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Abstract. In this paper we determine the irreducible components of the Hilbert schemes Hy 4
of locally Cohen-Macaulay space curves of degree four and arbitrary arithmetic genus g: there
are roughly ~ (g2/24) of them, most of which are families of multiplicity structures on lines.
We give deformations which show that these Hilbert schemes are connected. For g< — 3 we
exhibit a component that is disjoint from the component of extremal curves and use this to
give a counterexample to a conjecture of Ait-Amrane and Perrin.
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1. Introduction

Liaison theory has played a prominent role in classifying algebraic curves in P* since
the pioneering work of Max Noether. It has only recently become clear that locally
Cohen-Macaulay curves are the natural objects of study, even if one is only interes-
ted in smooth connected curves. This is because each biliaison class is generated (via
a rather explicit procedure known to the expert as the Lazarsfeld-Rao property
[4, 16]) by an essentially unique minimal curve, which need only be locally
Cohen—Macaulay. For example, in the classification of smooth irreducible curves
of degree 8 and genus 5 [7], one family of curves is in the biliaison class of double
lines of genus —2 (non-reduced curves) and another is in the biliaison class of the
disjoint unions of a line and a twisted cubic (nonconnected curves). This explains
the interest in Hilbert schemes H,;, parametrizing locally Cohen-Macaulay curves
in P? of degree d and arithmetic genus g.

In general, we know that the Hilbert scheme H,, is non-empty precisely when
g=1(d—1)(d-2) (plane curves) or when d>1 and g<1i(d—2)(d-3) [10, 3.3
and 3.4] and that H,, is reducible for d>3 and g< %(d— 3)(d — 4) with the excep-
tions (d,g) = (3,0) and (3, —1) [18]. More recently it has been shown that H;, is
connected for g> (;%) — 2 [1, 23, 26] and that H; , is connected for all g [20].

The connectedness results above were obtained by deforming curves to extremal
curves as introduced by Martin-Deschamps and Perrin [17]: these are the curves C
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which have the largest Rao function h'Zo(n) with respect to d and g. Geometri-
cally speaking, the extremal curves are precisely the curves of degree d which con-
tain a planar subcurve of degree d — 1 (unless C is planar or (d, g)€{(3,0), (4, 1)})
and they form an irreducible component £C H;, [18]. The existence of a compo-
nent of curves with the largest Rao function led Hartshorne to ask the following
questions:

QUESTION 1. Is Hg, connected for all d and g?

QUESTION 2. Does each irreducible component BCH;, meet the extremal
component E?

Hartshorne showed that extremal curves can be connected to various families of
curves, for example smooth rational and elliptic curves, smooth curves of degree
d>g + 3, arithmetically Cohen—Macaulay curves and many others [11]. Perrin
showed that any curve with a Koszul Rao module can be deformed to an extremal
curve [25]. Related to this is a conjecture of Ait-Amrane and Perrin stating that if X
is a family of curves whose cohomology does not exceed that of a family X, and the
Rao module of the general curve in X is a flat deformation of a subquotient of the
Rao module of curves in Xj, then XN X, # @: they have shown [2] that semi-
continuity alone is insufficient.

Now consider curves of degree d = 4. The Hilbert scheme H, 3 parametrizes plane
curves and is smooth irreducible of dimension 17; Hy; is smooth irreducible of
dimension 16 by [6] and [10, 3.3 and 3.5], its general member being a complete inter-
section of two quadrics. The Hilbert scheme Hs o has two irreducible components,
whose general members are respectively rational quartic curves and disjoint unions
of a plane cubic and a line. Hartshorne first noticed that these two families can be
connected; now there are several published proofs: [11, 13, 20]. One of our motiva-
tions is to extend the systematic study of these Hilbert schemes and complete the
picture when d = 4.

Our first theorem describes the irreducible components of Hs, and gives their
dimensions. Our method is to first identify components whose general curve C is
special in the sense that C is contained in a quadric surface (h°(Z (2))>1) or has large
speciality (h'(O¢(—1))>2). There are very few such components: if the general curve
C of a family lies on a quadric, then either C is an extremal curve, a subextremal
curve (these are the curves with largest Rao function among the nonextremal curves
[21]) or a double conic. If the general curve C of an irreducible component of Hy ,
has large speciality but does not lie on a quadric, we show (Proposition 4.3) that
Cis either a thick 4-line or the union of a conic and a double line meeting at a double
point. A thick 4-line [3] is a curve of degree 4 supported on a line L and containing
the first infinitesimal neighborhood of L in P°.

Having disposed of these very special components, it is relatively easy to list those
remaining. Their general member is either (a) a quasiprimitive (i.e. nonthick [3])
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4-line, (b) the disjoint union of a line and a general curve of an irreducible
component of Hz,, or (c) the disjoint union of two double lines. Asymptotically
H, 4 has ~(g?/24) irreducible components, most of which arise from curves suppor-
ted on lines. For example, from Table III we find that H4 190 has 530 components
(377 of these are families of 4-lines) while Ha _; oo has 42755 components (of which
41252 arise from 4-lines).

Our second theorem states that Hs, is connected when it is not empty. The main
novelty for g<— 3 is the presence of a component G4 consisting entirely of thick
4-lines. We prove the connectedness theorem by showing that each irreducible com-
ponent can be connected either to the extremal component E or to G4, and that the
component of subextremal curves meets both E and G4. Specifically, the quasi-primi-
tive 4-lines and the curves with large speciality deform to thick 4-lines (Sections 2 and
4). We show that a disjoint union of double lines specializes to a quasi-primitive
4-line on a double quadric surface in Section 3. Section 5 is devoted to showing that
families of unions of triple lines and reduced lines can be connected to the extremal
component.

The component G4 of thick 4-lines turns out to be rather interesting. Since these
curves are scheme-theoretically (although not cohomologically) the most special,
they cannot specialize to extremal curves, answering Question 2 in the negative.
Since their Rao modules are flat deformations of subquotients of the Rao modules
of extremal curves (Example 6.7), we obtain a counterexample to the conjecture of
Ait-Amrane and Perrin above. Question 1 remains open.

Throughout the paper we work over an algebraically closed field k of arbitrary
characteristic. A curve for us is a locally Cohen—Macaulay scheme over k of pure
dimension 1. We will freely use the sentence ‘the family of curves of degree d and
genus g with property P is irreducible of dimension m’ to mean that there is a
(unique) irreducible m-dimensional constructible subset S of the Hilbert scheme
H,; 4, whose closed points parametrize the curves of degree 4 and genus g with pro-
perty P. Note that, since S is constructible, the closure of S in the Hilbert scheme
is also an m-dimensional irreducible subset.

2. Multiplicity Four Structures on Lines

In this section we study locally Cohen—Macaulay curves in IP* which are supported
on a line; we will simply call these d-lines, where d is the degree of the curve.

We begin with the general theory of Banica and Forster [3, § 3]. Let C be a locally
Cohen—Macaulay curve on a smooth threefold X with smooth support Y. Letting
Y® be the subscheme of X defined by 7', and C; be the subscheme of X obtained
by removing the embedded points from C N Y, we obtain the Cohen—Macaulay fil-
tration for C:

Y=CcGc---cC.=C (1)
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for some k> 1. The quotients L; = Z¢,/Z,,, are vector bundles on Y and the multi-
plicity is given by u(C) =1+ ) rank L; The natural inclusions Z¢Z¢, C Zc,,
induce generically surjective multiplication maps L; ® L; — L;;; and in particular
we obtain generic surjections L, — L.

As in [3, § 4], the curve C is said to be thick if Y® c C; this is equivalent to the
condition that C has embedding dimension three at each point. In terms of filtration
(1) above, this says that C; = Y®, in which case L; = Zy/Z? is the conormal bundle
of Y on X. If further u(C) = 4, then rank L, = 1 and there is an exact sequence

0— —& — —F —L,—0. )
L Iy

For a line YC P, we obtain the following.

PROPOSITION 2.1. For g<1, the thick 4-lines in Ha o form an irreducible closed
subset of dimension 9 — 3g.

Proof. The condition that C contain Y® is clearly closed. If C is a thick 4-line
with support YCP?, then w(C) =4, T3/I3 = Oy(=2)® and L, = Oy(—g—1)
(because Pic Y = 7). It follows from sequence (2) above that giving such a curve C is
the same as giving a surjective morphism Oy(—2)® — Oy(—g — 1) modulo an
automorphism of Oy(—g — 1). Thus the set of thick 4-lines of genus g is parametrized
by an open subset of a P>~ *-bundle over the Hilbert scheme of lines in 3. O

On the other hand, a curve C is quasiprimitive if it is not thick, which is equi-
valent to having generic embedding dimension two. In this case rank L; =1 and
the generic surjections L-’i — L; yield effective divisors D; such that L; & L{(D,«);
the multiplication maps show that D; + D;<D;y;. If C is a quasiprimitive 4-line
in P?, then the Cohen-Macaulay filtration takes the form YcDcC Wc C where Y
is a line, D a double line and W a triple line. Setting ¢ = deg L, b = deg D, and
¢ = deg D3, the triple (a, b, ¢) is the type of C. Since the surjection Zy — Oy (a) fac-
tors through the conormal bundle Zy/Z% = Oy(—1)*, we necessarily have a> — 1,
while by construction b, c>0. That C has arithmetic genus p,(C)= —6a — b—
c¢—3 follows from the isomorphisms Zyp = Oy(a), Zpw = Oy(2a+b) and
Iw.c = Oy(Ba+ o).

The following lemma helps us construct 4-lines from quasiprimitive 3-lines.

LEMMA 2.2. Let WCP? be a quasiprimitive 3-line of type (a, b, ¢) with support Y
and underlying double line D. Set J =TIy + T3. Then in the short exact sequence

Iyvlp _ Iw Tw

00— — —0
J IvIp
we have isomorphisms
Iylp Tw
=~ Oy(Ba+b) and >~ Oy(—a—b—-2).
L2 0)Ba+b) and Oy )
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In particular, when a=0, the sequence is split exact.

Proof. On the open set where W has embedding dimension two, the quotient
IZyZIp/J is an invertible Oy-module. It follows that the multiplication map
Zy.p ®o, ID,W—H> ZyZp/J is an isomorphism (it is surjective a priori; if ker u # 0,
then the image has finite support) and ZyZp/J = Oy(3a + b). Further, Zp/Z yTp =
Oy(2a) ® Oy(—a — 2) by [20, 2.3] and the exact sequence

0— Iw/IYzD — ID/Iyz_D — Oy(2a+b) — 0
shows that Zy/ZyZIp = Oy(—a—b—2). When a>0, the sequence must split

because
Ext)(Oy(—a— b —2), Oy(3a+ b)) = H'(Y, Oy(4a + 2b + 2)) = 0. ]
If a quasiprimitive 4-line C has type («, b, ¢) with ¢ = —1, then C necessarily lies in

a double plane and, hence, is a flat limit of double conics [14, 8.1 and 8.2]. Since we
are mainly interested in families that form irreducible components of the Hilbert
scheme, we will assume that a>0 in the sequel. The following proposition is based
on [3, § 3.8].

PROPOSITION 2.3. Let (a, b, ¢) be a triple of integers satisfying a=0 and 0<b<c.
Then the quasiprimitive 4-lines of type (a, b, ¢) in Hy 4 form an irreducible constructible
subset of dimension 9a + 2b + 2¢ + 13.

Proof. The set of double lines of type a is parametrized by an open subscheme V>
of a P*"-bundle over the Grassmannian of lines in IP° [20, 1.6]. Indeed, to give a
double structure D of type a on a line Y is equivalent to give a surjective morphism
IY/IZY >~ Oy(—1)? —> Oy (a) modulo an automorphism of Oy(a).

Similarly, the quasiprimitive triple lines of type (a, b) which contain a double line
D € V, are determined by surjective morphisms Zp/Z yIDéOy(2a)® Oy(—a—-2)
74 Oy(2a + b) modulo automorphisms of Oy(2a + b), the isomorphism 7 being given
in [20, 2.3]. It follows that the set of triple lines of type (a, b) is parametrized by an
open subscheme V3 of a [P3¢+20+3_bundle over Vs, hence is irreducible of dimension
S5a+2b+ 10.

In the same way, the 4-lines of type (a, b, ¢) which contain a fixed quasiprimitive
3-line W of type (a, b) with support Y are determined by surjections Iw/IyIw—
Oy(QBa + ¢). Since I CZyZw on an open set, the image of ID in Zy/ZyZTy is torsion
so that ¢ factors through Zy,/J, where J = ZyZw + ID, allowing us to use Lemma
2.2. Thus the surjections (]5 IwlT =2 Oy(Ba+b)® Oy(—a—b— 2)—> Oy(Ba+¢)
modulo automorphisms of Oy(3a + ¢) are parametrized by an open subset V4 of a
P23 bundle over Vi, that is, by an irreducible variety of dimension 9a + 2b+
2¢+13.

We now show that each surjection &5 gives a quasiprimitive 4-line. Since W is
quasiprimitive, there are local coordinates s and ¢ on an open set with Iy = (s, ),
Ip = (s, %), and Iy = (s, £) [3, 2.1]. In particular, (s, 0)* = B, ¢ J = (s, st, £*) so that
the image of Ii, is nonzero in ZyZp/J = Oy(3a+ b) and for any surjection ¢,

https://doi.org/10.1023/B:COMP.0000005083.20724.cb Published online by Cambridge University Press


https://doi.org/10.1023/B:COMP.0000005083.20724.cb

174 SCOTT NOLLET AND ENRICO SCHLESINGER

the induced map Oy(3a + b) — Oy(3a + ¢) is injective, whence the image of I%, is
nonzero in Oy(3a + ¢) and so C¢ Y®: from this it follows that C is quasiprimitive
via the Cohen-Macaulay filtration. O

The following result is an important ingredient in our connectedness theorem 6.4.

PROPOSITION 2.4. Let (a, b, ¢) be a triple with a=0 and ¢=b>=0. Then there exists
a flat family of curves Ccpi[r] such that

(1) the fibre C, is a quasiprimitive 4-line of type (a, b, c) for t 0
(2) the fibre Cy is a thick 4-line.

Proof. The outline of the proof is as follows. Fixing a double line Z of type (a)
supported on the line L, we have seen above that a quasiprimitive triple line of type
(a, b) containing Z is determined by a surjective morphism Z, — O;(2a + b). We
construct a family of such surjections y, for ¢ # 0 whose limit at # = 0 is a morphism
Vo: Iz — Or(—a —2) ® Op where D is an effective divisor on L. Then ker y/, defines
a family W, whose general fibre is a quasiprimitive 3-line of type (a, b), while the
special fibre W is the first infinitesimal neighborhood of L plus some embedded
points along D. We construct the desired family C, by picking a morphism
Iw, - Or(3a+c) in such a way that the ‘extra line’ in Cy covers the embedded
points of W, so that Cj is locally Cohen—Macaulay.

Fix coordinates so that P* = Proj (k[x, y, z, w]) and let Ly be the line with equa-
tions x = y = 0. Let Z; be the double structure on L, defined by the homogeneous
ideal (x?, xy, y%, xg — yf) where = zt! and g = w**!, thus Z, is a double line of
genus —a — 1. Now consider the trivial families L = Ly x Aland Z = Z, x A! over
A' = Speck[7] and let Z, denote the ideal sheaf of Z in P? x A!. Then we have an
isomorphism Z; ® Op = Or(—a — 2) & Or(2a) in which the natural epimorphism
I, —ZI,®0; 20 (—a—2)®0r(2a)sends xg — yf to (1,0) and x2, xy and »?
to (0,/7), (0, f2), (0, ¢%) [20, 2.3].

Consider the injective morphism

[ ]
S3a+b+2
1Op(—a—b—-=2)"_ SOp(—a—2)® Or(2a)
and set G = coker(y). Note that G is flat over A! because y remains injective on the
fibres over A!. Now let y: 7, — G be the composite surjection

I,50(—a—2)® 0, (2a) > G

and define W by Zy = ker(y).

It is clear that W is a flat family of closed subschemes over A'. For r+#0,
G, = G ® k(1) is isomorphic to O, (2a + b) so that W, is a quasiprimitive triple line
of type (a, b). On the other hand, G is isomorphic to Oy (—a —2) & Op, where D
is the divisor in Ly defined by the global section s = z3****2 of O, (3a + b + 2). By
construction W, contains Lf)z) and 7 12w, =~ Op.
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We now claim that, over the coordinate ring R = k[f][x, y, z, w] of P,im, the

saturated ideal Iy of W C P,im has a free graded resolution
M; M, M,
0> F—>F—F —F =R,

where

Fi=R(-3)*®R(—a—3)**@® R(—a—b—2),

Fr, = R(—4)® & R(—a — 4)®* @ R(—a — b — 3)®2,

Fs=R(—a—35%@® R(—a— b —2),

and the maps are defined by the matrix transposes

B g 0 Za+h ]
I X ] -f g 0
Xy 0o —f 0
x)? y 0 0
M = v’ : Mi=|-x » 0 |,
x(xg — yf) 0 —x 0
y(xg —3f) 0 y —mh
L X224+ twh(xg — xf) | 0 0 -y
| 0 0 x|
'y —x 0 0 0 0 07
0 y —X 0 0 0 0 B _tf3chbwb N
0 0 y —x 0 0 0 _zf2(§chjwj
_g f 0 0 X 0 0 —Z“f‘g ZC_ W'
M; = 0 —& f ?‘ y 0 O , Pt = _l‘gji‘:;b;vb
0 0 —-g . 0 y 0 Shatc
0 0 0 0 —y x 0 Z3ated2,at]
Z0tb 0 0 0 md® 0 —x whatbre+2
L 0z 0 0 0 m —y - -

(In the second line we have included a matrix P which will be used a few lines below).

We use the Buchsbaum-Eisenbud criterion [5] to see that the complex above is
acyclic. For this it is enough to observe that the ideal I5(M3) generated by the
3 x 3 minors of M3 contains the regular sequence (x*°, y?, z3¢*%*+2) and that Is(M;)
contains the regular sequence (x°, y°). Therefore the complex is a resolution of the
ideal J defined by M, hence J is the saturated homogeneous ideal of a closed
subscheme of ]Pim. It is clear that J C Iy, and comparing the Hilbert polynomials
we see J = Iy. This proves the claim.

We now construct a family C of 4-lines as in the statement of the Proposition.
Recalling that f = w*"! and g = z**!, one checks that the map F 15 R(3a + ¢) satis-
fies PM, = 0 mod I, where I, = (x, y) is the ideal of L (here P is the matrix above).
We thus obtain a map IW—P> T(Ba+ c¢) where T= R/I; =2 A[z, w]. Sheafifying,
we obtain a morphism ¢:Zy — Op(3a+ ¢) and Z¢ = ker ¢ defines C. Since ¢, is
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surjective for all € A', we see from the proof of Proposition 2.3 above that C, is a
quasiprimitive 4-line of type (a, b, ¢) for t # 0.
Finally, we check that Cy is a thick 4-line. To this end, observe that

3 2
IL(] CIw, CILO

and that ¢, vanishes on Zzo, hence factors through Zy, /Iiu. On the other hand,
looking at the presentation of Iy ® T, we see that Zy, /2'20 is isomorphic to

Or(—a—3)" @O, (—a—b-2).

Thus we have a commutative diagram of short exact sequences:

¢
0 - Zo/Ti, — Iwm/I;, — 01,(3a+ ¢) = 0

\L \L“ ¢23a+h+z
0 > IgTi, — T73 5 On6at+btc+2) > 0
where, identifying 7y, /Z3, with Or,(—a — 3)® @& Or,(—a — b —2) and I3, /T}_ with
(’)LO(—Z)@}, the morphisms are

WaJrl 0 Zaer ZZu+2 w4u+b+L'+2
o= | —zatl watl 0 , Bf — Zat+lySatbte+3 _ 6a+b+e+4
0 _Za+l 0 W6a+b+r+4 _ 225a+b+c+3 Wa-H

¢_o — [ Shate3d  Bater2yatl ) datbted? ]
Since o is injective and
deg(Z7,/13,) — deg(Tw,/I},) =3a+b+2,

we see that Cy = C is a thick 4-line, and this concludes the proof. O

Remark 2.5. We don’t know what kind of specializations might occur between
quasiprimitive four-lines in general, but we formulate the following necessary
condition: if a family of quasiprimitive four-lines of type (a, b, ¢) specializes to a
four-line of type (o', b/, ¢’), then @’ <a. To see this, consider the deformation of the
underlying double line Z: the general such Z has genus —1 — g, hence the limit Z’
consists of a double line of genus —1 — @’ and possibly some embedded points. Since
the arithmetic genus is constant, we conclude that &' <a. Similarly, if a family of
triple lines of type (a, b) specializes to another of type (&', '), then ¢’ <a. Examples of
both types of specialization are seen in [20, 3.6 and 3.10].

3. A Deformation on the Double Quadric

In this section we apply results from our general study of curves on double surfaces
[24] to show that a disjoint union of double lines specializes to certain quasiprimitive
4-lines on a double quadric.
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Let O C P? be a smooth quadric surface and let X c P be the effective divisor 20.
For a curve CC X, let P be the curve part of the scheme-theoretic intersection C N Q.
We may write

Zcno.o =Zz0(—P)

where Z is zero-dimensional. The inclusion PC CN Q generates the commutative

diagram

0 0 0
' oy '

0 — Ti(-0) > Tc — T,o(-P) — 0
) V

0 > O0u(-0) > TIp — Oy(—P) — 0 3)
\: i ¢ \:

0 - Or(-Q0) —- L — 0Ozx(-P —> 0
¥ 2 J
0 0 0

in which fis the equation for Q c P?. This diagram defines the residual curve R to C
in Q and we obtain a triple 7(C) = {Z, R, P} in which R C P are effective divisors on
Q. Using depth arguments and results on generalized divisors [9] as in [14], Z is a
Gorenstein divisor on R, £ = Or(Z — Q) is a rank one reflexive Og-module, and
o gives the section of £(Q) defining Z as a generalized divisor on R [24, § 2]. The
arithmetic genus of C is given by the formula

g(C) = g(P) + g(R) + deggr Or(Q) — deg(Z) — 1. (4)

PROPOSITION 3.1. Let CCP? be a general quasiprimitive 4-line of type (0, b, c)
with Cohen-Macaulay filtration LCDCWCC. Then there exists a smooth quadric
surface Q CP* such that

(1) DcQ and CC2Q.

(2) The triple associated to CC2Q has form T(C) = {Z, D, D}, where Z consists of
¢ — b simple points and b + 2 double points, none of which is contained in L.

(3) H(Op(Z+D —Q)) =0.

Proof. That D is contained in a smooth quadric Q is [20, 1.5], hence Z,p CI% C
Z¢ and CC2Q. The definition of type of C gives rise to the top row in the diagram:

0 > Iy > I, > O.(b) S0

nl ot ®)
ID ® OL i OL (&) OL(—2)

in which  factors through = and the isomorphism along the bottom row takes
the equation f for Q to the generator of the summand O,(-2) [20, 2.3]; thus
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W(f)=¢qg e H°Or(b+2) and in particular g # 0 since W¢ Q. Now W20 and its
associated triple has the form {Zy, L, D} for a zero-dimensional subscheme
Zw C L. Interpreting diagram (3) for W, the middle column is simply the top row
of diagram (5), £ = O.(b), and the map ¢ is multiplication by ¢; in particular,
degZy =b+2.

The triple for C has form {Z, D, D} (ZC D a zero-dimensional subscheme) and the
inclusion W C C induces a morphism from diagram (3) for C to diagram (3) for Win
which the middle rows coincide. Thus the maps along the bottom row are surjective
and when we assemble these along with their kernels we obtain the commutative

diagram

0 0 0
A , ! J

0 - Zrp(—=0) — ZIwc=2O0ic) - Iz,2(-D) — 0
! ! J

0 - Op(-0) — Ipc — Oz (-D) - 0 (6)
A \: J

0 - Ou(=0) — ZIpw=20ib) — Oz, (-D) — 0
! ! !
0 0 0

We immediately deduce the vanishing in statement 3: indeed, the long exact coho-
mology sequence associated to the middle row shows that H'(Zp ¢) = 0, but in view
of the discussion following diagram (3) and the fact that D> = 0 on Q we have

Ipc=0p(Z-Q)=0p(Z+D-0Q)

so that H'(Op(Z+ D — Q)) = 0.
Now we analyze the map «, which arises from the natural inclusion
T:(=2)=1I,TpCIwy by taking quotients. Thus o factors as

IIn-2) b TIp17 Tw/J — Iw/Ic
! ! ! ) ()

0= L o) - oumeo-b-2 T 00
where J = TyZw + I and the vertical maps are isomorphisms via Lemma 2.2. We
conclude that « is multiplication by the global section gr € H(L, Oy (c + 2)) so that
L7,z =2 Op/(gqr). For a general 4-line C of type (0, b, ¢), the form gr has simple zeros.
Now twist diagram (6) by Op(Q) = Op(—2) and apply $O.% o, (—, Op) = (—)".
As D is a local complete intersection (hence locally Gorenstein), Oy is a reflexive
Op-module because it has local depth one [9, 1.6]. In particular
CxrT }9]) (OL, Op) = 0 and the columns remain exact. The leftmost column becomes

0— (0r)" = (Op)" = (Op)" = 0

(recall that Z; p = Op). It’s easy to check on stalks that (Op)" is a locally free
O;-module; the sequence above shows that the image of 1€ H(Op)" is a global
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generator, hence (O1)" 2 O;. Since the dual of the reflexive sheaf Zp (Q) = Op(Z)
is Zz p, we obtain

0 0 0
t T ‘ t
0 <« Or/(gr) <« O il Op(—c=2) <« 0
t T t
0 <« O, «~ Op <« Izp ~ 0 ®)
t T t
0 = O/l = OL < O-b-2) < 0
t T t
0 0 0

This diagram shows that Z consists of b + 2 double points supported at the isolated
zeros of ¢ and ¢ — b reduced points. O

We end this section showing that a general quasiprimitive 4-line as in Proposition
3.1 is a specialization on X = 20 of a disjoint union of double lines having arithmetic
genera —1 — b and —1 — ¢, a fact we will later use in Theorems 6.2 and 6.4. The idea
is to lift families of triples to families of curves on X. In [24] we construct the Hilbert
scheme H.,, of curves CC X having triples {Z, R, P} such that the Hilbert polyno-
mial of Z (resp. R and P) is z (resp. r and p). If D. , , is the Hilbert flag scheme for the
corresponding triples, there is a natural map n: H. ., — D-, , assigning a curve to its
triple. The structure of this map is partially described as follows:

THEOREM 3.2 ([24], Theorem 3.1). Let VCD.,, be the open subset of triples
{Z, R, P} for which HHOR(Z+ P — F)=0. Then the induced map n=" (V) — V is
surjective and has the structure of an open immersion followed by an affine bundle
projection.

We apply this machinery to prove:

PROPOSITION 3.3. Let C be a general quasiprimitive 4-line of type (0, b, ¢) lying on
the double quadric surface 2Q. Then there is an irreducible flat family of curves on
2Q with special fibre C and general member a disjoint union of two double lines of
respective arithmetic genera —1 — b and —1 — c.

Proof. As in Proposition 3.1, let {Z, D, D} be the triple associated to C. Let
D1, D2, .., Pe—p be the reduced points of Z, and choose planes H; transverse to L, one
containing each double point z; of Z. Let {L;: f € P!} be the family of rulings on Q
with Ly = L and define

b+2

Zi={p1.....pes} U | JIH; N (L U L)),
j=1
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Setting R, = L, U Ly, we obtain a family of triples {Z;, R;, R,} specializing to
{Z, D, D}. Moreover, for t # 0 we have the vanishing

H'Or(Z/+ D, — Q) = H (O, (c+2—2)® H(Or,(b+2—2)) =0.

Thus we obtain a map ¢: P! — D. ., with image contained in the open set } of
triples for which H'Og(Z + P — Q) = 0. Over V the natural map H.,,— D.,p
is surjective and has the structure of an open immersion followed by an affine bundle
projection by Theorem 3.2, hence the restriction U = n~'(¢(P')) 5 P! has the same
structure and is irreducible. We obtain the desired family W by pulling back the uni-
versal family over H.,, to U: Ce U by construction, and W, is a disjoint union of
double lines of respective genera —1 — b and —1 — ¢ whenever n(u) # 0 by Equation
(4) (cf. [24, Example 2.8 (3)]). O

4. Curves of Degree Four with Large Speciality

In this section we study curves which have large speciality. We express the speciality
of a curve C by its spectrum [28], which can be defined as the nonnegative function

he(n) = A*R(Oc(n) = K(Oc(m) = 2k°(Oc(n — 1)) + h(Oc(n — 2).

We represent this by the t-uple of integers with exponents {n"<®}. The extremal
curves, which by definition achieve the upper bounds on the Rao function
h'(Z ¢(n)) given in [17], also have the largest speciality and comprise an irreducible
component EC Hy, of dimension 15— 2g [18, Theorems 2.5 and 3.7]. For d =4
and g <0 they may be characterized as (a) nonplanar curves containing a plane cubic
curve or (b) curves with spectrum {g} U {0, 1, 2} [21, 2.2].

Similarly, there are sharp upper bounds on the Rao function for nonextremal
curves: the curves achieving these bounds are called subextremal and have spectrum
{g+ 1,0, 1%}, although they are not characterized by this fact [21, 2.11, 2.14 and
2.15]. We characterize curves of degree four with subextremal speciality as follows:

LEMMA 4.1. Let C be a curve of degree 4 and genus g < —2. Then C has spectrum
{g+ 1,0, 1%} if and only if C contains a subcurve T of degree 3 and genus 0.

Proof. If C contains such a curve T € Hj, then the principal spectrum spectrum
{0, 12} of T is contained in that of C [28, § 3] and the remaining element g + 1 is
determined by the genus of C.

On the other hand, suppose that C has spectrum {g+ 1,0, 1?}. Then h°O¢
(¢+1)=1 and choosing 0 # a € H'Oc(g + 1) gives a map O¢ — Oc(g + 1) with
image Op for some closed subscheme D C C. The local depth of D is one because
OpCOc(g+ 1), hence D is a locally Cohen—Macaulay curve. The inclusion above
also shows that #1°0p(1)<2: for g < —2 this is because ’’Oc(g +2) =2. If g = -2,
then /°O¢ = 3 and the inclusion H(Op(1)) cHY(O¢) is strict, as otherwise we obtain
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a surjection Op(1) — O¢, which is absurd. It follows that D = L is a line. This yields
an exact sequence

0>0(—g—1)—> Oc—> 07— 0 9)

for a closed subscheme 7'C C of degree 3 and genus 0.

If T is not purely one-dimensional, then the purely one-dimensional part PC T is
planar because g(P)>0 and deg P = 3 [10, 3.1], but this is not possible because C is
not extremal. Thus T is locally Cohen—Macaulay, finishing the proof. O

PROPOSITION 4.2. Let C be a curve of degree 4 and genus g< — 1 having spectrum
{g+1,0,12). Then there is a line L such that the Rao module M¢ = H\Z(¢) is a
graded module over the coordinate ring S = H?(Op) with resolution

0> S(—)®S(—5+8) —S(-2)2 > S(—g—1) > Mc — 0 (10)

for some integer 2<j<n(g) = Ls%gj. The cohomology of C is determined by the integer
Jj and we denote the corresponding family of curves by H;.

Proof. First we suppose that g<< — 2; then C contains a curve T of degree 3 and
genus 0 by Lemma 4.1. In particular, 7 is arithmetically Cohen—Macaulay and the
total ideal I7 is generated by three quadrics [10, 3.5]. Moreover, the proof of Lemma
4.1 produces a line L such that Z7 ¢ = Or(—g — 1). Thus we obtain the composite
surjection O(—2)®* — T — O (—g — 1): factoring this map through O (—2)® and
writing the kernel of the induced map as Op(—j) ® Or(j — 5 + g) for some integer
j€e[2, (5—g)/2]], we obtain resolution (10).

Now assume that g = —1. The spectrum shows that C is neither ACM (because
he(0)>1) nor extremal, hence [21, Theorem 2.11] gives the bounds #'Z¢<1,
MZc(1)<2and h'Z(2)<1. The first two of these are equalities in view of the Euler
characteristics (since /°Z¢ = h3Z (1) = 0) and the vanishing #*Z (1) = 0, which may
be read from the spectrum. If #'Z+(2) = 1, then C is subextremal by definition and
has (a degenerate form of) resolution (10) with j = 2.

If WZc(2)=0, then Zc is 3-regular (hence h'Zc(n)=0 for n>2) and
WZ(2) = B*Z(2) = 0. The condition 4#'Z¢ = 1 implies that A'Z(n) = 0 for n < 0
[19, 2.8], hence the Rao module M has a generator m in degree 0. If m does not
generate M as a module over the homogeneous coordinate ring S = k[x, y, z, w]
of P, then m is annihilated by 3 independent linear forms, which implies that C lies
on a quadric by [27, 3.4.5], a contradiction. Thus m generates the Rao module and
Mc = S/(x,y, 22, zw, w?) after a change of coordinates, so that M¢ has resolution
(10) for Iy = (x, y) with j = 3. O

Finally, we describe the families H; and how they fit together in the Hilbert

scheme. We let G4 C Hy, denote the closed family of thick 4-lines. By Proposition
2.1 G4 is irreducible of dimension 9 — 3g.
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PROPOSITION 4.3. For fixed g< —1, let H; be the family of curves defined in
Proposition 4.2. Then

(1) The family H; is irreducible and meets Gy. It consists of subextremal curves and
has dimension 13 — 2g (resp. 16 if g = —1).

(2) The family Hs is irreducible and meets Gy. It has dimension 13 — 2g (resp. 16 if
g=—1).Ifg=—1or =2, then G4, C Hs.

(3) Suppose g< —3. The families H; are contained in G4 for 3<j<n(g) and
Gy = Hyy)-

Proof. We consider the last statement first: suppose that C € H; for 3 < j<n(g).
Sequence (10) shows that h'Z(3) = —g — 3, hence hi°Z(3) = 4. If L and T are as in
the proof of Proposition 4.1 above, then dim(/;I7);<4 because I;IrCIc and so
It = 5 by Lemma 4.5 below. It follows that C is a thick 4-line supported on L, hence
H;CGs. As we saw in Proposition 2.1, the thick 4-lines supported on L are
parametrized by the open subset

UcHomo(Z7, Or(—g — 1)) = Homo, (Or(—2)’, Or(-g — 1))

corresponding to surjective maps. For j = 2 and 3, the specific surjections given by
(w'=8, w3=87/2/=2 1-8) show that G4 meets H;. Since Ic is determined by its image
in Ir/I 17 = S;(=2)* (and hence by the image of the first map in sequence (10)
above), we find by counting dimensions that H; is irreducible of dimension
5+42j—2g (except if 2j=5—g, when the dimension is 4+ 2j—2g). For
j=n(g) = LS%gJ, the closure of H, is irreducible of dimension 9 — 3g, hence is equal
to Gy.

If j = 2, then H; consists of subextremal curves: indeed, for C € H», resolution (10)
gives Rao function po(n) = (") —2(";") + ("*%7?), which agrees with the subextre-
mal bound in [21, 2.11]. In particular, these curves are obtained from extremal curves
of degree 2 and genus g’ =g — 1 by a height one biliaison on a quadric surface
[21, 2.14]. Let then y, p (resp. ', p’) be the gamma and Rao functions for the extre-
mal curves of degree 2 and genus g — 1 (resp. subextremal curves of degree 4 and
genus g). Letting B, , | denote the universal biliaison scheme of Martin-Deschamps
and Perrin [16, VII § 4], we have smooth irreducible projections

q2
B‘/,p,ll — I‘Iv/yp/

q1 »l«
E=H,,

to the spaces H,, (resp. Hy ,) of curves with constant cohomology. The family
E = Hy, , of extremal curves is irreducible of dimension 7 — 2g [18, 2.5] and using
[16, VII, 4.8] we compute that the fibre dimension of ¢ is 8 (resp. 9 if g =—1)
and the fibre dimension of ¢ is 2, hence the family H, , of subextremal curves is irre-
ducible of dimension 13 — 2g (resp. 16 if g = —1).
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For j =3, we take an indirect approach. Consider the family of arithmetically
Cohen-Macaulay curves D with resolution of the form

0> 02s—1D)d0(@g—-2)— O@g—1)7°—>1TI),—>0.

It is irreducible of dimension 2(7%") + (7%"2) + 2 (resp. 12 if g = —1) by [6] and the
general member is smooth and irreducible (the numerical character has no gaps).

Let D be a general such curve in this family. Then a general (disjoint) union D U L
with a line L lies on an integral surface of degree —g + 2; To see this, we consider the
map

T:P3—D—L—A>P3—DXP3—L—>P2XP1

given by the linear systems PHZp(—g+ 1) and PHZ;(1). The fibres of t are
the intersections {SNH:S € H'Zp(—g+ 1), H e HZ;(1)}, which are generally of
dimension one, and hence the image of t has dimension two. Composing with the
Segre embedding P? x P'<>P°, we apply Jouanolou’s Bertini theorem [15, 6.10]
to see that the general surface of degree —g+ 2 containing D U L is irreducible.
Furthermore, the resolution for Z, shows that H'Opy;((—g +2) —4—(g+ 1)) #0
and we find that [16, III, 2.7(b)] DU L can be bilinked on a surface of degree
—g + 2 with height g+ 1 to a curve C, which lies in H3 by direct calculation.

Let vy, p (resp. 9/, p') be the gamma and Rao functions for curves in Hj (resp.
DUL). Letting B, , _¢42 o1 be the universal biliaison scheme [16, VII Section 4],
we obtain smooth irreducible projections

q2
By p—gt2-g-1 = Hyy

q1 »L
H;=H,,
From the last paragraph, the image of ¢, is dense in the irreducible component
consisting of the closure of the family of disjoint unions D U L considered above.
Using the resolutions given, we compute the dimension of the fibres of ¢; and ¢,
via [16, VII 4.8] and conclude that Hj is irreducible of dimension 13 — 2g (resp. 16
ifg=-1). O

Remark 4.4. One can check by a dimension count that the general members of the
families H, and H3 are described as follows.

1. For g = —1, the general member of H; is a disjoint union of conics. For g< — 2,
the general member of Hj is the union of a double line Z of genus g — 2 and two
disjoint lines L; and L,, each meeting Z in a scheme of length 2.

2. For g = —1, the general member of Hj is a disjoint union of a line and a twisted
cubic curve. For g< — 2, the general member of Hj is the union of a double line
of genus g — 1 and a smooth conic meeting in a scheme of length 2.

The following lemma and its proof are well known:
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LEMMA 4.5. Let LcPY be a linear subvariety of codimension two and let
VcHO(PY, O(d)) be a subspace of dimension r generating the homogeneous ideal
I. Then the image W under the multiplication map V& H'(PY,Z.(1)) —
HO(PY, O(d + 1)) satsifies dim(W)=r+ 1 with equality if and only I= I=1f for
some form f of degree d —r + 1.

Proof. Let S =Sym H°(PY,Z,(1)) = k[x, y] be the symmetric algebra and set
P! = Proj(S). Let F denote the image of the sheafification of the natural map
VerS— @, H(PY, O(n)) of free graded S-modules. This yields an exact sequence
0— &— O — F — 0 of locally free Opi-modules. Since h°(£) = 0 by hypothesis
and we have rank(£)<r —1, so

£ P Op(-a)
i=1

with s<r—1 and @;>0, hence h’(E(1))<r — 1. Since H(£(1)) is the kernel of the
surjection V' ® S| — W, we see that dim(W)=r+ 1 with equality if and only if
s=r—1 and @ =1 for 1<i<r—1, which is equivalent to saying that
F2Op(r—1). O

5. Triple Lines Union a Line

In this section we are interested in unions C = WU L of a quasi-primitive triple line
W of type (a,b) and a reduced line L, where W N L is nonempty. The arithmetic
genus of C is given by

g(C)=-3a—3—b+length(WnNL).

Fix g and ¢>0 and let ZC W denote the underlying double line of genus —1 — a.
Then we have four families of such curves C in Hy, as shown in Table I.

The main results of this section are that families F; and F5 are irreducible (Pro-
position 5.2) and that the other two families lie in their closures (Proposition 5.4).

Our arguments hinge on the following construction: fix a double line Zc P? of
type a=>0 with support Y and let 5>0 be an integer. Let h € H°Z ,(a+ b + 2) be
the equation of a surface S which does not contain the first infinitesimal neighbor-
hood Y@ of Y. Removing the embedded points from the scheme cut out by

Table I. Families of unions W U L, W a triple line of type (a, b)

Label Length (WN L) Length (ZN L) Relation

Fy 3 2 b=—-3a—g
P 2 2 b=—-3a—g—1
F3 2 1 b=-3a—g—1
Fy 1 1 b=—-3a—g-2
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I = (Iylz, h)yields a locally Cohen—-Macaulay curve W supported on Y. Since Y@ ¢ S,
the surface S is smooth at a general point p of Y, so as in Section 2 we may find local
equations s = /1, and ¢ for Y at p such that Zp, = (s, 2), and Iy, = (s, °). It follows
that W is quasiprimitive of degree three. Thus we obtain the map

O:{he H T a+b+2): h¢ Izy} — {Quasiprimitive 3-lines W D Z}.

LEMMA 5.1. Let @ be the map above. Then

(1) The image of @ is the set of quasiprimitive 3-lines W D Z of type (a, b') with b’ <b.
(2) For h as above, set I = (Iylz, h). Then the following are equivalent.

(a) W= ®(h) has type (a, b).
(b) The scheme defined by I is locally Cohen—Macaulay.
(¢) h is irreducible modulo IyI,.

If any of these conditions hold, then I = Iy is saturated.

Proof. For h € {(Iz),pn:h¢ I}, let W be the purely one-dimensional part of
the scheme V defined by the ideal /= (Iylz, h). Since W is quasi-primitive and
contains Z, W has type (a, b’) for some »'>a and the total ideal may be written
Iy = (Iylz, /) with K of degree a+ b +2 by [20, 2.3]. The inclusions
(Iylz, hycIlycly now show that &' <b. On the other hand, if W is a quasi-
primitive 3-line of type (a,b’) with b’'<b, then writing Iy = (Iylz, i') as above
and choosing a hypersurface F of degree b — 5" with equation f meeting Z
properly, we see that ®(fh') = W.

For the equivalences in statement 2, let C be the scheme defined by I = (Iyl,, h) so
that W = ®(h) is obtained from C by removing possible embedded points.

(a) = (b) If W has type (a, b), then by [20, 2.3] the total ideal for W takes the form
Ly = (Iylz, W) with degh’ = a+ b + 2 = degh. The inclusions /C Ic C I show that
all three ideals are equal, so C = W is locally Cohen—Macaulay.

(b) = (c) Suppose that i = /'t modulo Iyl;. If T is the surface with equation ¢, then
we may assume 7 meets Y properly (since if both 7 € Iy and i’ € Iy, then h € I3,
contrary to hypothesis). In this case (Iylz, t) defines a scheme of length 4 deg T
(because Iyl, defines a locally Cohen—Macaulay 4-line) and if C is locally Cohen—
Macaulay, then (/, t) defines a scheme of length 3deg 7; since (Iylz, t) = (I, t), we
must conclude that C is not locally Cohen-Macaulay.

(¢) = (a) If W has type (a, b’) for b’ < b, then Iyy = (Iylz, h') with degh’ = a+b' + 2.
The inclusion IC Iy shows that there exists ¢ of degree b — b’ such that h = h't
modulo IyIl,. O

PROPOSITION 5.2. With the notation of Table I, we have

(1) The family F\ C Hyg is irreducible of dimension 11 —2g —a if 0<a< —% and
empty if a>—(g/3).
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(2) The family F3 C Hy g4 is irreducible of dimension 10 —2g —a if 0<a < (—g—1)/3
and empty if a=(—g —1)/3.

Proof. We first prove statement 1, then indicate the changes to obtain statement 2.
Let HC H3 _, be the family of unions Z U,p L. By [20, 3.2(a)], H is irreducible of
dimension 9 +2a. For b= —3a—g we interpret H°Os(a+b+2) as an affine
scheme. Pulling back the universal family over H we obtain a diagram

ZULCP x Hx H'(Ops(a+b+2))
N \:
H x HO(OP;(a + b+ 2)).
Consider the closed subset
V={ZUL,h)e Hx HO}Ma+b+2):hel,N(;, 1)} (11)

with first projection v 2% H. The fibres of p1 are vector subspaces of dimension
(a+g+5) —3a—2b—"7. Indeed, after a change of coordinates we may write
I, = (X%, xy, >, xg — yf) ([20, 1.4(c)]) and I; = (x, z), when the fibre is identified
with the kernel K of the composite map

HYZ7(a+ b+ 2))=(x, 2, 7)) ppir = (5,2, 9)/ (% 2,5 Nasiin (12)
(the inclusion has the correct target because Z meets L in the double point 2P). Since
Iz is (a + 2)-regular,
a+b+5
3
and p: V' — H is an affine bundle with fibres of dimension (a+g+5) —3a—-2b—7.1In
particular, V' is irreducible.

Consider the open subset U= {(ZUL,h) € V: h ¢ I%}. The correspondence of
Lemma 5.1 shows that elements of U determine unions WU L in which W is a
quasiprimitive 3-line. If SCP? x U is the family of surfaces with equation &, we
obtain flat families

YV, ZUL,SCPPx U
N
U

hO(IZ(a—i—b—i-Z)):XIZ(a+b+2):( )—3a—2b—6

where ) is the support of Z. The ideal sheaf Zrp =77z defines a flat subscheme
FCP? x U whose fibres are thick 4-lines of genus —2a — 1 (easy calculation on the
fibres). The subscheme W P® x U defined by the ideal sheaf Z,, =7 vIz+Zsis
also flat over U. To see this, observe that the relative ideal sheaf Zyy r=Zw/ZF
is an Oy-module, whose fibre over the point u = (ZU L, h) is generated by the
equation /. This gives a right exact sequence

Oy(—a—b—2)5Op — O, — 0.

From the choice of V' and U (and the construction of the map W) we know that the
fibre W, is a scheme of degree 3. In considering the degree of the Hilbert
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polynomials, we see that the map /4 is injective and that W, has Hilbert polynomial
p(z) = 3z+ 3a+ b + 3 independent of u, so W is flat [8, 111, 9.9].

Finally, let U’ C U be the open set for which the fibres of W are locally Cohen-
Macaulay, taken with the induced reduced scheme structure. This is precisely the
set for which the fibres of W are quasiprimitive 3-lines of type (a, b) by Lemma 5.1.
The curves used in the proof of Corollary 5.5 show that U’ is non-empty; the double
line Z with total ideal I, = (x2, xy, y*, xz¢t! — yw*1) has the line L = {x = w = 0}
as a double tangent and & = z/(xz*t! — yw*1) — x2w*? = ( satisfies the conditions
above. The definition of V" above makes it clear that the fibres of VW meet the lines L
in triple points, so the family W U L is also flat over U'. The universal property of the
Hilbert scheme gives a map U — Hy _3,_5 Whose image is precisely the family F; of
unions W Usp L. In particular, F) is irreducible.

The structure of the map U — H shows that U’ has dimension
(“*53) — a — 2b + 2. On the other hand, if W is a triple line arising in the construc-
tion above, then Zy is (a + b + 2)-regular [20, 2.4], hence dim H)(Z y(a + b +2)) =
(“*53) — 6a — 4b — 9. Subtracting this redundancy shows that the family has dimen-
sion Sa+2b+11=11-2g—a.

The proof of statement 2 goes through via the same outline. The main differences
are as follows. The family H C H3 _,_; is now the family of unions Z Up L, which is
irreducible of dimension 10 + 2a by [20, 3.2(b)]. In definition (11) of ¥, I; is replaced
by I} and in map (12) the exponents of y should be reduced by one. To see that U’ is
nonempty, we can use the same triple line W as in the proof above, but instead use
the line L given by {x = z = 0}. The remaining modifications are clear. O

Remark 5.3. Since the family of triple lines W is irredu%ible of dimension
10 + S5a + 2b [20, 2.6], we expect that the natural map {W Usp L}—{ W} which forgets
the line L has generically one dimensional fibres. However, there are triple lines W
for which the fibre F~'(W) has larger dimension. For example, the triple lines
constructed in characteristic p >0 by Hartshorne [10, 2.3] have a two-dimensional
family of triple tangent lines.

PROPOSITION 5.4. With the notation above, we have

(1) FCF, if0<a < —g3— ! and is otherwise empty.

(2) F4CF;if0<a < —g3— ! and is otherwise empty.

Proof. Let Wy U,p L be a curve in the family F>, so that the underlying double
line Z C W, satisfies length (Z N L) = 2. If W, has type (a, —3a — g — 1) and support
Y; we may write Iy = (x. »), Iz = ((x, )% xg — /). I = (x.2) and Iy, = (Iylz. ho)
in suitable coordinates [20, 2.3]. If KC H%(Z ,(—2a — g + 2)) is the vector subspace
considered in the proof above, then z/y € K. Fixing a member (ZU L, h) € U’ as
above, the deformation (1— #)zhy+ th gives a map A11>K, which yields
¥~'(U’) — Hy,.This extends to a map y: 7=y~ (U) U {0} — Hilb into the full
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Hilbert scheme: by construction, it’s clear that the limit curve 1/_/(0) contains Wy U L.
Since this curve has genus g, it is equal to x}(O), completing the proof. The limit of the
triple lines W; is the triple line W, along with an embedded point, which is
conveniently covered up by the line L. Statement 2 is similar. O

COROLLARY 5.5. The closure of family F\ , in Hy, contains extremal curves.
Proof. Following [20, 3.6], the family of ideals 7, below give a deformation from a
triple line W of type (a, b) to an extremal curve of the same arithmetic genus.

I, = ((X, y)3’ (X, y)(xza-H _ ly117a+1), th2(xza+1 _ tywa-H) _ x2wa+b)'

We simply observe that the line L = {x = w = 0} is triple tangent to the triple line
W, defined by I, for all ¢ # 0 and that this same line is a triple tangent to the limit
extremal curve having ideal

3a+b+3 3a+b+2). ]

I = (X%, x,°, xz —y*w

Remark 5.6. The closure of the family F3; above forms an irreducible component
of the Hilbert scheme (Theorem 6.2) with one exception: We will show that the
curves Cy = WyU,p L € F5 with W, of type (0,b) are flat limits of curves
C,=LVUyp Z, UL, where Z; is a double line and L, is a line disjoint from L
(compare with [20, 3.3]).

Recall that the underlying double line ZyC W, lies on a smooth quadric with
equation ¢ =0 [20, 1.5] and that the ideal of W, may be written Iy, = ((x, 3,
Xq, vq, h = pqg — ax* — bxy — cy*) [20, 2.6]. The double point 2P = W, N L is not
contained in Z, since Cy € F3.

Letting L, be the ruling {x +wt = y+zt =0} of Q for r e A!, the flat family
D, = L,U Ly has limit Dy = Z, (linear equivalence on Q) and the flat family of
subschemes E, = D, U 2P has limit Z, U 2P. Since dim HOIE,(—g + 1) is constant,
1.(Ze(—g + 1)) is locally (and hence globally) free on A' by Grauert’s theorem
[8, III, 12.9], where ECP® x A'—>"A! is the total family. Now E| is contained in
a smooth surface of degree —g + 1 (in fact, £y CD; UL and D; U L is contained
in a smooth surface of degree —g + 1 by [22, 2.6(a)]) with equation s;. Thus we
can find a section s, extending s; with so = 4 and we let S; be the corresponding
family of surfaces.

Now consider the family C, = LU (S, N L({)z}) UL,).Forte U, UC A" a nonempty
open subset, C, is the disjoint union of L, and Z, Upp L, where Z, is a double line of
genus g. Since Iz, = ((x, y)%,s,) and L, CO N S,, we obtain the containment

((X + wi, y + Zl)(x’ J’)z’ (.X, y)q, SI) CIZ, N IL:
and conclude that lim,o Z, U L, C W} in taking the limit as t — 0. It follows that

lim, .o C,C Wy U L in the full Hilbert scheme. Since the Hilbert polynomials agree,
Wy = lim C,.

https://doi.org/10.1023/B:COMP.0000005083.20724.cb Published online by Cambridge University Press


https://doi.org/10.1023/B:COMP.0000005083.20724.cb

HILBERT SCHEMES OF DEGREE FOUR CURVES 189

6. The Hilbert Schemes H, ,

In this section we prove the main results of the paper. The first of these is
Theorem 6.2 that describes the irreducible components of the Hilbert schemes
Hy 4. The second is the fact 6.4 that Hy, is connected. The cases when g >0 are well
known and described in the introduction. We begin with the case g = —1, since it has
a somewhat different statement due to the existence of more reduced curves.

PROPOSITION 6.1. The Hilbert scheme Ha _y is connected and has irreducible
components as shown in Table I1.

Proof. If a curve C € Hy_; is not extremal, then its spectrum is necessarily
{0%, 12}, in which case C is in one of the families H, or H3 of Proposition 4.2. These
families have general members as described in Remark 4.4 and meet because both
contain thick 4-lines. Finally, H, meets the family of extremal curves by [23] or
[14]. ]

THEOREM 6.2. The Hilbert schemes Hy 4 have irreducible components as shown in
Table III for g < — 2.

Proof. In the table G; denotes the closure in the Hilbert scheme Hy , of the set of
curves described in the corresponding row. The outline of the proof is as follows.
First we show the families listed in the table are irreducible of the stated dimension.
Then we show there is no inclusion relation among them. Finally, we prove every
curve of degree 4 and genus g < —2 belongs to one of these families. The restrictions
given in the table are necessary to ensure that a given family exists and is not con-
tained in another family of the list.

The family G| consists of extremal curves, and is an irreducible component of the
Hilbert scheme of dimension 15 — 2g by [18, 4.3]. G, G5 and G4 are the closures of
the families H,, H3 and H, ) of Proposition 4.3, and are therefore irreducible of the
stated dimension. Note that G, contains the subextremal curves and G4 consists of
thick 4-lines. Since any double conic lies on a double plane (if the double conic C
has support Y, then CC Y@, i.e. I3 CI¢), the closure Gs of the family of double con-
ics of genus g is irreducible of dimension 13 — 2g because the family of such curves in
a fixed double plane 2H is irreducible of dimension 10 — 2g by [14, 2.1 and 4.3]. The

Table II. Irreducible components of the Hilbert scheme Hy _;

Label General curve Dimension
H; extermal curve 17
H, disjoint union of two conics 16
H; disjoint union of line and 16

twisted cubic
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Table I11. TIrreducible components of the Hilbert scheme Hy, for g < —2
Label General curve Dimension Restrictions
G DUZ
D smooth conic 15-2¢ none
gZ)y=g—3,length(DNZ)=4
G, Ly Uyp Z Uy Ly
LiNnNL,=¢ 13-2¢g none
§(2)=g-2
[€X) DUyp Z
D smooth conic 13-2¢ none
gZ2)=¢-1
Gy general thick 4-line 9-3g g<-3
Gs double conic 13-3¢g none
Gs ZUp LiUL, 11-2g g<-3
§2) =g
G74 W quasiprimitive 3-line 11-2g—a g<-3
oftype (a, —3a — g) 0<a< 3
Ggu WUsp L g<—6
W quasiprimitive 3-line 10—2g—a 0<a< %‘1
oftype (a, —1 —3a—g)
Go.q WUL g<—6
Wquasiprimitve 3-line 8§—2g—a 0<a< %73
oftype (a, =3 —3a—g)
Giuom  DUD,
deg (D) =2, g(Dy) = —m d(—m) + d(g+m+1) 0<m< =4t
deg(D2) =2,g(D2)=g+m+1
g<-9
Gi1.qp Quasiprimitive 4-line 7—2g—3a 0<a< %‘3

of type (a, b, —6a — b — g — 3) = 9a+2b+2c+ 13

0 < b < 76(1;g73

Notation: The letter L denotes a line, the letter Z denotes a double line, and U indicates a disjoint union.
L U, p C stands for the union of a line L and a curve C which intersect along the divisor nP on L. In the tenth
entry we have d(—m) = dim H, _,, equals 5 + 2mif m>1,and 8if m = 0orm = 1.

families G7, and Gg, are the closures of F} , and F3, from Proposition 5.2 and are
therefore irreducible of the stated dimension. The irreducibility of Gy 45 is proven in
Proposition 2.3.

Finally, families Gg, G , and Gy, are irreducible components of Hy , because the
curves defining them are disjoint unions of curves that are general in their respective
Hilbert schemes. The dimensions of these families can be computed out of [20, 1.6,
3.4, 3.9].

This shows all families in the statement are irreducible, and we now prove there
are no inclusion relation among them. We have just seen that G;, Gg, Gy, and
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G1o,m are irreducible components of Hj ,, so certainly none of them can be contained
in any other family of the list.

The families G,, Gz and G5 could only be contained in G| or G4 by reason of
dimension. However, none of them is contained in G; by semicontinuity, and none
of them is contained in G4 because curves in G4 are supported on a single line.

In the table, the only families of dimension larger than that of G4 consist of curves
C with °Z(2) # 0. These cannot specialize to a general thick 4-line T because
WZ(2) =0 for g < —3 by Proposition 4.3. Thus G, is not contained in any of
the other families. Note however that G; contains all thick 4-lines when g = —2.

We now treat the case of G7, and Gs,. The general curves in G7, and Gg , are not
supported on a line, so they can’t be contained in G4 or Gy 4. G74 and Gg , are not
contained in G, G, G3 or Gs by semicontinuity — curves in the latter families have
larger speciality by Proposition 4.3.

G7, and Gg, are not contained in Gg or Go,, because when two lines collapse
the resulting double line has genus > — 1, hence a <0 contradicting the restriction
imposed.

If G7.» C Gy, then @’ <a by Remark 2.5, which in turn implies that dim G;, =
11 —2¢g —d'>8 —2g — a =dim Gy ,, a contradiction. Similarly Gs » Z Gy 4.

It remains to show that neither G7, and Gg, contains the other. There can be
no containment G7,CGg,, because then &'<a by Remark 2.5 and hence
dimGg, = 10—-2¢g—a <11 —-2¢g—d =dimG7,, a contradiction. Now suppose
that Gg,C Gy, Remark 2.5 tells us again that &' <a, and since dimGg, <
dim G, we conclude that ¢’ = a. In particular, the limit of the underlying family
of double lines Z has no embedded points. This is not possible because the limit
double line meets L in one point while the general member meets L in a double
point.

Finally, G145 cannot be contained in any of the families G; with j<10 by semi-
continuity: indeed, since a> 0, every 4-line C in Gy, satisfies h' Oc(—2) = 1, while
for any other curve D€ Hy, we have 1'Op(—2)>2. On the other hand, there are no
containments among the families Gy 45: if G114 C G101, then by Remark 2.5 we
would have a<d/, while

7—-2¢—3d =dimGyy ypy>dim Gy =7 —2¢ —3a

would yield ¢ < a, a contradiction.
To finish the proof, we still have to show our families cover the Hilbert scheme.
Let C € Hy, have support B = Creq.

Case 1. degB=4
Here C = B is reduced, and all reduced curves of degree 4 satisfy g > — 1 with the
following two exceptions: either (a) C is the disjoint union of a conic (possibly degen-
erate) and two lines, when g = —2 and C € Gy or (b) C is the disjoint union of four
lines, g = —3and C e Gl(),].
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Case 2. degB =13
In this case C = Z U D, where Z is a double line with support L and D is a reduced
curve of degree 2. In particular, B= LU D.

First suppose that D is planar and let / = length(D N L). If / = 0, then C € Gjg..
If /=1, then g(B) =0 and C belongs to one of the families G,, Gz or G4 by
Proposition 4.3. If / = 2, then B is planar and hence C is extremal by [21, 2.2].

The other possibility is that D = L; U L, is a disjoint union of lines. If D does not
meet Z, then C € Gyp ;. If Z meets L; but not L,, then ZU L, is a specialization of a
double line meeting L; in a double point by [20, 3.2], so C lies in Gg. If Z meets both
L, and L,, then g(B) = 0 and C again belongs to one of the families G,, G; or G4 by
Proposition 4.3.

Case 3. degB=2
If B is a smooth conic, then C belongs to G5, so we suppose that B=LU L’ is a
union of two lines. If C is a union of double lines, then either (a) the lines are disjoint
and C € Gy, for m = —max{g(Z)), g(Z»)} or (b) the lines meet and hence C is con-
tained in a double plane; in this case C € G5 by [14, 8.1 and 8.2].

The remaining possibility is that C = WU L, where L is a line and W is a triple line
which is quasi-primitive because g(W') < — 1 (the only thick triple line has genus 0).
If W has type (a, b), let Z be the underlying double line and set / = length(W N L).

If [ = 3, then necessarily length(Z N L) = 2. If a = —1, then ZU L is planar and C
is extremal. If ¢ = 0, then ZU L € Hs and C belongs to one of the families G, G3
or G4 by Proposition 4.3. If a>0, then C belongs to G7 .

Suppose / = 2. If length(Z N L) =2 and ¢ = —1 or 0, we argue as in the case / = 3
above. If length(Z N L) = 2 and ¢ >0, then C € Gy, by Proposition 5.4. Thus we may
assume Z N L = P a reduced point. If a = —1,then ZU L € H3 and C € G, U G3 by
Proposition 4.3, while if a = 0, then C € G by Remark 5.6. If a>0, then C € Gg .

Suppose / = 1. Then either (a) a>0 so that C € Gg , by Proposition. 5.4 (b) a =0
and C € Gg by Proposition 5.4 and Remark 5.6 or (¢) a =—1, ZUL € Hsy and
C € G, U G3 by Proposition 4.3.

If /=0, then C = WU L with W a quasi-primitive 3-line of type (¢, —3 — 3a — g).
Now either (a) a = —1, W is extremal and C € G¢ by [20, 3.2] or (b) a =0 and
C € Gs, by [20, 3.3] or (¢c) a>0 and C € Gy ,.

Case 4. degB =1
If C is thick, then C € Gy. If C is a quasiprimitive 4-line, then C has type (a, b, ¢) for
some integers a=> — 1 and ¢=5>0. If a = —1, then the underlying double line Z is
planar and C lies in a double plane, hence C € G5 by [14, 8.1 and 8.2]. If a = 0, then
Cis in Gyo, for m = —1 — b by Proposition 3.3. Finally, if a>0, then C € Gy 4.

EXAMPLE 6.3. As the restrictions in Table III imply, some of the components do

not show up if the genus g is not small enough. The five irreducible components of
Hy4 _, appear in Table IV:
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Table IV. Irreducible components of Hy _»

Label Description Dimension
Gy Conic meeting a double line 19
in a scheme of length 4
Gz L] Usp VA UZQ L2 L,' liHCS, Za 17
double line of genus —4
Gs Conic meeting a double line 17
in a double point
Gs Double conic 17
G10.0 Disjoint union of a conic and 16
two lines

We can now prove Hy g4 is connected:

THEOREM 6.4. The Hilbert scheme H, , is connected if nonempty.

Proof. We may assume g < —2, and it suffices to show that all the irreducible
components can be connected to the component G; of extremal curves. The families
G, and G3 meet the family G4 of thick 4-lines by Proposition 4.3, and G, meets G,
by [1, 14], or [23]. In particular, thick 4-lines belong to the connected component of
extremal curves, and it is enough to show that all other components can be con-
nected to either Gy or G4. G5 meets Gy by [14, 5.1 and 8.2]. That G¢ meets G follows
immediately from [11, 2.1] and [20]. G7, meets G| by Corollary 5.5 and Gg , meets G|
by Proposition 5.4 and [11, 2.5]. One can connect Gy, to G| by applying [20, 3.8]
and [11, 2.1]. The families G 4, meet G4 by Proposition 2.4. Applying Proposition
3.3, we see Gy, contains Gyj,,—1 for m>0 and, hence, meets G4 as well. Lastly,
we consider Gy . By definition this family contains curves C = Z U L; Up L, where
Z has degree two and L; are meeting lines. Since Z is extremal, C specializes to an
extremal curve E € G| by [11, 2.1 and 2.5]. O

As an application of our results, we can now give a counterexample to a conjecture
of Ait-Amrane and Perrin [2]. The conjecture regards the following question, which
has been a recurring theme of this paper:

QUESTION 6.5. Let X and X, be two irreducible families of curves in Hy, having
constant cohomology. Under what conditions do we have a nonempty intersection
XNXyg#0in Hyp?

We have been lucky in that whenever we suspected the existence of such a defor-
mation, we could actually prove it. In general, this question is difficult. Semicontinu-
ity [8, III, Section 12] gives a necessary condition: If 7/(n) = h'(P?, Z¢(n)) for all
C € X and t)(n) = (P}, Z¢,(n)) for all Cy € X, then whenever X N X, # @ we must
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have t/(n)<t{(n) for all i and n (we write t<7( for short). This condition is not
sufficient, even when X (resp. Xj) is an irreducible component of the Hilbert scheme
H, (resp. H)) of curves with fixed cohomology. This has been shown by a recent
example of Ait-Amrane and Perrin [2].

A more subtle necessary condition is afforded by the Rao modules of the curves.
Let 4 be a discrete valuation ring with fraction field K and residue field k and let
Ccc Pi be a family of locally Cohen—Macaulay curves over A. Then the Rao module
M ¢, of the generic curve is a flat deformation of a subquotient M of the Rao module
M, of the special curve ([13, Proposition 5.9], [1, § 4.2.2], [2, Proposition 13]). This
means that there are submodules M, CJC M, such that M = J/M, and M is a flat
deformation of M¢,. Moreover,

dim (M), = I°Z¢,(n) — h°Z ¢, (n), (13)
dim (Mc, /J), = WL c,(n) — L (n). (14)

In view of this result, the following conjecture of Ait-Amrane and Perrin is
natural:

CONIJECTURE 6.6 ([2], Conjecture 14). Let X and Xy be irreducible components of
H. and H-, respectively. Suppose that

(1) <7

(2) The Rao module of the generic curve C¢ of X is a flat deformation of a subquotient
of the Rao module of a curve Cy in Xy and that the numerical conditions (13) and
(14) hold.

Then X N Xy # @ in Hy,.

As it turns out, the conditions of the conjecture are still insufficient, as we note in
the following example.

EXAMPLE 6.7. For g < —3, let XC H,, denote the irreducible family H,) from
Proposition 4.3. The closure X is precisely the family of thick 4-lines. Let Xy = G,
denote irreducible family consisting of extremal curves. We claim that X N Xy = .
Indeed, an extremal curve cannot specialize to a thick 4-line because this would
violate semicontinuity, while a thick 4-line has everywhere embedding dimension 3,
and so cannot specialize to an extremal curve that has generic embedding dimension 2
[18]. On the other hand, we will now show that the conditions of the conjecture hold.

First we compare the Rao modules. Let C be a general thick 4-line with support L
and set S = S;. Proposition 4.3 shows that M¢ = S/(a, b, c)(—g — 1) where a, b, ¢
are general forms of degree —g 4+ 1 in S. Choose a linear form / € S so that (a,/)
is a regular sequence and a form f € (b, ¢) of degree —g + 2 so that (a, f) is a regular
sequence. We consid[er the extremal Koszul module M = S/(a,f). Since the
multiplication S/(a) — S/(a) is injective and the image of the submodule (f) is
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(If ), we see that the submodule J = / M is isomorphic to S/(a, /). Since f € (b, ¢) by
choice, S/(a, b, ¢) is a quotient of J by M| = (/b, Ic). If E is an extremal curve corre-
sponding to M, then deg E =4, p,(E) = g and we have just shown that M is a
subquotient of Mg. It is clear that dim(M/J), = 1 for g<n<0 and zero otherwise;
this is seen to be precisely 4*Zg(n) — h*I(n) in comparing the spectra of these
curves. Finally, since the Euler characteristics of Zz and Z¢ are the same, the exact
sequences relating the Rao modules shows that dim (M), = h°Z g(n) — hi°Z¢(n). In
particular, the semicontinuity conditions are immediate.
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