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Since Suslin described the K-theory of the complex numbers C in [Sul], there has
been a renewed interest in the structure of the K-theory of fields. In this paper
we shall describe the Abelian group structure of the K-groups of a complex variety
X and its function field F, assuming that X has dimension at most two, i.e., that
X is a curve or a surface. This restriction is forced by our ignorance concerning
the higher Chow groups CH'(F, n) for 2 <i < dim(X). In a sequel we shall deal
with higher-dimensional varieties, using Voevodsky’s solution to the Milnor Con-
jecture to describe the torsion in the higher Chow groups CH(F, n).

The first main result in this paper (Theorem 4.8) describes the structure of the
Abelian groups K, (F), at least when d = tr. deg. (F) is at most two. We prove that
K, (F) is a divisible group for all n > d, and determine its torsion subgroup. Our
result builds upon Suslin’s result [Su3] that the Milnor K-groups KM (F) are divisible
for n > d, because KM(F)/m = H"(F, 7/m) vanishes for n > d.

In the range n <2, the structure of K,(F) is well known, albeit rich and
complicated, when F is any function field over C. The structure of Kj(F) = F*
is classical; it is the product of C* and a free Abelian group (see Example 1.1 below).
The group K,(F) need not be divisible either, but its torsion subgroup is always
divisible. This follows from the Merkurjev—Suslin theorem [MS] that Ky(F)/m is
isomorphic to the m-torsion in the Brauer group Br(F), and from Suslin’s formula
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for the torsion subgroup of K,(F) in [Su2, 3.7]: the m-torsion subgroup of K>(F) is
isomorphic to F* @ u,,.

Our second main result for curves and surfaces (Theorems 3.2 and 6.6) is that when
n > dim(X) the group K,(X) is divisible-by-finite: its torsion consists of a specified
number of copies of (Q/7Z, together with the finite summands, which are the torsion
subgroups of the Betti cohomology H*(X, 7). This result holds for all » > 0 when
X is proper. In particular, if X is a curve then K,(X) is a divisible group for
n>2(and n=1if X is proper).

A related phenomenon for surfaces is our result (see Proposition 6.3 below) that
the finite group H*(X, 7),,,, is a summand of K;(X). When X is any smooth proper
variety, this summand was found by Colliot-Théléne and Raskind [CT-R, 2.2].

One way to interpret our results is to consider the comparison map p between the
algebraic K-theory of the variety X and the topological K-theory KU*(X) of the
underlying topological space. Recall that each KU"(X) is a finitely generated
Abelian group. Define the relative groups K’*/(X) to fit into an exact sequence

K (X) D KU (X)) > KX - Ky(X) S KU™(X). ...

If dim(X) < 2, then K'/(X) is a uniquely divisible group for all n > 0, and hence
K,(X) is the direct sum of a divisible group and a finitely generated group
7" ® A, which injects into KU™(X) and has 4 = KU "(X),,,, (Corollary 2.12).
Our third main result computes the torsion in K,(X) for »n > dim(X)
(Theorem 6.6). The divisible part of this divisible-by-finite group is the mirror image
(Q/Z) of the free part Z* of KU™""'(X).

This paper is organized as follows. In Section 1 we make some elementary obser-
vations about the higher Chow groups CH'(F,n) when C C F. In Section 2 we
describe the K-theory with coefficients Z/m for F and X; many of the results in
this section were announced by Suslin in [SuM]. In Section 3 we describe the struc-
ture of K,(Y) when Y is a smooth curve.

In the second half of the paper we focus on a smooth surface X and its function
field F. In Section 4 we introduce Chern classes with values in Deligne—Beilinson
cohomology, and use them to determine the structure of K,(F): it is divisible for
n > 2 with prescribed torsion. In Section 5 we use this structure to determine
the K-cohomology of X, and we describe the groups K,(X) in Section 6.

We will use the following notation. If A4 is an Abelian group and m is a positive
integer, A,, will denote the subgroup {a € A:ma = 0}, and we will write A/m for
A/mA. The torsion subgroup of 4 will be written as A,,;.

If X is a complex variety, we write X(C) for the complex analytic space underlying
X.If Ais a sheaf on X(C), such as A =7, C* or @} , we write H; (X, A) for the
sheaf cohomology of A on X(C). If A is a constant sheaf, we drop the subscripts
and just write H*(X,.A) because, of course, this equals the classical singular
cohomology of X with coefficients in A. If A = 7/m then it is well known that
H*(X,7Z/m) also agrees with the étale cohomology groups H} (X, Z/m).
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If F is the function field of X, we shall write H} (F, A) for the direct limit of the
groups H;, (U, A) as U runs through all Zariski open subsets of X this is a birational
invariant, independent of the choice of X.

We will also use the standard notation K,(X; Z/m) for the K-theory of X with
coefficients Z/m, and CH'(X,n; Z/m) for the higher Chow groups of X with
coefficients 7 /m. The calligraphic KC,,, K,,(Z/m) and H"(Z/m) refer to the Zariski
sheaves associated to the presheaves sending U to K,(U), K,(U;Z/m) and
H! (U, Z/m), respectively.

1. Divisibility of Chow Groups of Fields

Let F be a field of finite type over C. We cannot expect every higher Chow group
CH'(F, n) to be divisible. For example, we have Ky(F) = CH’(F,0) = Z for every
field F.

In this section we show that the groups CH'(F, n) are divisible for sufficiently large
n, at least if F has small transcendence degree over C. Much of this material is
implicit in the work of Suslin [SuM] and Kahn [K]. We begin with some low degree
calculations.

EXAMPLE 1.1. (a) Assuming F # C, the group K,(F) = CH'(F,1) = F* is not
divisible either. To see this, choose a smooth projective variety X such that F is
the function field of X. It is well known that F* is the product of C* and the group
PDiv(X) of principal divisors on X [Hart, I1.6]. Since PDiv(X) is a free Abelian
group, the group F* cannot be divisible.

(b) The group K;(F) is known to be divisible when F is the function field of a curve,
but not always when F is the function field of a surface. Indeed, Ky(F)/m is the
subgroup Br(F),, of the Brauer group Br(F) [MS], so these are just restatements
about the Brauer group of F; see [Dix, IIIJ.

The isomorphisms Ko(F) = CH(F,0) and K|(F)= CH'(F,1) are degenerate
cases of the (third quadrant) Bloch-Lichtenbaum spectral sequence. It converges
to the K-theory of F [BL]:

EY* = CH™(F, —p — q) = K_,_(F), p.q<0. (1.2)

Note that CHY(F,n)=0 for n#0, and CH'(F,n)=0 for n+#1 (because
CH'(F,0) = Pic(F) = 0) by [BI]. Thus K>(F)= CH?*(F,2) is another degenerate
case. The following result, essentially due to Soulé, gives a criterion for further
degeneration of the spectral sequence.

PROPOSITION 1.3. Set i = —q and n= —p — q, so that E5 = CH'(F,n) in the
Bloch—Lichtenbaum spectral sequence (1.2).

If CH/(F, n) is uniquely divisible, then E2.¢ = CH'(F, n).
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If CH'(F, n) is divisible, then E2 is a quotient of CH'(F, n).
If CH'(F, n) is torsion-free, then EL:4 is a subgroup of CH'(F, n).

Proof. Soulé has proven [Sou2] that the Adams operations lﬁk commute with the
differentials d, in the spectral sequence, and that the y* are multiplication by &’
on CH'(F, n). Hence, we have y* =k’ on each EP~'. Since y* = k' holds for every
i and k, it follows from [Soul, 2.8] that for each ¢ and r there is an integer N
so that Nd?% =0 for every p. The result is now a straightforward induction on
r; if E9 is divisible, @79 = 0 and EI is a quotient, while if EP? is torsion-free then
dp="4t=1 = 0 and E’ is a subgroup. O

LEMMA 1.4. Let F be a field of finite type over C, and set d = tr. deg. (F). Then for
each i >d:

CH'(F,n) is uniquely divisible for n #2i,...,2i —d — 1;
CH'(F, 2i) is torsion-free;
CH'(F,2i —d — 1) is divisible.

Proof. This follows from the combination of the universal coefficient sequence

0 — CH(F,n)/m — CH'(F,n; ZJm) > CHI(F,n— 1), — 0,

the theorem of Suslin [Su3, 4.3] that CH'(F, n; Z/m) = HX~"(F, 7 /m) for i > d, and
the fact that F has étale cohomological dimension d. O

Clearly the combination of Proposition 1.3 and Lemma 1.4 imply that almost all
the differentials vanish, and they all vanish if F has transcendence degree at
most 2. In these cases the spectral sequence determines K, (F) up to the usual exten-
sion problem.

When n = 2i and i > d, Lemma 1.4 states that CH'(F, 2i) is torsion-free. We will
prove it is uniquely divisible. The critical case to consider is F = C.

COROLLARY 1.5. (F = C) For eachn = 0, the group K,(C) is the direct sum of the
groups CH(C,n), 0 <i<n Moreover, each summand CH'(C,n) is uniquely
divisible, except when n =2i —1 or i = 0.

If i =1, the group CH(C, 2i — 1) is divisible, and its torsion subgroup is:

CHi(Cv 2i — 1)t0rs = K2i—l(C)mrs = Q/Z’

Proof. By Lemma 1.4, CH(C, n) is divisible for n # 2i, and torsion-free for
n#2i—1. By Proposition 1.3, all differentials are zero, ie., EB7=
CH™(C, —p —q).

Hence the filtration quotients for the abutment K,(C) are the groups CH/(C, n).
To solve the extension problem, recall that for each n the groups CH/(C, n) are
uniquely divisible with one possible exception. If n is odd, the exception is
divisible, and it follows easily that if n =2i — 1 then K,(C) = @®CH/(C,n), with
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Ki(C),pps =2 Q/Z equal to CH'(C,n),,,. Since CH(C,n),, =~ 7Z/m is a quotient
of CH(C,2i;7/m)=7/m, the universal coefficient sequence forces each
CH'(C, 2i) to be divisible. From this we get a splitting of K,(C) for even n > 0. []

PROPOSITION 1.6. Let F be a field properly containing C. Then for i =1 or
i = tr. deg. (F):

(1) CHI(F, 2i) is uniquely divisible, and
(2) the torsion subgroup of CH'(F,2i — 1) is isomorphic to Q/7Z, the torsion subgroup
of CH(C,2i —1).

The group Q/7 is also a canonical summand of Ky(F; Q/7) and Kzi—1(F);yps

Proof. Let F denote the algebraic closure of F. Suslin proved in [Sul] that for each
m and i there is an isomorphism K»;(C; Z/m) = K»(F; 7,/m), and that it factors
through Ky(F; 7Z/m). The same proof, applied to T(F) = CH'(F,2i — 1),,, shows
that there is an isomorphism T(C) = T(F) factoring through 7'(F). Hence T(C),
which is isomorphic to Z/m by Corollary 1.5, is a summand of T(F). If i =1,
T(F)=T(C) =y, When i > tr. deg. (F), T(F) is a quotient of the finite group

CH'(F,2i; Z/m) = H(F, Z/m(i)) = Z/m.
Hence we must have T(F) = T(C) = Z/m. Now let m go to infinity. ]

DEFINITION 1.7. The canonical summands Q/Z of Kx(F; Q/7), Kazi—1(F),,s and
CH'(F,2i —1),,,, will be called the Bott summands of these groups. For each m,
we will also refer to the canonical summands Z/m of Ky(F; Z/m), Kyi_1(F),,
and CH'(F,2i—1),, as the Bott summands.

They are not canonically summands of K»;_(F) or CH'(F, 2i — 1). For example,
when i =1 we can identify (Q/7Z with the group of roots of unity in K|(F)=
CH\(F,1) = F*.

PROPOSITION 1.8. Let F be a field containing C, and suppose i = 2. Then

(@) The quotient of CH(F,2i — 1) by the Bott summand Q7 is uniquely divisible.
(b) The torsion subgroup of CH!(F,2i—2) is a divisible group, isomorphic to
F*® Q/7Z, and its m-torsion subgroup is given by:

CHI(F,2i —2), =~ H\(F,Z/m(i)) = F*/F*™  for all m.

Proof. Since CH'(F,2i—1;7/m)= H'(F,7/m(i)), the universal coefficient
sequence shows that it suffices to prove that CH/(F, 2i — 1) is divisible by each prime
£. For this we modify the argument of [Su2, 3.4].

Consider the filtered poset of all subfields F’ of F which are finitely generated over
Q. The natural map from CH/(F, 2i — 1) to H'(F, 7./£"(i)) factors through the direct
limit of the corresponding maps for F’, and by naturality in m = £’ each of these
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factor through the inverse limit H'(F', Z,(i)) :(hlnHl(F’, 7,/2'(i)). Hence it suffices
to show thatli_r)nHl(F/, Z,(i)) vanishes for i > 2.

The proof of [Su2, 2.4] goes through with Z,(1) replaced by Z,(i — 1) for any i > 2.
Given this, the proof of [Su2, 2.7] goes through to show that if F’ is a finitely gen-
erated subfield of F with ground field F then H'(F}, Z(i)) = H'(F', Z(i)). Taking
the limit over all such F’ yields the desired vanishing:

lim H'(F', Z(i)) = lim H'(Fy, Z4())) = HY(Q, Zu(i) = 0. O

Since CH?*(C,2) = K,(C) is divisible and CH!(C, 1) = C*, the universal co-
efficient sequence yields an isomorphism between CH'(C, 2; Z/m) and the group
U, of mth roots of unity. Fixing a primitive root of unity {, we shall refer to
the corresponding element  of CH'(C, 2; 7Z/m) as the Bott element.

LEMMA 1.9. Let F have transcendence degree d over C. Multiplication by the Bott
element B induces isomorphisms CH(F,n; Z/m) >~ CH*Y(F,n+2; Z/m) for all
i=d.

Proof. By [Su3, 4.3] the norm residue map CH'(F, n; 7./m) — H2~"(F, u®) is an
isomorphism for i > d (both vanish unless 0 < n < 2i). By [W3, 5.2] this map is com-
patible with multiplication. Since § maps to the class [{] in Hgt(F , 18 = p,,, this
means the following diagram commutes (proving the lemma). O

o

CH(F,ms Z/m)  —— HA(F.u3)

lUIf %lU[C]

CH™\(F,n+2; 7./m) —j> H2A=1(F, (&),

2. K-Theory with Coefficients

We turn our attention to K-theory with coefficients 7Z/m, and calculate the groups
K, (X; Z/m). The following result was observed by Suslin in [SuM, p. 350].

PROPOSITION 2.1 (Suslin). Let F be the function field of a curve or surface over C.
Then there are natural isomorphisms for all n > 1:

2 ; ; .
K,(F: Zjm) = : Z/lm @® H*(F, 7/m) zf nx=?2 {s even,
H'(F,Z]/m) if n>=1isodd.

In effect, the Bloch—Lichtenbaum spectral sequence (1.2) has an analogue with
coefficients (constructed in [RW]), and it degenerates when tr. deg. (F) < 2. The
extension problem is solved by Corollary 1.6, because the Bott summand is the
quotient H(F, Z/m(i)) = 7Z./m of Ky(F; 7/m).
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Let K¢'(X; 7Z/m) denote the étale K-theory of X with coefficients Z/m. There are
natural maps p,(X): K,(X; Z/m) — K (X; Z/m), constructed in [Fr2, 1.3].

THEOREM 2.2 (Suslin). Let X be a smooth complex variety with function field F. If
dim(X) < 2, there are isomorphisms for all n = 1 (and injections for n =0).

0, (X): K(X: ZJm) —> K< (X Z/m),
puF): Ku(F; ZJm) —> K'(F; Z/m).

This theorem was announced in [SuM, 4.7], but the proof in loc. cit. has a gap
because the multiplicative properties of the Bott element f € K>(C; Z/m) on the
Bloch-Lichtenbaum spectral sequence for a general field F are presently unknown.

One of the main purposes of this section is to provide a proof of Theorem 2.2. We
will first dispose of the case of curves, stating a slightly sharper result.

PROPOSITION 2.3. Let Y be a smooth curve over C. Then multiplication by the Bott
element e Ko(C; Z/m) induces isomorphisms K,(Y; 7./m) 2K, 2(Y; 7./m) for all
n =0, and there are isomorphisms:

Z/m@& HXY,Z/m) if n>0 is even,

. ’ ] (2.3.1)
H\(Y,Z/m) if n>0isodd

K.(Y;7/m) = {
Moreover, K,(Y; Z/m) —> K(Y: Z/m) and K,(F; Z./m) — K°'(F; Z/m) for all
n =0, where F = C(Y).

Proof. Write F for the function field of Y, and i: ¥ — Spec(C) for the structure
map. Using the abbreviations K](Y) for K.(Y;Z/m) and H*(Y) for
H*(Y; Z/m), we have a diagram for all n > 0 even:

K/(C) = KjC)

i |

1 "=

0 — K\, (Y) — K (F) > @y oki(C) — K(Y) — KI(F) — 0

0 — H(Y) — HEF -5 &u0HNC) — HXY) — O

The rows are the exact localization sequences in K-theory and étale cohomology. The
vertical isomorphisms are from Proposition 2.1.

By Lemma 2.3.2 below, the middle square commutes up to a natural isomorphism
of H(C) = 7 /m. Given this, we can finish the proof of Proposition 2.3. A diagram
chase yields the isomorphisms (2.3.1). Since Y has the étale homotopy type of
the complex surface Y(C), we see from [Frl, 1.2(iv)] that there are similar
isomorphisms for K¢'(Y; Z/m). Hence, the source and target of each p,(Y) are finite
groups of the same order. By [Fr2, 2.9], the maps p,(Y) are onto, and are
isomorphisms for n» = 0, 1. Thus each p,(Y) must be an isomorphism. Passing to
the limit over all open subsets of Y yields the result for F = C(Y). O
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LEMMA 2.3.2. Let y be a closed point of Y andn = 0 even. Then the square formed by
the connecting homomorphisms 0, and the isomorphisms of Proposition 2.1 commutes
up to a natural isomorphism of H(C) = 7,/m.

B 1
K”_H(F) — KJ(C)

| =

H\(F) —% H(C)

Proof. We shall prove this by mimicking the argument of [RW, (6.4)]. Form the
henselization R, of Oy , and write F, for its field of fractions. Because F), is a direct
limit of function fields of curves, Proposition 2.1 applies to F, too. Hence we
can form the following diagram, using the isomorphisms of 2.1 for the vertical maps.

i)y

K. (F) — K, (F,) — K/

| L

H'(F) —s H\F) —s HC).
) (F) —s HYO)

The left square commutes by naturality of the isomorphism in Proposition 2.1, and
the outer square is the square in question. So it suffices to show that the horizontal
maps labelled 9, are isomorphisms. (We do not care here if the right square com-
mutes.)

By rigidity, we know that H'(R,) = H'(C) =0 for i > 0 so the connecting map
dy: H'(F,) — H°(C) in the localization sequence is an isomorphism; see [Sou, I11.2].
Similarly, K, (R,) =K, ;(C)=0 by Gabber rigidity, so the connecting map
0y: K |(F,) = K)/(C) in the K-theory localization sequence is an injection; since
both source and target have order m, it is an isomorphism. (Alternatively, one could
argue as in [Sou] or [RW, 3.3].) O

As observed by Suslin in loc. cit., this shows that even if Y is a singular curve then
multiplication by the Bott element induces isomorphisms K/ (Y;Z/m) =
K, »(Y;Z/m) for all n >0. We also have K,(Y; Z/m)= K, »(Y; Z/m) for all
n = 0 by the following result.

COROLLARY 24. If Y is a singular curve over C, there are isomorphisms:
0,(V): K,(Y; 7 /m) = KNY;Z/m)  foralln = 0.
Proof. We may assume that Y is reduced, since replacing Y by Y,.; doesn’t change

either K-group (see [W1, 1.4]). Let Y be the normalization of Y, S the singular set,
and set S =S xy Y. By [W1, 1.3], there is a Mayer—Vietoris exact sequence

. .Kn+1(5'; Z/m) — Ku(Y: Z/m) — K(Y; Z/m) & K,(S; Z/m) — K,(S; Z,/m).
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Since p(C) is an isomorphism, so are p(S) and p(S‘). Since p(Y) is an isomorphism by
the theorem, the 5-lemma implies that p(Y) is also an isomorphism. O

LEMMA 2.5. Let F be the function field C(s, t) of the plane. Multiplication by the
Bott element f is an isomorphism K,(F; 7./Jm) =2 K, .»(F; 7Z./m) for all n > 1.

Proof. We regard F = C(s, ¢) as the field of fractions of the polynomial ring
R =C(s)[7]. For every residue field E of R, there is a tame symbol
0p: K,(F; Z/m) — K, 1(E; Z/m), and the direct sum over all such E is one of
the maps in the K-theory localization sequence. It is well known (see [Sou, p.271])
that the K-theory localization sequence breaks up into short exact sequences,
and that it is a sequence of modules for the graded ring K,(C; Z/m). This gives
us a commutative diagram with exact rows:

0 —  KyC(s);Z/m) —> K,(F;Z/m) —8> ©eKy \(E; Z/m) — 0

UB | = Up UB |
0 — Ko(Ce) Z/m) —> Kpo(FiZJm) —> @pKpn(E; Z/m) — 0.

For n > 1, the outside vertical maps are isomorphisms by Proposition 2.3. The
5-lemma shows that Uf is an isomorphism on K, (F; Z/m). O

Proof of Theorem 2.2. First we show that Uf: K,(F; Z./m) =2 K, .»(F; 7,/m) for all
n = 1. For n odd, this follows from Proposition 2.3 and the fact that every element
of K,(F;Z/m)=F*/m comes from K,(E;Z/m) for some subfield E of trans-
cendence degree 1 over C. For n = 2i even, we have isomorphisms

Ka(F: Z/m) 2> KS(F: 7)) K3ty o(F: Z./m)

by [DF, 8.2]. Hence the intermediate map K(F; Z/m) U—ﬂ> Kyio(F; Z/m) is an
injection. Since the Bott summands are generated by the powers of f3, it remains
to show that the summand H?(F, Z/m) = K>(F)/m of Ky .»(F; 7Z/m) is in the image
of UB'. This summand is generated by the symbols {s, #}, s, € F*. By naturality,
the symbol ¢ = {s, t} comes from the summand H*(C(s, 1); Z/m) of K, 2(C(s, t);
7Z/m). By Lemma 2.5, ¢=xUp for some xe K(F)/m coming from
K>(C(s, 1))/m. Hence the map Up’ is onto, as desired.

With this, the rest of Suslin’s proof of Theorem 2.2 in loc. cit. goes through for
surfaces, using Thomason’s theorem and the long exact sequences

K (F:Z/m) — lirLlK;(Y; Zim) — K(X;Z/m)— K(F;Z/m).... 0O
Now suppose that X is a smooth affine surface. Since H*(X) = H*(X) =0, the
spectral sequence for étale K-theory [DF, 5.2] degenerates. Using Theorem 2.2, this

yields K, (X;Z/m) for n > 1: it is H'(X,Z/m) if n is odd, and it is the direct
sum of the Bott summand 7Z/m and H*(X, 7 /m) when n is even.
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Taking the direct limit over all affine open subsets of X, the affine case immedi-
ately yields the following description of the Zariski sheaves K,(Z/m).

LEMMA 2.6. When X is a smooth surface, we have:

7./m 2(Z/m) if n =2 is even;

Kazmys f i S T
if n>=1isodd

Remark 2.6.1. The isomorphism K»(Z/m) = 7./m & H*(Z/m) is induced by the
Chern class ¢»: KCo(Z/m) — H?*(7/m); see [CT-R, p.168]. Applying H', we see that
¢> induces an isomorphism between H'(X, Ko(Z/m)) and H'(X, H*(Z/m)), which
equals H3(X,Z/m) when X is a surface by [BO]. This observation is implicit in
[Su2, p.19].

COROLLARY 2.7. When X is a smooth surface, we have:

Z[m® Br(X),, if p=0;
If n>2is even, H'(X,K,(Z/m)) = { H* (X, Z/m) ifp=1;
HYX,ZJm)  if p=2.

H'(X.Z/m) if p=0;
If n>=1isodd, H (X, K,(Z/m)) = { Pic(X)/m if p=1;
0 if p=2.

Proof. Just combine the Bloch—Ogus resolutions of the sheaves H"(Z/m) appear-
ing in Lemma 2.6, together with the Leray spectral sequence:

EPY = H/(X, HU(Z/m)) = HP*U(X, Z/m),  q=p=0. 2.7.1)

For example, H(X, H*(Z/m)) = Br(X),, and H'(X, H'(Z/m)) = Pic(X)/m follow
from the Bloch—Ogus resolutions; see [BO, 7.7]. O

THEOREM 2.8. Let X be a smooth irreducible surface over C. Then:

N Z/m® H*(X,7Z/m)® HYX,7Z/m) if n>2is even;
KX 2fm) == ! HY(X, Z/m) ® H (X, 7./m) if n=1is odd
Topological proof. Let KU*(X) denote the topological K-theory of complex vector
bundles on the underlying space X(C), and let KU*(X; Z/m) denote the correspond-
ing theory with coefficients Z/m. We know by [Fr, 1.6] that K¢(X;Z/m) =
KU(X; 7Z/m). As an exercise, the reader might want to derive Theorem 2.8 from

Theorem 2.2, using the Atiyah—Hirzebruch calculation:
KUM(X) = { Z@®H> (X, Z)® H! (X,7Z) if nis even;

H.(X,7)® H} (X, 7) if n is odd. (2.8.1)
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Algebraic Proof. Consider the Brown—Gersten spectral sequence:
EY ™ = HY(X, KJ(Z/m)) = K_,_y(X; Z/m). (2.9

We first show that the spectral sequence degenerates at E». Since the only possible
nonzero differential is from H'(X, Z/m) to H(X, 7Z/m), it suffices to show that
the edge map n,: HY(X, Z/m) — K,(X; Z/m) is injective for all n > 0. This is trivial
when H*(X,7Z/m) =0, i.e., when X is not projective.

Suppose now that X is projective, so that H*(X, Z/m) = 7Z/m. Choose a point
i:Spec(C) - X and let p denote the structure map X — Spec(C). Then the
composite

Ko(C: Zjm) —> Ko(X: Z/m) 2> K, (C: Z/m)

is the identity. By Quillen’s construction of the spectral sequence (2.9), i, is one
component of Elz‘"+2 = | [, Ku(k(x); Z/m). Hence the injection i, factors through
both the edge map Ef‘”” — K,(X;Z/m) and its quotient #,. By counting, the
map i: K,(C; Z/m) — HYX,7Z/m) = 7/m is an isomorphism. It follows that
the edge map #,, is an injection, as claimed.

It remains to resolve the extension problems. There is no problem for even #, since
K,(X; 7Z,/m) contains both the Bott summand Z /m and the summand i,(Z/m). When
n = 1is odd, K,(X; 7Z/m) is isomorphic to K;(X; 7Z/m) by Theorem 2.2 (by repeated
multiplication by f). Thus it suffices to show that the extension splits for
Ki(X; 7Z/m). Now Pic(X) is a summand of Ky(X), and H°(X,K;) is a summand
of Ki(X), so there is a natural splitting map from H'(X, Z/m) into K\(X; 7Z/m),
as claimed. O

COROLLARY 2.10. K,(X; Q/Z) — H(X, K,.(Q/7)) is a split surjection.

Proof. Passing to the limit in (2.9) as m — oo yields the Brown—Gersten spectral
sequence with coefficients (Q/7Z. The proof of Theorem 2.8 shows that it degenerates
at E,, and that the extensions split. O

Let K'/(X) denote the relative term in the natural sequence
K (X) S KUTN(X) > K(X) - Ky(X) S KU™(X). ... (2.11.0)
PROPOSITION 2.11. Let X be a smooth surface over C. Then for all n = 0, the

groups K'!(X) are uniquely divisible, while K" (X) is torsion-free.
Proof. The usual homological yoga yields a sequence with coefficients Z/m:

B KUV X Z/m) — KX 2 m) — KX Z/m) = KUT(X: Z/m).

By Theorem 2.2, the group K'/(X; 7 /m) vanishes for n > 0. This implies the result,

since K'“/(X)/m is a subgroup, and the m-torsion in K’ (X) is a quotient. O
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COROLLARY 2.12. Let X be a smooth surface over C. Then each group K,(X) is the
sum of a divisible group and a finitely generated group. The finitely generated
subgroup injects into KU(X) and has the same torsion subgroup.

Proof. Everything follows from Proposition 2.11 because KU "(X) is a finitely
generated Abelian group. ]

3. K-Theory of Curves

At this point, we pause to collect the information about the K-theory of a curve Y of
finite type over C. The first step is to describe the K-theory of its function field E.
Recall from Example 1.1(a) that the group K;(F) = E* is never divisible, being
the product of C* and an uncountable free Abelian group.

PROPOSITION 3.1. Let E = C(Y) be the function field of a curve over C. Then K,(E)
is a divisible group for every n =2, and is the direct sum of the groups CH'(E, n),
2 < i< n Moreover, the torsion subgroup of K,(E) is:

1 is odd;
2 is even.

Q/Z if n

Kn(E)tors = HI(E, Q/Z(i+ 1) lf n

AR\

Remark. The groups H'(E, Q/7Z(i + 1)) are all isomorphic to E* ® (Q/Z, which as
we have seen is an uncountable direct sum of copies of (Q/Z. The isomorphism
K>(E),pys = E* ® Q/7Z is due to Suslin [Su2, 3.7], while divisibility of K3(E) follows
from this and [MS1, 8.4].

Proof. By Lemma 1.4 and Propositions 1.6 and 1.8, CH'(E, n) is divisible for
n=2i—1 and n = 2i — 2 and is uniquely divisible otherwise.

Arguing as in Proposition 1.3, each differential in the Bloch—Lichtenbaum spectral
sequence (1.2) vanishes, because it has either a divisible source or a torsion-free
image. Hence, each K, (E) is the direct sum of the divisible groups CH'(E, n).

This yields K,(E),,.s = Kyt1(E; Q/7), a group described in Proposition 2.1. [

THEOREM 3.2. Let Y be a smooth irreducible curve over C. Then K,(Y) is divisible
for n =2, and its torsion subgroup is given by:

HY(Y,Q/7Z), if nis even,
Ki(Y)iors =3 Q/Z, if misodd and Y is affine,
Q/7Z®QJ7 if nisodd and Y is projective.

Remarks 3.2.1 (1) When Y is a projective curve of genus g and n = 2i > 2, this

yields Ky(Y),,,, = Pic(Y),,,, = (Q/Z)*. However, if Y = Spec(4) is affine then
K»i(A),,,s 1s the direct sum of Pic(Y),,,, and 4* ® Q/Z.
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(2) Let SK;(Y) denote the kernel of K;(Y) — K (E) = E*. Then:
Ki(Y) = SK|(Y)® H(X, O%).

The proof also shows that SK;(Y) is divisible, and that its torsion subgroup
SKi(Y),, i8: zero for affine curves, and (Q/Z for a projective curve. These obser-
vations were first made by Gersten [Ger, p. 38].
(3) The fact that H'(Y, Q/7Z) is the torsion in K»(Y) is due to Suslin [Su2, 5.2],
given the calculation implicit in [MS1, 11,11,1] that H'(Y, K3) is uniquely divisible.
Proof. The K-theory localization sequence for Y is

Kuii(E) > [ [ Ku(C) = K(Y) = Ku(E) > | [ Kmi(©)

where E is the function field of Y and the coproduct is over all closed points of Y.
When n > 2, the outer four terms are divisible (by Proposition 3.1). If n is odd,
the lack of torsion in K,,_;(C) forces the middle term K,(Y) to be divisible.

Fix an even number n > 2 and a positive integer m. Since K, {(Y) is divisible, we
have K,(Y),, = K,1(Y; Z/m) = H'(Y, 7/m) by Proposition 2.3. Hence, the locali-
zation sequence for K-theory with coefficients 7Z/m becomes

0— K,(Y), — HY(E, Z/m) — L[Z/m — K,_\(Y; ZJm) — Z/m

The final arrow in this sequence is a split surjection, arising from the Bott summand
Q/7 in K,_1(C) C K,,_1(Y) by Proposition 1.6.

Comparing with the localization sequence for étale cohomology, we see that
K,(Y),,,s is isomorphic to H'(Y, 7Z/m), and that K,(Y; Z/m) is the sum of Z/m
and H*(Y,7/m). If Y is affine, the latter group is zero and K,(Y; Z/m) equals
the Bott summand Z/m of K,_;(Y),,. This implies that K,(Y)/m =0, i.e., K,(Y)
is m-divisible.

If Y is projective, choose a point i: Spec(C) — Y and let p denote the structure
map Y — Spec(C). Then the composite

K, 1(C) =5 K, (Y) 25 K, 1(C)

is the identity, while p, vanishes on the Bott summand. This provides a subgroup of
K, 1(Y) isomorphic to Q/Z @& Q/Z. Therefore K,(Y;Z/m)=7Z/m® Z/m is
isomorphic to K,_i(Y),,, and again this implies that K,(Y)/m =0, ie., K,(Y) is
m-divisible. O

COROLLARY 3.3. Let Y be a smooth curve over C. If n > 0 is even, the sheaf K, is

uniquely divisible. If n > 0 is odd, the sheaf IC,, is divisible, the direct sum of the con-
stant sheaf Q/7 and a uniquely divisible sheaf.
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4. Chern Classes

In this section we will use Chern classes to show that the K-theory of C(X) is divisible
when X is a surface. First, we need to introduce some notation.

Let X be a smooth variety over C, and let F = C(X) denote the field of rational
functions of X. For each analytic sheaf A on X, such as A =7 or C*, we write
HJ_(F, A) for the direct limit lim // (U, A), taken over all U open in X. For
example, if A is Z/m or Q/7Z then Hét(F, A) = HI (F, A) for all j.

LEMMA 4.0. Identifying Q/7Z with the torsion subgroup of C*,
H(X,Q/2) = Hjy(X, C")yyrg - and  H(F, Q/Z) = H(F, C7),,,

for all j. Moreover, for each m there is a (noncanonically) split exact sequence
0 — A;/mA; — H/(X,Z/m) — H! (X, C),, — 0,

where A; = A(X) is the finite group H. (X, 7),ys-

Proof. The finitely generated group H/ (X, 7) is isomorphic to 4; & 7Y, where b;
is the jth Betti number of X. Hence the exponential sequence Z — C — C* of con-
stant sheaves on X yields a (split) exact sequence of groups

0— (C/Z2)" - H] (X, C*) = Aj;; — 0.

Tensoring with Z/m yields H/] (X, C*)/m = A;y1/m. From the Kummer sequence
0— 7Z/m— C* 5 C* - 0 we get an extension

0— H-Y(X,C*/m— H(X,7/m)— H _(X,C),, — 0. (4.0.1)

an

The first map factors as the split inclusion of 4;/m in H! (X, Z)/m followed by
H! (X,7)/m — H/(X,7/m), which is a split inclusion by the Kiinneth formula.
This yields the split exact sequence. The direct limit over m yields
H/(X,Q/7Z) = H] (X,CX),,, because 4;® Q/Z =0. Also, replacing X by open
subsets U and taking the limit over U yields H/(F, Q/Z) = HJ (F, C*),,.s- O

We will need the Deligne—Beilinson cohomology groups H3, referring the reader
to [EV] for details of their construction. We shall also need the Chern class maps
ci Ky(X) — HZ (X, Z3i), i>1,
constructed in [Gil, Gi2]. In the particular case when n = 2i — 3, these maps go from
Kai_3(X) to H3(X, 7(i)).
LEMMA 4.1. Let F = C(X) be the field of rational functions of a smooth variety X
over C. Then for all m:

(1) HI,(F,C)is divisible for j < 2,
(2) H/(F,7Z/m)= H] (F,C"),, for j <3
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3) Hg(x, Z(i)),, = HI-N (X, CX),, for all i > j;
@) Hp(F, 7)), = HIJW(F, C"),, forall i > j;
(5) The Chern class c; induces maps between m-torsion subgroups:

Kai3(F),, — Hp(F, 2(i)),, = HA(F, C),, = H*(F, Z/m), i>3.

Proof. Clearly H? (F,C*(i)) = C* is divisible. Next we use the result of
Barbieri-Viale [BV1, 3.2 and 4.3] that H> (F,7) and H_ (F,7) are torsion-free,
and thus inject into H2 (F, C) and H. (F, C). From the exponential sequence, it
follows that H]! (F, C*) is a quotient of H! (F, C), and H2 (F, C*) is a quotient
of H? (F, C). Hence they are divisible, proving part (1).

Part (2) follows from (1) using the Kummer sequence (4.0.1).

Next we suppose i > j, so that F'H/-1(U, C) = 0. For each open U C X there is an
exact sequence (see [EV, 2.10c]):

0 — H-Y(U, C*(i)) » H),(U, Z(i)) - F'Hl_(U, C).

Since F'H/(U, C) is torsion-free, this yields part (3). Part (4) follows from (3) by
taking the limit over U. Part (5) follows from (2) and (4). O

Remark. Suppose that X is a surface. Then H/ (F, C*) =0 for all j > 3. In this
case, some parts of Lemma 4.1 are trivial. 4
We will only need the Chern classes which land in i, j < 4.

COROLLARY 4.2. Let X be a smooth surface over C. Then

H*(X,Q/7) = H2 (X, C)prs = Hy(X, (G + 1)) 10psr 1225

tors —

H (X, Q/7) = H (X, C),pps = Ho(X, Z(i +2))10psr 12 1.

If X is proper then the first line also holds for i = 1.

Proof. By Lemma 4.0, H/(X, Q/7Z) = H] (X, C¥),,,, for all j. We are done for
i = 2, as the other isomorphisms are Lemma 4.1(3). So suppose that i = 1. For
X proper, both cases are proven in [BPW, 4.7(iii)]). For the remaining case, it suffices
to prove that H3(X, C*) = H%(X, 7,(3)). Because dim(X) < 3, this follows from the
exact sequence

FPH3(X,C) - H3 (X, C*) - H)(X,Z(3) — F*H*X, C),
because FPH"(X, C) =0 for all n by [D, 8.2.4]. O
DEFINITIONS 4.3. Let { be a primitive mth root of 1 in C and let f € K>(C; Z/m)
be the Bott element corresponding to {. Let y =1, € K5,_1(C),, be the generator
of K5;_1(C) coming from the power ' of the Bott element in K;(C; Z/m).

By abuse of notation, we shall write {(i) for the image of the root of unity { under
the injection of p,,(C) 2= H(C, u®) into HL(C, Z(i)) = C*(i).
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LEMMA 4.4. The Chern class ¢;: CH'(C, 2i — 1),, — HL(C, 7(i)),, = 7/m satisfies:
ci(y) = (=D = D).
Proof. From [BPW, p.163], we know that the following diagram commutes
K(C; Z[m) ——  Kpi-1(C)

HY(C,u) —— HLC,Z3)

m

and the étale Chern class satisfies the product formula: ¢;(f) = (—1)"1( — 1)! (%
(See [W2, 3.3].) Since the bottom map sends {®' to {(j), we are done. O

So the map ¢; induces a nontrivial map on m-torsion subgroups when m > 0.

LEMMA 4.5. Let F be the function field of a variety over C. Then the Chern class
¢y: CHX(F,2)/m = Ky(F)/m — H3(F, 7(2))/m

is an isomorphism.
Proof. By [BV2, 2.2(iii)], there is an isomorphism between Zariski sheaves on X

HA(Z(2)) @ Z/m = HX(Z[m),

where H%(Z(Z)) and Hgt(Z/m) are the sheaves associated to the Deligne—Beilinson
and étale comology groups, respectively. The isomorphism of stalks at the generic
point is

Hy(F, 72(2))/m — HZ(F, Z/m(2)).

Now the Merkurjev—Suslin isomorphism K>(F)/m = H2(F, 7Z/m(2)) is given by the
étale Chern class, which factors through the Deligne—Beilinson Chern class ¢,. Since
CH?*(F,2)/m = K»(F)/m, the claim immediately follows. O

We can describe the Chern classes on K;(F; Z/m) for j > 2 using the product
formula. Recall from Theorem 2.2 that multiplication by £’ induces isomorphisms
Ki(F; Z/m) — Kj2i(F; Z/m) for all j > 1. Composing multiplication by B with
the boundary 9 in the universal exact sequence for K-Theory with coefficients
amounts to multiplication by y € K5 _1(C); this is a map from K;(F)/m to
Kjt2i-1(F),,. Composing this with the Deligne-Beilinson Chern class c;», we obtain
maps

Ki(F)/m —L Kyur(F Zfm) —— Ky(F),, —= HA(F. (i + 1)),,.
up’ il Cita .
Ky(F)/m —— Kyiyo(F; Z/m) —— Kai11(F),, ——> H(F, Z(i + 2)),,-

Composing with the isomorphisms H’b+l(F, 7(i)),, = Hét(F, Z/m(j)) = K;(F)/m of
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Lemma 4.1 yields maps which depend upon i, j, m, and upon the choice of {:
o;(m): K}(F)/m — K;(F)/m, j=12. (4.5.1)

LEMMA 4.6. For all i, m and j = 1, 2 the map o;;(m): Ki(F)/m — K;(F)/m is multi-
plication by (—1)'i! and (—1)'(i + 1)), respectively.

Proof. For j =1, 2 we fix elements a € K;(F). The Bockstein 9 applied to a U B is
aUy. The product formula for the Chern class ¢, yields:

Ge(aU7) =~ @ V) = (- 1ita@ U L) @6
for a € K(F)/m, and
GialaU7) = @ U ) = (-1 + Dles(a) VL0 462)

for a € K3(F). Now the isomorphisms

Ki(F)/m = HY(F, 7/m(1)) 2 H}(F, 7/m(i + 1)) = Hp(F, Z(i + 1)),
send a to ¢j(a) U {(i). Similarly, the isomorphisms

Ky(F)/m = HY(F, 7./m(2)) = H3(F, 7/m(i + 2)) = Hyp(F, Z(i + 2)),,

send a to ¢y(a) U {(i). The result follows. O

Recall that if 4 is any Abelian group, its Tate module T(A) is the inverse limit of
the system of groups 4,,.

T(A) =lim{A4,, < Apy < -}

It is well known that the Tate module of any Abelian group is torsion-free (see
[CT-R, 1.3]).

If A4 is any Abelian group, we write A for its profinite completion lim 4/mA. We
shall also write K, (F; Z) for the inverse limit of the groups K,(F; Z/m).

LEMMA 4.7. Let F be the function field of a surface X. Then the inverse limit
K, (F, Z) is a torsion-free group for all n.

Proof. Suslin’s Proposition 2.1 shows that K;(F; Z) is the sum of Z = LiEZ/m
and l(iEH 2(F,7/m). By Lemma 4.1, the latter group is the inverse limit of the groups
H2 (F, C),, so it is the Tate module of H2 (F, C*). As such it is torsion-free.

Similarly, we see from Proposition 2.1 and Lemma 4.1(2) that there is a natural
isomorphism between Ky;_|(F; Z/m) and H! (F,C*),,. Hence Ky_(F; 2) is the
Tate module of H] (F, C*), and as such is torsion-free. O

THEOREM 4.8. Let F = C(X) be the field of rational functions of a complex surface.
Then for every n = 2 there are isomorphisms:
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~ | HAXF,Q/2)0Q/Z if n=2i-1;
(a) Kn(F)[(II'X - {HI(F, Q/Z) lf 0= i

(b) K, (F) is divisible for every n = 3.

The group Q/7 in part a) is the Bott summand. The summand H*(F, Q/7) equals the
Brauer group Br(F) of F, and H\(F, Q/7) = F* ® Q/7Z.

Remark 4.8.1. Our proof makes the maps explicit. The cup product with
y; € K»i—1(C) induces the isomorphism from K;(F)/m = F*/F*™ to Ky(F),,, and
the injection from K>(F)/m into Ki1(F),, complementary to the Bott summand.
The isomorphism Ky(F),, = H'(F,7Z/m) has been proven in [Su, 3.7]. The first

new case is the isomorphism, K3(F),, = Z/m @ H*(F, Z/m), where multiplication
by the primitive mth root of unity { € F* induces the injection

H(F, Z/m) = Ky(F)/m=> K(F),,

This summand H*(F, Z/m) is the torsion in the subgroup K(F), while the comp-
lementary summand Z/m of K3(F),, corresponds to the torsion in Kj3(F yind —

K3(F)/ KM (F); see [MS1].

Proof. Consider the short exact sequence of towers of groups
0 — {Ku(F)/m} — {Ku(F; Z/m)} — {Ky—1(F),,} — 0.

Since the maps in the left-hand tower are all surjections, its Liﬂl vanishes, and we
have a short exact sequence after taking the inverse limit:

0 — Ky(F)"— Ku(F; Z) — T(K,_1(F)) — 0.

Now the Deligne—Beilinson Chern class ¢;: Ky—j(F) — HjD(F , 7Z(i)) induce a map
on completion. By Lemma 4.6, the composition

lim o2 Ki(F) ™ Kaisj(F; Z) = T(Kayj1(F)) —> Kj(F)™

is multiplication by a constant, so it is an injection. When j = 1, Theorem 2.2 implies
that K(F) 2 K1 (F; Z). Hence, the subgroup Kj;;1(F)~ must be zero, because it
vanishes in the intermediate group 7T(K»;(F)). When j =2, we need an addi-
tional argument. Since K>(F)/m is the kernel of K»(F;Z/m)— Ki(F;7/m),
Theorem 2.2 implies that for each m the image of K»(F)/m in Ky(F; 7, /m) is the
kernel of Kyi(F; 7Z./m) — K»(F; 7./m), where F is the algebraic closure of F. As such,
it contains the subgroup Ky;,(F)/m. Passing to the limit, we see that the image of
Ky (F)™ in Ky (F,; Z) contains the subgroup Ky(F)~. This latter group vanishes
in T(K3;_1(F)), so it is in the kernel of Liﬂaij' As before, this forces Ky(F)™ = 0.

Since each group K,(F)/m is a quotient of K,(F)~, and the latter is zero, each
K, (F)/m vanishes. But then each K,(F) is divisible, as required. O
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5. The K-Cohomology of X

In this section we make some preliminary comments about the divisibility of the
K-cohomology groups H?(X, KC;) of the sheaves KC;. In the next section, we will
use this information to describe the structure of the K-theory of X using the
Brown-Gersten spectral sequence:

Ey™ = HP(X,Ky) = K_p_y(X) (5.1
PROPOSITION 5.2. Let X be a smooth surface over C. Then

Q/Z ®H*(QJZ) if n=3isodd,;

=
K)tors =
Kdrors H(Q/7Z) if n=2is even.

For all n = 3 the sheaf I, is divisible, and there are short exact sequence of sheaves:
0 — Kpst(Z/m) — Kp = Ky — 0 forall n > 3. (5.2.1)

Remark 5.2.2. This fails of course for n = 0,1 because we have Ky = 7Z, the
sheaves K| and /C, are not divisible by Example 1.1, and (K,),,,, = Q/Z.

Proof. Let F denote the function field C(X) of X, and let &: Spec(F) — X denote
the inclusion of the generic point. From the universal exactness of the Gersten—
Quillen resolution for the sheaf K, we get a resolution of the sheaf IC,/m which
begins:

00— K,/m— EK(F)/m— ---.

For n = 3 we have K,(F)/m = 0 by Theorem 4.8; it follows that /C,/m = 0 and thus
the sheaf K, is divisible. The sequence (5.2.1) is immediate, and (using
Remark 5.2.2) so is the sequence

0 — KC3(Z/m) — Kr —> Koa—>HA(Z/m) — 0. (5.2.3)
Hence (KC,),, is isomorphic to C,,1(Z/m) for all n = 2. The description of (), 1S

just a recasting of Lemma 2.6. OJ

COROLLARY 5.3. Let X be a smooth irreducible surface over C. For all n = 2 we
have isomorphisms

Q/7Z @ Br(X) if nis odd;

0 ~
HY (X, K)oy =2 {HI(X, Q/7Z) if nis even.

Proof. Apply H° to (5.2.1-3) to get H'(X, K,.),,s = HY(X, K,,41(Q/7)). Now use
Corollary 2.7, recalling that Br(X) is a torsion group. O

COROLLARY 5.4. Let X be a smooth surface over C. Then for all n = 3:
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(1) The groups H*(X, K,,) are divisible, and
(2) We have short exact sequences, natural in X :

0— H'X,K,)/m — H'(X, K,11(Z/m)) - H'(X,K,),, — 0
0 — H'(X,K,)/m - H X, Kup1(Z/m)) - H* (X, K,),, — 0.

Proof. This is just a rewriting of the cohomology sequence of (5.2.1). OJ

Remark 5.4.1 (n = 2). These sequences should be contrasted with the sequences of
[Su2, 4.4] for K, on a surface X:

0 — H'X,Ky)/m — HXX,Z/m) - H(X,K),, — 0
0 — H'\(X,Ky)/m — HX,Z/m) - H*X,K,),, — 0.

In effect, passage from K, to K4 replaces H*(X, Z/m) by the subgroup Pic(X)/m, and
H3(X,7Z/m) by 0, as we see using Corollary 2.7 to describe H?(X, KC3(Z/m)). The
reader is invited to explain this passage using the sequences (5.2.1) and (5.2.3).

If X is projective, the group H?(X, K») is not divisible either; it is isomorphic to the
Chow group CH?(X) (Bloch’s formula), which is the direct sum of Z and the divisible
group Ao(X).

THEOREM 5.5. Let X be a smooth irreducible surface over C. Then for all n = 3:

(1) The groups H'(X, K,)) and H*(X, K,,) are divisible.

(2) If X is not projective then the group H*(X, K,) is uniquely divisible.

(3) If X is projective and n > 4 is even, H*(X, K,)) is uniquely divisible.

4) If X is projective and n = 3 is odd, the edge map in the Brown—Gersten spectral
sequence (5.1) induces an injection H*(X, KC,),pys < Kn_2(X), and:

Q/7 if n=3isodd;
2 o~ ~
HA X Kdiors = Kna(Chors 2 1 if n>4is even.
Remark 5.5.1 (n =2). The group H'(X, K») is not divisible in general. If X is
projective, then we know by [CT-R, 2.2] that H'(X, K,) is the direct sum of a
divisible group and the finite group H3(X, Z),,,,-

Proof. If X is not projective, or n is even, then H*(X, K, 1(Z/m)) =0 by
Corollary 2.7. In these cases everything follows from Corollary 5.4.

Now suppose that n > 3 is odd and X is projective. Let p: X — Spec(C) be the
structure map, and choose a closed point i:Spec(C) — X. As in the proof of
Theorem 2.8, the map i,: K, _»(C) — K,,_»(X) is an injection split by p,., and it factors
through H*(X, KC,) because dim(X) = 2 (via the Gersten resolution).

Since the map K.(X;Z/m) — K, 1(X) induces a map between the respective
Brown-Gersten—Quillen spectral sequences (2.9) and (5.1), their edge maps fit into
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a commutative diagram:

Ko (C: ZJm)  —> HXX, Kont(ZJm) <55 Ko (X:Zm) 2> Koo(C: Z/m)

o) o | o)

KO s k) S ke S Ko,
The outside vertical maps are injections by Corollary 1.5, and the horizontal com-
posites are the identity. We saw in the proof of Theorem 2.8 that the upper left
map i, is an isomorphism. Hence the second vertical map o, which comes from
(5.2.1), is an injection. By Corollary 5.4, H'(X, KC,)/m is the kernel of o, so it is
zero for all m, i.e., H'(X,K,) is divisible. Since the m-torsion in H*(X, K,) is
the image of «, again by 5.4, H*(X, K,),, = 7Z/m. The result now follows. ]

LEMMA 5.6. Let X be a smooth surface. For evenn = 4, H (X, K,) ® Q/7Z = 0, and
the map (induced by the K-theory product K1 ® K,_1(C) — K,)

Pic(X) ® Kuo1(C)yry = H'(X, K1) ® Kumt(C) = H'(X, K)

induces an isomorphism of Pic(X) ® Q/Z with H'(X, KCu) 0

Remark 5.6.1 (n=2). If X is proper over C then H°(X,K,)® Q/Z =0 as
well, and the product induces an injection of Pic(X)® Q/Z = (Q/7Z)" into
H'(X, K2),pys- This was proven in [CT-R, 2.7]. We will see in Example 6.5.1 below
that H'(X, K»),,,, = B® (Q/72)™.

Proof. Set n=2i, i > 2. We will use the Deligne-Beilinson Chern class
civ1: Kn(X) > HH(X, Z(i + 1)).

For each m, choose an mth root of unity (,,, so Ulﬁi: H (u,,) = H' (u®™1). Composing
with ¢§": Pic(X)/m = H' (X, H'(1,,)) yields the isomorphism ¢} in the following diag-
ram, which commutes by [BPW, p. 163] and Corollary 2.7.

Pic(X)/m —— H'(X,Kpi(Z/m) —— HY(X. Ky,
cffjrl Citl

o~

Pic(X)/m  —— H' (X, H' (W8 —— H'(X, HH(Zi+ 1),

intol intol

0> Ao/m —— HXX,Z/m(i+1) —  HYX,Zi+1)),— 0.
The bottom row is the exact sequence of Lemma 4.0, using Corollary 4.2. The map y
is induced by the inclusion Hl(u;%”’l) C H%(Z(i + 1)) of 4.1. The top composite is the
map of the lemma, and the isomorphism Pic(X)/m = H'(X, K,41(7Z/m)) comes
from Theorem 2.2 and Corollary 2.7. The inclusions of H'(X,H!'(u®*!)) in
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H*(X,7Z/m(i+ 1)) and H'(X, H2) in H3(X) follow from the Bloch-Ogus spectral
sequences.

Let y,,(i) be the element in K5;_1(C),,,, corresponding to {,,, as in Definition 4.3.
The product of y,,(i) with 4 € Pic(X) is an element {4, 7,,(i)} in H'(X, K,),,. As
in (4.6.1), the product formula yields:

Cirt ({2, 7a@}) = (=111 1) U L) = (1) - - (e} (4)

in H3(X, Z(i)), where ¢1(4) € H'(X, H},(1)) and {,,(i) € H (X, HL(i)).

A diagram chase shows that the kernel of the top map Pic(X)/m — H'(X, K,) has
exponent N = (—1)'|4| - i!, independent of m. But this kernel is H'(X, K,)/m by
Corollary 5.4. Passing to the limit over m, we see that H'(X, K,) ® Q/Z has
exponent N, and is divisible, so it is zero. By Corollary 5.4 again, this implies that
Pic(X) ® Q/Z = H'(X, K,,),,ys> via the indicated map. O

LEMMA 5.7. Let X be a smooth surface. For odd n >3, HY(X,K,) ® Q/Z =0
Proof. Set n=2i+1and N = (=1)"- (i+ 1)!. Applying H' to the Chern classes
¢iyr from K-Theory to singular and Deligne—Beilinson cohomology yields maps

H'\(X, Ky (Zfm) — H'(X, H(Z/m)) = H (X, Z[m),
H' (X, K,) — H'(X, Hp(Z(i +2)) = HH(X, Z(i + 2)).

We claim that these fit into a commutative diagram for i > 2:

H\(X, Ky(Zjm) —— H'(X.Kpt(Zjm)) ——  H\(X.K)
up’

Elcz Ci+2J' Ci+2l

H3X,Z/m) —~s  HX,Z/m) M HAX, Z(i+2)),,.
(5.7.1)

The right square commutes by [BPW, p. 168], and the lower right horizontal arrow is
a surjection with kernel A3 /m by Lemmas 4.0 and 4.2. The two isomorphisms in the
upper left are isomorphisms by Theorem 2.2 and Remark 2.6.1. We must show that
the left square in (5.7.1) commutes.

Let { be the primitive mth root of 1 in C corresponding to the Bott element
p e Ky(C; Z/m). As in (4.6.2), the product formula for ¢;;, yields the following
equalities for all x € H'(X, Ky(Z/m)):

. —(i | .
iU ) = () ) = N - ) U L)
Since U{(i) is the natural identification of H3(X, Z/m(2)) with H3(X, Z/m(i + 2)),
this establishes the commutativity of (5.7.1), as claimed.

From (5.7.1) we see that the kernel of 8: H'(X, K, 1(Z/m)) — H (X, K,),,

has exponent N” =|A43|-N for all m. By Corollary 5.4, we have ker(d) =
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H(X, K,)/m. Letting m go to infinity, we see that the group H°(X, K,) ® Q/Z has
exponent N”. Since this group is divisible, it must be zero. O

6. The K-Groups of a Surface

In this section we shall describe the Abelian group structure of K,(X). For this it will
be convenient to introduce some notation.

NOTATION 6.1. Suppose that X is a complex variety. It is known that each
cohomology group H, (X, 7Z) is a finitely generated Abelian group of rank b,, where
b, = dim H (X, Q) is the nth Betti number of X. We set

A = HZn(X’ Z’)tars7 B = I-Ia?n()(7 Z)tw‘s'

When X is a surface, the groups H} (X, Z) are torsion free for n # 2, 3. Therefore
the cohomology of a surface X with coefficients Z/m is:

Hl(Xv Z/m) g (Z/m)bl @ Ama

HA(X, Z/m) = (Z/m)" & (A/m) © By, (6.1.1)

HY (X, Z/m) = (Z/m)" & (B/m).
We will want to compare these groups with étale cohomology, so we consider the
change-of-topology morphism n: X,;,, - X,;,. Applying R=m, to the natural map
O)X(w,[_l] — 7 in the (analytic) exponential sequence yields a morphism
n: Gyu[—1] — Rm,7Z in the derived category of étale sheaves on X. We define the

groups V" to be the étale hypercohomology of the cone of 5, so that there is a long
exact sequence, part of which is:

H'\(X, Gy) = H' (X, 7) —> V' > H'(X, Gp) > HH(X, Z) — -
(6.1.2)
LEMMA 6.1.3. Each V" is a uniquely divisible group, i.e., a (Q-vector space.
Proof. For each m, consider the Kummer sequence p,,, - G, = Gy,. Combining

with the sequence of analytic sheaves 7 57— 7Z/m, a result of Verdier [WH,
Ex. 10.2.6] implies that there is a commutative diagram in the derived category

Gnl-1] —— Rn,Z —> cone(n)

[ | |

Gum[—1] s RnZ —s cone(7)

l l

U, N Z/m ——> 0

in which every row and column fit into a triangle. Since the right column fits into a
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triangle, multiplication by m is an isomorphism on the cone and, hence, on its
hypercohomology groups, the V. O

Remark 6.1.4. In low degrees we can compare (6.1.2) to the exponential sequence
to see that ¥° =~ C for connected X, and that V! = R" for smooth projective
X. In contrast, if X is smooth then the image of H} (X,7Z)— V" is a lattice for
all n =2, with V" = Q[’” for all n > 3. This claim follows from the fact that
H"(X,G,,) is a torsion group for n > 2 [Dix, p.71]. It may be seen by tensoring
(6.1.2) with Q. We are grateful to the referee for pointing this out.

PROPOSITION 6.2. If X is a variety over C, then there are integers p, < b, and
uniquely divisible groups W" such that

H(X, G) 22 2010 @ H (X D) 00, ® (Q/ ) @0 W,
If X is smooth then p, =0 for all n >3, so in particular

H'(X,G,) = H* (X, 7),0rs ® (Q/2), n=3.

Proof. The image of H! (X, Z) — V" is isomorphic to Z" for some r, < b,; we set
p, =b, —r,. Hence, (6.1.2) breaks up into exact sequences 0 — V"/Z"™ —
H!\(X, Gy,) L 7rm g H'"Y(X, Z),prs — 0. The result follows, since V"/Z"™ may
be written as (Q/Z) @ W". If X is smooth then p, =0 for all n >3 by
Remark 6.1.4. [

Let us write U(X) = HY(X, G,,) = O¥(X) for the group of global units of X. It is
classical that U(X) is the product of C* and a free Abelian group Z°, s > 0.

COROLLARY 6.2.1. Let X be a smooth variety over C. Then there is a divisible
group Pic®(X) and integers s < by, p < by so that UX) =~ C* x 7°, PicO(X)tm =
Q/2)",

Pic(X) = 4 & Z° & Pic’(X);
Br(X) = B® (Q/2)"".

Proof. Indeed, because Pic(X) = H) (X, G,,) and Br(X) = HX(X, G,)),,,, these
are just the cases n < 2, with s = p,, p = p, and Pic’(X) = V!/Z". O

EXAMPLE 6.2.2. Suppose that X is a smooth projective surface. Then b; = b3, and
the finite groups 4 and B are abstractly isomorphic, being Poincaré dual to each
other. Using the exponential sequence, U(X)= C* and the identification
Pic(X) = H! (X, 0%), it is easy to see that V= C and V' H! (X, Oy), and
we recover the usual observations that Pic(X) = Pic’(X)® NS(X), where
Pic’(X) = H! (X, Ox)/H} (X, 7) and the Néron-Severi group NS(X) is the image

n
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of the map n: Pic(X) — HZ (X, 7). In this case, it is easy to see directly from the
Kummer sequence that NS(X) =2 A @ 7” for some p < b,. Using this, we can deduce
directly from the Kummer sequence that Br(X) = B (Q/Z)>~*.

Remark 6.2.3. The invariant subgroups 4 and B arise in the study of topological
vector bundles on X (C). The group of topological line bundles is isomorphic to
H>(X,2)=A® 7P and, by [Dix, p.50], the torsion subgroup B of H (X,7)
equals the ‘topological’ Brauer group, formed from topological bundles of matrix
algebras on X(C).

Next, we show that Ky(X) and K;(X) are divisible-by-finitely generated.

PROPOSITION 6.3. Let X be a smooth irreducible surface over C. Then:

(1)  Ko(X) is the sum of the divisible group Pic’(X) @ Ao(X) and the finitely generated
group 7. ® (A D 7°) @ 77,

(2) Ay(X),yr, = HAX, K2),,p, = (Q/Z)5" for some r| < bs;

(3) Ki(X)=U(X)® SKi(X), and SK1(X) = H' (X, Ky) ® H*(X, K3);

4) H*(X, K») is divisible, with torsion subgroup (Q/Z)b“;

(5) Both SK\(X) and H (X, K,) are the direct sum of a divisible group and a finitely
generated group of the form B® 7.

Proof. Part (1) is classical for surfaces, since the Chern classes split Ky(X) into the
sum of 7Z, Pic(X) and CH?*(X). Note that A4 lies in Pic(X) by Corollary 6.2.1.

It follows from Corollary 2.12 that K;(X) is the direct sum of B, a divisible group,
and a finitely generated free Abelian group. The same is true for the subgroup
SK;(X), since B vanishes in U(X). Now the Brown—Gersten spectral sequence yields
an exact sequence

0— Tr > H*X,K3) — SKi(X) > H'(X,K>) — 0,

where T, is the image of the differential H°(X, KC;) — H?(X, K3). Both part (4) and
the fact that T, is torsion-free follow from Theorem 5.5(2,4) and this sequence.
But it is also known that the group 7, has exponent 2; see [PW, 1.2(1b)]. Hence,
T, = 0. This gives the decomposition of SK;(X) and shows that H'(X, K») is also
the sum of a divisible group, B and a free Abelian group 7Z". The inequality
r1 < b3 and part (2) comes from Suslin’s sequence in Remark 5.4.1 above. O

EXAMPLE 6.3.1 (r; < b3). Let X be a smooth projective surface. Colliot-Théléne
and Raskind showed in [CT-R, 2.2] that H'(X, K;) is the direct sum of B and a
divisible group. In this case, r; = 0 and K;(X) is divisible-by-finite. We will show
that H'(X, K2),,s = B® (Q/7)* in Example 6.5.1 below. This yields a complete
description of K;(X), which we state in Example 6.7 below.

EXAMPLE 6.3.2 (r; = b3 = 1). Let X = Y x Spec(C[t, t~']), where Y is a smooth
projective curve. The group K;(Y) = C* x SK;(Y) is divisible, and described in
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Remark 3.2.1, but the fundamental theorem of K-theory implies that neither U(X)
nor SK;(X) is divisible: U(X) = C* x Z and

SKi(X) = H'(X, K>) = Z & Pic(Y) @ SK;(Y).

EXAMPLE 6.3.3 (b3 = 0). Let X = Spec(R) be a smooth affine surface. Although
the group SK;(X) is divisible, because H> (X, 7Z) =0, the group Ki(X) need not
be divisible because U(X) = RX = C* x Z°.

In order to show that the groups K,(X) are divisible-by-finite when n > 3, but only
divisible-by-finitely generated for n = 2, we first show that this is true for the groups
H(X, K,). We must proceed indirectly, since we do not even know if these groups
are quotients of K,(X).

PROPOSITION 6.4. Let X be a smooth surface over C.

(1) Forall even n>2, A is a summand of both K,(X) and H*(X, KC,).
(2) Forall odd n >3, B is a summand of both K,(X) and H'(X, K,).

Remark 6.4.1 For n < dim(X), Proposition 6.3 shows that there is a migration of
the finite groups into lower parts of the Brown—Gersten filtration. Indeed, it is clear
that the finite group A4 is not a summand of H°(X, KCo) = Z, and the finite group
B cannot be a summand of the group of units H(X, K,) = U(X).

Proof. By Corollary 2.12, the group A4 (resp. B) is a summand of K,,(X) for every
even (resp. odd) n > 0. Moreover, by Theorem 2.8 and (6.1.1), K, 1(X; Q/7Z) is
the direct sum of a divisible group and the finite group A4 (resp. B). By
Corollaries 2.10 and 5.3, the composition K, 1(X; Q/Z) — K,(X) — H(X, K,)
embeds this finite group (4 or B) as a summand of H(X, K,),,,,-

To show that this finite subgroup is a summand of H(X,K,), we tensor
0— Z/m— Z)(m?) = Z/m — 0 with H'(X,K,). If n >4 is even and m- 4 =0,
Corollaries 2.7 and 5.4 (and 6.2.1) yield a commutative diagram with exact rows
and columns:

HOX, Ky, — HOX,K)/m — HYX,K)/md) — HAX,Kp)/m—0

induced into into into
0> 4 —  Pic(X)/m —  Pic(X)/m*) —  Pic(X)/m— 0
J, lonto lomo lomo
0 -~ H\(X.Kp), - HX.K), — HWX.K), .

By Corollary 5.3, there is a (noncanonically split) surjection m: H'(X, KC,),, — 4;
from the definition of the top left map it follows that 9 is = followed by an injection.
By Corollary 6.2.1, the map 4 — Pic(X)/m is naturally split. It follows that 4 is a
canonical summand of H°(X, K,)/m and, by a diagram chase, a (noncanonical)
summand of HO(X, KC,).
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If n = 2 then we replace the middle row of this diagram by the sequence
0> A— HXX,7Z/m) - HXX,Z/m*) - H* (X, Z/m),

which comes from naturality of (6.1.1) in m. By Remark 5.4.1, the columns are still
exact, and the same argument works.

The proof for odd n > 3 is identical, except that (using Corollaries 2.7 and 5.4) the
middle row gets replaced by

0> B— HX,Z/m)— HX,Z/m*) — H X, 7Z/m)— 0. ]

EXERCISE 6.4.2. A different proof is possible for n = 2. First use Theorem 5.5 and
the proof of Proposition 6.3 to show that H’(X, KC;) is a summand of K,(X). Then
invoke Corollaries 2.12 and 5.3.

THEOREM 6.5. Let X be a smooth irreducible surface over C.
(1) HX, K») is the direct sum of a uniquely divisible group and a group of the form
Q)" & AD L™ for some r, < by, while

HY (X, K2),prs = BO (Q/Z)7"2.

(2) Forall even n >4, H'(X, K,) is the direct sum of A and a divisible group, while
H'(X, Ky)yory 2 Pic(X) @ Q/Z = (Q/Z).

(3) Forall odd n >3, HY(X, K,) is the direct sum of B and a divisible group, while
Hl(Xa ’Cl’l tors g H3(X; Q/Z) g (Q/Z)b3'

Proof. In the proof of Proposition 6.3 we saw that the Brown—Gersten differential
H(X, Ky) = H*(X, K3) vanished, so H°(X, K,) is a quotient of K>(X). By Corollary
2.12 and (2.8.1), H%(X, K) is the sum of a divisible group and a finitely generated
group of rank r,. By Corollary 5.3 and (6.1.1), the torsion subgroup of
HY(X, K,)is (Q/Z)" @ A. Hence H'(X, K>) is the sum of a uniquely divisible group
and a group of the form (Q/7)" & A & 7. The inequality r, < b, and the descrip-
tion of H'(X, K5),,,, comes from (6.1.1) and Suslin’s sequence in Remark 5.4.1
above.

For n = 3, Corollaries 2.7 and 5.4 give short exact sequences for each m:

0 — H°(X,K,)/m — Pic(X)/m - H\(X,K,),, — 0, n >4 even;
0— H'X,K,)/m - H¥X,Z/m) - H(X,K,),, -~ 0, n>3odd.

If nis even then H(X, K,) = A @ D for some group D by Proposition 6.4, so in the
first sequence the left group is 4/m @ D/m. The right group contains (Z/m)” as
a subgroup by Lemma 5.6, and the middle group is A/m® (Z/m)’ by
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Corollary 6.2.1. It follows that H'(X, K,),, = (Z/m)", and that D/m = 0 for all m,
i.e., D is divisible.

If nis odd then H°(X,K,) =B @ D for some group D, so the left group is
B/m @& D/m. The right group contains (Z/m)” as a subgroup by Lemma 5.7,
and the middle group is B/m @ (Z/m)" by (6.1.1). It follows that H'(X, K,),, =
(Z/m)", and that D/m = 0 for all m, i.e., D is divisible. O

EXAMPLE 6.5.1. As in Remark 6.4.1, the case n = 2 is anomalous because it is B
and not A that appears in H'(X, ;). Also both H°(X, KC;) and H'(X, K;) can con-
tain a free summand. Example 6.8.1 below shows that the free summand 7" of
K>(X) and H°(X, K») can be nonzero when X is affine, and Example 6.9 shows that
the free summand 7" of H'(X, KC;) can be nonzero.

However, if X is a smooth projective surface then r, = 0, because Colliot-Théléne
and Raskind showed in [CT-R, 1.8] that H°(X, K,) is the direct sum of 4 and a
divisible group. It follows from Theorem 6.5 that there is a uniquely divisible group
V12 so that HY(X,K,) =2 B @ (Q/Z)b2 @® V1. This result recovers Theorem 2.2 of
[CT-R], where it is proven that H'(X, K,) is the direct sum of B and a divisible

group.
THEOREM 6.6. Let X be a smooth irreducible surface over C. Then there are
uniquely divisible groups V, such that:

(1) For some 1, < by,
KX)=Ae ™) & (Q/2) & (Q/2)" & Va.

(2) For every even n = 4,
K(X) =40 (Q/2)" & (Q/2) &V,

(3) For every odd n >3,
K,(X) = B&(Q/2)®(0/2) & H'(X, Q/Z) & V.

The following notation will be useful in the proof of Theorem 6.6. For each n, let
I?n(X) denote the kernel of K,(X) — K,(F), F = C(X), and let T = T, denote
the image of the differential H°(X, K,) — H*(X,K,41) in the Brown-Gersten
spectral sequence (5.1). Thus we have exact sequences:

0 — Ku(X) = K (X) - H'(X,K,) = T, — 0;

2 (6.6.1)
0 — Ty — H* (X, Kuy2) = Ki(X) — HY(X, Kyp1) — 0.

Proof. For n = 2, we see by combining Theorem 6.5 and Proposition 6.4 that the
quotient T, of H(X, IC,41) is divisible, so T, is a summand of H*(X, K1)
Theorem 5.5 and (6.6.1) imply that 7, is torsion-free, hence uniquely divisible,
and that the groups H*(X, K,42) and H'(X, K,41) are divisible. From (6.6.1) we
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see that IN('n(X ) is divisible and, again by Theorem 5.5, that I?,,(X )ors 18 €ither (Q/ 7)>
or (Q/Z)°*", according to the parity of n. The description of K,(X) follows by
piecing this together with the description of H°(X, IC,) in Corollary 5.3 and Theorem
6.5. O

EXAMPLE 6.7. Let X be a smooth projective surface over C. Then there are
uniquely divisible groups V;, so that:

odd;

Be(Q/2Y™ eV, nx>1
n =2 even.

MO de 2 e,
Indeed, the cases n =1, 2 follow from Example 6.5.1, since r, = 0, and the cases
n = 3 are part of Theorem 6.6.

We can partially understand the uniquely divisible part as follows. Using the rela-
tive sequence (2.11.0) and the calculation of KU*(X) (see (2.8.1)), we have exact
sequences:

0 — Zbhth K(X) = Ko(X) > 2@ A 7)D 7L — 0;
0 — ZZ+h2 N K,r,el(X) —- K,(X) > B— 0, n =1 odd;
0 — 7bths K,:el(X) - K,(X) = 4— 0, n > 2 even.

For Ky(X) this combines the classical description of Pic(X) in Example 6.2.2 with
Roitman’s theorem that the torsion in the Chow group CH?*(X) = Z @& Ay(X) is
(Q/Z)». For Ki(X), it shows that in addition to the two standard summands
C* and the finite summand B found by Colliot-Théléne and Raskind, there is a
torsion summand (Q/Z)", which is the divisible part of H'(X, K3),,,,. The uniquely
divisible part of Kj(X) is the sum of the three uniquely divisible parts:
C*/exp2niQ); Vi, ¢ HY(X,K;) and Vi € H*(X,K3). This latter group is
isomorphic to W @& C*/exp(2niQ), where W denotes the kernel of the transfer
map H?*(X, ;) — C*.

Remark 6.7.1 The results of this section give us the following computations for the
groups H?(X, KC,) of a smooth projective surface X over C. In the description below,
V,, denotes a uniquely divisible Abelian group, while the finite groups 4 and B are
defined in Notation 6.1.

(i) For ¢ =2 we have

HY (X, K2) = A0 (Q/2)" & Voo
H' (X, Ky) = B (Q/2)” & Via;
HX(X,K>) = CHXX) = 7 & (Q/Z)" & Va;
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(i1) For all odd n = 3,

H'(X,K,) = Q/Z&B&(Q/2)" " @ Vou;
H'(X,K,) = (Q/2)" @ Vi
HYX,Ky) = Q/Z & V.

(iii) For all even n > 4,

H' (X, K) = A0 (Q/2)" & Vou;
H'(X,K,) = (Q/7) @& Vi
H2(X7 Kn) = Von.

The torsion subgroups of all these groups can be computed by means of the following
invariants of X:

{H*(X, 2)19r5s H(X, L)1 p3 b1 b2; b3}

EXAMPLE 6.8. Let X = Spec(R) be a smooth affine surface. Since H2 (X, Z/m)=0,
we see that there are uniquely divisible groups V, such that:

Q/2)®(Q/2)” & V,, n=3odd;

K,(X) =
0 A®Q/2) & V,, n > 4 even.

The structure of K;(X) and K»(X) can be different from this pattern, as the following
two examples show.

6.8.1. Consider the affine surface X = Spec(Clx, 1/x, y, 1/y]). It is well known (see
[Sh, 4.3]) that H?(X,K,) =0 for p#0, and that the fundamental theorem of
K-theory implies that K;(X) = HY(X,K))=2Z & Z @® C* and

K (X)=H'(X,K)) =7 & C* @ C* @ K,(C).

These groups are not divisible.
We claim that for the above affine surface the obvious map

H(X, KCy)/m — HY(X, Ko(Z/m)) = HY (X, HA(Z/m))

is an isomorphism. In particular, it is not the zero map (since all groups are 7Z/m).
This contrasts with the fact that it is always the zero map when X is projective
by [CT-R, 1.7]. The claim follows from the following factorization of the obvious
map: HO(X, K»)/m — H*(X,7Z/m) — H(X, H*(Z/m)). Since H'(X,K,) =0, the
first map is an isomorphism by Suslin’s sequence (Remark 5.4.1). But since
Pic(X) = 0, the second map is also an isomorphism by the Bloch-Ogus sequence:

0 — Pic(X)/m — H*(X, Z/m) - H(X, HX(Z/m)) — 0.
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6.8.2. Let Y; and Y, be smooth projective curves of genus g; and g», and let
Y; = Y; — p; be affine curves obtained by removing one point. The affine surface
X =Y, x Y, has Betti numbers b; =2(g; +g2) and b, =4gg,. We claim that
K,(X) is divisible for all n > 1, with

Q/Z®(Q/2)™,
Q2

odd;

1
Kn(Yl X YZ)tars = 2 even

nz
nz
To see this, note that the p; induce closed immersions p; — Y,Y, > Y, x Y, and
Y, — Y7 x Y, which are split by proper maps, viz. the projections. Thus these
immersions induce split injections on the level of K-theory. The K-theory
localization sequences for these immersions induce a decomposition for all n:

Ki(Y1 x Y2) 2 K,(Y1) ® Ky(Y1 x Y2)
= Kn(k) @ Kn(Yl) @ Kn(YZ) ® K, (Y x Y2)~

From Example 6.7, K,(¥; x Y>) is divisible for n > 1, with torsion subgroup either
(Q/Z)“’Lb2 or (Q/Z)zbl. (The b; in this formula are the Betti numbers of X, not
the Betti numbers of ¥; x I_/z.) The description of K,(Y; x Y3) follows from this
using Theorem 3.2. In this case the difference between n = 2 and n = 4 is apparent
in the K-cohomology; since 0 < p < 2g;2> we see from Theorem 6.5 and Example
6.5.1 that there are uniquely divisible groups V, so that:

VI’!: n 2 1 Odd,

H' (Y, x Y, K) = L (Q/2)%® @ V,, n=2
Q/Zy @ V,, n =4 even.

EXAMPLE 6.9. Let U = X — S, where X is a smooth projective surface and S is a
finite set of s closed points. Then HJ (U,7)=H*(X,7)® 7", H* (U,7)=0
and H! (U,7)= H! (X,7Z) for i <2. Moreover, the standard resolution of I,
shows that H(X, KC,)) = H°(U, K, for all n. Referring to Theorem 6.6 and (6.6.1),
we see that K,(X),,., = (Q/Z)® K,(U),,,s for all odd n > 3, while for all even
n > 2 we have a split exact sequence

0— Kn(X)zors - Kn(U)tors — KH*I(S)rorS - Q/Z — 0.

We claim that K;(X),,,s = (Q/Z) & K;(U),,,, as well. Given the decomposition of
K (X) in Proposition 6.3, the fact that H*(X, K3),,,, = (Q/Z) ® H*(U, K3),,,, (from
Theorem 5.5) implies that we need only focus on H'(X, /C;). By [MS, 8.1.4] we
can refine the continuation of the localization sequence as the exact sequence:

0— H'(X,Ky) > H'(U,Ky) — (2) = H*(X,Ky) > HX(U,K2) = 0
Because 41— A, 1s left exact, this yields the claim. In fact,

SKl(U)tars = HI(U’ ICZ)tors = Hl (X’ Kz)tors =B® (Q/Z)bz
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To study the image of H'(X, K)in Z’, we identify H*(X, K,) with the Chow group
CH?*(X) =7 @ Ao(X) of zero-cycles on X, and observe that the image of Z° in
CH?(X) is the subgroup generated by the points in S. Picking S so that some dif-
ferences [s] —[s'] are torsion in Ay(X) yields a family of examples where
H'(U,K,) contains B@® 7" as a summand for any r; < b3. This shows that the
description of SK;(U) in Proposition 6.3 is best possible. It also illustrates the
nontriviality of Suslin’s sequence (Remark 5.4.1) for the surface U:

0 — HY(U,Ky)/m — H (U, Z/m) — H*(U,K,),, — 0.
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