
Nagoya Math. J. 212 (2013), 159–195
DOI 10.1215/00277630-2366201

TRIANGULATION OF THE MAP OF A G-MANIFOLD
TO ITS ORBIT SPACE

MITSUTAKA MURAYAMA and MASAHIRO SHIOTA

Abstract. Let G be a Lie group, and let M be a smooth proper G-manifold.
Let M/G denote the orbit space, and let π :M →M/G be the natural map.

It is known that M/G is homeomorphic to a polyhedron. In the present paper

we show that there exist a piecewise linear (PL) manifold P , a polyhedron L,

and homeomorphisms τ : P →M and σ :M/G→ L such that σ ◦ π ◦ τ is PL.

This is an application of the theory of subanalytic sets and subanalytic maps of

Shiota. If M and the G-action are, moreover, subanalytic, then we can choose
τ and σ subanalytic and P and L unique up to PL homeomorphisms.

§1. Introduction

Let G be a Lie group, which we regard as of analytic class. A Ck G-

manifold M (k = 1, . . . ,∞, ω) is a Ck manifold with an action of G on M

such that the map G × M � (g,x) → gx ∈ M is of class Ck. A manifold

means a paracompact manifold without boundary, although our arguments

are also valid in the case of paracompact manifolds with boundary. A Ck

G-manifold M is called proper if the map G×M � (g,x)→ (x, gx) ∈M2 is

proper. Let M/G denote the orbit space {Gx | x ∈M} equipped with the

quotient topology, and let π :M →M/G be the natural map. A triangu-

lation of a topological space X is a pair consisting of a polyhedron P and

a homeomorphism τ : P →X . We also call the homeomorphism τ : P →X

a triangulation of X . A triangulation of a C0 map between topological

spaces φ :X → Y is a pair consisting of triangulations τX : PX →X of X

and τY : PY → Y of Y such that the map τ−1
Y ◦ φ ◦ τX : PX → PY is piece-

wise linear (PL) (in the sense that there are simplicial decompositions KX

of PX and KY of PY such that τ−1
Y ◦ φ ◦ τX :KX →KY is simplicial). A

Ck triangulation of a Ck manifold possibly with corners N is a triangula-

tion τ : P →N of N such that for some simplicial decomposition K of P ,
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the restriction of τ to each simplex in K is a Ck diffeomorphism onto its

image. There always exists a Ck triangulation of N , and the polyhedron P

is a PL manifold possibly with boundary and unique up to PL homeomor-

phisms, which is known as the Cairns–Whitehead theorem (this theorem is

the object of the main theorem in [11]). The uniqueness is important for us.

We naturally define a Ck triangulation of a Ck map between Ck manifolds

possibly with corners and can extend, by the arguments in [15], the Cairns–

Whitehead theorem to a theorem which states that, given a Ck submersion

φ :X → Y between Ck manifolds, possibly with corners such that φ carries

each face of X to some face of Y and a Ck triangulation τY : PY → Y , we

can lift τY to a Ck triangulation τX : PX →X in a weak sense that there is a

simplicial decomposition KX of PX such that the restriction of τ−1
Y ◦φ ◦ τX

to each simplex in KX is linear. We call (τX : PX →X,τY : PY → Y ) a Ck

triangulation of φ :X → Y in the weak sense, and we call τX : PX →X a

lift in the weak sense of τX : PY → Y . If φ is, moreover, a Ck fiber bun-

dle, that is, if each point of Y has a neighborhood U in Y such that the

map φ|φ−1(U) : φ
−1(U)→ U is Ck trivial and the fibers φ−1(y) and φ−1(y′)

are Ck diffeomorphic for any points y, y′ ∈ Y , we can choose the triangu-

lation τX : PX →X so that τ−1
Y ◦ φ ◦ τX is PL (see [15, Lemma 1]). Then

we call τX : PX →X a lift of τX : PY → Y . We call this generalization the

Cairns–Whitehead theorem.

Triangulations (not just triangulability) of orbit spaces are studied by

many people (e.g., Matumoto and Shiota [8], [9], Verona [17], and Yang [19]).

In the present paper, we show a triangulation of the map π :M →M/G.

Theorem 1.1. Let G be a Lie group, and let M be a proper Ck G-

manifold, k = 1, . . . ,∞, ω. Then there exists a triangulation (τ : P →M,σ :

L→M/G) of the map π :M →M/G such that P is the PL manifold of a Ck

triangulation of M . Moreover, if M is a subanalytic Ck G-manifold, then

we can choose the triangulations τ : P →M and σ : L→M/G subanalytic,

and P and L are unique up to PL homeomorphisms.

It is not difficult to prove Theorem 1.1 locally. To be precise, each point of

M/G has a neighborhood U such that the restriction π|π−1(U) : π
−1(U)→ U

is triangulable. The problem is how to paste local triangulations, and we

need to find local triangulations so that we can paste them. Let U1 and

U2 be open subsets of M/G such that there are triangulations (τi : Pi →
π−1(Ui), σi : Li → Ui) of the maps π|π−1(Ui) : π

−1(Ui) → Ui, i = 1,2. Set

U = U1 ∪ U2. Then we need to find a triangulation of the map π|π−1(U) :
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π−1(U) → U . For that we will choose the two triangulations so that the

polyhedra τ−1
1 (π−1(x)) and τ−1

2 (π−1(x)) are PL homeomorphic for each

x ∈ U1 ∩U2; that is, the two triangulations of each π−1(x) are unique up to

PL homeomorphisms. This is a natural minimum requirement for pasting

of two triangulations. Let us consider the problem more generally.

Problem 0. Let φ :X → Y be a C0 map between topological spaces in

Euclidean spaces. Assume that each point of Y has a neighborhood U such

that the restriction φ|φ−1(U) : φ
−1(U)→ U is triangulable. Is φ triangulable?

Thom [16] conjectured that the problem is correct if φ is proper and

satisfies a condition, and the second author solved the conjecture (see [15,

Theorem]). Roughly speaking, the condition says that when a point y moves

in Y , the fiber φ−1(y) does not explode, and if X and Y are complex

nonsingular algebraic varieties and φ is a morphism, then the condition is

related to the condition that φ is flat. Thom called φ satisfying the condition

une application sans éclatement, and we call it a Thom map. We will prove

that the map π :M →M/G is a Thom map. However, π is not necessarily

proper, and a nonproper Thom map is not necessarily triangulable. Hence,

for the proof of Theorem 1.1, it is not sufficient that we regard π as a general

Thom map. We use the condition of subanalyticity on π. Indeed, if π is a

subanalytic Thom map, then we can prove Theorem 1.1. Thus, we will first

give subanalytic structures to the sets M,M/G and the map π :M →M/G,

and we will then prove Theorem 1.1.

Before giving subanalytic structures, we reduce Theorem 1.1 to the case

where the manifolds G and M satisfy the second countability axiom; that

is, they can be embedded in some Euclidean spaces because a subanalytic

set is a subset of a Euclidean space. Choose a family {Mα}α∈A of connected

components of M so that M is the disjoint union of GMα, α ∈ A, and set

Gα = {g ∈G | gMα =Mα}. Then each Gα is a second-countable Lie group,

and each Mα is a second-countable Ck Gα-manifold (see [5, Remark 2]).

Define the natural map πα :Mα →Mα/Gα. Then the family {Mα/Gα}α∈A
is the connected components of M/G. Hence, we can assume that A is a

singleton, that is, that M/G=Mα/Gα. Moreover, we reduce Theorem 1.1

to the case M =Mα as follows.

Suppose that Theorem 1.1 is proved for Mα and Gα, and let (τα : Pα →
Mα, σα : Lα →Mα/Gα) be a resulting triangulation of the map πα :Mα →
Mα/Gα. We need to extend the triangulation τα : Pα →Mα to a triangula-

tion τ : P →M . For this it suffices to define a triangulation τ0 : P0 →M0
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of a connected component M0 of M so that the map σ−1
α ◦ π ◦ τ0 is PL.

Choose an element g0 of G so that g0Mα =M0, set P0 = Pα, and define τ0
by τ0(x) = g0τα(x) for x ∈ P0. Then the map τ0 : P0 →M0 is a triangulation

of M0, and the map σ−1
α ◦ π ◦ τ0 is PL, because

σ−1
α ◦ π ◦ τ0(x) = σ−1

α ◦ π
(
g0τα(x)

)
= σ−1

α ◦ πα ◦ τα(x) for x ∈ P0.

The additional condition in Theorem 1.1 that P is the PL manifold of a

Ck triangulation of M is obvious by the above arguments. Thus, we assume

that the second countability axiom is satisfied.

We can give an analytic G-manifold structure to M and embed M/G

into some Euclidean space Rn so that the map π :M →Rn is analytic, as

we will see. However, we cannot give an analytic manifold structure or an

analytic set structure to M/G. Hence, we cannot use theories of analytic

sets and analytic maps. We proceed in the category of subanalytic sets and

maps instead. A subanalytic set is a subset of a Euclidean space Rn of

the form
⋃

i(Imfi1 − Imfi2), where fij are a finite number of proper real

analytic maps from real analytic manifolds into Rn, and a subanalytic map

is a continuous map between subanalytic sets with subanalytic graph.

It is known that a subanalytic set closed in the ambient Euclidean space is

subanalytically homeomorphic to a polyhedron (van der Waerden–Giesecke–

�Lojasiewicz; see [7, Theorem 1]). However, a subanalytic map between sub-

analytic sets closed in the ambient Euclidean spaces is not necessarily tri-

angulable. For example, a blowing-up R2 � (x, y)→ (x,xy) ∈R2 is not tri-

angulable, which is une application avec éclatement. In [14, Chapter IV],

the second author considered when subanalytic maps are triangulable. An

open problem is problem 0 for a subanalytic map. Problem 0 in the suban-

alytic case looks true because a subanalytic triangulation of a subanalytic

set is unique up to PL homeomorphisms (the subanalytic Hauptvermutung

[14, Corollary III.1.4]), and hence, a subanalytic triangulation of the set

φ−1(y) is unique for φ and each y ∈ Y in problem 0. On the other hand, a

triangulation of a triangulable topological set is not unique (failure of the

Hauptvermutung found by Milnor in [10, Theorem 1.2]), and hence, prob-

lem 0 may be false. By these facts, we give subanalytic structures to the

sets M,M/G and the map π :M →M/G to prove Theorem 1.1. We use a

theory of subanalytic sets and subanalytic maps, which is close to a theory

of o-minimal structures in model theory (see [14]). We also use the Cairns–

Whitehead theorem since a Ck triangulation of a Ck manifold possibly with

corners is unique.
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We will prove the following statements in order. First, the manifold M

in Theorem 1.1 is equivariantly Ck diffeomorphic to a subanalytic analytic

G-manifold M1 (see Lemma 3.1). Next, M1/G is embedded in a Euclidean

space so that its image is subanalytic and closed and the natural map π1 :

M1 →M1/G is subanalytic with respect to the subanalytic structure on the

image (the proof of Lemma 3.2). Lastly, the map π1 :M1 →M1/G admits a

subanalytic triangulation (τ1 : P1 →M1, σ1 : L1 →M1/G). Assume that we

have proved these. Then P1 and L1 are unique up to PL homeomorphisms by

the subanalytic Hauptvermutung, the latter half of Theorem 1.1 is proved,

and there is a PL homeomorphism τ2 from P1 to some polyhedron P2 such

that the map τ1 ◦ τ−1
2 : P2 →M1 is a subanalytic Ck triangulation of M1 by

the subanalytic Hauptvermutung and the Cairns–Whitehead theorem ((12)

in Section 2). Thus, the former half of Theorem 1.1 is proved.

We do not know whether the triangulation map σ−1 ◦ π ◦ τ : P → L is

unique in the latter half of Theorem 1.1, that is, whether for another sub-

analytic triangulation (τ ′ : P ′ → M,σ′ : L′ → M/G) of π, there exist PL

homeomorphisms φ : P → P ′ and ψ : L → L′ such that ψ ◦ σ−1 ◦ π ◦ τ =

σ′−1 ◦ π ◦ τ ′ ◦φ. Another open problem is whether we can choose a triangu-

lation (τ : P →M,σ : L→M/G) of π so that for each element g of G, the

action P � x→ τ−1(gτ(x)) ∈ P is PL.

Theorem 1.1 remains true in the case where M is a proper Ck G-manifold

with boundary as follows. Naturally, we give a proper Ck G-manifold struc-

ture to the doubleDM ofM , and we consider the pair ofDM and ∂M . Then

it suffices to generalize Theorem 1.1 to the following form. In Theorem 1.1,

let M ′ be a proper Ck G-submanifold of M , and assume that M ′ is closed
in M . Then we can choose the triangulation (τ : P →M,σ : L→M/G) so

that τ−1(M ′) is a subpolyhedron of P . This is clear by the accompanying

proof.

§2. Subanalytic sets and Whitney stratifications

Note that a subanalytic set is always embedded in some Euclidean space,

and hence we regard two subanalytic sets as distinct if they are subanalyt-

ically homeomorphic but different from each other as subsets of Euclidean

spaces. Examples of a subanalytic set and a subanalytic map are a polyhe-

dron included in a Euclidean space as a closed subset and a PL map between

such polyhedra, respectively. Note that an analytic submanifold of Rn and

an analytic map between subanalytic analytic submanifolds of Rn are not
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necessarily subanalytic; for example, the set {(x, y) ∈R2 | x 	= 0, y = sin1/x}
is an analytic submanifold of R2 but not subanalytic because a subanalytic

set does not infinitely oscillate around a point. A sufficient condition for

them to be subanalytic is that the submanifolds are included in Euclidean

spaces as closed subsets. We call this sufficient condition the closed condi-

tion. A subset X of Rn is subanalytic if and only if X is subanalytic locally

at each point of Rn, but X is analytic if and only if X is analytic locally at

each point of X . It is known that a Ck manifold admits an analytic manifold

structure (see [18, Theorem 1]), and that an analytic manifold N is analyt-

ically embedded in a Euclidean space (see [3, Theorem 2]). Moreover, we

can choose the embedding proper because any C0 function on N is approxi-

mated by an analytic function in the uniform topology (see [18, Theorem 2]),

and hence, there exists a proper analytic function on N . Therefore, we can

embed N into some Euclidean space, so that the closed condition is satis-

fied, and give a subanalytic structure to N . We can choose the Euclidean

space of dimension = 2dimN +1 (see [18, Theorem 1]). We always assume

that G satisfies the closed condition, though some of the analytic subman-

ifolds below do not satisfy it. We also assume that polyhedra are included

in Euclidean spaces satisfying the closed condition and hence that they are

subanalytic. Triangulations of a subanalytic set and a subanalytic map are

called subanalytic if the homeomorphisms of the triangulations are subana-

lytic. We define a subanalytic Ck G-manifold M by requiring that M and

the map G×M →M be subanalytic. We need notions of a subanalytic Ck

manifold and a subanalytic Ck map for finite k because we use a partition

of unity for construction of controlled tube systems, which we define later.

An analytic partition of unity does not exist. This is another reason why

we work in the subanalytic category but not in the analytic category.

It is an easy task to see that the map π : M → M/G is a Thom map.

Hence, in the case of compact G, the map π is proper and Theorem 1.1 fol-

lows. However, if G is not compact, then π is nonproper, and a nonproper

Thom map is not necessarily triangulable, as we will show in an exam-

ple. We modify Thom’s conjecture as in Theorem 2.1 below. For that we

need to proceed in the subanalytic category, as we have already explained.

We prepare some terminology and facts (see [2, Chapter II] for Whitney

stratifications and tube systems, [4] and [14] for elementary properties of

subanalytic sets, and [14] for the subanalytic Whitney stratifications and

tube systems).
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Thom introduced a theory of Whitney stratifications and tube systems

to investigate polynomial and analytic maps [16]. However, he abstracted

analyticity from the theory, and the theory works on some generic Ck maps,

k > 0. On the other hand, we need subanalyticity, and we use a combina-

tion of a theory of subanalytic sets and maps and a theory of Whitney

stratifications and tube systems.

For a subanalytic set X ⊂Rn, let RegX denote the subset consisting of

points where the germ of X is analytic, smooth, and of maximal dimen-

sion. For a subanalytic map φ from a subanalytic analytic manifold X1

to a subanalytic set Y , let Regφ denote the points of X1 where the germ

of φ is analytic and smooth and locally has the maximal Jacobian rank.

Then Regφ is not necessarily a manifold, and its connected components

are analytic manifolds of various dimension. We call such a set an ana-

lytic manifold of various local dimension. A subanalytic Ck foliation, k > 0,

of a subanalytic Ck manifold X1 in Rn is a Ck foliation F which is sub-

analytically trivial locally at each point of Rn (not X1). To be precise,

each point of Rn has a subanalytic neighborhood U in Rn, and there is a

subanalytic Ck diffeomorphism φ :X1 ∩ U → (0,1)n1 (not Rn1) such that

{φ(L ∩ U) | L ∈ F} = {{a} × (0,1)n2 | a ∈ (0,1)n1−n2} for some n1 and n2.

We say that two subanalytic analytic manifolds X1 and X2 in Rn satisfy the

Whitney condition at a point b of the set X2∩X1 if the following statement

is true.

Let {ak}k=1,2,... and {bk}k=1,2,... be sequences of points in X1 and X2,

respectively, both converging to b such that the sequence of the tangent

spaces {TakX1}k=1,2,... converges to a subspace T ⊂Rn in Gn,m—the Grass-

mannian of m-dimensional subspaces of Rn—where m = dimX1, and the

sequence of the lines {−−→akbk}k=1,2,... converges to a line L⊂Rn in Gn,1. Then

L⊂ T .

We note elementary properties of subanalytic sets which we use (see [4]

and [14]). Let X and Y be subanalytic subsets of Rn, let X1 and X2 be

subanalytic analytic submanifolds of Rn such that X2 ⊂ X1 −X1, let f :

Rn →Rn be a subanalytic map, let φ :X1 → Y be a subanalytic map, and

let k > 0. Then

(1) X ∩ Y,X ∪ Y,X × Y,X − Y and X are subanalytic;

(2) X −X is of dimension smaller than X for nonempty X;

(3) RegX is subanalytic;

(4) dim(X −RegX)< dimX for nonempty X;
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(5) the family of connected components of X is finite locally at each point

of Rn;

(6) each connected component is subanalytic;

(7) the subset of X2 where X1 and X2 satisfy the Whitney condition is

subanalytic;

(8) its complement inX2 is of dimension smaller than dimX2 for nonempty

X2;

(9) Regφ is subanalytic;

(10) dim(X1 −Regφ)< dimX1 for nonempty X1;

(11) the image f(X) is subanalytic when X is bounded or the restriction

f |X is a homeomorphism onto its image and the image is closed in

Rn;

(12) a subanalytic Ck manifold possibly with corners satisfying the closed

condition is subanalytically Ck triangulable, and for a subanalytic Ck

fiber bundle X → Y , any subanalytic Ck triangulation τY : PY → Y is

lifted to a subanalytic Ck triangulation τX : PX →X if X and Y are

subanalytic Ck manifolds with possibly corners satisfying the closed

condition (we call this also the Cairns–Whitehead theorem);

(13) the family {φ−1(y) | y ∈ Y } is a subanalytic Ck foliation of X1 if Y

is a bounded subanalytic Ck manifold possibly with corners and φ is a

Ck submersion onto Y ; and

(14) the normal bundle of a subanalytic Ck foliation F of X1 (k > 1) is sub-

analytic in the sense that there exists a subanalytic Ck−1 submanifold

U of X1×Rn of the form
⋃

x∈X1
{x}×Ux such that for each L ∈ F, the

map
⋃

x∈L{x} ×Ux ⊃ {x} ×Ux � (x,x′)→ x ∈ L is the normal bundle

of L in Rn.

First, we consider stratifications of subanalytic sets. A subanalytic analytic

stratification {Xi}i=1,2,... of a subanalytic set X is a partition of X into a

finite number of subanalytic analytic manifolds Xi. We note by (1), (5), and

(6) that for a bounded open subanalytic subset U of the ambient Euclidean

space of X , the family of the connected components of all Xi ∩ U is a

subanalytic analytic stratification of X ∩U . By (1), (3), and (4), the family

{RegX,Reg(X −RegX), . . .} is a subanalytic analytic stratification of X .

Set X1 = RegX,X2 = Reg(X − RegX). . . . This stratification is canonical

in the sense that for another subanalytic analytic stratification {X ′
i}i of X

distinct from {Xi}i and satisfying the condition dimX ′
i1
≥ dimX ′

i2
(i1 <

i2), either X1 �X ′
1 or X1 =X ′

1, . . . ,Xi =X ′
i and Xi+1 �X ′

i+1 for some i.
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A Whitney subanalytic analytic stratification {Xi}i is the case where each

pair of Xi and Xi′ satisfies the Whitney condition at each point of Xi′ ∩
Xi. By (1), (2), (7), and (8) there exists a Whitney subanalytic analytic

stratification {Xi}i of X . We explicitly construct a Whitney subanalytic

analytic stratification as follows. LetX1 be RegX ; letX2 be the union of the

sets A1 and A2 if A1 and A2 are of the same dimension, where A1 is Reg(X−
RegX) − RegX and A2 is the subset of Reg(Reg(X − RegX) ∩ RegX),

where RegX and Reg(X −RegX) satisfy the Whitney condition, X2, A1,

or A2 of larger dimension unless A1 and A2 are of the same dimension; let

X3 . . . , and so on. Then this stratification is canonical in the same sense as

the canonical subanalytic analytic stratification.

A typical example of a subanalytic set whose canonical subanalytic ana-

lytic stratification does not satisfy the Whitney condition is the Whitney

umbrella X = {(x, y, z) | x2 = zy2} (see Figure 1). The canonical subanalytic

analytic stratification of X consists of X2 the z-axis and X1 its complement.

The tangent space of X1 at (0, y0,0) is the (x, y)-plane for y0 	= 0. On the

other hand, there is a point (0,0, y0) in X2, and the line
−−−−−−−−−−−→
(0, y0,0)(0,0, y0)

in Gn,1 is R(0,1,−1). Hence, the Whitney condition is not satisfied for

{X1,X2}. A typical example of a Whitney subanalytic analytic stratifi-

cation is {
∫
σ | σ ∈ K} for a finite simplicial complex K in a Euclidean

space. This example has the property that if
∫
σ1 ∩ (

∫
σ −

∫
σ) 	= ∅, then∫

σ1 ⊂ (
∫
σ−

∫
σ). We call this property the frontier condition. In general, a

Figure 1
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Figure 2

Whitney subanalytic analytic stratification does not necessarily satisfy the

frontier condition, but the family of all connected components of the strata

does so if the underlying set does not satisfy the closed condition, which we

easily see (the upper panel of Figure 2).

Next, we consider stratifications of subanalytic maps. Let φ :X → Y be

a subanalytic map between subanalytic sets in Rn. A subanalytic analytic

stratification of φ is a pair consisting of subanalytic analytic stratifications

{Xi}i of X and {Yj}j of Y such that for each i, the restriction φ|Xi is

an analytic submersion onto some Yj . We write as φ : {Xi}i → {Yj}j and

call it a subanalytic analytic stratified map. Assume that we have given

subanalytic structures to M,M/G, and π. Then π admits a subanalytic

analytic stratification, as we will see. However, in general, a subanalytic

analytic stratification of φ does not necessarily exist. For example, let X =

N, let Y =R, and define the map φ so that φ(k) = 1/k for k 	= 0. Then the

map φ does not admit a subanalytic analytic stratification. Let us introduce

a sufficient condition for the existence to explain the canonical subanalytic

analytic stratification.

(∗) The set φ−1(B) is bounded in Rn for each bounded set B in Rn.

If condition (∗) is satisfied, then by (9), (10), and (11) there always exists

a subanalytic analytic stratification of φ. Moreover, in the same way as
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for the canonical subanalytic analytic stratification of a subanalytic set,

by replacing RegX with Regφ we can construct a subanalytic analytic

stratification of φ which has the following property and is called canonical.

Let A denote the family of subanalytic analytic stratifications of φ. The

canonical element in A is the maximal one in the following partial order.

Let φ : {Xi}i →{Yj}j and φ : {X ′
i′}i′ →{Y ′

j′}j′ be elements of A. The former

is smaller than the latter if the following conditions (15) and (16) and one

of (17) and (18) are satisfied for some positive integer k:

(15) {Xi : i,dimφ(Xi)≥ k+ 1}= {X ′
i′ : i

′,dimφ(X ′
i′)≥ k+ 1};

(16) {Yj : j,dimYj ≥ k+ 1}= {Y ′
j′ : j

′,dimY ′
j′ ≥ k+ 1};

(17) {Yj : j,dimYj = k} 	= {Y ′
j′ : j

′,dimY ′
j′ = k}, and each Yj of dimension

k is included in some Y ′
j′ ; and

(18) {Yj : j,dimYj = k} = {Y ′
j′ : j

′,dimY ′
j′ = k},{Xi : i,dimφ(Xi) = k} 	=

{X ′
i′ : i

′,dimφ(X ′
i′) = k}, and each Xi with dimg(Xi) = k is included

in some X ′
i′ .

We call a subanalytic analytic stratified map φ : {Xi}i →{Yj}j a Whitney

stratification of φ if the three stratifications {Xi}i,{Yj}j , and {graphφ|Xi}i
(not only {Xi}i and {Yj}j) are Whitney stratifications. Under condition (∗),
we can construct the canonical Whitney subanalytic analytic stratification

of φ in the same way. The map π :M →M/G does not satisfy (∗) when it is

not proper. However, we will construct the canonical Whitney subanalytic

analytic stratification of the map π :M →M/G in exactly the same way.

To prove Theorem 1.1, we will replace the map π :M →M/G with some

subanalytic one φ : X → Y and find the canonical Whitney stratification

of φ but not a general Whitney stratification. The reason that we need

the canonical one is that only the canonical one satisfies the conditions in

Theorem 2.1 below.

If we consider all subanalytic maps, then notation becomes complicated.

Hence, we add the following condition on maps. A analytic function on a

subset X ⊂Rn is the restriction to X of a (real-valued) analytic function

defined on an open neighborhood of X in Rn. An analytic map from a

subset X ⊂Rn to another Y ⊂Rn is defined in the same way. Note that

if X is an analytic submanifold of Rn, then this definition is equivalent to

the one that the map is analytic in the usual sense. If the underlying map

φ : X → Y of an analytic stratified map φ : {Xi}i → {Yj}j is of analytic

class, then the Whitney condition on {graphφ|Xi}i in the definition of a

Whitney stratification follows from the Whitney condition on {Xi}i and
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{Yj}j , where X =
⋃

iXi and Y =
⋃

j Yj . We call φ : {Xi}i →{Yj}j an ana-

lytic stratified analytic map. (There exists a subanalytic analytic stratified

(not analytic) map φ : {Xi}i →{Yj}j such that {Xi}i and {Yj}j satisfy the

Whitney condition but {graphφ|Xi}i does not.) Moreover, in our arguments

we replace the map φ :X → Y with φ̃, the restriction to the graph of φ of

the projection X × Y → Y . Then the map φ̃ : graphφ → Y is of analytic

class; φ̃ is subanalytic if φ is so by (1) and the equality

graph φ̃=
{
(x, y, y) ∈X × Y 2

∣∣ y = φ(x)
}

=
{
(x, y, y′) ∈X × Y 2

∣∣ y = φ(x)
}

∩
{
(x, y, y′) ∈X × Y 2

∣∣ y′ = φ(x)
}
;

and graphφ satisfies the closed condition ifX does also. Hence, for simplicity

of notation, we always consider (stratified) maps which are of analytic class.

Let {Aα}α and {Bβ}β be families of subanalytic subsets of subanalytic

sets X,Y ⊂Rn, respectively, finite locally at each point of Rn. Then a sub-

analytic analytic stratification {Xi}i of X is compatible with {Aα}α if each

Aα is the union of some connected components of Xi. The canonical Whit-

ney subanalytic analytic stratification {Xi}i of X compatible with {Aα}α
exists. Indeed, we defineX1 to be RegX−{x ∈Aα | dimAα < dimX}−{x ∈
Aα−RegAα | dimAα = dimX}; we define X2 by using X−X1,{Aα−X1}α
and the Whitney condition; and so on. Naturally, we also define a subana-

lytic analytic stratification of a subanalytic map φ :X → Y compatible with

{Aα}α and {Bβ}β . Under condition (∗), we can construct the canonical

Whitney subanalytic analytic stratification φ : {Xj}j →{Yk}k of φ compat-

ible with {Aα}α and {Bβ}β .
A Whitney subanalytic analytic stratified map φ : {Xi}i → {Yj}j or the

underlying map φ :
⋃

iXi →
⋃

j Yj is called a Thom map if the following

condition is satisfied.

Let Xi and Xi′ be strata such that (Xi − Xi) ∩ Xi′ 	= ∅. If {ak}k is a

sequence of points of Xi convergent to a point b of Xi′ , and if the sequence

of the tangent spaces {Tak(φ|Xi)
−1(φ(ak))}k converges to a space T ⊂Rn

in Gn,l, l= dim(φ|Xi)
−1(φ(ak)), then Tb(φ|Xi′ )

−1(φ(b))⊂ T .

Note in theabove condition that dim(φ|Xi)
−1(φ(ak))≥ dim(φ|Xi′ )

−1(φ(b));

that is, dimXi − dimφ(Xi)≥ dimXi′ − dimφ(Xi′); moreover, if {Xi}i and⋃
iXi satisfy the frontier condition and the closed condition, respectively,

thenXi′∩
⋂∞

l=1(
⋃∞

k=l(φ|Xi)
−1(φ(ak))) = (φ|Xi′ )

−1(φ(b)), where the notation
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( ) denotes the closure of the set ( ). A typical example of a Thom map is

as follows. Let φ :K → L be a simplicial map between finite simplicial com-

plexes, and embed K and L in Rn. Then φ : {
∫
σ | σ ∈K}→ {

∫
σ | σ ∈ L}

is a Thom map. On the other hand, the restriction φ of the projection

R3 � (x, y, z)→ (x, y) ∈R2 to the Whitney umbrella is an example where

any Whitney subanalytic analytic stratification is not a Thom map because

dimφ−1({(x, y)}) = 1 if (x, y) = (0,0) and dimφ−1({(x, y)}) = 0 if y 	= 0 (see

Figure 1). Consider the case where dimXi − dimφ(Xi) is constant. (If X

and Y are complex analytic manifolds, φ is complex analytic, and φ−1(y)

are of constant local dimension for all y ∈ Y , then φ is called flat.) In partic-

ular, let X = [0,∞)×R, Y = [0,∞), let {Xi}= {{0} ×R, (0,∞)×R}, let
{Yj}= {{0}, (0,∞)}, and let φ−1(0) = {0} ×R. Then there is an ordinary

differential equation dx1
dx2

= f(x1, x2) such that {φ−1(y) | y ∈ [0,∞)} is the

integral curves of the equation, and φ : {Xi}→ {Yj} is a Thom map if and

only if f is continuous. Figure 3 is the case of a Thom map, and Figure 4

is not the case of a Thom map. (There is a flat complex polynomial map

between complex Euclidean spaces which is not locally triangulable; see [14,

p. 311].)

It is easy to see that a proper Thom map is locally triangulable. Thom

conjectured that a proper Thom map is globally triangulable (see [16]), and

the second author proved the conjecture and its subanalytic version (see

[15]). An example of a nonproper nontriangulable subanalytic Thom map

is φ : {X} → {Y }, where X =R2 − {(1/n,n) | n ∈N, n > 0}, Y =R, and

φ is the restriction to X of the projection R2 → R to the former factor.

However, this φ :X → Y is subanalytically triangulable in the weak sense.

Figure 3
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Figure 4

We do not know whether a general nonproper subanalytic Thom map is

subanalytically triangulable in the weak sense.

We will use the following property of Thom maps. Let φ : {Xi}i →{Yj}j
be a Thom map, let Ui be a small open neighborhood of Xi in the ambient

Euclidean space, and let πi : Ui →Xi be a submersive Ck retraction. Then

for each Xi′ such that (Xi′ −Xi′) ∩Xi 	= ∅ and y′ ∈ φ(Xi′), the restriction

πi|Ui∩φ−1(y′)∩Xi′
is a Ck submersion into φ−1(y) ∩Xi if πi(Ui ∩ φ−1(y′) ∩

Xi′)⊂ φ−1(y) for some y ∈ φ(Xi). We will look for such a map πi.

Now, we remember tube systems. Let m≥ 2 be an integer. A subanalytic

Cm (not analytic) tube system {Tj = (|Tj |, πj , ρj)}j for a Whitney suban-

alytic analytic stratification {Yj}j of a subanalytic set Y ⊂Rn consists of

one tube Tj at each Yj , where πj : |Tj | → Yj is a subanalytic Cm submer-

sive retraction of an open subanalytic tubular neighborhood of Yj in Rn,

and ρj is a nonnegative subanalytic Cm function defined on |Tj | such that

ρ−1
j (0) = Yj and each point y of Yj is a unique and nondegenerate critical

point of ρj |π−1
j (y). An example of a tube at Yj is a triple of a subanalytic

tubular neighborhood of Yj in Rn, the orthogonal projection from the neigh-

borhood to Yj , and the square of the function measuring the distance from

Yj . We call this tube standard. We can regard any tube as a standard one

up to Cm diffeomorphisms. To be precise, for any subanalytic Cm tube

Tj = (|Tj |, πj , ρj) at Yj , there exists a subanalytic Cm embedding ξj of a

subanalytic neighborhood of Yj in |Tj | into Rn such that ξj = id on Yj and

(Im ξj , πj ◦ ξ−1
j , ρj ◦ ξ−1

j ) is a standard tube (see [14, Lemma I.1.1]). A stan-

dard tube is of analytic class. However, we cannot choose standard tubes
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alone because we need the condition below on controlledness, and there does

not necessarily exist a controlled tube system.

We call a tube system {Tj}j controlled if for each pair j and j′ such that

dimYj < dimYj′ ,

(ct) πj ◦ πj′ = πj and ρj ◦ πj′ = ρj on |Tj | ∩ |Tj′ |,

and we call a controlled tube system strongly controlled if

(sc) the map (πj , ρj)Yj′∩|Tj | is a Cm submersion into Yj ×R.

Note that condition (sc) follows from condition (ct) since (πj , ρj)|Yj′∩|Tj | ◦
πj′ = (πj , ρj) on |Tj | ∩ |Tj′ |; hence, the definition of strongly controlledness

coincides with the one of controlledness, and any Whitney subanalytic ana-

lytic stratification admits a strongly controlled subanalytic Cm tube system

(see [14, Lemma I.1.3]). The reason that we consider condition (sc) and use

the term strongly controlled will become clear. The notation of a controlled

tube system was introduced to show some properties of semialgebraic sets.

The most important property shown by a controlled tube system is that for

a semialgebraic and more generally subanalytic set X in Rn and each point

x0 of R
n, there exists ε > 0 such that the ε-neighborhood of x0 in X∪{x0} is

homeomorphic to the cone with vertex x0 and base {x ∈X | dis(x,x0) = ε}.
It may be possible to find analytic {Tj}j , but it is difficult because the

problem is to solve the analytic equations (ct).

In the proof of Lemmas 3.6′ and 3.7—key lemmas of Theorem 1.1—we

use the same idea as of the construction of {Tj}j satisfying condition (ct).

Hence, we show the idea. Assume that the map πj and the function ρj are

given. Then by easy calculations, shrinking |Tj | and |Tj′ |, we see that for

each x ∈ |Tj |∩|Tj′ |, the setXj′∩π−1
j (πj(x))∩ρ−1

j (ρj(x)) is a subanalytic C
m

manifold, and we can define the value πj′(x) to be the image of x under the

orthogonal projection to the manifold, though πj′ becomes of class Cm−1.

Note that the family {Xj′ ∩ π−1
j (πj(x)) ∩ ρ−1

j (ρj(x)) | x ∈ Xj′ ∩ |Tj |} is a

subanalytic Cm foliation of Xj′ ∩ |Tj |.
We explain subanalytic triangulations of subanalytic sets constructed by

the Whitney condition and controlled tube systems. This method is different

from the one of �Lojasiewicz in [7, Theorem 1]. Let {Yj}j be a Whitney sub-

analytic analytic stratification of a subanalytic set Y satisfying the closed

condition, and let {Tj = (|Tj |, πj , ρj)}j be a controlled subanalytic Cm tube

system for {Yj}j such that dimY1 ≥ dimY2 ≥ · · · . Each Yj has good prop-

erties as a manifold. However, the relation of Yj and Yj+1∪Yj+2∪ · · · is not

https://doi.org/10.1215/00277630-2366201 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2366201


174 M. MURAYAMA AND M. SHIOTA

obvious. Hence, we separate Yj into
⋃

j′>j{y ∈ Yj∩|Tj′ | | ρj′(y)< εj′ ◦πj′(y)}
and its complement in Yj , where εj′ is a small positive subanalytic analytic

function on each Yj′ (see [14, Section II.5] for the topology of the space

of subanalytic Cm functions). Then by the Whitney condition, the latter

set is a subanalytic Cm manifold possibly with corners and satisfies the

closed condition, and Yj+1 ∪ Yj+2 ∪ · · · is a subanalytic deformation retract

of the union of Yj+1 ∪ Yj+2 ∪ · · · and the former set. We obtain subana-

lytic triangulations of the latter sets by the Cairns–Whitehead theorem and

can canonically extend the triangulation to a subanalytic triangulation of

Yj ∪ Yj+1 ∪ · · · by the deformation retractions and condition (ct). Here we

do not give the definition of the canonical extension and entrust it to [15].

We more precisely explain the separation as follows.

Let {Yj}j = {Y1, . . . , Yk}. Assume that Y is compact because the sepa-

ration is clear in the compact case. By the Whitney condition we obtain

a positive number δk and positive subanalytic functions δi : R
k−i → R,

i = k − 1, . . . ,2, which satisfy the following conditions. Let 1 ≤ l ≤ i ≤ k

be integers, and let εk, . . . , ε2 be positive numbers satisfying εk ≤ δk, εk−1 ≤
δk−1(εk), . . . , ε2 ≤ δ2(εk, . . . , ε3). Then the set

E(i+ 1) =Rn − ρ−1
k

(
[0, εk)

)
− · · · − ρ−1

i+1

(
[0, εi+1)

)

is a subanalytic Cm submanifold of Rn possibly with corners satisfying the

closed condition, the three sets E(i+1), ρ−1
i (εi), and Yl are transversals of

each other, and the restrictions of ρi to the sets ρ−1
i ((0, εi]) ∩E(i+ 1) and

ρ−1
i ((0, εi]) ∩ E(i+ 1) ∩ Yl are Cm regular. We call such δ = {δi}i=k,...,2 or

ε= {εi}i=k,...,2 removal data of {Yi}i=1,...,k (see Figure 2).

Assume that Y is not compact and satisfies the closed condition. By the

Whitney condition we have a positive proper subanalytic Cm function f

on Rn such that I—which denotes the common Cm regular values of f ,

f |Y1 , . . . , f |Yk
—is not bounded to the above. (If dimY1 = 0, we do not call

a point of f(Y1) a Cm regular value.) Let I ′ be a subset of I which is not

bounded to the above and a finite union of closed intervals locally at each

point of R, and let F denote the family of positive subanalytic Cm functions

onR which are locally constant onR−I ′. Then there exist as in the compact

case an element δk ∈ F and maps δi : F
k−i → F , i = k − 1, . . . ,2, with the

following properties. Let 1≤ l≤ i≤ k be integers, let t ∈ I ′, and let εk, . . . , ε2
be elements of F satisfying εk ≤ δk, εk−1 ≤ δk−1(εk), . . . , ε2 ≤ δ2(εk, . . . , ε3).
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Set

E(i+ 1) =Rn −
i+1⋃
j=k

{
x ∈ |Tj |

∣∣ ρj(x)< εj ◦ f(x)
}
.

Then E(i+1) is a subanalytic Cm submanifold of Rn possibly with corners

satisfying the closed condition; the four sets E(i+ 1), f−1(t), {ρi(x) = εi ◦
f(x)}, and Yl are transversals of each other; and the restrictions of ρi to

the four sets {0 < ρi(x) ≤ εi ◦ f(x)} ∩ E(i + 1), {0 < ρi(x) ≤ εi ◦ f(x)} ∩
E(i + 1) ∩ Yl, {f(x) = t,0 < ρi ≤ εi ◦ f(x)} ∩ E(i + 1), and {f(x) = t,0 <

ρi(x) ≤ εi ◦ f(x)} ∩ E(i+ 1) ∩ Yl are Cm regular. In this case too, we call

δ = {δi}i=k,...,2 or ε = {εi}i=k,...,2 removal data of {Yi}i=1,...,k. We separate

each Yj into Yj ∩E(j + 1) and Yj −E(j + 1) in any case.

For a subanalytic analytic stratified map φ : {Xi}i → {Yj}j , we need

to consider two tube systems for {Xi}i and {Yj}j . Without loss of gen-

erality, let a Whitney subanalytic analytic stratification be of the form

φ : {Xi,j} j = 1, . . . , k
i= 1, . . . , lj

→{Yj}j=1,...,k such that φ−1(Yj) =
⋃lj

i=1Xi,j for each j.

Set X =
⋃

iXi and Y =
⋃

j Yj , and assume that X,Y ⊂ Rn. Let {Tj =

(|Tj |, πj , ρj)}j be a strongly controlled subanalytic Cm tube system for

{Yj}j , and let {Ti,j = (|Ti,j |, πi,j , ρi,j)}i,j be a subanalytic Cm tube system

for {Xi,j}i,j . We call {Ti,j}i,j controlled over {Tj}j if the following three

conditions are satisfied.

(sc1) For each (i, j), φ̃(|Ti,j |)⊂ |Tj | and φ ◦ πi,j = πj ◦ φ̃ on |Ti,j |, where φ̃

is a subanalytic analytic extension of φ to a subanalytic open neigh-

borhood of X in Rn.

(sc2) For each j, {Ti,j}i=1,...,lj is a strongly controlled tube system for

{Xi,j}i=1,...,lj .

(sc3)′ For any pair (i, j) and (i′, j′) such that dimXi,j < dimXi′,j′ , it holds

that πi,j ◦ πi′,j′ = πi,j on |Ti,j | ∩ |Ti′,j′ |.
Moreover, if the map (πi,j , φ)Xi′,j′∩|Ti,j | in (sc3)′ is a Cm submersion into

the Cm manifold {(x, y) ∈Xi,j × (Yj′ ∩ |Tj |) | φ(x) = πj(y)}, then {Ti,j}i,j
is called strongly controlled over {Tj}j , and condition (sc3)′ together with

this condition is called (sc3). Here (sc3)′ does not necessarily imply (sc3);

that is, we can construct a stratified map φ : {Xi,j}i,j →{Yj}j so that there

exist controlled {Tj}j and {Ti,j}i,j controlled over {Tj}j but there does not

exist controlled {Tj}j and {Ti,j}i,j strongly controlled over {Tj}j .
It is natural to require the following simple condition in place of conditions

(sc2) and (sc3).
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(sc4) The tube system {Ti,j}i,j is strongly controlled.

However, this condition cannot be necessarily satisfied. An example is given

as follows. Define the following:

Y =R2, Y3 = {0}, Y2 =
(
R× {0}

)
∪
(
{0} ×R

)
− {0},

Y1 = Y − Y2 − Y3,

ψ(x, y) = |x|1/2 + |y|1/2 for (x, y) ∈R2,

X = graphψ, X1,j = graphψ|Yj , j = 1,2,3,

φ(x, y, z) = (x, y) for (x, y, z) ∈X,

and {Tj}j=2,3 a strongly controlled subanalyticC
m tube system for {Yj}j=2,3.

Then there does not exist a strongly controlled subanalytic Cm tube sys-

tem {T1,j}j=2,3 for {X1,j}j=2,3 satisfying condition (sc1). Contrarily, assume

that such a one exists. Without loss of generality, we can suppose that T2

is standard and hence that π2(x, y) = x on a neighborhood of (0,∞)×{0}.
Then by condition (sc1),

π1,2
(
x, y, |x|1/2 + |y|1/2

)
=
(
x,0, |x|1/2

)
for (x, y) ∈ Y1 near (0,∞)× {0}.

Hence, for each x ∈R, the tangent line of the curve π−1
1,2({(x,0, |x|1/2)}) ∩

X at (x,0, |x|1/2) is {0} ×R, and the curve is included in the 2-manifold

ρ−1
1,3(ρ1,3(x,0, |x|1/2)) if x is close to 0. Therefore, the angle formed by the

tangent line at (x,0, |x|1/2) and the line R(x,0, |x|1/2) converges to 0 as

x→ 0. However, some Cm diffeomorphism carries the 2-manifolds ρ−1
1,3(a)

(with a small positive numbers) to the spheres {(x, y, z) ∈R3 | x2+y2+z2 =

a}, and hence, for a point b in R3−{0} near 0 and a nonzero tangent vector

v of ρ−1
1,3(ρ1,3(b)) at b, the angle ∠(Rb,Rv) does not converge to 0 as b→ 0.

That is a contradiction. Note that φ : {X1,j}j →{Yj}j is a Thom map.

By conditions (sc1) and (sc3), the maps πi,j are useful. On the other

hand, the functions ρi,j are not useful because condition (sc4) fails, and we

will treat only the case where the set of indices of Xi,j is a singleton for each

fixed j and hence condition (sc2) is automatically satisfied. We use ρj ◦ φ̃ in

place of ρi,j , and we write ρi,j for form’s sake in the following arguments.

The Thom conjecture in the subanalytic case was proved as follows. It is

easy to see that if {Ti,j}i,j is controlled over {Tj}j and φ : {Xi,j}i,j →{Yj}j
is a Thom map, then condition (sc3) is satisfied, that is, that {Ti,j}i,j is
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strongly controlled over {Tj}j . Moreover, for a Thom map φ : {Xi,j}i,j →
{Yj}j and a strongly controlled subanalytic Cm tube system {Tj}j for {Yj}j ,
there exists a subanalytic Cm tube system {Ti,j}i,j for {Xi,j}i,j controlled

over {Tj}j if the underlying map φ : X → Y is of analytic class (see [14,

Lemma I.1.3′]). Then for Xi,j and Xi′,j′ with Xi,j ∩ (Xi′,j′ −Xi′,j′) 	= ∅ and

Yj ∩ (Yj′ − Yj′) 	= ∅ and points xi,j in Xi,j and xi′,j′ in Xi′,j′ close to xi,j
such that πi,j(xi′,j′) = xi,j , the germ of the restriction πi,j |φ−1(φ(xi′,j′ ))∩Xi′,j′

at xi′,j′ is a Ck submersion into φ−1(φ(xi,j))∩Xi,j . By this property it was

shown in [15, Theorem] that if a proper subanalytic analytic map φ :X → Y

admits a Whitney subanalytic analytic stratification φ : {Xi,j}i,j → {Yj}j ,
a strongly controlled subanalytic Cm tube system {Tj}j for {Yj}j , and a

subanalytic Cm tube system {Ti,j}i,j for {Xi,j}i,j strongly controlled over

{Tj}j , then the map φ has a subanalytic triangulation. Here the assumption

that the map φ is proper is too strong to apply to the case of π :M →M/G.

We replace it with the two conditions that the set of indexes of {Xi,j}i,j is

the same as that of {Yj}j , that is, that {Xi,j}i consists of one element for

each j and the map (πi,j , φ)|X∩|Ti,j | :X ∩ |Ti,j | →Xj × |Tj | is proper, which
are satisfied by the map π :M →M/G. Then we have the following.

Theorem 2.1. Let m ≥ 2 be an integer. Let φ : X → Y be a subana-

lytic analytic map, let φ : {Xj}j → {Yj}j be its Whitney subanalytic ana-

lytic stratification such that Xj = φ−1(Yj) for each j, let {TY,j = (|TY,j |,
πY,j , ρY,j)}j be a strongly controlled subanalytic Cm tube system for {Yj}j ,
and let {TX,j = (|TX,j |, πX,j , ρX,j)}j be a subanalyticCm tube system for {Xj}j
strongly controlled over {TY,j}j . Assume that the map (πX,j , φ)|X∩|TX,j | :
X ∩ |TX,j | → Xj × |TY,j | is proper for each j. Then the map φ admits a

subanalytic triangulation.

Sketch of proof of Theorem 2.1. For the time being, we assume that the

map φ is proper. Let us recall the proof in [15, Theorem]. We proceed as in

the above triangulations of subanalytic sets (not maps). We separate Xj and

Yj by ρY,j′ ◦ φ̃ and ρY,j′ , respectively, as we have explained. We order the set

of indexes so that dimYj > dimYj+1. For removal data {εj}j of {TY,j}j , set

X̂j =X −
⋃
i>j

{
x ∈ |TX,i|

∣∣ ρY,i ◦ φ̃(x)< εi ◦ φ ◦ πX,i(x)
}
,

Ŷj = Y −
⋃
i>j

{
y ∈ |TY,i|

∣∣ ρY,i(y)< εi ◦ πY,i(y)
}

(see Figure 5).
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Figure 5

Figure 6

Then Yj ∩ Ŷj is a subanalytic Cm submanifold of Yj possibly with cor-

ners satisfying the closed condition for each j, and by the strongly con-

trolledness of {TY,j}j , there is a subanalytic homotopy γY,j+1,t,0≤ t≤ 1, of

(Ŷj+1− Ŷj) of a deformation retraction from (Ŷj+1− Ŷj) to Yj+1∩ Ŷj+1 such

that γY,j+1,0 = id, γY,j+1,t = id on Yj+1 ∩ Ŷj+1, πY,j+1 ◦ γY,j+1,t = πY,j+1, and

ρY,j+1 ◦ γY,j+1,t = (1− t)ρY,j+1; hence, γY,j+1,1 = πY,j+1, γY,j+1,t is a home-

omorphism onto its image for each t 	= 1, and γY,j+1,t preserves the sets

(Ŷj+1 − Ŷj)∩
{
y ∈ |TY,j |

∣∣ ρY,i(y) = εi ◦ πY,i(y)
}
, i= j + 2, . . .

(see Figure 6). Here existence of a (not necessarily subanalytic) homotopy

γY,j+1,t follows from the usual arguments of differential topology (see [2,
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Chapter II]). However, for subanalytic γY,j+1,t we need a theory of subana-

lytic sets and maps (see [14, Section II.6]).

By properness of the map φ, we can choose the removal data so small

that each X̂j is a closed subset of X . Then by the strongly controlled-

ness of {TX,j}j over {TY,j}j , Xj ∩ X̂j is also a subanalytic Cm submani-

fold of Xj possibly with corners satisfying the closed condition; the map

φ|Xj∩X̂j
:Xj ∩ X̂j → Yj ∩ Ŷj is a subanalytic Cm fiber bundle over each con-

nected component of Yj ∩ Ŷj and carries ∂(Xj ∩ X̂j) to ∂(Yj ∩ Ŷj); and there

is a subanalytic homotopy γX,j+1,t,0≤ t≤ 1, of (X̂j+1− X̂j) which satisfies

the same conditions as γY,j+1,t and the equality γY,j+1,t ◦ φ= φ ◦ γX,j+1,t.

We construct a subanalytic triangulation of the restriction φ|X̂j
: X̂j → Yj

by induction on j. First, by the Cairns–Whitehead theorem we obtain a

subanalytic Cm triangulation (τX,1 : PX,1 →X1 ∩ X̂1, τY,1 : PY,1 → Y1 ∩ Ŷ1)

of the map φ|X1∩X̂1
: X1 ∩ X̂1 → Y1 ∩ Ŷ1. (Note that X1 ∩ X̂1 = X̂1 and

Y1 ∩ Ŷ1 = Ŷ1.) By induction, we assume that there exists a subanalytic tri-

angulation (τX,j : PX,j → X̂j , τY,j : PY,j → Ŷj) of the map φ|X̂j
: X̂j → Ŷj for

some j ∈ N such that the restriction (τX,j |τ−1
X,j(Xk∩X̂k)

: τ−1
X,j(Xk ∩ X̂k) →

Xk ∩ X̂k, τY,j |τ−1
Y,j(Yk∩Ŷk)

: τ−1
Y,j (Yk ∩ Ŷk)→ Yk ∩ Ŷk) is a subanalytic Cm trian-

gulation of the map φ|Xk∩X̂k
:Xk ∩ X̂k → Yk ∩ Ŷk for each k ≤ j. Then we

canonically extend τY,j to a subanalytic triangulation τY,j+1 : PY,j+1 → Ŷj+1

so that the restriction τY,j+1|τ−1
Y,j+1(Yj+1∩Ŷj+1)

: τ−1
Y,j+1(Yj+1 ∩ Ŷj+1)→ Yj+1 ∩

Ŷj+1 is a subanalytic Cm triangulation of Yj+1 ∩ Ŷj+1 by ρY,j+1, πY,j+1, and

γY,j+1,t. Since the extension is canonical, we can lift, in the same canonical

way, τY,j+1 to a subanalytic triangulation τX,j+1 of X̂j+1 so that τX,j+1 is

an extension of τX,j and (τX,j+1, τY,j+1) is a subanalytic triangulation of the

restriction φ|X̂j+1
and has the above property of (τX,j , τY,j) by the strong

controlledness of {TX,i}i over {TY,i}i and γX,j+1,t. Thus, by induction we

obtain a subanalytic triangulation of φ.

If the map φ is not proper, then there is the case where the set π−1
X,j(x)

becomes small as Xj � x→∞ (see Figure 7); the image of X̂1 under φ in

Figure 7 is not included in Ŷ1; the restriction φ|X̂1
: X̂1 → Y1 is not a C

m fiber

bundle over each connected component of Ŷ1; we cannot lift a triangulation

of Ŷ1 to one of X̂1; and hence, the above arguments do not work. However,

if the map (πX,j+1, φ)|X∩|TX,j+1| :X ∩ |TX,j+1| →Xj+1 × |TY,j+1| is proper,

then the restriction φ|X̂1
: X̂1 → Ŷ1 is a subanalytic Cm fiber bundle over
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Figure 7

Figure 8

each connected component of Ŷ1, for any j, too; φ|Xj∩X̂j
:Xj ∩ X̂j → Yj ∩ Ŷj

has the same property; and the above arguments work (see Figure 8). Hence,

Theorem 2.1 holds true. We omit the details.

§3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. We modify the map π :M →M/G

so that we can apply Theorem 2.1. Set n= dimM . For x ∈M , let Gx denote

the isotropy group at x of G. A subset S of M containing x is called a near-

slice at x if GxS = S, and there exist an open neighborhood U of Gx/Gx in

G/Gx and a local cross section χ : U →G of the map G→G/Gx such that

the map U × S � (u, s) → χ(u)s ∈ M is a homeomorphism onto an open

neighborhood of x in M . Assume that M is an analytic G-manifold. An

analytic submanifold S of M containing x is called a linear slice at x if
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GxS = S, the map G×Gx S � (g, s)→ gs ∈M is an analytic diffeomorphism

onto an open neighborhood of x in M , and S is Gx-equivariantly analytic

diffeomorphic to a Euclidean space where Gx acts orthogonally. Here G×Gx

S is the quotient space of G× S under the equivalence relation (gg′, s) ∼
(g, g′s) for (g, g′, s) ∈G×Gx × S.

Lemma 3.1. We can assume in Theorem 1.1 that M is a proper subana-

lytic analytic G-manifold and satisfies the closed condition.

Proof. Let M be a proper (not subanalytic) Ck G-manifold. Assume that

1< k ≤∞. Then M is equivariantly Ck diffeomorphic to some analytic G-

manifold. This was shown by Palais [13, Theorem B] in the case of compact

G and M , by Matumoto and Shiota [9, Theorem 1.3] in the case of compact

G, and by Illman [5, Theorem A] in the general case.

Assume that k = 1. Then there is only one problem in the proof in

[5, Theorem A]. The following theorem of Koszul [6, p. 139] is used in

[5, Theorem A].

Fact. If X is a differentiable G-manifold and the isotropy group Gx at

a point x ∈X is compact, then there exists a near-slice at x.

The problem is that the proof of the fact in [6, p. 139] and [12, Theo-

rem 2.3.3] works for X of class Ck, k > 1. Hence, we need to prove the fact

in the C1 case. Regard X as a C1 Gx-manifold. Note that Gx is a compact

Lie group, which is an analytic submanifold of G. Then by [9, Theorem 1.3]

there exist an analytic Gx-manifold X∗ and a C1 Gx-equivariant diffeo-

morphism f :X →X∗. Set f(x) = x∗, and set f(Gx) = Y , which is a C1

submanifold of X∗ and contains x∗. Choose an analytic Riemannian metric

on X∗ invariant under Gx. Let ε > 0 be a small number, define an analytic

submanifold S∗ of X∗ to be the union of geodesic segments of length smaller

than ε starting from x∗ in a direction orthogonal to Tx∗Y—the tangent space

of Y at x∗—and set S = f−1(S∗). Then S together with some local cross

section of the map G→ G/Gx satisfies the conditions of a near-slice, and

the fact is proved.

Thus, M is equivariantly Ck diffeomorphic to some analytic G-manifold

M ′. Then we can replace M with M ′ for the following reason. Let f :M →
M ′ and f :M/G→M ′/G be the diffeomorphism and the induced homeo-

morphism, respectively; assume that Theorem 1.1 is proved for M ′, and let

(τ ′ : P ′ → M ′, σ′ : L′ → M ′/G) be a resulting triangulation of the natural

map π′ :M ′ →M ′/G. Then (f−1 ◦ τ ′ : P ′ →M,f
−1 ◦ σ′ : L′ →M/G) is the

https://doi.org/10.1215/00277630-2366201 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2366201


182 M. MURAYAMA AND M. SHIOTA

required triangulation of the map π :M →M/G. Here M ′ can be embedded

in some Euclidean space as a closed subset. Hence, M ′ can be subanalytic

and satisfies the closed condition.

Next, we consider the case where M is a proper subanalytic Ck G-

manifold. The above proof and the proof in [5] are valid in the subanalytic

category. Hence, M is equivariantly subanalytically Ck diffeomorphic to a

subanalytic analytic G-manifold M ′. Let f :M →M ′ and f :M/G→M ′/G
denote the diffeomorphism and the homeomorphism, respectively; let π′ :
M ′ →M ′/G be the natural map, and let (τ ′ : P ′ →M ′, σ′ : L′ →M ′/G) be

a subanalytic triangulation of the map π′ :M ′ →M ′/G. Then it suffices to

see that the maps f−1 ◦ τ ′ and f ◦σ′ are subanalytic. More generally, we see

that the composite of two subanalytic maps is subanalytic if the first source

space satisfies the closed condition. Let f1 : X1 → X2 and f2 : X2 → X3

be subanalytic maps such that X1 satisfies the closed condition. Then the

following set is subanalytic by the property (1) in Section 2:

X4 =
{
(x1, x2, x

′
2, x

′
3) ∈ graphf1 × graphf2

∣∣ x2 = x′2
}
;

the graph of f2◦f1 is the image ofX4 under the projection p :X1×X2×X2×
X3 →X1 ×X3, the restriction p|X4 is a homeomorphism onto graphf2 ◦ f1,
and graphf2 ◦ f1 satisfies the closed condition. Hence, by (11), graphf2 ◦ f1
is subanalytic, and we can replace M with M ′. Then we can assume that

M ′ satisfies the closed condition as above. Thus, Lemma 3.1 is proved.

From now on, we assume that M is a proper subanalytic analytic G-

manifold satisfying the closed condition. We will give a subanalytic structure

to M/G. A subanalytic G-set X is a subanalytic set where G acts so that

the action G×X →X is subanalytic and analytic. (Remember that the map

is analytic if it is extended to an analytic map between open neighborhoods

of G×X and X in their ambient Euclidean spaces.) As we have noted, we

can assume that M ⊂R2n+1. However, we regard R2n+1 as a subanalytic

G-set where G trivially acts, and hence the inclusion map of M into R2n+1

is not a G-map.

Lemma 3.2. In Theorem 1.1 we can replace the set M , the set M/G, and

the map π :M →M/G with a subanalytic G-set X satisfying the closed con-

dition, a subanalytic set Y satisfying the closed condition, and a subanalytic

analytic map φ :X → Y , respectively. (By this replacing we lose analyticity

of M , keep subanalyticity of M and analyticity of the action, and obtain

analyticity and subanalyticity of the map φ.)
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Proof. By [8, Theorem 3.3] there exists a G-invariant subanalytic map

p : M → R2n+1 such that p(M) is closed and subanalytic in R2n+1 and

the induced map p :M/G→ p(M) is a homeomorphism. Naturally, we set

Y = p(M), and we replaceM/G with Y . Next, we setX = graphp and let φ :

X → Y denote the restriction to X of the projection M ×R2n+1 →R2n+1.

Then, as we have explained, φ is a subanalytic analytic map, and X is a

subanalyticG-set because the action is defined by G×M×R2n+1 ⊃G×X �
(g,x, p(x))→ (gx, p(x)) ∈X ⊂M×R2n+1 and coincides with the restriction

to G × X of the subanalytic analytic map G × M × R2n+1 � (g,x, y) →
(gx, y) ∈M ×R2n+1. Thus, we can replace the map π :M →M/G with the

one φ :X → Y .

We have modified the map π : M → M/G to the map φ : X → Y . We

will show that the map φ satisfies the conditions in Theorem 2.1, apply

Theorem 2.1, and obtain a subanalytic triangulation (τ : P → X,σ : L →
X/G) of φ. Note that X ⊂R2n+1 ×R2n+1 and that Y ⊂R2n+1. First, we

construct the canonical Whitney subanalytic analytic stratification of φ in

the same way as in the case where condition (∗) is satisfied.

Lemma 3.3. There exists the canonical Whitney subanalytic analytic stra-

tification of φ.

Proof. The most natural stratification of φ is the one by orbit types.

Let {Gi}i be the family of compact subgroups of G, let Xi be the subset

of X consisting of x such that Gx is conjugate to Gi for each i, and set

Yi = φ(Xi). Then Xi and Yi are subanalytic Cω manifolds of various local

dimension, and the set of indexes of {Xi}i is not necessarily finite, but

by the fact in the proof of Lemma 3.1, the map φ : {Xi}i → {Yi}i satisfies
the other conditions of a subanalytic analytic stratified map. We modify

{Xi}i and {Yi}i so that the last condition is satisfied. For each pair (j, k) of

nonnegative integers, let Yj,k denote the union of the connected components

C of all Yi such that dimC = j and dimφ(C) = k, and set Xj,k = φ−1(Yj,k).

Then φ : {Xj,k}j,k → {Yj,k}j,k is the subanalytic analytic stratification of

the map φ defined by orbit types. However, we do not know whether this

stratified map satisfies the Whitney condition. Therefore, we define another

stratification.

Set X1 = Regφ|RegX , and set Y1 = φ(X1). Then X1 is a subanalytic

analytic manifold of various local dimension, dim(X − X1) < n, and X1

is G-invariant because (a) for each (g,x) ∈G×X and for an open smooth
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neighborhood U of x in X , the map U � y → gy ∈ gU is an analytic dif-

feomorphism, (b) gU is smooth, and (c) φ(x) = φ(g−1x) for x ∈ gU . Hence,

φ−1(Y1) =X1, Y1 is a subanalytic analytic manifold of various local dimen-

sion for the same reason and by the fact that the set φ(B) is subanalytic

for each bounded subanalytic set B ⊂ X ⊂ R2n+1 × R2n+1, and φ|X1 is

an analytic fiber bundle over each connected component of Y1. It also fol-

lows that dim(Y −Y1)< dimY because if dim(Y − Y1) = dimY , then there

exists a subanalytic subset U of Y − Y1 which is open in Y , and hence

X1 ∩ φ−1(U) 	= ∅ and X1 is not dense in X . For each j, k = 0, . . . , n, let

Y1,j,k denote the union of the connected components C of Y1 of dimension k

such that dimφ−1(C) = j. Set X1,j,k = φ−1(Y1,j,k). Then φ|X1 : {X1,j,k}j,k →
{Y1,j,k}j,k is a subanalytic analytic stratification of the map φ|X1 :X1 → Y1.

Moreover, since X1,j,k and Y1,j,k are the unions of some connected compo-

nents of X1 and Y1, respectively, X1,j,k ∩X1,j′,k′ = ∅ and Y1,j,k ∩ Y1,j′,k′ = ∅
for (j, k) 	= (j′, k′), and hence {X1,j,k}j,k and {Y1,j,k}j,k satisfy the Whitney

condition.

Apply the same arguments to the map φ|X−X1 :X −X1 → Y − Y1. Then

we have a subanalytic analytic manifold X2 of various local dimension

in X − X1 and a subanalytic analytic stratification φ|X2 : {X2,j,k}j,k →
{Y2,j,k}j,k of the map φ|X2 : X2 → φ(X2) such that φ−1(φ(X2)) = X2,

dim(X−X1−X2)< dim(X−X1), and dim(Y −Y1−φ(X2))< dim(Y −Y1).

Moreover, we require that {X1,j,k,X2,j,k}j,k and {Y1,j,k, Y2,j,k}j,k be Whit-

ney stratifications. That is possible because for each X2,j,k, the subsets of

X2,j,k where some of X1,j′,k′ and X2,j,k do not satisfy the Whitney condition

and its closure in X2,j,k are G-invariant. In this way we obtain a Whitney

subanalytic analytic stratification φ : {Xi,j,k}i,j,k → {Yi,j,k}i,j,k of the map

φ :X → Y . It is easy to show that the stratification is canonical.

We simply write the canonical Whitney subanalytic analytic stratification

as φ : {Xj}j → {Yj}j . Note that points in one connected component of Xi

have the same orbit type. Next, we see the following.

Lemma 3.4. The stratified map φ : {Xj}j →{Yj}j is a Thom map.

Proof. Let Xj and Xj′ be strata such that Xj ∩Xj′ 	= ∅, and let {ak}k
be a sequence of points in Xj convergent to a point b of Xj′ such that

{Tak(φ|Xj )
−1(φ(ak))}k converges to a space T ⊂R2n+1 ×R2n+1. Let each

ak be described as (a′k, p(a
′
k)) ∈ M × R2n+1. Then (φ|Xj )

−1(φ(ak)) =

φ−1(φ(ak)) =Gak since Xj is G-invariant, and Gak =Ga′k×{p(a′k)}. Hence,
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T = limk→∞ Ta′k
Ga′k × {0}. Clearly limk→∞ Ta′k

Ga′k ⊃ Tb′Gb′, where b= (b′,

p(b′)) ∈ M ×R2n+1. Therefore, Tb(φ|Xj′ )
−1(φ(b)) ⊂ T , and Lemma 3.4 is

proved.

As we have noted, there always exists a strongly controlled subana-

lytic C2+n tube system {TY,j = (|TY,j |, πY,j , ρY,j)}j for {Yj}j . From now

on we fix one {TY,j}j , although the domains |TY,j | are shrunk many times,

and naturally extend φ to the projection φ̃ : R2n+1 ×R2n+1 → R2n+1 to

the latter factor. Then there is a subanalytic C2+n tube system {TX,j =

(|TX,j |, πX,j , ρX,j)}j for {Xj}j strongly controlled over {TY,j}j since the

map φ : X → Y is analytic and the stratified map φ : {Xj}j → {Yj}j is a

Thom map (see [14, Lemma I.1.3′]). (It will be clarified why the class is

C2+n.) Hence, by Theorem 2.1, Theorem 1.1 holds if the following lemma

does.

Lemma 3.5. We can choose a subanalytic C2 tube system {TX,j}j con-

trolled over {TY,j}j so that the map (πX,j , φ)|X∩|TX,j | : X ∩ |TX,j | → Xj ×
|TY,j | is proper for each j, although {TX,j}j becomes of class C2.

In order to understand the problem of the construction of {TX,j}j , we
consider the case of compact G.

Proof of Lemma 3.5 in the case of compact G. Remember that the map

φ :X → Y is proper. We know that there exists a subanalytic C2+n tube sys-

tem {TX,j = (|TX,j |, πX,j , ρX,j)}j for {Xj}j controlled over {TY,j}j . We need

to shrink |TX,j | and |TY,j | so that the condition of properness in Lemma 3.5

is satisfied. First, we can assume that φ(X ∩ |TX,j |) ⊂ |TY,j | and the set

π−1
Y,j(y) are bounded for each y ∈ Yj . For each y ∈ Yj , set

χj(y) =min
{
ρY,j ◦ φ(x)

∣∣ x ∈X ∩ ∂|TX,j |, πY,j ◦ φ(x) = y
}
,

where ∂|TX,j |= |TX,j |− |TX,j |. Then χj is a function on Yj larger than some

positive C0 function since the map φ :X → Y is proper, and its graph is

subanalytic because the set {(x,ρY,j ◦ φ(x), πY,j ◦ (x)) | x ∈X ∩ ∂|TX,j |} is

a subanalytic subset of X ×R× Y ; hence, the set {(ρY,j ◦ φ(x), πY,j ◦ (x)) |
x ∈X ∩ ∂|TX,j |} is a subanalytic subset of R× Y by (11) in Section 2, and

in general, for a subanalytic subset S of R× Y , the set {(y, s) ∈ Y ×R |
s = inf{t | (t, y) ∈ S}} is subanalytic by (1). Therefore, by subanalytically

stratifying the graph of χj , we obtain a positive subanalytic function χ′
j on

Yj smaller than χj . Let us shrink |TY,j | and |TX,j | to the sets {y ∈ |TY,j | |
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ρY,j(y)<χ′
j ◦ πY,j(y)} and |TX,j | ∩ (R2n+1 × (the new |TY,j |)), respectively.

Then φ(X∩|TX,j |) = Y ∩|TY,j |, and the set X∩|TX,j | is G-invariant. Hence,

the map φ|X∩|TX,j | :X ∩ |TX,j | → |TY,j | is proper since the map φ :X → Y

is so. It follows that the map (πX,j , φ)|X∩|TX,j | :X ∩ |TX,j | →Xj × |TY,j | is
proper. Thus, Lemma 3.5 holds in the compact case.

The above arguments show that if G is compact, then by shrinking |TY,j |
we can choose |TX,j | enough large in comparison. However, this is not the

case in general (see Figure 7). In the general case, we will define |TX,j |
only on slices, because isotropy groups are compact, and extend it glob-

ally. For the extension we need the additional condition that the restriction

πX,j |X∩|TX,j | is G-equivariant, that is, that

gx ∈ |TX,j |, πX,j(gx) = gπX,j(x) for (g,x) ∈G×
(
X ∩ |TX,j |

)
;(∗∗)j

(∗∗)j

This condition is so strong that if the value πX,j(x) is determined for

one x, then the map πX,j on the set φ−1(φ(x)) is determined. Hence, if

the condition is satisfied, then the map (πX,j , φ)|X∩|TX,j | : X ∩ |TX,j | →
Xj × |TY,j | is proper. Thus, we can replace Lemma 3.5 with the following

lemma.

Lemma 3.6. We can choose a subanalytic C2 tube system {TX,j}j con-

trolled over {TY,j}j and satisfying condition (∗∗)j .

We see that condition (∗∗)j can be satisfied in the case where G is a

compact subgroup of O(2n+ 1) as follows, and we will reduce the general

case to this case by existence of linear slices.

Lemma 3.7. Assume that G is a compact subgroup of the orthogonal

group O(2n+1) and that G operates orthogonally on M . Then Lemma 3.6

holds.

Proof. Many times we use the idea of the construction of a controlled

tube system by orthogonal projections onto differentiable submanifolds of

R2n+1. We construct {TX,j}j by double induction. Choose the set of indexes
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so that dimXj ≥ dimXj+1. Then, since we do not need to consider condition

(sc2), the required conditions are (∗∗)j ,

φ ◦ πX,j = πY,j ◦ φ̃ on |TX,j |,(sc1)j

πX,j ◦ πX,k = πX,j on |TX,j | ∩ |TX,k| for j > k.(sc3)′j,k

We also require that the map πX,j be of class C∗j for a technical reason,

where ∗j = 2+ n− dimXj .

As the first induction, we assume that for some k, a subanalytic tube

system {TX,j}j>k for {Xj}j>k is given so that the conditions (sc1)j , (sc3)
′
l,j ,

and (∗∗)j are satisfied and the map πX,j is of class C∗j for any l > j > k.

We will define a subanalytic tube TX,k at Xk. First, we choose |TX,k| so
small that |TX,k| ⊂ φ̃−1(|TY,k|); moreover, we shrink |TX,k| and, temporarily,

define the value πX,k(x) for x ∈ |TX,k| to be the orthogonal projection of

x to the subanalytic analytic manifold φ−1(πY,k ◦ φ̃(x)). Then πX,k is a

submersive subanalytic C1+n retraction to Xk by condition (14) because the

family {φ−1(πY,k ◦ φ̃(x)) | x ∈ |TX,k|} is a subanalytic C2+n foliation ofXk by

condition (13); condition (sc1)k is satisfied, and moreover, (∗∗)k is satisfied

since G acts orthogonally on M ×R2n+1. However, condition (sc3)′j,k is not

necessarily satisfied for j > k. As the second induction, we assume that for

some l > k we have shrunk |TX,j |, l > j > k, and have modified the map

πX,k so that condition (sc3)′j,k (l > j > k) is also satisfied and the map πX,k

is now of class subanalytic C∗k . Then we will modify πX,k again so that

condition (sc3)′l,k is also satisfied. (In the accompanying arguments we need

to shrink |TX,j |, l ≥ j ≥ k, many times. However, we do not mention that

anymore because it is clear when we need to do so.)

We can assume that dimXk > dimXl because if dimXk = dimXl, then

we can choose disjoint |TX,k| and |TX,l|. For each x ∈ |TX,k| ∩ |TX,l|, the set

Xk,l,x = π−1
X,l

(
πX,l(x)

)
∩ φ−1

(
πY,k ◦ φ̃(x)

)
is a subanalytic C∗l submanifold of Xk ∩ |TX,l| since φ is a Thom map; the

family {Xk,l,x | x ∈ |TX,k|∩ |TX,l|} is a subanalytic C∗l foliation of Xk∩|TX,l|
by (13); and any point x in Xk∩|TX,l| is contained in Xk,l,x. Let pk,l,x denote

the orthogonal projection to Xk,l,x of its small subanalytic neighborhood,

and set

πX,k,l(x) = pk,l,x
(
πX,k(x)

)
for x ∈ |TX,k| ∩ |TX,l|.

Then the map πX,k,l : |TX,k| ∩ |TX,l| →Xk ∩ |TX,l| is a well-defined suban-

alytic submersive C∗l−1 retraction by condition (14); the conditions (sc1)k
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for πX,k,l and (sc3)′l,k for πX,l and πX,k,l are clear; condition (∗∗)k for πX,k,l

holds because for (g,x) ∈G× (X ∩ |TX,k| ∩ |TX,l|), the following holds:

πX,k,l(gx) = pk,l,gx
(
πX,k(gx)

)
= pk,l,gx

(
gπX,k(x)

)
by (∗∗)k for πX,k

= gpk,l,x
(
πX,k(x)

)

since pk,l,gx(gx
′) = gpk,l,x(x

′) for x′ near Xk,l,x.

However, there are two problems when we choose the map πX,k,l as a

modification of πX,k. One is that condition (sc3)′j,k, l > j > k, may not con-

tinue to hold, and the other is that the map πX,k,l is not globally defined

on |TX,k|.
The former problem does not occur. Indeed, for any j such that l > j > k,

we have the equality

(∗∗∗) πX,k,l = πX,k on |TX,k| ∩ |TX,l| ∩ |TX,j |

as follows. Let x ∈ |TX,k| ∩ |TX,l| ∩ |TX,j |. Then

πX,l(x)
by (sc3)′l,j

= πX,l ◦ πX,j(x)
by (sc3)′j,k

= πX,l ◦ πX,j ◦ πX,k(x)

by (sc3)′l,j
= πX,l ◦ πX,k(x).

Hence, πX,k(x) ∈ π−1
X,l(πX,l(x)). On the other hand, πX,k(x) ∈ φ−1(πY,k ◦

φ̃(x)) by condition (sc1)k. Consequently, πX,k(x) ∈Xk,l,x, which proves the

equality (∗∗∗) by the definition of πX,k,l.

To solve the latter problem, we paste two maps πX,k and πX,k,l by a par-

tition of unity. We use a special partition of unity so that conditions (sc1)k
and (∗∗)k continue to hold. Let ξ be a subanalytic C2+n function defined on

|TY,l| (not |TX,l|) such that ξ ≥ 0, ξ = 0 outside of a small subanalytic neigh-

borhood of Yl in φ̃(|TX,l|) and ξ = 1 on a smaller one. It is natural to define

the pasted map to be πX,k on |TX,k|− |TX,l| and ξ ◦ φ̃πX,k,l+(1− ξ ◦ φ̃)πX,k

on |TX,k| ∩ |TX,l|. However, this map loses the required properties. We need

to modify the map. Set

π′
X,k(x) =

⎧⎨
⎩
πX,k(x) for x ∈ |TX,k| − |TX,l|,
pk,x(ξ ◦ φ̃(x)πX,k,l(x)

+ (1− ξ ◦ φ̃(x))πX,k(x)) for x ∈ |TX,k| ∩ |TX,l|,
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where pk,x denotes the orthogonal projection to the manifold φ−1(πY,k ◦
φ̃(x)) of its small subanalytic neighborhood. Then π′

X,k is the required mod-

ification of πX,k. Indeed, the map π′
X,k : |TX,k| →Xk is a subanalytic sub-

mersive C∗k retraction; π′
X,k clearly satisfies conditions (sc1)k and (sc3)′l,k;

and π′
X,k = πX,k on |TX,k| ∩ |TX,j | for l > j > k by (∗∗∗). Hence, condition

(sc3)′j,k holds for l > j > k by the same reason as above, and condition (∗∗)k
for π′

X,k holds for the same reason as above and the fact that ξ ◦ φ̃= const

on Gx for each x ∈ X . Thus, the second induction works, there exists a

subanalytic C2 tube system {TX,j}j controlled over {TY,j}j and satisfying

(∗∗)j , and Lemma 3.7 is proved.

We simplify Lemma 3.6 as follows.

Lemma 3.6′. There exist subanalytic C2 submersive retractions πX,j :

|TX,j | ∩ (M ×R2n+1)→Xj such that

φ ◦ πX,j = πY,j ◦ φ̃ on |TX,j | ∩ (M ×R2n+1),

πX,j ◦ πX,j′ = πX,j on |TX,j | ∩ |TX,j′ | ∩ (M ×R2n+1),

and condition (∗∗)j is satisfied, where |TX,j | are subanalytic tubular neigh-

borhoods of Xj in R2n+1 ×R2n+1.

Proof that Lemma 3.6′ implies Lemma 3.6. Assume that we have con-

structed πX,j as required in Lemma 3.6′. Define an extension π̃X,j of πX,j to

be πX,j ◦ (q, id) on |TX,j | ∩ (U ×R2n+1), where q : U →M is the orthogonal

projection of a subanalytic tubular neighborhood U of M in R2n+1. Then

the following hold on |TX,j | ∩ (U ×R2n+1):

φ ◦ π̃X,j = φ ◦ πX,j ◦ (q, id) = πY,j ◦ φ̃ ◦ (q, id) = πY,j ◦ φ̃,

π̃X,j ◦ π̃X,j′ = πX,j ◦ (q, id) ◦ πX,j′ ◦ (q, id)

= πX,j ◦ πX,j′ ◦ (q, id) = πX,j ◦ (q, id) = π̃X,j ;

and condition (∗∗)j continues to hold. Hence, {π̃X,j}j fulfills the require-

ments in Lemma 3.6.

Proof of Lemma 3.6′ in the case of noncompactG. For each point a ∈ M ,

there exists a linear slice S at a (see [1, Chapter IV] and [12, Theorem 2.3.3]).

Here we can clearly choose S bounded and subanalytic. Let aα (α ∈A) be a

finite or countable number of points of M and Sα bounded subanalytic lin-
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ear slices at aα such that {p(Sα)}α∈A is a locally finite covering of Y , where

p :M →R2n+1 is the map which appeared in the proof of Lemma 3.2.

The above construction of the stratified map φ : {Xj}j → {Yj}j works

under the additional condition of compatibility.Hence,we can assume that the

stratified map φ : {Xj}j →{Yj}j is compatible with {X ∩ (GSα×R2n+1)}α
and {p(Sα)}α, that is, that each of X ∩ (GSα × R2n+1) or p(Sα) is the

union of some connected components of Xj or Yj , respectively. Moreover,

we suppose that each of X ∩ (GSα ×R2n+1) or p(Sα) is the union of some

of Xj or Yj , respectively, and postpone considering the general case. For

each j, let αj be an element of A such that Xj ⊂GSαj ×R2n+1. Here we

can assume, moreover, that Xj ⊂ GSαj × R2n+1 without loss of general-

ity. Set aj = aαj , Sj = Sαj ,Gj = Gaj , and Zj = graphp|Sj for each j. Note

that Xj 	=Xj′ for j 	= j′, but there is the case where aj = aj′ , Sj = Sj′ , and

Gj =Gj′ for j 	= j′, and the compact Lie group Gj and the Gj-manifold Sj

satisfy the conditions in Lemma 3.7 for each j. Choose the set of indexes

so that dimXj ≥ dimXj+1 as usual. We will construct a subanalytic tube

system {TX,j}j by double induction as in the proof of Lemma 3.7. Assume

that for some k we are given TX,j on |TX,j | ∩ (M ×R2n+1), j > k, of class

C∗j such that the conditions (sc1)j , (sc3)
′
l,j , and (∗∗)j are satisfied for any

l > j > k. We will define TX,k.

Here, too, we do not mention shrinking |TX,j | and |TY,j | each time, though

we need to keep the condition φ−1(|TY,j |) =X∩|TX,j |. First, define a suban-

alytic C1+n tube TZ,k = (|TZ,k|, πZ,k, ρZ,k) at Zk ∩Xk in Sk ×R2n+1 so that

the value πZ,k(z) is the orthogonal projection of a point z to the analytic

manifold Zk ∩ φ−1(πY,k ◦ φ(z)), where Sk is regarded as a Euclidean space

and Gk acts orthogonally there and trivially on R2n+1. As in the case of

compact G, choose |TY,k| and |TZ,k| so that Zk ∩ φ−1(|TY,k|) = Zk ∩ |TX,k|,
which is possible because {g ∈G | gZk = Zk}=Gk and Gk is compact. Then

condition (sc1)k for πZ,k is satisfied, and we have

gz ∈ Zk ∩ |TZ,k| and πZ,k(gz) = gπZ,k(z)
(∗∗)Z,k

for (g, z) ∈Gk ×
(
Zk ∩ |TZ,k|

)

since Gk acts orthogonally on Zk.

Next, we extend TZ,k to a subanalytic C1+n tube TX,k at Xk. For that,

it suffices to define the map πX,k on |TX,k| ∩ (M ×R2n+1). Choose |TX,k| so
that

|TX,k| ∩ (M ×R2n+1) =G|TZ,k|,
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and set

πX,k(gz) = gπZ,k(z) for (g, z) ∈G× |TZ,k|.
First of all, the map πX,k is then well defined. Indeed, if gz = g′z′ for points
(g, z), (g′, z′) ∈G× |TZ,k|, then points s and s′ in Sk such that z = (s, p(s))

and z′ = (s′, p(s′)) satisfy the equation s= g−1g′s′; hence, g−1g′ ∈Gk since

G×Gk
Sk →M is an embedding. Therefore,

g′πZ,k(z
′) = g

(
g−1g′πZ,k(z

′)
) by (∗∗)Z,k

= gπZ,k(g
−1g′z′) = gπZ,k(z).

Second, the map πX,k : |TX,k| ∩ (M ×R2n+1)→Xk is clearly a subanalytic

submersive C1+n retraction. Finally,

φ ◦ πX,k(gz) = φ
(
gπZ,k(z)

)
= φ ◦ πZ,k(z)

by (sc1)k for πZ,k
= πY,k ◦ φ(z) = πY,k ◦ φ(gz)(sc1)k

for (g, z) ∈G× |TZ,k|,

GDomπX,k =DomπX,k, πX,k(gg
′z) = gg′πZ,k(z)

(∗∗)X,k

= gπX,k(g
′z) for (g, g′, z) ∈G2 × |TZ,k|.

Thus, we extend TZ,k to TX,k.

We need to modify πX,k so that condition (sc3)′j,k for πX,j and πX,k holds

for any j > k. By downward induction we assume that for some l > k and

for any j such that l > j > k, condition (sc3)′j,k is satisfied and the map πX,k

is of class C∗k . We modify πX,k so that condition (sc3)′l,k is also satisfied.

However, we cannot carry out the modification in Zk as in the proof of

Lemma 3.7 because Sl and Sk may be different, although we assume that

Xl ⊂ Xk −Xk without loss of generality. We will replace πZ,k with some

subanalytic C∗k map π′
Z,k : Zk ∩ |TX,l| →Xk (not a map to Zk ∩Xk) and

extend it to a subanalytic C∗k map π′
X,k : |TX,k| ∩ (M ×R2n+1)→Xk in the

same way as above so that condition (sc3)′l,k is satisfied for πX,l and π′
X,k.

In the proof of Lemma 3.7 we constructed πX,k,l before π′
X,k. Here we

construct a map πZ,k,l having the same properties as πX,k,l. Set πZ,k =

πX,k|Zk∩|TX,k|. (Note that the present πZ,k is not the original πZ,k but the

restriction to Zk ∩ |TX,k| of the modified πX,k.) We need a revision of the

orthogonal direction to Sk in M . Regard M as a subanalytic analytic Gk-

manifold, give it an analytic Gk-invariant Riemannian metric (see [1, Chap-

ter VI, proof of Theorem 2.1]), and trivially lift the metric to M ×R2n+1.

https://doi.org/10.1215/00277630-2366201 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2366201


192 M. MURAYAMA AND M. SHIOTA

Since Zk is bounded, for each z ∈ Zk ∩ |TX,k| ∩ |TX,l|, the set

Z̃k,l,z = π−1
X,l

(
πX,l(z)

)
∩ φ−1

(
πY,k ◦ φ(z)

)

is a subanalytic C∗l submanifold of Xk ∩ |TX,l|, any point z in Zk ∩Xk ∩
|TX,l| is included in Z̃k,l,z , and the family {Z̃k,l,z | z ∈ Zk ∩Xk ∩ |TX,l|} is a

subanalytic C∗l foliation of Xk ∩ |TX,l|. Let pk,l,z denote the projection to

Z̃k,l,z of its small subanalytic neighborhood such that for each z′ ∈ Z̃k,l,z ,

p−1
k,l,z(z

′) is a geodesic curve in the neighborhood and orthogonal to Z̃k,l,z at

z′, and set

πZ,k,l(z) = pk,l,z
(
πZ,k(z)

)
for z ∈ Zk ∩ |TX,k| ∩ |TX,l|.

Then πZ,k,l : Zk ∩ |TX,k| ∩ |TX,l| →Xk is a well-defined subanalytic C∗l map

such that πZ,k,l = id on Zk ∩Xk ∩ |TX,l|; the conditions (sc1)k for πX,k,l and

(sc3)′l,k for πX,l and πZ,k,l on Zk ∩ |TX,k| ∩ |TX,l| are clearly satisfied; and

condition (∗∗)Z,k holds on Gk × (Zk ∩ |TX,k| ∩ |TX,l|) for the same reason as

in the proof of Lemma 3.7. The following equality also follows in the same

way. For each j such that l > j > k,

πZ,k,l = πZ,k on Zk ∩ |TX,l| ∩ |TX,j | ∩ |TX,k|.

Thus, the map πZ,k,l on Zk∩|TX,k|∩ |TX,l| has the same properties as πX,k,l.

(Note that ImπZ,k,l is not necessarily equal to Zk ∩Xk and that the map

πZ,k,l is not necessarily a submersion to its image.)

It remains to paste two maps πZ,k,l with πZ,k. As before, let ξ be a

subanalytic C2+n function defined on |TY,l| such that ξ ≥ 0, ξ = 0 outside

of a small subanalytic neighborhood of Yl in |TY,l| and ξ = 1 on a smaller

one. Let (x,x′, t) be a point of (M ×R2n+1)2 × [0,1] such that x and x′

are close each other. Let θ(x,x′, t) ∈ M ×R2n+1 denote the point in the

shortest geodesic curve joining x and x′ such that the distance between x

and θ(x,x′, t) equals the product of t and the distance between x and x′.
Set

π′
Z,k(z) =

{
πZ,k(z) for z ∈ Zk ∩ |TX,k| − |TX,l|,
pk,z ◦ θ(πZ,k(z), πZ,k,l(z), ξ ◦ φ(z)) for z ∈ Zk ∩ |TX,k| ∩ |TX,l|,

where pk,z denotes the projection to the manifold φ−1(πY,k ◦ φ(z)) of its

small subanalytic neighborhood with the same properties as pk,l,z . Then the

map π′
Z,k : Zk ∩ |TX,k| →Xk is a subanalytic C∗k one, and all the conditions
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π′
Z,k = id on Zk ∩Xk, (sc1)k for π′

Z,k on Zk ∩ |TX,k|, (sc3)′j,k for πX,j and

π′
Z,k (l≥ j > k) on Zk ∩ |TX,j | ∩ |TX,k|, and (∗∗)Z,k for π′

Z,k hold.

Extend π′
Z,k to a subanalytic C∗k map π′

X,k : |TX,k| ∩ (M ×R2n+1)→Xk

in the same way as before by

π′
X,k(gz) = gπ′

Z,k(z) for (g, z) ∈G×
(
Zk ∩ |TX,k|

)
.

Then for the same reason, the map π′
X,k is a well-defined submersive retrac-

tion; the conditions (sc1)k and (∗∗)X,k are satisfied; condition (sc3)′j,k for

πX,j and π′
X,k (l > j > k) holds because

π′
X,k = πX,k on |TX,k| ∩ |TX,j | ∩ (M ×R2n+1);

and finally,

πX,l ◦ π′
X,k(gz) = πX,l

(
gπ′

Z,k(z)
) by (∗∗)X,l

= gπX,l ◦ π′
Z,k(z)

by (sc3)′l,k for πX,l and π′
Z,k

= gπX,l(z)(sc3)′l,k

by (∗∗)X,l
= πX,l(gz) for (g, z) ∈G×

(
Zk ∩ |TX,k| ∩ |TX,l|

)
.

Thus, π′
X,k is the required modification of πX,k in the induction process,

completing the proof of Lemma 3.6′ in the case where each of X ∩ (GSα ×
R2n+1) or p(Sα) is the union of some Xj or Yj , respectively.

Let us consider the general case where each is the union of some con-

nected components of Xj or Yj . For each j, let {Yi,j}i denote the connected
components of Yj , and set Xi,j = φ−1(Yi,j). Then by condition (6), the fam-

ilies {Xi,j}i,j and {Yi,j}i,j satisfy the conditions on a subanalytic analytic

stratification except that the set of indexes is finite. By (5) the families are

locally finite, and the map φ : {Xi,j}i,j →{Yi,j}i,j satisfies the condition on

a subanalytic analytic stratified map. For each (i, j), since Yi,j is a con-

nected component of Yj , we can define a tube TY,i,j = (|TY,i,j |, πY,i,j , ρY,i,j)
at Yi,j to be the restriction of TY,j to the neighborhood of Yi,j ; that is,

|TY,i,j |= π−1
Y,j(Yi,j), πY,i,j = πY,j ||TY,i,j | and ρY,i,j = ρY,j ||TY,i,j |. Then {TY,i,j}i,j

is a controlled subanalytic C2+n tube system for {Yi,j}i,j . Hence, it suffices

to find a subanalytic C2 tube system {TX,i,j}i,j for {Xi,j}i,j controlled over

{TY,i,j}i,j and satisfying condition (∗∗).
By induction, we assume that the required {TX,i,j | dimXi,j < k} is given

for some k, and we construct {TX,i,j | dimXi,j = k}. Since the manifold
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⋃
dimXi,j=kXi,j is not necessarily included in one GSα ×R2n+1, we need

to choose one α ∈ A, say, αi,j for each (i, j) such that Xi,j is included in

GSαi,j × R2n+1. Then by using Sαi,j and Gαi,j for each (i, j) such that

dimXi,j = k, we obtain the required TXi,j in the same way as in the special

case, though the notation becomes complicated. We omit the details.
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