	2020		2022	
	(n=114)		(n=71)	
Target Identified	N (%)	Target growth on	N (%)	Target growth on
		culture		culture
None	50 (44%)		32 (45%)	
MSSA	26 (22.8%)	12/26 (46.2%)	16 (22.5%)	7/16 (43.8%)
Hemophilus influenza	15 (13.2%)	3/15 (20%)	12 (17%)	5/12 (41.7%)
Streptococcus agalactiae	10 (8.8%)	1/10 (10%)	2 (2.8%)	0
Streptococcus pneumoniae	10 (8.8%)	4/10 (40%)	4 (5.6%)	1/4 (25%)
MRSA (mecA+)	7 (6.1%)	3/7 (43%)	7 (10%)	3/7 (43%)
E. coli	4 (3.5%)	2/4 (50%)	2 (2.8%)	0
CTX M+	2 (1.8%)		1 (1.4%)	
Serratia marcescens	5 (4.4%)	1/5 (20%)	1 (1.4%)	1/1 (100%)
Moraxella Catarrhalis	4 (3.5%)	1/4 (25%)	6 (8.5%)	3/6 (50%)
Pseudomonas aeruginosa	2 (1.8%)	1 /2 (50%)	7 (10%)	7/7 (100%)
Proteus spp.	2 (1.8%)	0	1 (1.4%)	0
Klebsiella oxytoca	1 (0.9%)	2/1 (200%)	2 (2.8%)	0
Enterobacter cloacae				
complex	1 (0.9%)	1/1 (100%)	2 (2.8%)	0
Streptococcus pyogenes	0	0	1 (1.4%)	1 (100%)
Klebsiella pneumoniae	8 (7%)	5/8 (62.5%)	0	0

Table 1. Pneumonia Panel and Culture Results in 2020 vs. 2022

Antibiotic Usage	2020 (n=114)	2022 (n=71)	р
Empiric antibiotics on date of PNP			
No antibiotics	20 (18%)	19 (27%)	0.143
Vancomycin	41 (36%)	28 (39%)	0.643
Cefepime	52 (46%)	27 (38%)	0.360
Meropenem	9 (8%)	3 (4.2%)	0.377
Piperacillin-tazobactam	2 (2%)	3 (4.2%)	0.374
Levofloxacin	1 (1%)	1 (1.4%)	1.0
Ceftriaxone	37 (33%)	18 (25%)	0.326
Azithromycin	22 (19%)	13 (18%)	1.0
Antibiotic modifications			
Any antibiotic modification	63 (67%)	42 (68%)	0.649
Antibiotic escalation	10 (9%)	10 (14%)	0.331
Anti-MRSA agent cessation	32 of 41 (78%)	18 of 28 (64%)	0.275
Anti-Pseudomonal agent cessation	18 of 64 (28%)	18 of 34 (53%)	0.027
Stopped all antibiotics	11 of 94 (12%)	11 of 52 (13%)	0.150

including their comorbidities. Acute or worsening hypoxia remained the predominant indication for PNP (77% in 2020 vs 75% in 2022, NS). The median number of days between admission and PNP was 4 (IQR, 1-8) in 2020 versus 3 (IQR, 1-7), and the difference was not significant. PNP and culture results in Table 1 show that Staphylococcus aureus and Hemophilus influenzae were the pathogens most commonly identified. Table 2 describes empiric prescribing and modifications for commonly prescribed antibiotics. Prescribers used empiric cefepime and ceftriaxone more in 2020 and vancomycin more in the 2022 group; however, these were not statistically significant. Cefepime de-escalation was more common in 2022 (53% vs 28%; P = .03). Antibiotic modifications within 24 hours of PNP remained similar in 2020 vs 2022. Although vancomycin cessation was more common in 2020 (78%) versus 2022 (57%), the difference was not statistically significant. Conclusions: With ASP guidance, PNP may be a useful tool to stop or target antibiotics for secondary bacterial pneumonia in COVID-19 pneumonia. Early vancomycin cessation (prior to culture results) may be an enduring consequence of PNP implementation.

Disclosures: None

Antimicrobial Stewardship & Healthcare Epidemiology 2023;3(Suppl. S2):s39-s40

doi:10.1017/ash.2023.271

Presentation Type:

Poster Presentation - Poster Presentation

Subject Category: Antibiotic Stewardship

Ambulatory antibiotic prescribing for children in a practice research network

Lauren Mitchell; Matthew Kronman; Allison Cole and Nicole Poole

Background: Most antibiotic use occurs in ambulatory settings. Antibiotic prescribing for children living in the United States in medically underserved areas or in populations is not well understood.

Objective: To characterize antibiotic prescribing for children in a practicebased research network (PBRN).

Design and Methods: In this retrospective cohort study, we characterized oral antibiotic prescribing in a large PBRN. Patients aged 0-17 years with at least 1 in-person visit between January 1, 2014, and December 31, 2018, at 1 of 25 primary-care clinics located within the WWAMI (Washington, Wyoming, Alaska, Montana, and Idaho) region of the Practice and Research Network (WPRN) were included. Data were extracted from DataQUEST, a centralized data repository from included primary-care clinics. Encounters for wellness visits or those lacking a diagnosis code and patients with complex chronic conditions were excluded. Diagnoses were categorized using International Classification of Disease, Ninth Revision (ICD-9) and ICD-10 codes. Oral antibiotics prescribed within 3 days of an encounter were associated with that encounter. Demographic data included age, sex, race, and ethnicity. Antibiotic appropriateness was determined using a previously published 3-tiered classification system using diagnosis codes as always, sometimes, or never appropriate. Patient-level data (ZIP codes) were used to designate medically underserved areas (MUAs) and medically underserved populations (MUPs). Antibiotic prescribing was then analyzed within these groups. Results: In total, 37,314 patients across 206,845 encounters were included, of which 34,601 encounters (17%) resulted in antibiotic prescription (Table 1). Of those, appropriateness data were available for 34,286 (99%). Of the antibiotics prescribed, 14% were always appropriate, 57% were sometimes appropriate, and 27% were never appropriate (1% missing). In total, 64% and 35% of encounters occurred with patients from an

	Table 1: Ambula	tory Antibiotic Pro	escribing in the W	PRN Ages 0-17	
		Medication Prescribed			
		No	Yes	Total	p-value
n (number	of encounters)	172244(100%)	34601(100%)	206845	
Mean age	at encounter				
		7.8	7.8	7.7	
	Female	710	1.0		
Sex					0.195
	M 1	85771(49.8%)	17362(50.2%)	103133	
	Male	86473(50.2%)	17239(49.8%)	103712	
	American Indian or Alaska Native	, í			<0.001
		2871(1.7%%)	567(1.6%)	3438	
	Asian	2454(1.4%)	381(1.1%)	2835	
Race	Black or African American	5153(2.9%)	761(2.2%)	5914	
	Caucasian	143837(83.5%)	29780(86.0%)	173617	
	Native Hawaiian or Other Pacific Islander	3369(2%)	648(2%)	4017	
	No Information	14560(8.4%)	2464(7.1%)	17024	
	Always	11000(0.170)	210 ((1110)		
Antibiotic	Sometimes	4259(2.5%)	5001(14.4%)	9260	0.841
Appropriateness	sometimes	19240(11.2%)	19856(57.4%)	39096	
	Never	143436(83 3%)	9429(27.2%)	152865	
	No Information	5309(3%)	315(1%)	5624	

MUA and MUP, respectively. **Conclusions:** Targets to improve oral antibiotic prescribing for children in a large PBRN include antibiotic prescribing for diagnoses that never require an antibiotic. Larger comparative studies may focus on the role (if any) that MUA/MUP has on antibiotic prescribing.

Disclosures: None

Antimicrobial Stewardship & Healthcare Epidemiology 2023;3(Suppl. S2):s40-s41 doi:10.1017/ash.2023.272

Presentation Type:

Poster Presentation - Poster Presentation Subject Category: Antibiotic Stewardship In-depth assessment of critical access hospital stewardship program adherence to the CDC Core elements in Iowa and Nebraska Jonathan Ryder; Jeremy Tigh; Andrew Watkins; Jenna Preusker;

Daniel Schroeder; Muhammad Salman Ashraf and Trevor Van Schooneveld

Background: Critical-access hospitals (CAHs) are required to meet the CDC 7 Core Elements of antimicrobial stewardship programs (ASPs). CAHs have lower adherence to the core elements than larger acute-care hospitals, and literature defining which core-element deficiencies exist within CAHs as well as barriers to adherence is lacking. **Methods:** We

Core Element Fully Met	Core Element Partially Met	Deficient
16 (76.2)	5 (23.8)	0 (0)
4 (19)	10 (47.6)	7 (33.3)
10 (47.6)	10 (57.6)	1 (4.8)
21 (100)	0 (0)	0 (0)
15 (71.4)	5 (23.8)	1 (4.8)
15 (71.4)	5 (23.8)	1 (4.8)
9 (42.9)	0 (0)	12 (57.1)
	Core Element Fully Met 16 (76.2) 4 (19) 10 (47.6) 21 (100) 15 (71.4) 15 (71.4) 9 (42.9)	Core Element Fully Met Core Element Partially Met 16 (76.2) 5 (23.8) 4 (19) 10 (47.6) 10 (47.6) 10 (57.6) 21 (100) 0 (0) 15 (71.4) 5 (23.8) 9 (42.9) 0 (0)

and Critical Access Hospitals Among 21 Critical Access Hospitals in Iowa and Nebraska

Recommendation Type	Number of Hospitals Given Recommendation, n=21 (%)	
Leadership Support		
Establish ASP committee meetings	7 (33.3)	
Improve ASP committee representation and define committee roles	2 (9.5)	
Update ASP policy	1 (4.8)	
Add ASP duties to job description	1 (4.8)	
Accountability/Pharmacy Expertise		
Provide physician and pharmacist leader ASP training	19 (90.5)	
Establish physician leader	7 (33.3)	
Establish pharmacist leader	1 (4.8)	
Collaborate between contract pharmacy and hospital	1 (4.8)	
Action/Tracking		
Track antimicrobial stewardship interventions	12 (57.1)	
Track antibiotic use	10 (47.6)	
Implement antibiotic time-out and track usage	9 (42.9)	
Implement order sets and track usage	8 (38.1)	
Implement treatment guideline and track adherence	3 (14.3)	
Collaborate with larger hospital system for EMR support with interventions	3 (14.3)	
Implement intervention for treatment durations	2 (9.5)	
Implement antibiotic indication and duration into ordering process	1 (4.8)	
Establish system for missed culture follow-up	1 (4.8)	
Reporting		
Report antibiotic use data to NHSN	6 (28.6)	
Report antibiotic use to clinicians	4 (19)	
Report via quality committee	4 (19)	
Education		
Provide and track educational activities	12 (57.1)	
Provide education on rapid identification panels	3 (14.3)	
Provide education on rapid identification panels Figure 2: Top Recommendations Stratified by Core Element	3 (14.3)	

Abbreviations: ASP: Antimicrobial Stewardship Program; EMR: Electronic Medical Record; NHSN: National Healthcare Safety Network

Barriers to ASP Initiation/Improvement	Number of Hospitals, n=20 (%)	
Lack of dedicated resources, including time and personnel	15 (75)	
Lack of infectious disease physician or knowledge	8 (40)	
EMR limitations	5 (25)	
Too few patients to make an impact	4 (20)	
Need for clinician support and/or prioritization	5 (25)	
Skilled beds antibiotic use	2 (10)	
Figure 3: Self-Identified Barriers to Successful Antimicrobial Stewardship Program Initiation		

and/or Improvement. One hospital with missing data. Up to 3 responses per hospital.

Abbreviations: ASP: antimicrobial stewardship program; EMR: electronic medical record

evaluated 21 CAH ASPs (5 in Nebraska and 15 in Iowa) that self-identified as potentially deficient in the Core Elements, via self-assessment followed by in-depth interviews with local ASP team members to assess adherence to the CDC Core Elements for ASPs. Core-element compliance was rated as either full (1 point), partial (0.5), or deficient (0), with a maximum score of 7 per ASP. High-priority recommendations to ensure core-element compliance were provided to facilities as written feedback. Self-reported barriers to implementation were thematically categorized. Results: Among the 21 CAH ASPs, none fully met all 7 core elements (range, 2.5-6.5), with a median of 5 full core elements met (Fig. 1). Only 6 ASPs (28.6%) had at least partial adherence to each of the 7 core elements. Action (21 of 21, 100%) and leadership commitment (16 of 21, 76.2%) were the core elements with the highest adherence, and accountability (4 of 21, 19%) and education (9 of 21, 42.9%) were the lowest. The most frequent high-priority recommendations were to provide physician and pharmacist leader ASP training (19 of 21, 90.5%), to track antimicrobial stewardship interventions (12 of 21, 57.1%), and to provide or track educational activities (12 of 21, 57.1%) (Fig. 2). One-third of programs were recommended to establish a physician leader. The most commonly self-identified barriers to establishing and maintaining an ASP were a lack of dedicated resources such as time of personnel (15 of 20, 75%), lack of infectious diseases expertise and training (8 of 20, 40%), and electronic medical record limitations (5 of 20, 25%) (Fig. 3). Conclusions: CAH ASPs demonstrate several critical gaps in achieving adherence to the CDC Core Elements, primarily in training for physician and pharmacist leaders and providing stewardship-focused education. Further resources and training customized to the issues present in CAH ASPs should be developed. Disclosures: None

Antimicrobial Stewardship & Healthcare Epidemiology 2023;3(Suppl. S2):s41

doi:10.1017/ash.2023.273

Presentation Type:

Poster Presentation - Poster Presentation

Subject Category: Antibiotic Stewardship

Examining the effects of organizational influencers on the implementation of clinical innovations: A qualitative analysis

Demetrius Solomon; Vishala Parmasad; Douglas Wiegmann; Jukrin Moon; Lucas Schulz; Alexander Lepak; Aurora Pop-Vicas; Ryan Ferren; John OHoro; Nicholas Bennett; Alec Fitzsimmons; Nasia Safdar and Sara Hernandez

Background: The FIRST Trial is a 5-year study funded by the Agency for Healthcare Research and Quality. Our investigation is situated within a more extensive study to restrict fluoroquinolone antibiotics by requiring providers to obtain authorization from an infectious disease physician before prescribing fluoroquinolones. Our research team is performing a systematic evaluation to identify organizational characteristics and influencers of the fluoroquinolone preprescription authorization implementation process to understand variables that may facilitate or hinder implementation success. **Methods:** To address this critical gap, we present a qualitative analysis from our ongoing, multisite research project aimed at systematically assessing the adoption of an antimicrobial stewardship intervention in the form of an EHR-integrated best-practice alert (BPA) at each site to identify work system factors that impact uptake and variability in the implementation of the BPA at each location. The evaluation provides a detailed explanation of activities through the implementation