
Forum of Mathematics, Sigma (2024), Vol. 12:e104 1–16
doi:10.1017/fms.2024.121

RESEARCH ARTICLE

A complete classification of shuffle groups
Binzhou Xia 1, Junyang Zhang 2, Zhishuo Zhang 3 and Wenying Zhu 4

1School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia;
E-mail: binzhoux@unimelb.edu.au.
2School of Mathematical Sciences, Chongqing Normal University, Chongqing, 401331, P. R. China;
E-mail: jyzhang@cqnu.edu.cn.
3School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia;
E-mail: zhishuoz@student.unimelb.edu.au (corresponding author).
4School of Mathematical Sciences, and Hebei Center for Applied Mathematics, Hebei Normal University, Shijiazhuang,
050024, P. R. China; E-mail: zfwenying@mail.bnu.edu.cn.

Received: 23 October 2023; Revised: 24 September 2024; Accepted: 11 October 2024

2020 Mathematical Subject Classification: Primary – 20B35

Abstract
For positive integers k and n, the shuffle group 𝐺𝑘,𝑘𝑛 is generated by the 𝑘! permutations of a deck of 𝑘𝑛 cards
performed by cutting the deck into k piles with n cards in each pile, and then perfectly interleaving these cards
following a certain permutation of the k piles. For 𝑘 = 2, the shuffle group 𝐺2,2𝑛 was determined by Diaconis,
Graham and Kantor in 1983. The Shuffle Group Conjecture states that, for general k, the shuffle group 𝐺𝑘,𝑘𝑛

contains A𝑘𝑛 whenever 𝑘 ∉ {2, 4} and n is not a power of k. In particular, the conjecture in the case 𝑘 = 3 was
posed by Medvedoff and Morrison in 1987. The only values of k for which the Shuffle Group Conjecture has
been confirmed so far are powers of 2, due to recent work of Amarra, Morgan and Praeger based on Classification
of Finite Simple Groups. In this paper, we confirm the Shuffle Group Conjecture for all cases using results on
2-transitive groups and elements of large fixed point ratio in primitive groups.

1. Introduction

For a deck of 2𝑛 cards, the usual way to perfectly shuffle the deck is to first cut the deck in half (see
Figure 1) and then perfectly interleave the two halves. There are two kinds of such shuffles according to
whether the original top card remains on top or not (see Figures 2 and 3). Note that these two shuffles
are permutations of the 2𝑛 cards. To exactly know what permutations of the cards can be achieved by
performing a sequence of these two shuffles, one needs to determine the permutation group generated
by these two shuffles. In 1983, Diaconis, Graham and Kantor [8] completely determined this group for
all n (see Theorem 1.1). Moreover, at the end of [8], they suggested a more general problem: For an
integer 𝑘 ≥ 2, if a deck of 𝑘𝑛 cards are divided into k piles with n cards in each pile, then there are
𝑘! possible orders of picking up the piles to perfectly interleave. Therefore, there are 𝑘! such ways to
perfectly shuffle the 𝑘𝑛 cards, and one may consider the group generated by these 𝑘! permutations.

Throughout this paper, for a positive integer m, we set

[𝑚] = {0, 1, . . . , 𝑚 − 1}.
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Figure 1. Cut the deck.

Figure 2. Out-shuffle.

Figure 3. In-shuffle.

For a deck of 𝑘𝑛 cards, the card in position 𝑖+ 𝑗𝑛, where 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘], refers to the (𝑖+ 𝑗𝑛)-th card
from top to bottom with the top one being the 0-th card. We may also think of them in k piles such that
the j-th pile consists of the cards in the positions 𝑗𝑛, 1 + 𝑗𝑛, . . . , 𝑛− 1 + 𝑗𝑛, where 𝑗 ∈ {0, 1, . . . , 𝑘 − 1}.
The standard shuffle of the 𝑘𝑛 cards, denoted by 𝜎, is performed by picking up the top card from each
of the piles 0, . . . , 𝑘 − 1 in order and repeating until all cards have been picked up; that is, 𝜎 is the
permutation of [𝑘𝑛] defined by

(𝑖 + 𝑗𝑛)𝜎 = 𝑖𝑘 + 𝑗 for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘] .

Let 𝜏 ∈ Sym([𝑘]) be a permutation of the k piles. Then 𝜏 induces a permutation 𝜌𝜏 of the 𝑘𝑛 cards by
keeping the order of the cards within each pile, so that

(𝑖 + 𝑗𝑛)𝜌𝜏 = 𝑖 + 𝑗 𝜏𝑛 for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘] . (1)

The card shuffle 𝜌𝜏𝜎 is to first perform 𝜌𝜏 and then 𝜎; that is,

(𝑖 + 𝑗𝑛)𝜌𝜏𝜎 = (𝑖 + 𝑗 𝜏𝑛)𝜎 = 𝑖𝑘 + 𝑗 𝜏 for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘] .

The subgroup of Sym([𝑘𝑛]) generated by 𝜌𝜏𝜎 for all 𝜏 ∈ Sym([𝑘]) is called the shuffle group on 𝑘𝑛
cards and denoted by 𝐺𝑘,𝑘𝑛; that is,

𝐺𝑘,𝑘𝑛 = 〈𝜌𝜏𝜎 | 𝜏 ∈ Sym([𝑘])〉 = 〈𝜎, 𝜌𝜏 | 𝜏 ∈ Sym([𝑘])〉.

In this terminology, what is suggested at the end of [8] is to determine the shuffle group 𝐺𝑘,𝑘𝑛.
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For a positive integer m, let 𝐶𝑚, 𝐴𝑚 and 𝑆𝑚 be the cyclic group of order m, alternating group on
m points and symmetric group on m points, respectively. In 1983, Diaconis, Graham and Kantor [8]
completely determined 𝐺2,2𝑛 as follows.

Theorem 1.1 (Diaconis-Graham-Kantor). For 𝐺 = 𝐺2,2𝑛, the following hold:

(a) If 𝑛 ≡ 0 (mod 4), 𝑛 > 12 and n is not a power of 2, then 𝐺 = 𝐶𝑛−1
2 � 𝐴𝑛.

(b) If 𝑛 ≡ 1 (mod 4), then 𝐺 = 𝐶𝑛
2 � 𝐴𝑛.

(c) If 𝑛 ≡ 2 (mod 4) and 𝑛 > 6, then G is the imprimitive wreath product 𝐶2 � 𝑆𝑛.
(d) If 𝑛 ≡ 3 (mod 4), then 𝐺 = 𝐶𝑛−1

2 � 𝑆𝑛 is the Weyl group of the root system 𝐷𝑛.
(e) If 𝑛 = 2𝑚 for some positive integer m, then G is the primitive wreath product 𝐶2 � 𝐶𝑚+1.
(f) If 𝑛 = 6, then 𝐺 = 𝐶6

2 � PGL(2, 5).
(g) If 𝑛 = 12, then 𝐺 = 𝐶11

2 � 𝑀12, where 𝑀12 is the Mathieu group on 12 points.

In 1987, Medvedoff and Morrison [13] initiated a systematic study of the shuffle group 𝐺𝑘,𝑘𝑛 for
general k. They showed (see [13, Theorem 2]) that, if n is a power of k, then 𝐺𝑘,𝑘𝑛 is the primitive
wreath product of 𝑆𝑘 by the cyclic group of order log𝑘 (𝑘𝑛); that is,

𝐺𝑘,𝑘𝑚 = 𝑆𝑘 � 𝐶𝑚. (2)

Moreover, based on computation results, Medvedoff and Morrison conjectured in [13] that 𝐺3,3𝑛 contains
𝐴3𝑛 if n is not a power of 3, which is essentially a conjectural classification of 𝐺3,3𝑛 (see the Remark
after Conjecture 1.2). Similarly, they made a conjecture for 𝑘 = 4 in the same paper, which states that
𝐺4,4𝑛 contains 𝐴4𝑛 if n is not a power of 2, and 𝐺4,4𝑛 is the full affine group of degree 4𝑛 if n is an odd
power of 2. The latter part of this conjecture, that is,

𝐺4,22ℓ+1 = AGL(2ℓ + 1, 2), (3)

was confirmed in 2005 by Cohen, Harmse, Morrison and Wright [7, Theorem 2.6]. This leads them to
the following conjecture.

Conjecture 1.2 (Shuffle Group Conjecture). For 𝑘 ≥ 3, if n is not a power of k and (𝑘, 𝑛) ≠ (4, 2 𝑓 ) for
any positive integer f, then 𝐺𝑘,𝑘𝑛 contains 𝐴𝑘𝑛.

Remark. From the definitions of 𝜎 and 𝜌𝜏 , it is not hard to see that 𝐺𝑘,𝑘𝑛 is a subgroup of 𝐴𝑘𝑛 if and
only if either 𝑛 ≡ 2 (mod 4) and 𝑘 ≡ 0 or 1 (mod 4), or 𝑛 ≡ 0 (mod 4) (see, for example, [13, Theorem
1]). This implies that 𝐺𝑘,𝑘𝑛 is precisely determined if we know that 𝐺𝑘,𝑘𝑛 contains 𝐴𝑘𝑛. Therefore, the
above Shuffle Group Conjecture is in fact a conjectural classification of the shuffle groups 𝐺𝑘,𝑘𝑛 for all
𝑘 ≥ 3 and 𝑛 ≥ 1.

Among other results, Amarra, Morgan and Praeger [1] recently confirmed Conjecture 1.2 for the
following three cases:

(i) 𝑘 > 𝑛;
(ii) k and n are powers of the same integer ℓ ≥ 2;

(iii) k is a power of 2, and n is not a power of 2.

Note that (ii) and (iii) together imply the validity of Conjecture 1.2 whenever k is a power of 2. We also
remark that the Classification of Finite Simple Groups (CFSG) comes into play in the study of shuffle
groups in [1]. In fact, CFSG was already applied in an unpublished result of William Kantor (see [11]
and [13, Page 13]) to prove that 𝐺𝑘,𝑘𝑛 ≥ 𝐴𝑘𝑛 if 𝑘 ≥ 4 and k does not divide n.

In this paper, we prove Conjecture 1.2 for all k and n (see Theorems 1.3 and 1.4). Our approach is to
reduce the proof of the conjecture to that of the 2-transitivity of 𝐺𝑘,𝑘𝑛 by considering the fixed point
ratio of certain element therein. This approach makes use of some deep classification results (depending
on CFSG) in group theory – for example, the classification of 2-transitive groups and primitive groups
with elements of large fixed point ratio [4, 10, 12]. Our reduction theorem is as follows.
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Theorem 1.3. If 𝐺𝑘,𝑘𝑛 is 2-transitive with 𝑘 ≥ 3, then either 𝑘 = 4 and n is an odd power of 2, or 𝐺𝑘,𝑘𝑛

contains 𝐴𝑘𝑛.

By Theorem 1.3, we can determine 𝐺𝑘,𝑘𝑛 for 𝑘 ≥ 3 if it is shown to be 2-transitive. This is the case
when n is not a power of k, as the following theorem states.

Theorem 1.4. The shuffle group 𝐺𝑘,𝑘𝑛 is 2-transitive if 𝑘 ≥ 3 and n is not a power of k.

The combination of Theorems 1.3 and 1.4 completely solves Conjecture 1.2 affirmatively. Now that
Conjecture 1.2 is confirmed, it together with [13, Theorem 2] and [7, Theorem 2.6] leads to (see the
remark after Conjecture 1.2) the following complete classification of shuffle groups.

Theorem 1.5. If 𝑘 ≥ 3, then the following hold:

(a) If 𝑘𝑛 = 𝑘𝑚, then 𝐺𝑘,𝑘𝑛 is the primitive wreath product 𝑆𝑘 � 𝐶𝑚.
(b) If 𝑘 = 4 and 𝑘𝑛 = 2𝑚 with m odd, then 𝐺𝑘,𝑘𝑛 is the affine group AGL(𝑚, 2).
(c) If n is not a power of k and either n is odd or both 𝑛/2 and 𝑘 (𝑘 − 1)/2 are odd integers, then

𝐺𝑘,𝑘𝑛 = 𝑆𝑘𝑛.
(d) In all other cases, 𝐺𝑘,𝑘𝑛 = 𝐴𝑘𝑛.

The remainder of this paper is structured as follows. In the next section, we will give definitions
and some technical lemmas that will be used in Section 3. After this preparation, Theorem 1.3 will be
proved in Section 3, and the proof of Theorems 1.4 will be given in Section 4. Finally, in Section 5, we
conclude the paper with some open problems on the so-called generalised shuffle groups introduced by
Amarra, Morgan and Praeger [1].

2. Preliminaries

For a finite group G, let Z(𝐺) denote the centre of G, let O𝑝 (𝐺) denote the largest normal p-subgroup of
G for a prime p, and let C𝐺 (𝑔) denote the centraliser of an element g in G. The socle of G is the product
of the minimal normal subgroups of G, denoted by Soc(𝐺). The fixed point ratio of a permutation g on
a finite set Ω, denoted by fpr(𝑔), is defined by

fpr(𝑔) = |Fix(𝑔) |
|Ω| ,

where Fix(𝑔) = {𝛼 ∈ Ω | 𝛼𝑔 = 𝛼}.

Lemma 2.1. Let g be an element of PGL(𝑑, 3) acting on the set of 1-dimensional subspaces of the
vector space F𝑑3 . Then

fpr(𝑔) = 3𝑠 + 3𝑡 − 2
3𝑑 − 1

for some nonnegative integers s and t.

Proof. Let �̂� ∈ GL(𝑑, 3) such that 𝑔 = �̂�Z(GL(𝑑, 3)) ∈ PGL(𝑑, 3). Note that a 1-dimensional subspace
〈𝑣〉 of F𝑑3 satisfies 〈𝑣〉𝑔 = 〈𝑣〉 if and only if 𝑣�̂� is v or −𝑣. Therefore,

Fix(𝑔) = {〈𝑣〉 | 𝑣 ∈ F𝑑3 \ {0}, 𝑣�̂� = 𝑣} ∪ {〈𝑣〉 | 𝑣 ∈ F𝑑3 \ {0}, 𝑣�̂� = −𝑣},

and hence,

fpr(𝑔) = |Fix(𝑔) |
|{〈𝑣〉 | 𝑣 ∈ F𝑑3 \ {0}}|

=
3𝑠−1

2 + 3𝑡−1
2

3𝑑−1
2

=
3𝑠 + 3𝑡 − 2

3𝑑 − 1
,

where s and t are the dimensions of the 1-eigenspace and (−1)-eigenspace of �̂�, respectively. �
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Let 𝑉 = F𝑑𝑞 be a d-dimensional vector space over F𝑞 , where 𝑑 ≥ 3 and q is even, and we fix an
ordered basis of V and associate each element of SL(𝑉) with its matrix under this basis. For an involution
𝑔 ∈ SL(𝑉), denote by 𝑟 (𝑔) the number of Jordan blocks of size 2 in the Jordan canonical form of g.
Note that two involutions A and B in SL(𝑉) are conjugate in SL(𝑉) if and only if 𝑟 (𝐴) = 𝑟 (𝐵). For an
integer ℓ with 1 ≤ ℓ ≤ 𝑑/2, denote

𝐴ℓ =
���
𝐼ℓ

𝐼𝑑−2ℓ
𝐼ℓ 𝐼ℓ

���,

where 𝐼 𝑗 is the 𝑗 × 𝑗 identity matrix. It is clear that 𝐴ℓ is an involution in SL(𝑉) with 𝑟 (𝐴ℓ) = ℓ. We
call 𝐴ℓ the Suzuki form of the conjugacy class of 𝐴ℓ in SL(𝑉).

For 𝜀 ∈ {+,−}, let O𝜀 (2𝑚, 𝑞) be the general orthogonal group of 𝜀 type on the space F2𝑚
𝑞 , where m

is a positive integer and q is a prime power. For convenience, we set the notation Sp(0, 𝑞) and O𝜀 (0, 𝑞)
to be the trivial group. The following lemma is a consequence of [2, Sections 7 and 8].

Lemma 2.2. For each involution 𝑔 ∈ O𝜀 (2𝑚, 2) < Sp(2𝑚, 2), we have

|CSp(2𝑚,2) (𝑔) |
|CO𝜀 (2𝑚,2) (𝑔) |

=
|Sp(2𝑚 − 2𝑟, 2) | · |O2

(
CSp(2𝑚,2) (𝑔)

)
|

|O𝜀 (2𝑚 − 2𝑟, 2) | · |O2
(
CO𝜀 (2𝑚,2) (𝑔)

)
|

for some positive integer 𝑟 ≤ 𝑚.

Proof. Write 𝐺 = Sp(2𝑚, 2) and 𝐻 = O𝜀 (2𝑚, 2). Since 𝑔 ∈ 𝐺, we see that there exists a basis of F2𝑚
2

as in (1), (2) or (3) of [2, (7.6)] such that g is in Suzuki form under this basis. For convenience, we say
that g has form 𝑎ℓ , 𝑏ℓ or 𝑐ℓ , if the basis is chosen as in (1), (2) or (3) of [2, (7.6)], respectively.

First assume that g has form 𝑎ℓ (in this case, ℓ is even). It follows from [2, (7.9)] that there exists a
homomorphism from C𝐺 (𝑔) onto Sp(ℓ, 2) × Sp(2𝑚 − 2ℓ, 2) with kernel O2(C𝐺 (𝑔)). Therefore,

|C𝐺 (𝑔) |
|O2 (C𝐺 (𝑔)) | = |Sp(ℓ, 2) × Sp(2𝑚 − 2ℓ, 2) |.

Moreover, [2, (8.6)] shows that there is a homomorphism from C𝐻 (𝑔) to Sp(ℓ, 2) × O𝜀 (2𝑚 − 2ℓ, 2)
with kernel O2 (C𝐻 (𝑔)), and so

|C𝐻 (𝑔) |
|O2 (C𝐻 (𝑔)) | = |Sp(ℓ, 2) × O𝜀 (2𝑚 − 2ℓ, 2) |.

As a consequence,

|C𝐺 (𝑔) |
|C𝐻 (𝑔) | =

|Sp(2𝑚 − 2ℓ, 2) | · |O2 (C𝐺 (𝑔)) |
|O𝜀 (2𝑚 − 2ℓ, 2) | · |O2 (C𝐻 (𝑔)) | .

Now assume that g has form 𝑏ℓ or 𝑐ℓ (in this case, ℓ is odd or even, respectively). Similarly, we
derive from [2, (7.10) and (7.11)] and [2, (8.7) and (8.8)] that

|C𝐺 (𝑔) |
|O2 (C𝐺 (𝑔)) | = |Sp(ℓ − 1, 2) × Sp(2𝑚 − 2ℓ, 2) | = |C𝐻 (𝑔) |

|O2 (C𝐻 (𝑔)) |

or

|C𝐺 (𝑔) |
|O2 (C𝐺 (𝑔)) | = |Sp(ℓ − 2, 2) × Sp(2𝑚 − 2ℓ, 2) | = |C𝐻 (𝑔) |

|O2 (C𝐻 (𝑔)) | .
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It follows that

|C𝐺 (𝑔) |
|C𝐻 (𝑔) | =

|O2 (C𝐺 (𝑔)) |
|O2 (C𝐻 (𝑔)) | =

|Sp(0, 2) | · |O2 (C𝐺 (𝑔)) |
|O𝜀 (0, 2) | · |O2 (C𝐻 (𝑔)) | .

This completes the proof. �

3. Fixed point ratio and shuffle groups

In this section, we prove the reduction theorem (Theorem 1.3), which reduces the proof of Conjecture 1.2
to that of the 2-transitivity of 𝐺𝑘,𝑘𝑛. Recall from (1) that for 𝜏 ∈ Sym([𝑘]), the permutation 𝜌𝜏 ∈ 𝐺𝑘,𝑘𝑛

maps 𝑖 + 𝑗𝑛 to 𝑖 + 𝑗 𝜏𝑛 for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘]. This leads to the following result on the fixed point
ratio of 𝜌𝜏 , an observation that is the basis of our argument throughout this section.

Lemma 3.1. For each 𝜏 ∈ Sym([𝑘]), we have fpr(𝜏) = fpr(𝜌𝜏). In particular, if 𝜏 is a transposition,
then fpr(𝜌𝜏) = (𝑘 − 2)/𝑘 .

A permutation group G on a set Ω is said to be primitive if the only partitions preserved by G are
{Ω} and {{𝛼} | 𝛼 ∈ Ω}. It is well known and easy to see that every 2-transitive group is primitive. An
affine primitive group is a subgroup of AGL(𝑑, 𝑝) that contains the socle of AGL(𝑑, 𝑝), where d is a
positive integer and p is prime.

Lemma 3.2. Suppose that 𝐺𝑘,𝑘𝑛 is an affine primitive group with 𝑘 ≥ 3. Then either 𝑘 = 3 and 𝑛 = 1,
or 𝑘 = 4 and n is a power of 2.

Proof. Let 𝐺 = 𝐺𝑘,𝑘𝑛, and let V be a d-dimension vector space over F𝑝 such that 𝐺 ≤ AGL(𝑉),
where d is a positive integer and p is prime. Then 𝑘𝑛 = |𝑉 | = 𝑝𝑑 . By (1), there is a transposition
𝜏 ∈ Sym([𝑘]) such that 𝜌𝜏 fixes the zero vector 0 in V. It follows that 𝜌𝜏 ∈ 𝐺0 ≤ GL(𝑉). Since
Fix(𝜌𝜏) = {𝑣 ∈ 𝑉 | 𝑣𝜌𝜏 = 𝑣} is a subspace of V, we have |Fix(𝜌𝜏) | = 𝑝 𝑓 for some nonnegative integer
f. Thus, as 𝜏 is a transposition, we derive from Lemma 3.1 that

𝑘 − 2
𝑘

= fpr(𝜌𝜏) =
|Fix(𝜌𝜏) |

|𝑉 | =
𝑝 𝑓

𝑝𝑑
=

1
𝑝𝑑− 𝑓

.

Since 𝑘 ≥ 3, this implies that either 𝑘 = 𝑝 = 3, or 𝑘 = 4 and 𝑝 = 2. For the latter, 𝑛 = |𝑉 |/𝑘 = 2𝑑−2 is a
power of 2. Now assume that 𝑘 = 𝑝 = 3. Then 𝑛 = |𝑉 |/𝑘 = 𝑝𝑑/𝑘 = 3𝑑−1, and so (2) gives 𝐺 = 𝑆3 � 𝐶𝑑 .
Since G is affine, we conclude that 𝑑 = 1, which indicates that 𝑛 = 3𝑑−1 = 1. �

A group is said to be almost simple if its socle is a nonabelian simple group. It follows from the
well-known Burnside’s Theorem [5, §154, Theorem XIII] that 2-transitive groups are either affine or
almost simple.

Proof of Theorem 1.3. Let 𝐺 = 𝐺𝑘,𝑘𝑛 be 2-transitive with 𝑘 ≥ 3. If G is affine, then according to
Lemma 3.2, either 𝑘 = 3 and 𝑛 = 1, or 𝑘 = 4 and n is a power of 2. The former leads to 𝐺 = 𝐺3,3 = 𝑆3,
which satisfies the conclusion of the theorem. For the latter, since G is 2-transitive, we conclude from
(2) that n is not a power of 4, and so n is an odd power of 2, again satisfying the conclusion of the
theorem. Thus, we may assume that G is almost simple for the rest of the proof.

First assume that 𝑘 ≥ 4. Take a transposition 𝜏 ∈ Sym([𝑘]). By Lemma 3.1, we have

fpr(𝜌𝜏) =
𝑘 − 2

𝑘
≥ 1

2
.

Then since G is 2-transitive, it follows from [10, Theorem 1] that either 𝐺 ≥ 𝐴𝑘𝑛, or

fpr(𝜌𝜏) =
1
2
+ 1

2(2𝑟 ± 1) for some 𝑟 ≥ 3. (4)
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The former satisfies the conclusion of the theorem. Now suppose that (4) holds. It follows that

fpr(𝜌𝜏) ≤
1
2
+ 1

2(23 − 1)
=

4
7

<
3
5

.

This together with fpr(𝜌𝜏) = (𝑘 − 2)/𝑘 implies that 𝑘 < 5. Thus, 𝑘 = 4, which in turn yields
fpr(𝜌𝜏) = (𝑘 − 2)/𝑘 = 1/2, contradicting (4).

In the following, assume that 𝑘 = 3. For convenience in the coming discussion, we first calculate
𝐺3,3𝑛 for 𝑛 ≤ 92 by computation in Magma [3]. It turns out that, for these values of n, if n is not a
power of 3, then 𝐺3,3𝑛 contains 𝐴3𝑛. Note by (2) that if n is a power of 3, then 𝐺3,3𝑛 is not 2-transitive.
Thus, in the remainder of the proof, we assume 𝑛 > 92.

Suppose for a contradiction that G does not contain 𝐴3𝑛. Since 𝑛 > 92, it follows from the list of
almost simple 2-transitive groups (see [6, Table 7.4]) that Soc(𝐺) is a simple group of Lie type, say,
over F𝑞 . In the following, we divide the proof into four cases according to 𝑞 > 4, 𝑞 = 4, 𝑞 = 3 or 𝑞 = 2.
Take a transposition 𝜏 ∈ Sym([3]). We have fpr(𝜌𝜏) = 1/3 by Lemma 3.1.

Case 1: 𝑞 > 4. In this case, fpr(𝜌𝜏) = 1/3 > 4/(3𝑞). Then since G is a 2-transitive group on
3𝑛 > 276 points, it follows from [12, Theorem 1] that Soc(𝐺) = PSL(2, 𝑞) and fpr(𝜌𝜏) is either
2/(𝑞 + 1) or (𝑞0 + 1)/(𝑞 + 1), where 𝑞0 = 𝑞1/𝑟 is a prime power for some integer 𝑟 ≥ 2. This together
with fpr(𝜌𝜏) = 1/3 implies that 1/3 = 2/(𝑞 + 1) or 1/3 ≤ (√𝑞 + 1)/(𝑞 + 1). However, this leads to
𝑞 ≤ 9, and hence, 3𝑛 = 𝑞 + 1 ≤ 10, a contradiction.

Case 2: 𝑞 = 4. In this case, we see from [6, Table 7.4] that G is a subgroup of either PΓU(3, 4)
or PΓL(𝑑, 4) with 𝑑 ≥ 2, which together with 𝑛 > 92 implies that 𝐺 ≤ PΓL(𝑑, 4) with 𝑑 ≥ 3. Then
according to [9, Proposition 3.1], the fixed point ratio of a non-identity element in G is less than

min
{

1
2

,
1
4
+ 1

4𝑑−1

}
=

1
4
+ 1

4𝑑−1 ≤ 1
4
+ 1

42 <
1
3

,

contradicting fpr(𝜌𝜏) = 1/3.
Case 3: 𝑞 = 3. Recall that G is a 2-transitive group on 3𝑛 > 276 points. Then we see from [6, Table

7.4] that G is a subgroup of PGL(𝑑, 3) with 𝑑 ≥ 6. It follows from Lemma 2.1 that

3𝑠 + 3𝑡 − 2
3𝑑 − 1

= fpr(𝜌𝜏) =
1
3

for some nonnegative integers s and t. This yields

3(3𝑠 + 3𝑡 − 2) = 3𝑑 − 1,

which is not possible.
Case 4: 𝑞 = 2. In this case, we see from the list of almost simple 2-transitive groups that either

𝐺 = PSL(𝑑, 2) with 𝑑 ≥ 3, or G is the group Sp(2𝑚, 2) for some 𝑚 ≥ 3 with point stabiliser O±(2𝑚, 2).
First assume 𝐺 = PSL(𝑑, 2) with 𝑑 ≥ 3. Then G can be viewed as GL(𝑑, 2) acting on the set of

nonzero vectors. In this way, Fix(𝜌𝜏) = {𝑣 ∈ F𝑑2 | 𝑣𝑥 = 𝑣} \ {0}, and so |Fix(𝜌𝜏) | = 2𝑟 − 1 for some
nonnegative integer 𝑟 ≤ 𝑑. It then follows from fpr(𝜌𝜏) = 1/3 that

1
3
= fpr(𝜌𝜏) =

2𝑟 − 1
2𝑑 − 1

.

This yields

3 · 2𝑟 = 2𝑑 + 2. (5)

Since the right-hand side of (5) is congruent to 2 modulo 4, we deduce 3 · 2𝑟 ≡ 2 (mod 4), and thus,
𝑟 = 1. However, this leads to 6 = 2𝑑 + 2, contradicting 𝑑 ≥ 3.
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Now assume 𝐺 = Sp(2𝑚, 2) for some 𝑚 ≥ 3 with point stabiliser O𝜀 (2𝑚, 2), where 𝜀 ∈ {+,−}.
Note that 𝜌𝜏 is an involution with nonempty fixed point set. Let H be a point stabiliser of G containing
𝜌𝜏 . According to [2, (8.5)], two involutions in H are conjugate in G if and only if they are conjugate in
H. Hence, (𝜌𝜏)𝐻 = (𝜌𝜏)𝐺 ∩ 𝐻. Then by [4, Lemma 1.2(iii)], we have

fpr(𝜌𝜏) =
| (𝜌𝜏)𝐺 ∩ 𝐻 |
| (𝜌𝜏)𝐺 |

=
| (𝜌𝜏)𝐻 |
| (𝜌𝜏)𝐺 |

=
|𝐻 | · |C𝐺 (𝜌𝜏) |
|𝐺 | · |C𝐻 (𝜌𝜏) |

=
|O𝜀 (2𝑚, 2) |
|Sp(2𝑚, 2) | ·

|C𝐺 (𝜌𝜏) |
|C𝐻 (𝜌𝜏) |

.

This in conjunction with Lemma 2.2 implies that

fpr(𝜌𝜏) =
|O𝜀 (2𝑚, 2) |
|Sp(2𝑚, 2) | ·

|Sp(2𝑚 − 2𝑟, 2) |
|O𝜀 (2𝑚 − 2𝑟, 2) | ·

|O2 (C𝐺 (𝜌𝜏) |
|O2 (C𝐻 (𝜌𝜏)) |

for some positive integer 𝑟 ≤ 𝑚. According to whether 𝑟 = 𝑚 or 𝑟 < 𝑚, we deduce that

fpr(𝜌𝜏) =
1

2𝑚−1(2𝑚 + 𝜀1)
· |O2 (C𝐺 (𝜌𝜏) |
|O2 (C𝐻 (𝜌𝜏)) |

or
2𝑚−𝑟−1(2𝑚−𝑟 + 𝜀1)

2𝑚−1(2𝑚 + 𝜀1)
· |O2 (C𝐺 (𝜌𝜏) |
|O2 (C𝐻 (𝜌𝜏)) |

.

Since fpr(𝜌𝜏) = 1/3 and both |O2 (C𝐺 (𝜌𝜏) | and |O2 (C𝐻 (𝜌𝜏)) | are powers of 2, it follows that

1
3
=

1
2𝑚 + 𝜀1

or
2𝑚−𝑟 + 𝜀1
2𝑚 + 𝜀1

.

The former is not possible as 𝑚 ≥ 3. For the latter, we obtain

3 · 2𝑚−𝑟 + 𝜀2 = 2𝑚 ≡ 0 (mod 4),

and thus, 𝑚 − 𝑟 = 1, which in turn leads to 𝑚 = 3 and 𝜀 = +. However, this implies that
3𝑛 = |Sp(6, 2) |/|O+(6, 2) | = 36, contradicting 𝑛 > 92. �

4. 2-transitivity

We will prove Theorem 1.4 in this section. Throughout this section, let 𝑛 = 𝑘𝑠𝑡 where s and t are integers
satisfying 𝑠 ≥ 0, 𝑡 > 1 and 𝑘 � 𝑡. For a nonnegative integer m and a positive integer ℓ, we use [𝑚]0

ℓ and
[𝑚]1

ℓ to denote the remainder and quotient of m divided by ℓ; that is,

𝑚 = ℓ[𝑚]1
ℓ + [𝑚]0

ℓ

with 0 ≤ [𝑚]0
ℓ ≤ ℓ − 1. For every 𝑥 ∈ [𝑘𝑛] (note that 0 ≤ 𝑥 < 𝑘𝑠+1𝑡), we write [𝑥]1

𝑡 in base k as
follows: [𝑥]1

𝑡 = 𝑘𝑠𝑥𝑠 + · · · + 𝑘𝑥1 + 𝑥0, where 𝑥𝑖 ∈ [𝑘] for every 𝑖 ∈ [𝑠 + 1]. Therefore, x can be uniquely
written as

𝑥 = (𝑘𝑠𝑥𝑠 + · · · + 𝑘𝑥1 + 𝑥0)𝑡 + [𝑥]0
𝑡 .

For convenience, we identify x with (𝑥𝑠 , . . . , 𝑥1, 𝑥0; 𝑋) where 𝑋 = [𝑥]0
𝑡 , and sometimes we mix the two

notations when doing addition. For example,

(𝑥𝑠 , . . . , 𝑥3, 0, 1, 1; 𝑡 − 1) + 𝑘2𝑡 + 2 = (𝑥𝑠 , . . . , 𝑥3, 1, 1, 2; 1).
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Recall (𝑖 + 𝑗𝑛)𝜎 = 𝑘𝑖 + 𝑗 for all 𝑖 ∈ [𝑛] and 𝑗 ∈ [𝑘]. One can obtain inductively that

(𝑥𝑠 , . . . , 𝑥1, 𝑥0; 𝑋)𝜎𝑖
=

(
𝑠∑
𝑗=𝑖

𝑘 𝑗𝑥 𝑗−𝑖

)
𝑡 + 𝑘 𝑖𝑋 +

𝑖−1∑
𝑗=0

𝑘 𝑖−1− 𝑗𝑥𝑠− 𝑗

= (𝑥𝑠−𝑖 , . . . , 𝑥1, 𝑥0, 0, . . . , 0; 0) + 𝑘 𝑖𝑋 +
𝑖−1∑
𝑗=0

𝑘 𝑖−1− 𝑗𝑥𝑠− 𝑗 (6)

for all 𝑖 ∈ [𝑠 + 2] (when 𝑖 = 𝑠 + 1, the tuple (𝑥𝑠−𝑖 , . . . , 𝑥1, 𝑥0, 0, . . . , 0; 0) in equation (6) is to be
understood as 0). In particular,

(𝑥𝑠 , . . . , 𝑥1, 𝑥0; 𝑋)𝜎 = (𝑥𝑠−1, . . . , 𝑥0, [𝑘𝑋 + 𝑥𝑠]1
𝑡 ; [𝑘𝑋 + 𝑥𝑠]0

𝑡 ), (7)

and thus,

(𝑥𝑠 , . . . , 𝑥1, 𝑥0; 𝑋)𝜎−1
= ([𝑥0𝑡 + 𝑋]0

𝑘 , 𝑥𝑠 , . . . , 𝑥1; [𝑥0𝑡 + 𝑋]1
𝑘 ). (8)

Recalling from (1) that (𝑖 + 𝑗𝑛)𝜌𝜏 = 𝑖 + 𝑗 𝜏𝑛, we have

(𝑥𝑠 , . . . , 𝑥1, 𝑥0; 𝑋)𝜌𝜏 = (𝑘𝑠−1𝑥𝑠−1 + · · · + 𝑘𝑥1 + 𝑥0)𝑡 + 𝑋 + 𝑥𝜏
𝑠 𝑛 = (𝑥𝜏

𝑠 , 𝑥𝑠−1, . . . , 𝑥1, 𝑥0; 𝑋) (9)

for every (𝑥𝑠 , . . . , 𝑥1, 𝑥0; 𝑋) ∈ [𝑘𝑛]. By (6) and (9), it is clear that

(𝑥𝑠 , . . . , 𝑥1, 𝑥0; 𝑋)𝜎𝑖𝜌𝜏𝜎
−𝑖
= (𝑥𝑠 , . . . , 𝑥𝑠−𝑖+1, 𝑥𝜏

𝑠−𝑖 , 𝑥𝑠−𝑖−1, . . . , 𝑥1, 𝑥0; 𝑋). (10)

Consider the subgroup 𝐻 := 〈𝜎, 𝜌𝜏 | 𝜏 ∈ Sym([𝑘−1])〉 of 𝐺𝑘,𝑘𝑛, which is contained in the stabiliser
of 𝑘𝑛 − 1. Our strategy for proving Theorem 1.4 is to prove that H is transitive on [𝑘𝑛 − 1]. We use
(𝑖, 𝑗) ∈ Sym([𝑘]) with 𝑖 ≠ 𝑗 to denote the transposition swapping i and j. For each 𝑥 ∈ [𝑘], let (0, 𝑥)
denote the permutation of [𝑘] sending x to 0 and 0 to x while fixing [𝑘] \ {0, 𝑥} pointwise. In particular,
(0, 𝑥) coincides with the above notation for a transposition if 𝑥 ≠ 0 and is the identity permutation if
𝑥 = 0. This somewhat cumbersome notation avoids discussing whether 𝑥 = 0 in the following.

Let 𝑥 = (𝑥𝑠 , 𝑥𝑠−1, . . . , 𝑥0; 𝑋) ∈ [𝑘𝑛]. Write 𝛼𝑖 = 𝜎𝑖𝜌 (0,1)𝜎
−𝑖 for every 𝑖 ∈ [𝑠 + 1]. By (10),

𝑥𝛼𝑖 = (𝑥𝑠 , . . . , 𝑥𝑠−𝑖+1, 𝑥 (0,1)
𝑠−𝑖 , 𝑥𝑠−𝑖−1, . . . , 𝑥0; 𝑋).

Set 𝛽𝜏 = 𝜎−1𝜌𝜏𝜎 ∈ 𝐻 for 𝜏 ∈ Sym([𝑘 − 1]). Using (7)–(9), it is straightforward to check that

𝑥𝛽𝜏 = 𝑥 + ([𝑥0𝑡 + 𝑋]0
𝑘 )

𝜏 − [𝑥0𝑡 + 𝑋]0
𝑘 .

We will use the above two formulas for 𝛼𝑖 and 𝛽𝜏 repeatedly without any reference. Let

𝑇 (𝑥) = |{𝑖 ∈ [𝑠 + 1] | 𝑥𝑖 = 𝑘 − 1}|.

Lemma 4.1. If 𝑇 (𝑥) = 0, then 𝑥 ∈ 0𝐻 .

Proof. It follows from 𝑇 (𝑥) = 0 that 𝑥𝑖 ≠ 𝑘 − 1 for 𝑖 ∈ [𝑠 + 1]. This combined with (10) shows

𝑥
∏𝑠

𝑖=0 𝜎𝑠−𝑖𝜌(0,𝑥𝑖 ) 𝜎
−(𝑠−𝑖)

= (𝑥 (0,𝑥𝑠)
𝑠 , . . . , 𝑥 (0,𝑥0)

0 ; 𝑋) = (0, . . . , 0; 𝑋) = 𝑋 ∈ [𝑡]

and
∏𝑠

𝑖=0 𝜎𝑠−𝑖𝜌 (0,𝑥𝑖 )𝜎
−(𝑠−𝑖) ∈ 𝐻. So it suffices to prove that [𝑡] ⊆ 0𝐻 . We achieve this by showing that

𝑥𝐻 contains an integer less than x for each 𝑥 ∈ [𝑡] \ {0}.
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Let 𝑥 ∈ [𝑡] \ {0}. If [𝑥]0
𝑘 = 0, then 𝑥𝜎−1

= 𝑥/𝑘 < 𝑥. If [𝑥]0
𝑘 ≠ 0 and [𝑥]0

𝑘 ≠ 𝑘 − 1, then
𝑥𝛽𝜏 = 𝑥 − [𝑥]0

𝑘 < 𝑥, where 𝜏 = (0, [𝑥]0
𝑘 ). If [𝑥]0

𝑘 = 𝑘 − 1 and [𝑡]0
𝑘 ≠ 1, then [𝑡 + 𝑥]0

𝑘 ∉ {0, 𝑘 − 1}, and so
there exists 𝜏 ∈ Sym([𝑘 − 1]) such that ([𝑡 + 𝑥]0

𝑘 )
𝜏 = [𝑡 + 𝑥]0

𝑘 − 1, which leads to

𝑥𝛼𝑠𝛽𝜏𝛼𝑠 = (𝑡 + 𝑥)𝛽𝜏𝛼𝑠 = (𝑡 + 𝑥 − 1)𝛼𝑠 = 𝑥 − 1 < 𝑥.

If [𝑥]0
𝑘 = 𝑘 − 1 and [𝑡]0

𝑘 = 1, then [𝑡 + 𝑥]0
𝑘 = 0, and hence,

𝑥𝛼𝑠𝛽(0,1) 𝛼𝑠𝜎
−1

= (𝑡 + 𝑥)𝛽(0,1) 𝛼𝑠𝜎
−1

= (𝑡 + 𝑥 + 1)𝛼𝑠𝜎
−1

= (𝑥 + 1)𝜎−1
= (𝑥 + 1)/𝑘 < 𝑥.

Therefore, [𝑡] ⊆ 0𝐻 , as desired. �

Lemma 4.2. Let 𝑥 = (𝑥𝑠 , 𝑥𝑠−1, . . . , 𝑥1, 𝑥0; 𝑋) ∈ [𝑘𝑛 − 1]. If 1 ≤ 𝑇 (𝑥) ≤ 𝑠, then there exists
𝑦 = (𝑦𝑠 , 𝑦𝑠−1, . . . , 𝑦1, 𝑦0;𝑌 ) ∈ 𝑥𝐻 such that either 𝑇 (𝑦) = 0, or 𝑦0 = 0, 𝑦1 = 𝑘 − 1 and 𝑇 (𝑥) ≥ 𝑇 (𝑦).

Proof. Let ℓ be the smallest integer such that 𝑥ℓ ≠ 𝑘 − 1. Write

𝑥𝜎−ℓ
= 𝑧 = (𝑧𝑠 , 𝑧𝑠−1, . . . , 𝑧1, 𝑧0; 𝑍).

Applying (8) repeatedly, we derive 𝑧𝑠−ℓ = 𝑥𝑠 , 𝑧𝑠−ℓ−1 = 𝑥𝑠−1, . . . , 𝑧1 = 𝑥ℓ+1, 𝑧0 = 𝑥ℓ . Since 𝑥0 = · · · =
𝑥ℓ−1 = 𝑘 − 1, it follows that 𝑇 (𝑥) ≥ 𝑇 (𝑧). If 𝑇 (𝑧) = 0, then we confirm the lemma by taking 𝑦 = 𝑧. In
what follows, assume 𝑇 (𝑧) > 0.

Since 𝑧0 = 𝑥ℓ ≠ 𝑘 − 1 and 𝑘 ≥ 3, there exists 𝜏 ∈ Sym([𝑘 − 1]) such that |𝑧𝜏0 − 𝑧0 | = 1. Set

𝜇0 =

{
𝜎−1 if [𝑧0𝑡 + 𝑍]0

𝑘 ≠ 𝑘 − 1
𝜎𝑠𝜌𝜏𝜎−𝑠−1 if [𝑧0𝑡 + 𝑍]0

𝑘 = 𝑘 − 1.

Then by (8) and (10), we obtain

𝑧𝜇0 =

⎧⎪⎪⎨⎪⎪⎩
(
[𝑧0𝑡 + 𝑍]0

𝑘 , 𝑧𝑠, . . . , 𝑧1; [𝑧0𝑡 + 𝑍]1
𝑘

)
if [𝑧0𝑡 + 𝑍]0

𝑘 ≠ 𝑘 − 1(
[𝑧𝜏0 𝑡 + 𝑍]0

𝑘 , 𝑧𝑠, . . . , 𝑧1; [𝑧𝜏0 𝑡 + 𝑍]1
𝑘

)
if [𝑧0𝑡 + 𝑍]0

𝑘 = 𝑘 − 1.

If both [𝑧0𝑡 + 𝑍]0
𝑘 and [𝑧𝜏0 𝑡 + 𝑍]0

𝑘 are equal to 𝑘 − 1, then it follows from |𝑧𝜏0 − 𝑧0 | = 1 that k divides t, a
contradiction. Thus, [𝑧𝜏0 𝑡 + 𝑍]0

𝑘 ≠ 𝑘 − 1 if [𝑧0𝑡 + 𝑍]0
𝑘 = 𝑘 − 1. Consequently, 𝑇 (𝑧𝜇0 ) = 𝑇 (𝑧).

Let j be the smallest integer such that 𝑧 𝑗+1 = 𝑘 − 1. Since, in particular, none of 𝑧1, . . . , 𝑧 𝑗−1 is
equal to 𝑘 − 1, along the same lines as the above paragraph, we can take 𝜇1, . . . , 𝜇 𝑗−1 ∈ 𝐻 such that
𝑧𝜇0𝜇1 · · ·𝜇 𝑗−1 = (𝑤𝑠 , 𝑤𝑠−1, . . . , 𝑤1, 𝑤0; 𝑊) with 𝑤0 = 𝑧 𝑗 , 𝑤1 = 𝑧 𝑗+1 and

𝑇 (𝑧𝜇0𝜇1 · · ·𝜇 𝑗−1 ) = · · · = 𝑇 (𝑧𝜇0𝜇1 ) = 𝑇 (𝑧𝜇0 ) = 𝑇 (𝑧).

Let 𝑤 = 𝑧𝜇0𝜇1 · · ·𝜇 𝑗−1 and 𝑦 = 𝑤𝜎𝑠𝜌(0,𝑤0 ) 𝜎
−𝑠

. Since 𝑤0 = 𝑧 𝑗 ≠ 𝑘 − 1 and 𝑤1 = 𝑧 𝑗+1 = 𝑘 − 1, it follows
from (10) that

𝑦 = (𝑤𝑠 , 𝑤𝑠−1, . . . , 𝑤1, 𝑤0; 𝑊)𝜎𝑠𝜌(0,𝑤0 ) 𝜎
−𝑠

= (𝑤𝑠 , . . . , 𝑤2, 𝑘 − 1, 0; 𝑊)

and 𝑇 (𝑦) = 𝑇 (𝑤). This together with 𝜎−ℓ𝜇0𝜇1 · · · 𝜇 𝑗−1𝜎𝑠𝜌 (0,𝑤0)𝜎
−𝑠 ∈ 𝐻 and 𝑇 (𝑥) ≥ 𝑇 (𝑧) = 𝑇 (𝑤)

completes the proof. �

Lemma 4.3. If 𝑇 (𝑥) = 𝑠 + 1, then 𝑥𝐻 contains an integer less than x.

Proof. Since 𝑥𝑖 = 𝑘 − 1 for every 𝑖 ∈ [𝑠 + 1], we have

𝑥 = (𝑘 − 1) (𝑘𝑠 + · · · + 𝑘 + 1)𝑡 + 𝑋 = (𝑘𝑠+1 − 1)𝑡 + 𝑋 = 𝑘𝑠+1𝑡 − (𝑡 − 𝑋).
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Observe that (6) implies

𝑥𝜎𝑠+1
= 𝑘𝑠+1𝑋 + (𝑘 − 1)

𝑠∑
𝑖=0

𝑘 𝑖 = 𝑘𝑠+1(𝑋 + 1) − 1.

Since 𝑥 = 𝑘𝑠+1𝑡 − (𝑡 − 𝑋) = 𝑘𝑛 − (𝑡 − 𝑋) < 𝑘𝑛 − 1, it follows that 𝑋 < 𝑡 − 1, and so,

𝑥 − 𝑥𝜎𝑠+1
= 𝑘𝑠+1𝑡 − (𝑡 − 𝑋) − 𝑘𝑠+1 (𝑋 + 1) + 1 = (𝑘𝑠+1 − 1) (𝑡 − 𝑋 − 1) > 0.

Thus, 𝑥 > 𝑥𝜎𝑠+1 . �

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Recall our notation that 𝑛 = 𝑘𝑠𝑡 with 𝑠 ≥ 0, 𝑡 > 1 and 𝑘 � 𝑡, and H is the
subgroup of 𝐺𝑘,𝑘𝑛 generated by 𝜎 and 𝜌𝜏 for all 𝜏 ∈ Sym([𝑘 −1]). Then H is contained in the stabiliser
of 𝑘𝑛 − 1 in 𝐺𝑘,𝑘𝑛. Since 𝐺𝑘,𝑘𝑛 is transitive, it is 2-transitive if H is transitive on [𝑘𝑛 − 1]. Thus, it
suffices to prove that [𝑘𝑛 − 1] ⊆ 0𝐻 . Let

𝑥 = (𝑥𝑠 , 𝑥𝑠−1, . . . , 𝑥1, 𝑥0; 𝑋) ∈ [𝑘𝑛 − 1],

where 𝑋 ∈ [𝑡] and 𝑥𝑖 ∈ [𝑘] for 𝑖 ∈ [𝑠 + 1]. Recall that 𝑇 (𝑥) = |{𝑖 ∈ [𝑠 + 1] | 𝑥𝑖 = 𝑘 − 1}|. We show
𝑥 ∈ 0𝐻 for all 𝑥 ∈ [𝑘𝑛 − 1] by induction on 𝑇 (𝑥). The base case 𝑇 (𝑥) = 0 has been confirmed by
Lemma 4.1. Now let 𝑇 (𝑥) ≥ 1 and suppose that 𝑦 ∈ 0𝐻 for all 𝑦 ∈ [𝑘𝑛 − 1] with 𝑇 (𝑦) < 𝑇 (𝑥). We will
complete the proof by constructing 𝑦 ∈ 𝑥𝐻 such that 𝑇 (𝑦) < 𝑇 (𝑥).

If 𝑇 (𝑥) = 𝑠 + 1, then since x is finite, we derive by using Lemma 4.3 repeatedly that there exists
𝑦 ∈ 𝑥𝐻 with 𝑇 (𝑦) < 𝑇 (𝑥). In the following, we assume that 1 ≤ 𝑇 (𝑥) < 𝑠 + 1. By Lemma 4.2, we can
further assume 𝑥 = (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋). The proof proceeds in two cases.

Case 1: [𝑡]0
𝑘 ≠ 𝑘 − 1.

Let 𝑧 = (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑍), where 𝑍 = 𝑋 + 1− [𝑋 + 1]0
𝑘 ≡ 0 (mod 𝑘). We first show in the next

paragraph that 𝑧 ∈ 𝑥𝐻 .
If [𝑋]0

𝑘 ≠ 𝑘 − 1, then letting 𝜏 = (0, [𝑋]0
𝑘 ), we have

𝑥𝛽𝜏 = (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋 − [𝑋]0
𝑘 ) = (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋 + 1 − [𝑋 + 1]0

𝑘 ) = 𝑧.

Now assume [𝑋]0
𝑘 = 𝑘 − 1. Then [𝑡 + 𝑋]0

𝑘 ≠ 𝑘 − 1 and [𝑡 + 𝑋]0
𝑘 − [𝑡]0

𝑘 = −1. Letting 𝜏 = ([𝑡]0
𝑘 , [𝑡 + 𝑋]0

𝑘 ),
we have

𝑥𝛼𝑠𝛽𝜏𝛼𝑠 = (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋)𝛼𝑠𝛽𝜏𝛼𝑠

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑋)𝛽𝜏𝛼𝑠

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑋 + [𝑡]0
𝑘 − [𝑡 + 𝑋]0

𝑘 )
𝛼𝑠

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋 + 1)
= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋 + 1 − [𝑋 + 1]0

𝑘 )
= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑍).

Therefore, 𝑧 = (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑍) ∈ 𝑥𝐻 .
In view of (8), we obtain that

𝑧𝜎
−2

= (0, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1; 𝑍/𝑘)𝜎−1
= ([(𝑘 − 1)𝑡 + 𝑍/𝑘]0

𝑘 , 0, 𝑥𝑠 , . . . , 𝑥2; [(𝑘 − 1)𝑡 + 𝑍/𝑘]1
𝑘 )
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and that, with 𝑊 := (𝑘 − 1)𝑡 + (𝑍 + 𝑡 − [𝑡]0
𝑘 )/𝑘 ,

𝑧𝛼𝑠𝜎
−2

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑍)𝜎−2

=

(
[𝑡]0

𝑘 , 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1;
𝑍 + 𝑡 − [𝑡]0

𝑘

𝑘

)𝜎−1

=
(
[𝑊]0

𝑘 , [𝑡]0
𝑘 , 𝑥𝑠 , . . . , 𝑥2; [𝑊]1

𝑘

)
.

If [(𝑘 − 1)𝑡 + 𝑍/𝑘]0
𝑘 ≠ 𝑘 − 1 or [𝑊]0

𝑘 ≠ 𝑘 − 1, then taking 𝑦 = 𝑧𝜎
−2 or 𝑦 = 𝑧𝛼𝑠𝜎

−2 , respectively, we have
𝑦 ∈ 𝑧𝐻 = 𝑥𝐻 and 𝑇 (𝑦) = 𝑇 (𝑥)−1 < 𝑇 (𝑥). This completes the proof for the case [(𝑘−1)𝑡+𝑍/𝑘]0

𝑘 ≠ 𝑘−1
or [𝑊]0

𝑘 ≠ 𝑘 − 1.
Next assume [(𝑘 − 1)𝑡 + 𝑍/𝑘]0

𝑘 = 𝑘 − 1 = [𝑊]0
𝑘 , or equivalently, 𝑡 − 1 ≡ 𝑍/𝑘 (mod 𝑘) and

(𝑡 − [𝑡]0
𝑘 )/𝑘 ≡ 0 (mod 𝑘). If 𝑍/𝑘 = 1, then [𝑡]0

𝑘 = 2, which together with the assumption of Case 1
implies that 𝑘 > 3, and hence, 𝛽(0,2) ∈ 𝐻. Thus, taking

𝑦 = 𝑧𝛼𝑠𝛽(0,2) 𝛼𝑠𝜎
−2

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑘)𝛽(0,2) 𝛼𝑠𝜎
−2

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑘 − 2)𝛼𝑠𝜎
−2

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑘 − 2)𝜎−2

= (𝑘 − 2, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1; 0)𝜎−1

= (𝑘 − 2, 𝑘 − 2, 𝑥𝑠 , . . . , 𝑥2; [(𝑘 − 1)𝑡]1
𝑘 ),

we have 𝑦 ∈ 𝑧𝐻 = 𝑥𝐻 and 𝑇 (𝑦) = 𝑇 (𝑥) − 1 < 𝑇 (𝑥), as desired. Similarly, if 𝑍/𝑘 ≥ 2, then as
[𝑡 + 𝑍]0

𝑘 = [𝑡]0
𝑘 ∉ {0, 𝑘 − 1}, taking 𝜏 = ([𝑡]0

𝑘 , [𝑡]0
𝑘 − 1), 𝜇 = (𝑘 − 2, 𝑘 − 3) and

𝑦 = 𝑧𝛼𝑠𝛽𝜏𝛼𝑠𝜎
−1𝛽𝜇𝜎𝛼𝑠𝜎

−2

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑍 − 1)𝜎−1𝛽𝜇𝜎𝛼𝑠𝜎
−2

= (𝑘 − 1, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1; 𝑍/𝑘 − 1)𝛽𝜇𝜎𝛼𝑠𝜎
−2

= (𝑘 − 1, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1; 𝑍/𝑘 − 2)𝜎𝛼𝑠𝜎
−2

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑍 − 𝑘 − 1)𝜎−2

=

(
[𝑡 − 1]0

𝑘 , 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1;
𝑍 + 𝑡 − [𝑡]0

𝑘

𝑘
− 1

)𝜎−1

= ([𝑊 − 1]0
𝑘 , [𝑡 − 1]0

𝑘 , 𝑥𝑠 , . . . , 𝑥2; [𝑊 − 1]1
𝑘 )

= (𝑘 − 2, [𝑡 − 1]0
𝑘 , 𝑥𝑠 , . . . , 𝑥2; [𝑊 − 1]1

𝑘 ),

we have 𝑦 ∈ 𝑧𝐻 = 𝑥𝐻 and 𝑇 (𝑦) = 𝑇 (𝑥)−1 < 𝑇 (𝑥), as desired. If 𝑍 = 0, then [𝑡]0
𝑘 = 1, which implies that

𝑧𝛼𝑠𝛽(0,1) = (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 0)𝛽(0,1) = (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑡 − 1),

and then the previous two sentences show that there exists 𝑦 ∈ (𝑧𝛼𝑠𝛽(0,1) )𝐻 = 𝑥𝐻 with 𝑇 (𝑦) < 𝑇 (𝑥).
Case 2: [𝑡]0

𝑘 = 𝑘 − 1.
Recall that 𝑥 = (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋). Let

𝑢 = (0, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1;𝑈) and 𝑣 = (0, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1;𝑉),

where 𝑈 = (𝑋 − [𝑋]0
𝑘 )/𝑘 and 𝑉 = (𝑡 + 𝑋 + 1 − [𝑋]0

𝑘 )/𝑘 . We first show that 𝑢, 𝑣 ∈ 𝑥𝐻 .
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If [𝑋]0
𝑘 = 𝑘 − 1, then [𝑡 + 𝑋]0

𝑘 = 𝑘 − 2, and it follows that

𝑥𝛼𝑠𝛽(𝑘−2,𝑘−3) 𝛼𝑠𝛽(0,𝑘−2) 𝜎
−1

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑋)𝛽(𝑘−2,𝑘−3) 𝛼𝑠𝛽(0,𝑘−2) 𝜎
−1

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑋 − 1)𝛼𝑠𝛽(0,𝑘−2) 𝜎
−1

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋 − 1)𝛽(0,𝑘−2) 𝜎
−1

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋 − 𝑘 + 1)𝜎−1

= (0, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1;𝑈)
= 𝑢.

If [𝑋]0
𝑘 ≠ 𝑘 − 1, then letting 𝜏 = (0, [𝑋]0

𝑘 ), we have

𝑥𝛽𝜏𝜎
−1

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋 − [𝑋]0
𝑘 )

𝜎−1
= 𝑢.

Hence, it always holds that 𝑢 ∈ 𝑥𝐻 . If [𝑡 + 𝑋]0
𝑘 = 𝑘 − 1, then [𝑋]0

𝑘 = 0, and thus,

𝑥𝛽(0,1) 𝛼𝑠𝜎
−1

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋 + 1)𝛼𝑠𝜎
−1

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑋 + 1)𝜎−1
= (0, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1;𝑉) = 𝑣.

If [𝑡 + 𝑋]0
𝑘 ≠ 𝑘 − 1, then as [𝑡 + 𝑋]0

𝑘 = [𝑋]0
𝑘 − 1, we obtain by taking 𝜏 = (0, [𝑡 + 𝑋]0

𝑘 ) that

𝑥𝛼𝑠𝛽𝜏𝜎
−1

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑋)𝛽𝜏𝜎
−1

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑋 − [𝑡 + 𝑋]0
𝑘 )

𝜎−1
= (0, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1;𝑉) = 𝑣.

Therefore, 𝑣 ∈ 𝑥𝐻 always holds as well.
Now we have proved 𝑢, 𝑣 ∈ 𝑥𝐻 . If [(𝑘 − 1)𝑡 +𝑈]0

𝑘 ≠ 𝑘 − 1, then since

𝑢𝜎−1
= ([(𝑘 − 1)𝑡 +𝑈]0

𝑘 , 0, 𝑥𝑠 , . . . , 𝑥2; [(𝑘 − 1)𝑡 +𝑈]1
𝑘 ),

it follows that 𝑢𝜎−1 ∈ 𝑥𝐻 with 𝑇 (𝑢𝜎−1) = 𝑇 (𝑥) − 1 < 𝑇 (𝑥). Similarly, if [(𝑘 − 1)𝑡 + 𝑉]0
𝑘 ≠ 𝑘 − 1, then

𝑣𝜎−1 ∈ 𝑥𝐻 with 𝑇 (𝑣𝜎−1 ) = 𝑇 (𝑥)−1 < 𝑇 (𝑥). This completes the proof for the case [(𝑘−1)𝑡+𝑈]0
𝑘 ≠ 𝑘−1

or [(𝑘 − 1)𝑡 +𝑉]0
𝑘 ≠ 𝑘 − 1.

Next assume [(𝑘 − 1)𝑡 +𝑈]0
𝑘 = 𝑘 − 1 = [(𝑘 − 1)𝑡 +𝑉]0

𝑘 . Since 𝑋 − [𝑋]0
𝑘 ≤ 𝑋 ≤ 𝑡 − 1,

𝑢𝜎𝛼𝑠𝜎
−1

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋 − [𝑋]0
𝑘 )

𝛼𝑠𝜎
−1

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑋 − [𝑋]0
𝑘 )

𝜎−1
= (𝑘 − 1, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1;𝑉 − 1).

Moreover, we deduce from [(𝑘 − 1)𝑡 + 𝑈]0
𝑘 = 𝑘 − 1 that 𝑈 ≥ [𝑈]0

𝑘 = 𝑘 − 2 ≥ 1, which implies 𝑉 ≥ 2
and 0 ≤ 𝑋 − [𝑋]0

𝑘 − 𝑘 ≤ 𝑡 − 1. This combined with [(𝑘 − 1)𝑡 + 𝑈]0
𝑘 = 𝑘 − 1 = [(𝑘 − 1)𝑡 + 𝑉]0

𝑘 yields
that
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𝑢𝜎𝛼𝑠𝜎
−1𝛽(𝑘−2,𝑘−3) 𝜎𝛼𝑠𝜎

−2
= (𝑘 − 1, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1;𝑉 − 1)𝛽(𝑘−2,𝑘−3) 𝜎𝛼𝑠𝜎

−2

= (𝑘 − 1, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1;𝑉 − 2)𝜎𝛼𝑠𝜎
−2

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 1; 𝑋 − [𝑋]0
𝑘 − 𝑘)𝛼𝑠𝜎

−2

= (𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1, 0; 𝑋 − [𝑋]0
𝑘 − 𝑘)𝜎−2

= (0, 𝑥𝑠 , . . . , 𝑥2, 𝑘 − 1;𝑈 − 1)𝜎−1

= (𝑘 − 2, 0, 𝑥𝑠 , . . . , 𝑥2; [(𝑘 − 1)𝑡 +𝑈 − 1]1
𝑘 ).

As a consequence, with 𝑦 := 𝑢𝜎𝛼𝑠𝜎
−1𝛽(𝑘−2,𝑘−3) 𝜎𝛼𝑠𝜎

−2 ∈ 𝑢𝐻 = 𝑥𝐻 , we finally obtain that 𝑇 (𝑦) =
𝑇 (𝑥) − 1 < 𝑇 (𝑥). �

5. Open problems on generalised shuffle groups

Shuffle groups on 𝑘𝑛 cards can be considered in a more general way by restricting the permutations on
the set of k piles to a subgroup of Sym([𝑘]). Precisely, if 𝑃 ≤ Sym([𝑘]) is a group of permutations on
the set of k piles, then we define the generalised shuffle group on 𝑘𝑛 cards with respect to P by

Sh(𝑃, 𝑛) := 〈𝜌𝜏𝜎 | 𝜏 ∈ 𝑃〉 = 〈𝜎, 𝜌𝜏 | 𝜏 ∈ 𝑃〉,

where 𝜎 is the standard shuffle and 𝜌𝜏 is the permutation on 𝑘𝑛 cards induced by the permutation 𝜏 on
the k piles. In particular, Sh(Sym([𝑘]), 𝑛) is exactly the group 𝐺𝑘,𝑘𝑛 studied in this paper. Generalised
shuffle groups are introduced and systematically studied by Amarra, Morgan and Praeger in [1]. Among
several open problems, a conjecture [1, Conjecture 1.10] made by them is that if 𝑘 ≥ 3, n is not a power
of k and (𝑘, 𝑛) ≠ (4, 2 𝑓 ) for any positive integer f, then Sh(𝐶𝑘 , 𝑛) contains 𝐴𝑘𝑛, where 𝐶𝑘 is generated
by the k-cycle (0, 1, . . . , 𝑘 − 1) ∈ Sym([𝑘]).

Note that Sh(𝐶𝑘 , 𝑛) = 〈𝜎, 𝜌 (0,1,...,𝑘−1)𝜎〉. Hence, the above-mentioned conjecture asserts that,
somewhat surprisingly, two shuffles 𝜎 and 𝜌 (0,1,...,𝑘−1)𝜎 are enough to generate 𝐴𝑘𝑛 or 𝑆𝑘𝑛. This
suggests that a ‘best possible’ improvement to Theorem 1.5 would be the determination of Sh(𝐶𝑘 , 𝑛). It
is shown in [1, Theorem 1.4(1)] that if 𝑘𝑛 = 𝑘𝑚, then

Sh(𝑃, 𝑛) = 𝑃 � 𝐶𝑚 (11)

for any 𝑃 ≤ Sym([𝑘]). If 𝑘 = 4 and 𝑘𝑛 = 2𝑚 with m odd, then similarly to the proof of [7, Theorem
2.6], we derive that

Sh(𝐶𝑘 , 𝑛) = AGL(𝑚, 2). (12)

According to [13, Lemma 2], the standard shuffle 𝜎 is an even permutation if and only if

𝑘 (𝑘 − 1)
2

· 𝑛(𝑛 − 1)
2

≡ 0 (mod 2). (13)

Observing that 𝜌 (0,1,...,𝑘−1) is a product of n cycles of length k, we obtain that 𝜌 (0,1,...,𝑘−1) is even if and
only if (𝑘 − 1)𝑛 is even. Hence, Sh(𝐶𝑘 , 𝑛) ≤ 𝐴𝑘𝑛 if and only if

𝑘 (𝑘 − 1)
2

· 𝑛(𝑛 − 1)
2

≡ (𝑘 − 1)𝑛 ≡ 0 (mod 2).

This together with (11) and (12) indicates that [1, Conjecture 1.10] is essentially the following conjectural
classification of Sh(𝐶𝑘 , 𝑛) for all 𝑘 ≥ 3 and 𝑛 ≥ 1.
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Conjecture 5.1. If 𝑘 ≥ 3 and 𝐶𝑘 = 〈(0, 1, . . . , 𝑘 − 1)〉 ≤ Sym([𝑘]), then the following hold:

(a) If 𝑘𝑛 = 𝑘𝑚, then Sh(𝐶𝑘 , 𝑛) is the primitive wreath product 𝐶𝑘 � 𝐶𝑚.
(b) If 𝑘 = 4 and 𝑘𝑛 = 2𝑚 with m odd, then Sh(𝐶𝑘 , 𝑛) is the affine group AGL(𝑚, 2).
(c) If n is not a power of k and either 𝑘 (𝑘 − 1)𝑛(𝑛 − 1)/4 or (𝑘 − 1)𝑛 is odd, then Sh(𝐶𝑘 , 𝑛) = 𝑆𝑘𝑛.
(d) In all other cases, Sh(𝐶𝑘 , 𝑛) = 𝐴𝑘𝑛.

A choice of P to make Sh(𝑃, 𝑛) close to 𝐺𝑘,𝑘𝑛 is 𝑃 = 𝐴𝑘 . For the case 𝑘𝑛 = 𝑘𝑚, it is already
known (see (11)) that Sh(𝐴𝑘 , 𝑛) = 𝐴𝑘 � 𝐶𝑚. Moreover, since 𝜌𝜏 is even for each 𝜏 ∈ 𝐴𝑘 , the parity of
𝜎 implies that Sh(𝐴𝑘 , 𝑛) ≤ 𝐴𝑘𝑛 if and only if (13) holds. Therefore, we pose the following conjectural
classification of Sh(𝐴𝑘 , 𝑛) for all 𝑘 ≥ 3 and 𝑛 ≥ 1.

Conjecture 5.2. If 𝑘 ≥ 3, then the following hold:

(a) If 𝑘𝑛 = 𝑘𝑚, then Sh(𝐴𝑘 , 𝑛) is the primitive wreath product 𝐴𝑘 � 𝐶𝑚.
(b) If 𝑘 = 4 and 𝑘𝑛 = 2𝑚 with m odd, then Sh(𝐴𝑘 , 𝑛) is the affine group AGL(𝑚, 2).
(c) If n is not a power of k and 𝑘 (𝑘 − 1)𝑛(𝑛 − 1)/4 is odd, then Sh(𝐴𝑘 , 𝑛) = 𝑆𝑘𝑛.
(d) In all other cases, Sh(𝐴𝑘 , 𝑛) = 𝐴𝑘𝑛.

Proving this conjecture should be easier than proving Conjecture 5.1. For one reason, if k is odd,
then Sh(𝐶𝑘 , 𝑛) ≤ Sh(𝐴𝑘 , 𝑛), and so the conclusion of Conjecture 5.2 is weaker in this case. For another
reason, Conjecture 5.2 is closer to our Theorem 1.5 in the sense that the size of P is only reduced by half
from 𝑃 = 𝑆𝑘 to 𝑃 = 𝐴𝑘 . Thus, some ideas in the proof of Theorem 1.5 also apply to Conjecture 5.2. For
example, 𝜌 (0,1,2) ∈ Sh(𝐴𝑘 , 𝑛) has fixed point ratio (𝑘 − 3)/𝑘 , which is at least 1/2 when 𝑘 ≥ 6. In this
way, a parallel result to Theorem 1.3 might still be established by the approach of this paper with an ad
hoc treatment for 𝑘 ∈ {3, 4, 5}. However, we anticipate more work to be done to prove the 2-transitivity
of Sh(𝐴𝑘 , 𝑛).

As a contrast to 𝑃 = 𝐶𝑘 or 𝐴𝑘 , the choice 𝑃 = 〈Rev(𝑘)〉 from [13, Page 6], where Rev(𝑘) is the
permutation on [𝑘] sending i to 𝑘 − 1 − 𝑖, will make Sh(𝑃, 𝑛) never equal to 𝐺𝑘,𝑘𝑛. In fact, denoting

𝑅𝑘,𝑘𝑛 = Sh(〈Rev(𝑘)〉, 𝑛)

and 𝐵𝑖 = {𝑖, 𝑘𝑛−1−𝑖} (can be a singleton if 𝑖 = 𝑘𝑛−𝑖−1) for 𝑖 ∈ {0, 1, . . . , 
(𝑘𝑛−1)/2�}, we can verify di-
rectly that 𝑅𝑘,𝑘𝑛 preserves the set {𝐵0, 𝐵1, . . . , 𝐵 
 (𝑘𝑛−1)/2� }. If 𝑘𝑛 is even, then {𝐵0, 𝐵1, . . . , 𝐵 
 (𝑘𝑛−1)/2� }
is a block system of 𝑅𝑘,𝑘𝑛, and so 𝑅𝑘,𝑘𝑛 ≤ 𝐶2 � 𝑆𝑘𝑛/2 is imprimitive. If 𝑘𝑛 is odd, then 𝑅𝑘,𝑘𝑛 fixes the
((𝑘𝑛 − 1)/2)-th card and preserves the partition {𝐵0, 𝐵1, . . . , 𝐵 
 (𝑘𝑛−1)/2�−1} of the rest 𝑘𝑛 − 1 cards,
which implies that 𝑅𝑘,𝑘𝑛 is intransitive with 𝑅𝑘,𝑘𝑛 ≤ 𝐶2 � 𝑆 (𝑘𝑛−1)/2. We have the following conjecture
based on computation results.

Conjecture 5.3. Let 𝑘 ≥ 2, 𝑛 ≥ 2 and 𝑅𝑘,𝑘𝑛 = Sh(〈Rev(𝑘)〉, 𝑛). Suppose that 𝑘𝑛 is even and
(𝑘, 𝑛) ≠ (ℓ𝑒, ℓ 𝑓 ) for any positive integers ℓ, e and f. Then the following hold:

(a) If (𝑘, 𝑛) = (2, 6) or (6, 2), then 𝑅𝑘,𝑘𝑛 = 𝐶6
2 � PGL(2, 5).

(b) If (𝑘, 𝑛) = (3, 4), then 𝑅𝑘,𝑘𝑛 = 𝐴5.
(c) If (𝑘, 𝑛) = (4, 3), then 𝑅𝑘,𝑘𝑛 = 𝐶2 × 𝐴5.
(d) If 𝑘𝑛 = 24, then 𝑅𝑘,𝑘𝑛 = 𝐶11

2 � 𝑀12.
(e) If 𝑘𝑛 ≠ 12, 𝑘 ≡ 2 or 3 (mod 4) and 𝑛 ≡ 2 (mod 4), then 𝑅𝑘,𝑘𝑛 = 𝐶2 � 𝑆𝑘𝑛/2.
(f) If 𝑘 ≡ 2 (mod 4) and 𝑛 ≡ 1 (mod 4), then 𝑅𝑘,𝑘𝑛 = 𝐶𝑘𝑛/2

2 � 𝐴𝑘𝑛/2.
(g) If 𝑘 ≡ 2 (mod 4) and 𝑛 ≡ 3 (mod 4), then 𝑅𝑘,𝑘𝑛 = 𝐶 (𝑘𝑛−2)/2

2 � 𝑆𝑘𝑛/2.
(h) Otherwise, 𝑅𝑘,𝑘𝑛 = 𝐶 (𝑘𝑛−2)/2

2 � 𝐴𝑘𝑛/2.

Remark. Statements (a)–(d) have been verified by computation in Magma [3], and we include them in
Conjecture 5.3 for completeness. In fact, statement (d) is already mentioned in [13]. The reason why
we assume 𝑘𝑛 even and (𝑘, 𝑛) ≠ (ℓ𝑒, ℓ 𝑓 ) is that we have not yet identified the patterns of 𝑅𝑘,𝑘𝑛 if 𝑘𝑛
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is odd or (𝑘, 𝑛) = (ℓ𝑒, ℓ 𝑓 ) for some positive integers ℓ, e and f. However, we do have some interesting
observations in special cases. For example, for (𝑘, 𝑛) = (ℓ𝑒, ℓ 𝑓 ) with gcd(𝑒, 𝑓 ) = 1, it seems that

𝑅𝑘,𝑘𝑛 =

{
𝐶

𝑒+ 𝑓 −1
2 � 𝐶𝑒+ 𝑓 if 𝑒 ≡ 𝑓 + 1 ≡ 0 (mod 2)

𝐶2 � 𝐶𝑒+ 𝑓 otherwise.
(14)

This would be a generalisation of [1, Theorem 1.4(1)], as the latter can be obtained from (14) by taking
𝑒 = 1.

Finally, we would like to pose the following more challenging question.

Question 5.4. Given 𝑘 ≥ 3 and 𝑛 ≥ 1 such that n is not a power of k and (𝑘, 𝑛) ≠ (4, 2 𝑓 ) for any odd
integer f, for what 𝜃 ∈ Sym([𝑘]) does 〈𝜎, 𝜌𝜃𝜎〉 = Sh(〈𝜃〉, 𝑛) contain 𝐴𝑘𝑛?

Note that a complete answer to Question 5.4 would in particular solve Conjectures 5.1 and 5.3.
Another interesting consequence would be the proportion

{𝜃 ∈ Sym([𝑘]) | Sh(〈𝜃〉, 𝑛) contains 𝐴𝑘𝑛}
𝑘!

of valid permutations 𝜃 in Sym([𝑘]) for a pair (𝑘, 𝑛), especially when k and n are large. Our computation
results suggest that this proportion is at least (for most cases much larger than) 1/6.
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