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QUASIMODULAR FORMS AND VECTOR BUNDLES
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Abstract

Modular forms for a discrete subgroup 0 of SL(2, R) can be identified with holomorphic sections of
line bundles over the modular curve U corresponding to 0, and quasimodular forms generalize modular
forms. We construct vector bundles over U whose sections can be identified with quasimodular forms
for 0.
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1. Introduction

Modular forms for a discrete subgroup0 of SL(2, R) are closely linked to the geometry
of the quotient 0\H of the Poincaré upper half plane H by the linear fractional
action of 0. One such link is given by the interpretation of modular forms as
holomorphic sections of line bundles over 0\H. The goal of this paper is to extend
such interpretation to the case of quasimodular forms.

Quasimodular forms generalize classical modular forms and were introduced by
Kaneko and Zagier in [3]. Since then, they have been studied actively not only in
number theory but also in other branches of pure and applied mathematics (see, for
example, [2, 4, 5]). One of the useful properties of quasimodular forms is that, unlike
modular forms, derivatives of quasimodular forms are also quasimodular forms. If f
is a quasimodular form for 0 of weight w and depth at most m ≥ 0, then there are
holomorphic functions f0, f1, . . . , fm on H satisfying

1
(cz + d)w

f

(
az + b

cz + d

)
= f0(z)+ f1(z)

(
c

cz + d

)
+ · · · + fm(z)

(
c

cz + d

)m

for all z ∈H and
(

a b
c d

)
∈ 0. Then it can be shown that the associated polynomial

F(z, X)=
m∑

r=0

fr (z)X
r ,
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[2] Quasimodular forms 403

known as a quasimodular polynomial, is invariant under a certain right action of 0.
In fact, the above correspondence determines an isomorphism between the space of
quasimodular forms and that of quasimodular polynomials.

In this paper we use the above-mentioned right action of 0 on the space of
quasimodular polynomials to construct vector bundles over 0\H whose sections can
be identified with quasimodular polynomials and therefore with quasimodular forms.

2. Quasimodular forms

In this section we describe quasimodular forms for a discrete subgroup of SL(2, R).
We also discuss some basic properties of quasimodular polynomials, which can be
identified with quasimodular forms.

Let H be the Poincaré upper half plane on which SL(2, R) acts as usual by linear
fractional transformation. Thus, if γ =

(
a b
c d

)
∈ SL(2, R) and z ∈H, we may write

γ z =
az + b

cz + d
∈H.

For the same γ and z we set

J(γ, z)= cz + d, K(γ, z)=
c

cz + d
, (2.1)

so that we obtain the maps J, K : SL(2, R)×H→ C. The map J is a well-known
automorphy factor satisfying the cocycle condition

J(γ γ ′, z)= J(γ, γ ′z)J(γ ′, z) (2.2)

for all z ∈H and γ γ ′ ∈ SL(2, R). The other function K, on the other hand, satisfies

K(γ γ ′, z)= K(γ ′, z)+ J(γ ′, z)−2K(γ, γ ′z). (2.3)

Let F be the ring of holomorphic functions on H, and denote by Fm[X ] with m ≥ 0
the complex algebra of polynomials in X over F of degree at most m. Given elements
f ∈ F , F(z, X) ∈ Fm[X ], λ ∈ Z, and γ ∈ SL(2, R), we set

( f |λ γ )(z)= J(γ, z)−λ f (z) (2.4)

(F ‖λ γ )(z, X)= J(γ, z)−λF(γ z, J(γ, z)2(X − K(γ, z))) (2.5)

for all z ∈H. If γ ′ is another element of SL(2, R), using (2.2) and (2.3), it can be
shown that

f |λ (γ γ
′) = ( f |λ γ ) |λ γ

′,

((F ‖λ γ ) ‖λ γ
′)(z, X) = (F ‖λ(γ γ

′))(z, X).

Thus the operations |λ and ‖λ determine right actions of SL(2, R) on F and Fm[X ],
respectively.

We now consider a discrete subgroup 0 of SL(2, R) and modify the usual definition
of modular and quasimodular forms for 0 by suppressing the cusp conditions.

https://doi.org/10.1017/S0004972709000458 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000458


404 M. H. Lee [3]

DEFINITION 2.1.

(i) Given an integer µ, an element f ∈ F is a modular form for 0 of weight µ if it
satisfies

f |µ γ = f (2.6)

for all γ ∈ 0, where |µ is the operation in (2.4). We denote by Mµ(0) the space
of modular forms for 0 of weight µ.

(ii) Given integers ξ and m with m ≥ 0, an element f ∈ F is a quasimodular form
for 0 of weight ξ and depth at most m if there are functions f0, . . . , fm ∈ F
such that

( f |ξ γ )(z)=
m∑

r=0

fr (z)K(γ, z)r (2.7)

for all z ∈H and γ ∈ 0, where K(γ, z) is as in (2.3). We denote by QMm
ξ (0)

the space of quasimodular forms for 0 of weight ξ and depth at most m.

If f ∈ QMm
ξ (0) is a quasimodular form satisfying (2.7), by using the identity

element for γ , we obtain
f (z)= f0(z)

for all z ∈H. On the other hand, for fixed z ∈H, by considering the right-hand
side of (2.7) as a polynomial in K(γ, z) and using the fact that the same equation is
valid for all elements 0 of 0, we see that the given quasimodular form f ∈ QMm

ξ (0)

determines the coefficients f0, . . . , fm uniquely. We also see easily that

QM0
ξ (0)= Mξ (0)

for each ξ ∈ Z.
Given a quasimodular form f ∈ QMm

ξ (0) satisfying (2.7), we define the
corresponding polynomial (Qm

ξ f )(z, X) ∈ Fm[X ] by

(Qm
ξ f )(z, X)=

m∑
r=0

fr (z)X
r (2.8)

for z ∈H, so that we obtain the complex linear map

Qm
ξ : QMm

ξ (0)→ Fm[X ]

for each pair of nonnegative integers ξ and m.

DEFINITION 2.2. A quasimodular polynomial for 0 of weight ξ and degree at most m
is an element of Fm[X ] that is 0-invariant with respect to the right 0-action in (2.5).
We denote by

Q Pm
ξ (0)= {F(z, X) ∈ Fm[X ] | F ‖ξ γ = F for all γ ∈ 0}

the space of all quasimodular polynomials for 0 weight ξ and degree at most m.
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LEMMA 2.3.

(i) If f ∈ F is a quasimodular form belonging to QMm
ξ (0), then

(Qm
ξ f )(z, X) ∈ Q Pm

ξ (0).

(ii) Let F(z, X) be a quasimodular polynomial of the form

F(z, X)=
m∑

r=0

fr (z)X
r

belonging to Q Pm
ξ (0). Then f0 is a quasimodular form belonging to QMm

ξ (0)

such that the condition (2.7) is satisfied for f = f0. Furthermore, for each
r ∈ {0, 1, . . . , m} the coefficient fr satisfies

( fr |ξ−2rγ )(z)=
m∑
`=r

(
`

r

)
f`(z)K(γ, z)`−r

=

m−r∑
`=0

(
`+ r

r

)
f`+r (z)K(γ, z)`

(2.9)
for all z ∈H and γ ∈ 0.

PROOF. These results can be proved by using the definition of the operation ‖ξ in
(2.5) and the relations in (2.2) and (2.3) (see, for example, [1]). 2

By Lemma 2.3 the map Qm
ξ given by (2.8) induces an isomorphism

Qm
ξ : Q Pm

ξ (0)→ QMm
ξ (0).

Furthermore, if Qm
ξ f with f ∈ Q Pm

ξ (0) is as in (2.8), then

f0 = f ∈ QMm
ξ (0);

hence, the inverse of the isomorphism Qm
ξ is the map

P0 : Q Pm
ξ (0)→ QMm

ξ (0)

sending a quasimodular polynomial F(z, X) ∈ Q Pm
ξ (0) to its constant term

(P0 F)(z)= F(z, 0)

for all z ∈H.

3. Vector bundles

Let 0 be a discrete subgroup of SL(2, R) as in Section 2. In this section we construct
vector bundles over the quotient space 0\H whose sections may be identified with
quasimodular polynomials and therefore quasimodular forms for 0.
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Given integers λ, k and r with 0≤ k ≤ r ≤ m, we consider a map

4λ,kr : SL(2, R)×H→ C

defined by

4λ,kr (γ, z)=

(
k

r

)
J(γ, z)λ−2rK(γ, z)k−r (3.1)

for γ ∈ SL(2, R) and z ∈H.

LEMMA 3.1. The map 4λ,kr given by (3.1) satisfies

4λ,kr (γ1γ, z)=
k∑
`=r

4λ,`r (γ1, γ z)4λ,k` (γ, z) (3.2)

for all γ1, γ ∈ SL(2, R) and z ∈H.

PROOF. If γ1, γ ∈ SL(2, R) and z ∈H, from (3.1) we obtain

4λ,kr (γ1γ, z)=

(
k

r

)
J(γ1γ, z)λ−2rK(γ1γ, z)k−r .

However, using (2.2) and (2.3),

J(γ1γ, z)λ−2r
= J(γ1, γ z)λ−2rJ(γ, z)λ−2r ,

K(γ1γ, z)k−r
= (K(γ, z)+ J(γ, z)−2K(γ1, γ z))k−r

=

k−r∑
j=0

(
k − r

j

)
J(γ, z)−2 jK(γ1, γ z) jK(γ, z)k−r− j

=

k∑
`=r

(
k − r

`− r

)
J(γ, z)−2`+2rK(γ1, γ z)`−rK(γ, z)k−`.

Hence, we see that

4λ,kr (γ1γ, z) =
k∑
`=r

(
k

r

)(
k − r

`− r

)
J(γ1, γ z)λ−2rJ(γ, z)λ−2`

× K(γ1, γ z)`−rK(γ, z)k−`. (3.3)

On the other hand,

4λ,`r (γ1, γ z)4λ,k` (γ, z) =

(
`

r

)
J(γ1, γ z)λ−2rK(γ1, γ z)`−r

×

(
k

`

)
J(γ, z)λ−2`K(γ, z)k−`

=

(
k

`

)(
`

r

)
J(γ1, γ z)λ−2rJ(γ, z)λ−2`

× K(γ1, γ z)`−rK(γ, z)k−`. (3.4)
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From (3.3), (3.4) and the relation(
k

r

)(
k − r

`− r

)
=

k!

r !(`− r)!(k − `)!
=

(
k

`

)(
`

r

)
,

formula (3.2) follows. 2

We fix a nonnegative integer m, and denote by Cm[X ] the ring of polynomials in X
over C of degree at most m. Given a polynomial of the form

F(X)=
m∑

r=0

cr Xr
∈ Cm[X ] (3.5)

with c0, . . . , cm ∈ C and an integer λ, we now set

γ �m
λ (z, F(X))=

(
γ z,

m∑
r=0

m∑
k=r

ck4
λ,k
r (γ, z)Xr

)
(3.6)

for all γ ∈ SL(2, R) and z ∈H.

PROPOSITION 3.2. Equation (3.6) determines a left action of SL(2, R) on the
Cartesian product H× Cm[X ].

PROOF. Given elements γ, γ1 ∈ SL(2, R), z ∈H and a polynomial F(X) ∈ Cm[X ] as
in (3.5), using (3.6), we obtain

γ1 �
m
λ (γ �

m
λ (z, F(X))) =

(
γ1γ z,

m∑
r=0

m∑
`=r

m∑
k=`

ck4
λ,k
` (γ, z)4λ,`r (γ, z)Xr

)

=

(
γ1γ z,

m∑
r=0

m∑
k=r

k∑
`=r

ck4
λ,k
` (γ, z)4λ,`r (γ, z)Xr

)
. (3.7)

On the other hand,

(γ1γ )�
m
λ (z, F(X))=

(
γ1γ z,

m∑
r=0

m∑
k=r

ck4
λ,k
` (γ1γ, z)Xr

)
. (3.8)

Combining (3.7) and (3.8) with (3.2), we obtain

γ1 �
m
λ (γ �

m
λ (z, F(X)))= (γ1γ )�

m
λ (z, F(X));

hence, the proposition follows. 2

Let 0 be a discrete subgroup of SL(2, R), and denote the quotient of the space
H× Cm[X ] by 0 with respect to the action shown in Proposition 3.2 by

V m
λ = 0\H× Cm[X ]. (3.9)
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If we denote the modular curve associated with 0 by U = 0\H, then the natural
projection map H× Cm[X ] →H induces a surjective map $ : V m

λ →U such that
$−1(x) is isomorphic to Cm[X ] for each x ∈U . Thus V m

λ has the structure of
a complex vector bundle over U whose fiber is the (m + 1)-dimensional complex
vector space Cm[X ] of polynomials in X . We denote by 00(U, V m

λ ) the space of
all holomorphic sections of V m

λ over U .

THEOREM 3.3. The space 00(U, V m
λ ) of holomorphic sections of V m

λ over U = 0\H
is canonically isomorphic to the space Q Pm

λ (0) of all quasimodular polynomials for 0
of weight λ and depth at most m.

PROOF. Let σ :U → V m
λ be a holomorphic section of V m

λ over U = 0\H, and denote
by q :H→U the natural projection map. Given z ∈H, then

σ(q(z))=

[(
z,

m∑
r=0

cr,z Xr
)]
∈ 0\H× Cm[X ]

for some c0,z, . . . , cm,z ∈ C, where [(·)] denotes the 0-orbit of the element (·) of
H× Cm[X ]. We define the C-valued functions f σ0 , . . . , f σm on H by

f σr (z)= cr,z (3.10)

for all z ∈H and 0≤ r ≤ m. Given γ ∈ 0, since for each z ∈H the 0-orbits of z
and γ z are the same, then

σ(q(z))= σ(q(γ z))=

[(
γ z,

m∑
r=0

cr,γ z Xr
)]
. (3.11)

On the other hand, since

[γ �m
λ (z, f (X))] = [(z, f (X))]

for each (z, f (X)) ∈H× Cm[X ], using (3.6) leads to

σ(q(z)) =

[
γ �m

λ

(
z,

m∑
r=0

cr,z Xr
)]

=

[(
γ z,

m∑
r=0

m∑
k=r

ck,z4
λ,k
r (γ, z)Xr

)]
.

Comparing this with (3.11) and using (3.1) and (3.10), we see that

f σr (γ z)= cr,γ z =

m∑
k=r

ck,z4
λ,k
r (γ, z)

=

m∑
k=r

(
k

r

)
J(γ, z)λ−2rK(γ, z)k−r f σk (z);
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hence, we obtain

( f σr |λ−2rγ )(z)=
m∑

k=r

(
k

r

)
K(γ, z)k−r f σk (z)

for 0≤ r ≤ m. In particular,

( f σ0 |λ−2rγ )(z)=
m∑

k=0

K(γ, z)k−r f σk (z),

and therefore it follows that the polynomial

Fσ (z, X)=
m∑

r=0

f σr (z)X
r

is a quasimodular polynomial belonging to Q Pm
λ (0). On the other hand, we assume

that G(z, X)=
∑m

r=0 gr (z)Xr is a quasimodular polynomial belonging to Q Pm
λ (0).

We define the map σG :U → V m
λ by

σG(q(z))=

[(
z,

m∑
r=0

gr (z)X
r
)]

for all z ∈H. Then for each γ ∈ 0, using (2.9), (3.1) and (3.6),

σG(q(γ z)) =

[(
γ z,

m∑
k=0

gk(γ z)X k+δ
)]

=

[(
γ z,

m∑
k=0

m∑
k=r

(
k

r

)
J(γ, z)λ−2rK(γ, z)k−r gk(z)

)]

=

[(
γ z,

m∑
k=0

m∑
k=r

4λ,kr (γ, z)gk(z)

)]

=

[
γ �m

λ

(
z,

m∑
r=0

gr (z)X
r
)]
,

and therefore σ0 is well defined. Since clearly $ ◦ σG = 1U , it follows that σG is a
holomorphic section of V m

λ over U ; hence, the proof of the theorem is complete. 2

REMARK 3.4. If m = 0, then the bundle V 0
λ becomes a line bundle and we obtain the

isomorphism
00(U, V m

λ )
∼= Mλ(0)

for each λ, which provides the usual identification between modular forms and
holomorphic sections of a line bundle.
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4. Morphisms of vector bundles

Given m ≥ 0, there are natural linear maps carrying quasimodular forms of depth
at most m to those of depth at most r ≤ m. In this section we construct morphisms of
vector bundles over a modular curve corresponding to such linear maps.

Given a polynomial F(z, X) ∈ Fm[X ] of the form

F(z, X)=
m∑

r=0

fr (z)X
r (4.1)

with f0, . . . , fm ∈ F , we set

(1p F)(z, X)=
m−p∑
r=0

(
r + p

p

)
fr+p(z)X

r (4.2)

for each integer p with 0≤ p ≤ m, so that we obtain the complex linear map

1p : Fm[X ] → Fm−p[X ]. (4.3)

LEMMA 4.1. Given λ ∈ Z, then

1p(Q Pm
p (0))⊂ Q Pm−p

λ−2p(0)

for each p ∈ {0, 1, . . . , m}.

PROOF. Let F(z, X) ∈ Q Pm
λ (0) be a quasimodular polynomial of the form given

by (4.1). Then by Lemma 2.3(ii) the coefficients of F(z, X) satisfies

( f j |λ−2 jγ )(z)=
m∑
`= j

(
`

j

)
f`(z)K(γ, z)`− j

for all z ∈H and γ ∈ 0. From this and Lemma 2.3(i) we see that f p is a quasimodular
form belonging to QFm−p

λ−2p(0), and therefore (1p F)(z, X) is a quasimodular

polynomial belonging to Q Pm−p
λ−2p(0). 2

Given p ∈ {0, 1, . . . , m}, we now define the map

1̃p :H× Cm[X ] →H× Cm−p[X ] (4.4)

by
1̃p(z, f (X))= (z, 1p f (X)) (4.5)

for all f (X) ∈ Cm[X ], where1p : Cm[X ] → Cm−p[X ] is the map obtained from (4.3)
by restriction. We consider the vector bundles

V m
λ = 0\H× Cm[X ], V m−p

λ−2p = 0\H× Cm−p[X ], (4.6)

where the first bundle is as in (3.9) and the second quotient is with respect to the
operation �m−p

λ−2p in (3.6) of 0 on H× Cm−p[X ].
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THEOREM 4.2. If 0≤ p ≤ m, the map 1̃p in (4.4) induces a morphism

V m
λ → V m−p

λ−2p (4.7)

of vector bundles in (4.6) over X = 0\H.

PROOF. Given λ ∈ Z and p ∈ {0, 1, . . . , m}, it suffices to prove that

1̃p(γ �
m
λ (z, f (X)))= γ �m−p

λ−2p 1̃p(z, f (X))

for all z ∈H, γ ∈ 0 and f (X) ∈ Cm[X ]. If z ∈H, γ ∈ 0 and

f (X)=
m∑

r=0

cr Xr
∈ Cm[X ],

using (3.6), (4.2) and (4.5), we obtain

1̃p(γ �
m
λ (z, f (X)))

= 1̃p

(
γ z,

m∑
r=0

m∑
k=r

(
k

r

)
J(γ, z)λ−2rK(γ, z)k−r ck Xr

)

=

(
γ z,

m−p∑
r=0

(
r + p

p

) m∑
k=r+p

(
k

r + p

)
J(γ, z)λ−2r−2pK(γ, z)k−r−pck Xr

)

=

(
γ z,

m−p∑
r=0

m−p∑
k=r

(
r + p

p

)(
k + p

r + p

)
J(γ, z)λ−2r−2pK(γ, z)k−r ck+p Xr

)
.

On the other hand,

γ �
m−p
λ−2p 1̃p(z, f (X))

= γ �
m−p
λ−2p

(
z,

m−p∑
r=0

(
r + p

p

)
cr+p Xr

)

=

(
γ z,

m−p∑
r=0

m−p∑
k=r

(
k + p

p

)
4
λ−2p
r (γ, z)Xr

)

=

(
γ z,

m−p∑
r=0

m−p∑
k=r

(
k + p

p

)(
k

r

)
J(γ, z)λ−2r−2pK(γ, z)k−r ck+p Xr

)

=

(
γ z,

m−p∑
r=0

m−p∑
k=r

(
r + p

p

)(
k + p

r + p

)
J(γ, z)λ−2r−2pK(γ, z)k−r ck+p Xr

)
;

hence, the theorem follows. 2

https://doi.org/10.1017/S0004972709000458 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000458
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REMARK 4.3. If p = m in (4.7), then we obtain the morphism

V m
λ → V 0

λ−2m

from a vector bundle to a line bundle, where the holomorphic sections of the line
bundle V 0

λ−2m can be identified with modular forms as in Remark 3.4.
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