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Abstract We consider symplectic difference systems, which contain as special cases linear Hamiltonian
difference systems and Sturm–Liouville difference equations of any even order. An associated discrete
quadratic functional is important in discrete variational analysis, and while its positive definiteness has
been characterized and is well understood, a characterization of its positive semidefiniteness remained
an open problem. In this paper we present the solution to this problem and offer necessary and sufficient
conditions for such discrete quadratic functionals to be non-negative definite.
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1. Introduction and main results

The so-called Reid Roundabout Theorem for Hamiltonian differential systems has been
well known for a long time (cf. [9] or [7, Theorem 2.4.1]). It characterizes the positivity of
a corresponding (continuous) quadratic functional by the disconjugacy (non-oscillation)
of the differential system. This result was carried over to discrete quadratic functionals
and corresponding Hamiltonian difference systems in [2, Theorem 2], and it was proven
for more general symplectic difference systems in [3]. In contrast to the continuous case,
the discrete results do not require us to assume controllability, which was shown in [4].
The characterization of non-negativity rather than positivity of quadratic functionals
remained an open problem, and its solution is the content of this paper. There exists a
recent approach to this problem in [5] (see also the references given there), but along
different lines.

Here we consider symplectic difference systems

xk+1 = Akxk + Bkuk, uk+1 = Ckxk + Dkuk, k ∈ [0, N ] ∩ Z, (1.1)
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where Ak, Bk, Ck, Dk are real n × n matrices, xk, uk ∈ R
n, and N ∈ N. We will assume

throughout that the 2n × 2n matrices

Sk :=

(
Ak Bk

Ck Dk

)

are symplectic, i.e.

ST
k J Sk = J with J =

(
0 I

−I 0

)
, (1.2)

where I denotes the n × n identity matrix. Using this notation with the ‘big’ matrices
Sk and putting zk =

(
xk

uk

)
∈ R

2n, the difference system (1.1) is the same as

zk+1 = Skzk, k ∈ [0, N ] ∩ Z. (1.3)

The symplecticity, i.e. (1.2), implies that Sk is invertible with

S−1
k =

(
DT

k −BT
k

−CT
k AT

k

)
.

This fact and (1.2) are equivalent to the following formulae:

AT
k Ck, DT

k Bk, AkBT
k , CkDT

k are symmetric,

AT
k Dk − CT

k Bk = AkDT
k − BkCT

k = I.

By [3, Lemma 1] the symplectic system (1.1) is a Hamiltonian difference system if and
only if the matrices Ak are invertible.

Moreover, we deal with the corresponding discrete quadratic functional

F(z) =
N∑

k=0

{xT
k AT

k Ckxk + uT
k DT

k Bkuk + 2xT
k CT

k Bkuk} (1.4)

for admissible sequences

z = (zk)N+1
k=0 =

(
x

u

)
=

(
xk

uk

)N+1

k=0
,

i.e. z satisfies the first equation of (1.1), the so-called equation of motion, and the Dirichlet
boundary conditions, more precisely:

xk+1 = Akxk + Bkuk for k ∈ [0, N ] ∩ Z, x0 = xN+1 = 0. (1.5)

Note also that

F(z) =
N∑

k=0

zT
k {ST

k KSk − K}zk with K =

(
0 0
I 0

)
.
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We need some further notation. By M† we denote the Moore–Penrose inverse of a
matrix M (cf. [1]). For a real and symmetric matrix P we write P � 0 if P is non-
negative definite. By KerM , image M , rankM , MT and M−1 we denote the kernel,
image, rank, transpose and inverse of a matrix M , respectively. We shall deal only with
the so-called principal solution (

X

U

)
=

(
Xk

Uk

)N+1

k=0

of (1.1) at 0, i.e. Xk and Uk are real n × n matrices which satisfy

Xk+1 = AkXk + BkUk, Uk+1 = CkXk + DkUk, k ∈ [0, N ] ∩ Z, (1.6)

and the initial conditions
X0 = 0 and U0 = I. (1.7)

Then
(
X
U

)
is a conjoined basis of (1.1) (cf. [2, Definition 1]), i.e. it satisfies rank(XT

k , UT
k ) =

n and XT
k Uk = UT

k Xk for 0 � k � N + 1. It follows from (1.2) that

Xk = DT
k Xk+1 − BT

k Uk+1, Uk = −CT
k Xk+1 + AT

k Uk+1 for k ∈ [0, N ] ∩ Z. (1.8)

The following related matrices were introduced in [8], but note that we here use P instead
of D:

Mk = (I − Xk+1X
†
k+1)Bk, Tk = I − M†

kMk,

Pk = TT
k XkX†

k+1BkTk, P̃k = BT
k Dk − BT

k Qk+1Bk,

}
(1.9)

for 0 � k � N , where Qk denotes a symmetric matrix with

QkXk = UkX†
kXk, (1.10)

and, by [2, Lemma 2], we may choose

Qk = UkX†
k + (UkX†

kX̃k − Ũk)(I − X†
kXk)UT

k ,

where
(
X
U

)
and

(
X̃
Ũ

)
are normalized conjoined bases of (1.1). If the matrices Xk are

invertible, then the matrices Qk satisfy a corresponding Riccati difference system (cf. [2,
Lemma 2] or [3, Lemma 3]) Rk[Q] = 0, where the ‘Riccati operator’ R is defined by

Rk[Q] = Qk+1(Ak + BkQk) − (Ck + DkQk). (1.11)

Now we can formulate the main result of this paper.

Theorem 1.1. Assume that the difference system (1.3) is symplectic, i.e. (1.2) holds,
and let

(
X
U

)
denote the principal solution of (1.1) at 0, i.e. (1.6) and (1.7) hold, and let

F be defined by (1.4). Then F � 0, i.e. F(z) � 0 for every admissible sequence

z =
(

xk

uk

)N+1

k=0
,

i.e. z satisfies (1.5), if and only if the following two statements are true.
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(i) Pk � 0 for all 0 � k � N .

(ii) xk ∈ image Xk for all 0 � k � N + 1 and for every admissible sequence

z =
(

xk

uk

)N+1

k=0
.

Remark 1.2. Note that, by [8, Lemma 1], the matrices Pk are always symmetric,
and Mk = 0 (or equivalently Tk = I) if and only if KerXk+1 ⊂ Ker Xk. Moreover, if
Ker Xk+1 ⊂ Ker Xk for all 0 � k � N , then statement (ii) is true (cf. [2, Remark 3 (iii)]
or [3, Remark 1 (v)]). This kernel condition and statement (i) mean that

(
X
U

)
has no focal

point in the interval (0, N +1] (cf. [2, Definition 3], [3, Definition 3] or [8, Definition 1]),
and these two conditions are equivalent to the positivity of F by the Reid Roundabout
Theorem (cf. [2, Theorem 2] or [3, Theorem 1]). Of course, our statement (ii) does not
imply the kernel condition, and therefore our statements (i) and (ii) do not imply, for
example, that

(
X
U

)
has no focal points in the open interval (0, N +1) (cf. [8, Definition 1]),

as one might have expected in analogy to the continuous case [7, Remark 2.4.2]. This
will be discussed in § 3 below (Corollary 3.1 and Remark 3.3). But the continuous results
require controllability of the system, which is not needed here and also not needed for
the discrete result on positivity.

The rest of this paper deals with the proof of Theorem 1.1. In the next section we show
that (i) and (ii) imply F � 0, using mainly a Generalized Picone Identity, i.e. Proposi-
tion 2.1. In the final section (§ 3) we prove the other direction by constructing examples
with F(z) < 0, if (i) or (ii) is violated.

2. Non-negativity

We need the following result (for special cases see [2, Lemma 2] or [3, Lemma 2]).

Proposition 2.1 (Generalized Picone Identity). We use the notation presented
in § 1 and assume (1.6), (1.2), (1.7) and (1.10). Let k ∈ [0, N ] ∩ Z and suppose that
xk+1 = Akxk + Bkuk, sk = uk − Qkxk. The following identities then hold.

(i) Pk = TT
k P̃kTk.

(ii) XT
k+1Rk[Q]Xk = 0.

(iii) Mksk = 0 if xk ∈ image Xk and xk+1 ∈ image Xk+1.

(iv) Fk := xT
k AT

k Ckxk +uT
k DT

k Bkuk +2xT
k CT

k Bkuk = xT
k+1Qk+1xk+1 −xT

k Qkxk +sT
k Pksk

if xk ∈ image Xk and xk+1 ∈ image Xk+1.

Proof. First, the formulae (1.9) imply that

P̃k = BT
k Dk + MT

k Qk+1Mk − BT
k Xk+1X

†
k+1Qk+1Xk+1X

†
k+1Bk

− BT
k Qk+1Mk − MT

k Qk+1Bk,
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and we obtain from (1.8) and (1.10) that (using properties of the Moore–Penrose inverses)

BT
k Dk − BT

k (X†
k+1)

TXT
k+1Uk+1X

†
k+1Bk

= MT
k Uk+1X

†
k+1Bk + DT

k Mk + (DT
k Xk+1 − BT

k Uk+1)X
†
k+1Bk

= MT
k Uk+1X

†
k+1Bk + DT

k Mk + XkX†
k+1Bk.

Hence TT
k P̃kTk = Pk because MkTk = 0, which proves (i).

To show (ii), note that

XT
k+1Rk[Q]Xk = XT

k+1{Qk+1(AkXk + BkUk) − (CkXk + DkUk)}X†
kXk

= {UT
k+1Xk+1 − XT

k+1Uk+1}X†
kXk = 0

follows from (1.6), (1.10), (1.11), and the properties of Moore–Penrose inverses.
We have xν = XνX†

νxν for ν ∈ {k, k + 1}. Therefore

Mkuk = (I − Xk+1X
†
k+1)(xk+1 − Akxk)

= (I − Xk+1X
†
k+1)(Xk+1X

†
k+1xk+1 − AkXkX†

kxk)

= (I − Xk+1X
†
k+1)(BkUk − Xk+1)X

†
kxk

= MkUkX†
kXkX†

kxk = MkQkxk,

and hence (iii) holds.
Finally we show (iv). It follows from [3, Lemma 2] (see also [2, p. 812]) that

F̃k := −2uT
k BkRk[Q]xk + xT

k {QkBT
k Rk[Q] − RT

k [Q]Ak}xk

= Fk − xT
k+1Qk+1xk+1 + xT

k Qkxk − sT
k P̃ksk.

Since Tksk = sk by (iii) and (1.9), we have that sT
k P̃ksk = sT

k Pksk by (i). Moreover,
using (ii),

uT
k BT

k Rk[Q]xk = (xk+1 − Akxk)TRk[Q]xk = −xT
k AT

k Rk[Q]xk,

so that

F̃k = (Akxk + BkQkxk)TRk[Q]xk = xT
k (X†

k)TXT
k+1Rk[Q]XkX†

kxk = 0,

which yields (iv). �

The next result shows one direction of Theorem 1.1, namely that (i) and (ii) imply
F � 0.

Proposition 2.2. Under the assumptions of Theorem 1.1 suppose that statement (i)
is true, and assume that

z =
(

xk

uk

)N+1

k=0

is admissible with xk ∈ image Xk for all 2 � k � N . Then F(z) � 0.
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Proof. Note that

x0 = xN+1 = 0 ∈ image X0 = {0} ⊂ image XN+1,

and
x1 = B0u0 = X1u0 ∈ image X1

for every admissible sequence z. It follows from the Generalized Picone Identity, Propo-
sition 2.1 (iv), that

F(z) =
N∑

k=0

{xT
k+1Qk+1xk+1 − xT

k Qkxk + sT
k Pksk}

=
N∑

k=0

sT
k Pksk

� 0.

Hence F � 0. �

3. Construction of examples

In the first two parts of this section we show the other direction of Theorem 1.1. First,
we consider the case where statement (i) is violated and construct an admissible z with
F(z) < 0. Then we consider the case where statement (ii) is violated and also con-
struct an admissible z with F(z) < 0. We conclude this section with some remarks and
consequences of Theorem 1.1.

3.1. Statement (i) is not true

Assume that Pm �� 0 for some m ∈ [1, N ]∩Z. Note that P0 = 0 � 0 by (1.7) and (1.9).
We use (with different notation) the construction in [5] (cf. also [2, p. 814]). To do so,
let c ∈ R

n with cTPmc < 0. We define d := X†
m+1BmTmc and

xk :=

{
Xkd for 0 � k � m,

0 for m + 1 � k � N + 1,

uk :=

⎧⎪⎨
⎪⎩

Ukd for 0 � k � m − 1,

Ukd − Tkc for k = m,

0 for m + 1 � k � N + 1.

Then x0 = xN+1 = 0, xk+1 = Akxk + Bkuk for 0 � k � N with k �= m, and

Amxm + Bmum = Xm+1d − BmTmc = 0 = xm+1,

because Xm+1X
†
m+1BmTm = (Bm − Mm)Tm = BmTm by (1.9). Hence z =

(
x
u

)
is admis-

sible. Using [3, p. 711] and

Cm−1xm−1 + Dm−1um−1 = Umd = um + Tmc,
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we obtain

F(z) =
N∑

k=0

xT
k+1{Ckxk + Dkuk − uk+1}

= xT
m{Cm−1xm−1 + Dm−1um−1 − um}

= cTTT
mXmd = cTPmc < 0.

Hence F �� 0.

3.2. Statement (ii) is not true

Assume that there exists an admissible z =
(

x
u

)
and 1 � m � N − 1 such that xm ∈

image Xm, but xm+1 �∈ image Xm+1. We put x = xm+1, X = Xm, xm = Xα ∈ image Xm,
Y = Xm+1, U = Um+1 and M = Mm. Then rank(Y T, UT) = n and Y TU = UTY , so
that K := Y TY + UTU is invertible with(

K−1Y T K−1UT

−UT Y T

) (
Y −UK−1

U Y K−1

)
=

(
I 0
0 I

)

(cf. the proof of [7, Corollary 3.3.9]). Then the matrix S′, defined by

S′ = K−1UTM,

satisfies
Y S′ = 0 and US′ = M (3.1)

because (
K−1Y T K−1UT

−UT Y T

) (
0
M

)
=

(
K−1UTM

0

)
,

since Y TM = 0 by (1.9).
Next we prove that

MTx �= 0. (3.2)

To this end, assume that MTx = 0. It follows that

0 = BT
m(I − Y Y †)x

= BT
m(I − Y Y †)(AkXα + Bmum)

= BT
m(I − Y Y †)2(Y α + Bm(um − Umα))

= MTM(um − Umα).

Hence,

0 = M(um − Umα)

= (I − Y Y †)(Bmum − BmUmα)

= (I − Y Y †)(x − Y α) = (I − Y Y †)x

so that x = Y Y †x, which contradicts our assumption x �∈ image Y . Thus (3.2) holds.
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Now we define a sequence

z̃ =
(

x̃

ũ

)
=

(
x̃k

ũk

)N+1

k=0

as follows:

x̃k :=

{
Xk(α + α̃) for 0 � k � m,

xk for m + 1 � k � N + 1,

ũk :=

⎧⎪⎨
⎪⎩

Uk(α + α̃) for 0 � k � m − 1,

uk + Ukα̃ for k = m,

uk for m + 1 � k � N + 1,

where
α̃ := tS′MTx with a free parameter t ∈ R. (3.3)

First, we show that z̃ is admissible: x̃0 = 0 = x̃N+1 = xN+1, x̃k+1 = Akx̃k + Bkũk for
0 � k � N with k �= m, and

Amx̃m + Bmũm = Amxm + Bmum + (AmXm + BmUm)α̃ = xm+1 + Y α̃ = xm+1

because Y α̃ = 0 by (3.1) and (3.3). Hence z̃ is admissible. Next, using the same formula
as in § 3.1, we get

F(z̃) =
N∑

k=0

x̃T
k+1{Ckx̃k + Dkũk − ũk+1},

where Ckx̃k + Dkũk − ũk+1 = 0 for 0 � k � m − 2 by (1.6),

Cm−1x̃m−1 + Dm−1ũm−1 − ũm = Umα − um,

and
Cmx̃m + Dmũm − ũm+1 = CmXmα + Dmum + Uα̃ − um+1.

Therefore, F(z̃) = F∗ + F∗∗, where the first summand

F∗ :=
N∑

k=m+1

xT
k+1{Ckxk + Dkuk − uk+1} + αTXT(Umα − um)

+ xT(CmXα + Dmum − um+1)

does not depend on α̃, i.. not on the parameter t, and where

F∗∗ = F∗∗(t) := α̃TXT(Umα − um) + xTUα̃.

Since Y α̃ = 0 by (3.1) and (3.3), we obtain from (1.8)

(Umα − um)TXα̃ = (Umα − um)T(DT
mY − BT

mU)α̃

= (Bmum − BmUmα)TUα̃

= xTUα̃ − αTY TUα̃ = xTUα̃.

Hence F∗∗(t) = 2xTUα̃ = 2txTUS′MTx = 2t‖MTx‖2 by (3.1) and (3.3). Since MTx �= 0
by (3.2), we obtain that F(z̃) = F∗ + 2t‖MTx‖2 → −∞ as t → −∞. Hence F �� 0, and
this completes the proof of Theorem 1.1.
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3.3. Some consequences

For every admissible sequence

z =
(

xk

uk

)N+1

k=0

we have that x0 = 0 ∈ image X0, xN+1 = 0 ∈ image XN+1, and x1 = B0u0 ∈ image X1

because X1 = B0 (see the proof of Proposition 2.2). Moreover, by (3.2), we have for
1 � k � N − 1 that

MT
k xk+1 �= 0 if xk ∈ image Xk and xk+1 �∈ image Xk+1.

Therefore, condition (iii) of the following Corollary 3.1 implies condition (ii) of Theo-
rem 1.1. The inverse implication is also true because

MT
k Xk+1 = BT

k (I − Xk+1X
†
k+1)Xk+1 = 0

so that MT
k xk+1 = 0 if xk+1 ∈ image Xk+1. Hence, the subsequent Corollary 3.1 holds.

Corollary 3.1. Assume (1.2), (1.6) and (1.7), and use the notation of Theorem 1.1.
Then statement (ii) of Theorem 1.1 is true if and only if

(iii) MT
k xk+1 = 0 for all 1 � k � N − 1 and for every admissible sequence

z =
(

xk

uk

)N+1

k=0
.

Next, if BN is invertible, then every

z =
(

xk

uk

)N+1

k=0

with x0 = 0, xk+1 = Akxk + Bkuk for 0 � k � N , and with uN := −B−1
N ANxN is

admissible. Hence, for 0 � k � N − 1, put uj = 0 for 0 � j � k − 1 so that

x0 = · · · = xk = 0, xk+1 = Bkuk.

Then condition (iii) of Corollary 3.1 implies that

0 = MT
k xk+1 = BT

k (I − Xk+1X
†
k+1)

2Bkuk = MT
k Mkuk

for every uk ∈ R
n. Hence, Mk = 0, which means that KerXk+1 ⊂ Ker Xk for 0 � k �

N −1 by [8, Lemma 1]. Therefore, condition (iii) of Corollary 3.1 implies condition (iv) of
the following Corollary 3.2, if BN is invertible. The inverse implication is trivial. Therefore
we have shown the following result.

Corollary 3.2. Under the assumptions and notation of Theorem 1.1 or Corollary 3.1,
suppose moreover that BN is invertible. Then statement (ii) of Theorem 1.1 holds if and
only if

(iv) KerXk+1 ⊂ Ker Xk for all 0 � k � N − 1.
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Note that condition (iii) does not imply KerXN+1 ⊂ Ker XN in general (cf. [6, Propo-
sition 1 or Theorem 2]).

Remark 3.3. Now, using the notion of focal points, Theorem 1.1 and Corollary 3.2
yield the following result. Under the assumptions of Theorem 1.1 suppose that BN is
invertible. Then the function F is non-negative if and only if the principal solution of
the symplectic system possesses no focal point in the open interval (0, N + 1).

Acknowledgements. We thank the referee for pointing out the reference [6], which
appeared when the paper was in the review process.
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