic and

two lines
16
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have tiðnÞ4ti0ðnÞ for all i and n (we write t4t0 for short). This condition is not
sufficient, even when X (resp. X0) is an irreducible component of the Hilbert scheme

Ht (resp. Ht0 ) of curves with fixed cohomology. This has been shown by a recent

example of Aı̈t-Amrane and Perrin [2].

A more subtle necessary condition is afforded by the Rao modules of the curves.

Let A be a discrete valuation ring with fraction field K and residue field k and let

C	P
3
A be a family of locally Cohen–Macaulay curves over A. Then the Rao module

MCK of the generic curve is a flat deformation of a subquotientM of the Rao module

MCk of the special curve ([13, Proposition 5.9], [1, x 4.2.2], [2, Proposition 13]). This

means that there are submodules M1	J	MCk such that M ¼ J=M1 and M is a flat

deformation of MCK . Moreover,

dim ðM1Þn ¼ h
0ICkðnÞ � h0ICK ðnÞ; ð13Þ

dim ðMCk=J Þn ¼ h
2ICk ðnÞ � h2ICK ðnÞ: ð14Þ

In view of this result, the following conjecture of Aı̈t-Amrane and Perrin is

natural:

CONJECTURE 6.6 ([2], Conjecture 14). Let X and X0 be irreducible components of

Ht and Ht0 respectively. Suppose that

ð1Þ t4t0
ð2Þ The Rao module of the generic curve Cx of X is a flat deformation of a subquotient

of the Rao module of a curve C0 in X0 and that the numerical conditions ð13Þ and

ð14Þ hold.

Then �XX \ X0 6¼ ; in Hd;g.

As it turns out, the conditions of the conjecture are still insufficient, as we note in

the following example.

EXAMPLE 6.7. For g4�3, let X	H4;g denote the irreducible family HnðgÞ from

Proposition 4.3. The closure �XX is precisely the family of thick 4-lines. Let X0 ¼ G1
denote irreducible family consisting of extremal curves. We claim that �XX \ X0 ¼ ;.

Indeed, an extremal curve cannot specialize to a thick 4-line because this would

violate semicontinuity, while a thick 4-line has everywhere embedding dimension 3,

and so cannot specialize to an extremal curve that has generic embedding dimension 2

[18]. On the other hand, we will now show that the conditions of the conjecture hold.

First we compare the Rao modules. Let C be a general thick 4-line with support L

and set S ¼ SL. Proposition 4.3 shows that MC ffi S=ða; b; cÞð�g� 1Þ where a; b; c

are general forms of degree �gþ 1 in S. Choose a linear form l 2 S so that ða; l Þ

is a regular sequence and a form f 2 ðb; cÞ of degree �gþ 2 so that ða; f Þ is a regular

sequence. We consider the extremal Koszul module M ¼ S=ða; lf Þ. Since the

multiplication S=ðaÞ!
�l
S=ðaÞ is injective and the image of the submodule ð f Þ is
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ðlf Þ, we see that the submodule J ¼ �llM is isomorphic to S=ða; f Þ. Since f 2 ðb; cÞ by

choice, S=ða; b; cÞ is a quotient of J byM1 ¼ ðlb; lcÞ. If E is an extremal curve corre-

sponding to M, then degE ¼ 4, paðE Þ ¼ g and we have just shown that MC is a

subquotient of ME. It is clear that dimðM=J Þn ¼ 1 for g4n40 and zero otherwise;
this is seen to be precisely h2IEðnÞ � h2ICðnÞ in comparing the spectra of these
curves. Finally, since the Euler characteristics of IE and IC are the same, the exact
sequences relating the Rao modules shows that dim ðM1Þn ¼ h

0IEðnÞ � h0ICðnÞ. In
particular, the semicontinuity conditions are immediate.
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e à cône de
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