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Density of Polynomial Maps

Chen-Lian Chuang and Tsiu-Kwen Lee

Abstract. Let R be a dense subring of End(DV ), where V is a left vector space over a division ring

D. If dim DV = ∞, then the range of any nonzero polynomial f (X1, . . . , Xm) on R is dense in

End(DV ). As an application, let R be a prime ring without nonzero nil one-sided ideals and 0 6= a ∈ R.

If a f (x1, . . . , xm)n(xi )
= 0 for all x1, . . . , xm ∈ R, where n(xi) is a positive integer depending on

x1, . . . , xm, then f (X1, . . . , Xm) is a polynomial identity of R unless R is a finite matrix ring over a

finite field.

1 Results

Throughout, V is a left vector space over a division ring D. Let End(DV ) denote

the ring of endomorphisms of DV . For c ∈ End(DV ) and a subspace W of DV , let

c↾W denote the restriction of c to W . The finite topology of End(DV ) is obtained by

endowing each c ∈ End(DV ) with the family of neighborhoods

{x ∈ End(DV ) | x↾W = c↾W},

where W ranges over all finite-dimensional subspaces of DV . Let F denote the center

of D. By a (noncommuting) polynomial over F, we mean an element of the free

algebra F{X1, X2, . . . } over the field F generated by indeterminates X1, X2, . . . . The

range of a polynomial f (X1, . . . , Xm) ∈ F{X1, X2, . . . } on a subring R of End(DV ) is

defined to be

R( f ; R)
def.
= { f (x1, . . . , xm) ∈ End(DV ) | x1, . . . , xm ∈ R}.

Let R be a dense subring of End(DV ). Assume that dim DV = ∞. Chuang [2,

Lemma 1] proved that R( f ; R) is a dense subset of End(DV ) for the case f (X1, X2) =

X1X2−X2X1. Wong extended this to nonzero multilinear polynomials [10, Lemma 2].

Our purpose here is to extend these results to their full generality.

Theorem 1.1 Let R be a dense subring of End(DV ) and let f (X1, X2, . . . , Xm) be a

nonzero polynomial. If dim DV = ∞, then R( f ; R) is a dense subset of End(DV ).

This actually follows from Theorem 1.2, a more detailed and generalized version.
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Theorem 1.2 Let R be a dense subring of End(DV ) and let f (X1, X2, . . . , Xm; Y )

be a polynomial involving Y nontrivially. Assume that dim DV = ∞. Then given

c1, c2, . . . , cn ∈ End(DV ) and a finite-dimensional subspace V0 of DV , there exist

x1, x2, . . . , xm, y1, y2, . . . , yn ∈ R such that

f (x1, x2, . . . , xm; yi)↾V0
= ci↾V0

for i = 1, 2, . . . , n.

Granted this, we can immediately give the proof.

Proof of Theorem 1.1 Since f (X1, X2, . . . , Xm) is nonzero, it must involve nontriv-

ially some Xi , say Xm. Write f = f (X1, . . . , Xm−1; Xm). Let c ∈ End(DV ) and let V0

be a finite-dimensional subspace of DV . We apply Theorem 1.2 with Xm playing the

role of Y . So there exist x1, . . . , xm−1, xm ∈ R such that

f (x1, . . . , xm−1; xm)↾V0
= c↾V0

.

So R( f ; R) intersects nontrivially any neighborhood of End(DV ) and is hence dense.

As an application to Theorem 1.2 we will prove the following.

Theorem 1.3 Let R be a prime ring with extended center C and without nonzero

nil one-sided ideals. Let f (X1, . . . , Xm) be a non-commuting polynomial over C and

0 6= a ∈ R. Suppose that for all x1, . . . , xm ∈ R, there exists an integer n(xi) ≥ 1,

depending on x1, . . . , xm, such that a f (x1, . . . , xm)n(xi )
= 0. Then f (x1, . . . , xm) = 0

for all x1, . . . , xm ∈ R, unless R is a finite matrix ring over a finite field.

We refer the reader to [6] for the case f (X) = X and to [4, 7] for the case where

f (X1, . . . , Xm) is a multilinear polynomial. On the other hand, as pointed out in [11],

if R is an n×n matrix ring over a finite field, then by [3, Theorem] for any 1 < k ≤ n

there exists a polynomial f (X1, . . . , Xm), not a polynomial identity of R, such that

f (x1, . . . , xm)k
= 0 for all x1, . . . , xm ∈ R. Theorem 1.3 can be also generalized to

one-sided ideals as in [4, 6]. For simplicity, we state the result without proof.

Theorem 1.4 Let R be a prime ring without nonzero nil one-sided ideals. Let

f (X1, . . . , Xm) be a non-commuting polynomial over the extended centroid C of R.

Given 0 6= a ∈ R and a one-sided ideal I of R, suppose that for all x1, . . . , xm ∈ I,

a f (x1, . . . , xm)n(xi )
= 0 for some n(xi) ≥ 1 depending on x1, . . . , xm.

Then the following hold unless C is a finite field and I is generated by an idempotent e in

the socle of R:

(i) If I is a right ideal, then either aI = 0 or f (x1, . . . , xm)I = 0 for all x1, . . . , xm ∈ I.

(ii) If I is a left ideal, then I f (x1, . . . , xm) = 0 for all x1, . . . , xm ∈ I.

By [4, Main Theorem], we can drop the exceptional case when f (X1, . . . , Xm) is a

multilinear polynomial.
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2 Proofs

Proof of Theorem 1.2 It suffices to prove the following.

Claim: For any given a1, . . . , am, b1, . . . , bn ∈ End(DV ) and for any given m + n + 1

finite-dimensional subspaces V0,V1, . . . ,Vm; U1, . . . ,Un of DV with

(2.1) V0 ∩ (V1 + · · · + Vm + U1 + · · · + Un) = 0,

there exist x1, . . . , xm; y1, . . . , yn ∈ R satisfying the following:

(i) x1↾V1
= a1↾V1

, . . . , xm↾Vm
= am↾Vm

,

(ii) y1↾U1
= b1↾U1

, . . . , yn↾Un
= bn↾Un

,

(iii) f (~x; y1)↾V0
= c1↾V0

, . . . , f (~x; yn)↾V0
= cn↾V0

,

where f (~x; yi)
def.
= f (x1, x2, . . . , xm; yi) for 1 ≤ i ≤ n.

Indeed, our theorem follows directly by taking Vi = 0 = U j for 1 ≤ i ≤ m

and 1 ≤ j ≤ n. Let α ∈ F be the constant term of f (~X; Y ). Replacing f (~X; Y ) by

f (~X; Y ) − α and c1, . . . , cn by c1 − α, . . . , cn − α, respectively, we may assume that

f (~X; Y ) has no constant term. Write

f (~X; Y ) = X1 f1(~X; Y ) + · · · + Xm fm(~X; Y ) + Y g(~X; Y ).

We proceed by induction on the total degree of f (X1, X2, . . . , Xm; Y ) and divide our

argument into four cases.

Case 1: g(~X; Y )=0. Then some fi(~X; Y ), say fm(~X; Y ), must involve Y nontrivially.

Since dim DV = ∞, there exists a subspace V ′
0 of V such that dim DV ′

0 = dim DV0

and such that V ′
0 ∩ (V0 + V1 + · · · + Vm + U1 + · · · + Un) = 0. Fix an isomorphism

σ : V0 → V ′
0 . By (2.1), we pick a ′

m ∈ End(DV ) such that

a ′

m↾Vm
= am↾Vm

and a ′

m↾V0
= σ.

For 1 ≤ i ≤ m − 1, we also pick a ′
i ∈ End(DV ), such that

a ′

i ↾Vi
= ai↾Vi

and a ′

i ↾V0
= 0.

Clearly, fm(~X; Y ) has smaller degree than f (~X; Y ). By the induction hypothesis, there

exist xi , y j ∈ R, 1 ≤ i ≤ m and 1 ≤ j ≤ n, satisfying the following:

• xi↾V0+Vi
= ai↾

′

V0+Vi
for i = 1, . . . , m,

• y j↾U j
= b j↾U j

for j = 1, . . . , n,
• fm(~x; y j)↾V ′

0
= σ−1 ◦ (c j↾V0

) for j = 1, . . . , n.

By our choice of a ′
i , these xi also satisfy (i). For v ∈ V0, we have vxi = va ′

i = 0 for

1 ≤ i ≤ m − 1 and vxm = va ′
m = vσ. So for v ∈ V0,

v f (~x; y j) = v(x1 f1(~x; y j) + · · ·+ xm fm(~x; y j)) = vxm fm(~x; y j) = (vσ)(σ−1 ◦ c j) = vc j

for 1 ≤ j ≤ n. So f (~x; y j)↾V0
= c j↾V0

. This proves (iii).

Case 2: g(~X; Y ) is a nonzero constant, say, 0 6= β ∈ F. By (2.1) and the density of R

in End(DV ) there exist xi , y j ∈ R satisfying the following:
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• xi↾Vi
= ai↾Vi

and xi↾V0
= 0 for 1 ≤ i ≤ m.

• y j↾U j
= b j↾U j

and y j↾V0
= β−1c j↾V0

for 1 ≤ j ≤ n.

Trivially, (i) and (ii) hold. For v ∈ V0 we have vxi = 0 for 1 ≤ i ≤ m and vy j =

β−1vc j for 1 ≤ j ≤ n. So we have

v f (~x; y j) = v
(

x1 f1(~x; y j) + · · · + xm fm(~x; y j) + y jg(~x; y j)
)

= vy jg(~x; y j) = (β−1v)c jβ = vc j .

So (iii) also holds, as claimed.

Case 3: g(~X; Y ) involves Y nontrivially. By (2.1), we pick a ′
i , 1 ≤ i ≤ m, such that

a ′

i ↾Vi
= ai↾Vi

and a ′

i ↾V0
= 0.

Since dim DV = ∞, there exists a subspace V ′
0 of V such that dim DV ′

0 = dim DV0

and such that V ′
0 ∩ (V0 + V1 + · · · + Vm + U1 + · · · + Un) = 0. Fix an isomorphism

σ : V0 → V ′
0 . By (2.1) again, we pick b ′

j , 1 ≤ j ≤ n, such that

b ′

j↾U j
= b j↾U j

and b ′

j ↾V0
= σ.

Clearly, g has smaller degree than f . Note that σ−1 ◦ (c j↾V0
) is defined on V ′

0 , which

is disjoint from V0 +
∑m

i=1 Vi +
∑n

j=1 U j . By the induction hypothesis, there exist

xi , y j ∈ R such that

• xi↾V0+Vi
= ai↾

′

V0+Vi
for i = 1, . . . , m.

• y j↾V0+U j
= b j↾

′

V0+U j
for j = 1, . . . , n.

• g(~x; y j)↾V ′

0
= σ−1 ◦ (c j↾V0

) for j = 1, . . . , n.

These xi , y j satisfy (i) and (ii) by our choice of a ′
i , b ′

j . For v ∈ V0 we have vxi = 0 for

1 ≤ i ≤ m and vy j = vσ. So

v f (~x; y j) = v(x1 f1(~x; y j) + · · · + xm fm(~x; y j) + y jg(~x; y j))

= vy jg(~x; y j) = (vσ)(σ−1 ◦ (c j↾V0
)) = vc j .

So (iii) also follows as claimed.

Case 4: g(~X; Y ) is not a constant and does not involve Y . So g(~X; Y ) involves non-

trivially some Xi , say Xm. So write g(~X; Y ) = g(X1, . . . , Xm) = g(~X). By (2.1), we

choose n finite-dimensional subspaces V
( j)
0 , j = 1, . . . , n, satisfying the following:

• dim DV (i)
0 = dim DV 0 for i = 1, . . . , n.

• The sum
∑n

j=1 V
( j)
0 is direct.

• (
∑n

j=1 V
( j)
0 ) ∩ (V0 +

∑m
i=1 Vi +

∑n
i=1 Ui) = 0.

Pick isomorphisms σ j : V0 → V
( j)
0 for j = 1, . . . , n. Define c ∈ End(DV ) satisfying

c↾
V

( j)
0

= σ−1
j ◦ (c j↾V0

) for 1 ≤ j ≤ n.
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Pick a ′
i ∈ End(DV ), 1 ≤ i ≤ m, such that

a ′

i ↾Vi
= ai↾Vi

and a ′

i ↾V0
= 0.

Clearly, g has smaller degree than f . Note that

(V (1)
0 ⊕ · · · ⊕V (n)

0 ) ∩ (V0 + V1 + · · · + Vm) = 0.

We apply the induction hypothesis to g(X1, . . . , Xm) with Xm playing the role of Y .

So there exist x1, . . . , xm−1, xm ∈ R such that

• xi↾V0⊕Vi
= a ′

i ↾V0⊕Vi
for 1 ≤ i ≤ m.

• g(x1, . . . , xm)↾V (1)
0 ⊕···⊕V (n)

0
= c↾V (1)

0 ⊕···⊕V (n)
0

.

Moreover, by the density of R in End(DV ) there exist y j ∈ R, 1 ≤ j ≤ n, such that

y j↾U j
= b j↾U j

and y j↾V0
= σ j .

Clearly, these xi , y j satisfy (i) and (ii). For v ∈ V0, vxi = 0 for 1 ≤ i ≤ m, and

vσ j ∈ V
( j)
0 for 1 ≤ j ≤ n. So we have for 1 ≤ j ≤ n,

v f (~x; y j) = v(x1 f1(~x; y j) + · · · + xm fm(~x; y j) + y jg(~x))

= vy jg(~x) = (vσ j)σ
−1
j ◦ (c j↾V0

) = vc j .

Hence, (iii) follows as claimed.

We now turn to the proof of Theorem 1.3 Let R be a prime ring. Then the extended

centroid C of R is a field; we refer the reader to [1] for details. Let C{X1, X2, . . . }
denote the free algebra over C in noncommuting indeterminates X1, X2, . . . . Let

RC{X1, X2, . . . } denote the free product of the C-algebras RC and C{X1, X2, . . . }.

Elements of RC{X1, X2, . . . } (resp. of C{X1, X2, . . . }) are called generalized poly-

nomial (resp. polynomial). We call f (X1, X2, . . . , Xt ) in RC{X1, X2, . . . } (resp. in

C{X1, X2, . . . }) a generalized polynomial identity, abbreviated as GPI (resp. polyno-

mial identity, abbreviated as PI) if f (x1, . . . , xt ) = 0 for all xi ∈ R. A prime ring R is

called a GPI-ring (resp. a PI-ring) if it satisfies a nonzero GPI (resp. a nonzero PI).

To prove Theorem 1.3 we need the following two lemmas (see [4, Lemmas 1 and 2]).

Lemma 2.1 Let S = Mn(D), where D is a division ring. If abℓ
= 0 for some integer

ℓ ≥ 1 where a, b ∈ R, then abn
= 0.

Lemma 2.2 Let S be a simple Artinian ring and let T be a subset of S such that

uTu−1 ⊆ T for all invertible elements u ∈ S. Then either ℓS(T) = 0 or T = 0,

where ℓS(T) is the left annihilator of T in S.

Proof of Theorem 1.3 Let ρ
def.
= aR, a nonzero right ideal of R. Let x1, . . . , xm ∈ R.

By assuption, there exists an integer n(xia) ≥ 1, depending on x1a, . . . , xma, such

that a f (x1a, . . . , xma)n(xi a)
= 0 and so

(2.2) f (ax1, . . . , axm)n(xi a)a = a f (x1a, . . . , xma)n(xi a)
= 0.
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Set ρ = ρ/ρ∩ ℓR(ρ). Since R is a prime ring without nonzero nil one-sided ideals, so

is the ring ρ. In view of [8, Lemma 3], the extended centroid C of the prime ring ρ is

canonically isomorphic to C . This induces a canonical isomorphism of free algebras

C{X1, X2, . . . } and C{X1, X2, . . . }. Let f (X1, . . . , Xm) denote the canonical image of

f (X1, . . . , Xm). By (2.2), f (x1, . . . , xm) is nilpotent for all x1, . . . , xm ∈ ρ. It follows

from [11] that either f (X1, . . . , Xm) is a polynomial identity for ρ or ρ is a finite

matrix ring over a finite field. In either case, ρ itself is a PI-ring. Since R contains a

nonzero PI right ideal, it is a GPI-ring. By Martindale’s theorem [9, Theorem 3], RC

has a minimal idempotent g such that gRCg is a finite-dimensional central division

C-algebra. Let H denote the socle of RC . Since Ha ⊆ H, for our purpose it suffices

to assume a ∈ H from the start.

We claim that a f (x1, . . . , xm)n(xi )
= 0 for all x1, . . . , xm ∈ H, where n(xi) is a

positive integer depending on x1, . . . , xm. Suppose on the contrary that there exist

z1, . . . , zm ∈ H such that

a f (z1, . . . , zm)k 6= 0 for all k = 1, 2, . . . .

Notice that H is a simple ring with nonzero socle. By Litoff ’s theorem [5], there

exists an idempotent e ∈ H such that a, z1, . . . , zm ∈ eHe. Moreover, eHe = eRCe ∼=
Mp(D) for some division ring D ∼

= gRCg and for some integer p ≥ 1. By Lemma 2.1

we see that

(2.3) a f (x1, . . . , xm)p
= 0 for all x1, . . . , xm ∈ R ∩ eRCe.

Case 1. Assume that C is a finite field. Pick an ideal I 6= 0 of R such that IC ⊆ R.

Then eRCe = eICe ⊆ R by the simplicity of eRCe. So (2.3) holds for all x1, . . . , xm ∈
eRCe. In particular, a f (z1, . . . , zm)p

= 0, a contradiction.

Case 2. Assume that C is an infinite field. Pick an ideal I 6= 0 of R with eIe ⊆ R.

Then (2.3) holds for all xi , . . . , xm ∈ eIe. Note that C is infinite. If we further choose

I with αI ⊆ R for sufficiently, but finitely many, α ∈ C , then by a Vandermonde

argument (2.3) holds for all xi , . . . , xm ∈ eICe. Then eICe = eRCe follows by the

simplicity of eRCe. So a f (z1, . . . , zm)p
= 0, a contradiction again.

This proves our claim. Set V
def.
= gRC and D

def.
= gRCg. Then, by the density

theorem, H acts densely on DV . Suppose first that dim DV = ∞. Choose a vector

v ∈ V such that va 6= 0. By Theorem 1.1, there exist x1, . . . , xm ∈ H such that

va f (x1, . . . , xm) = va and so va f (x1, . . . , xm)k
= va 6= 0 for all k ≥ 1, a contradic-

tion. Thus dim DV < ∞, implying that R = RC = H ∼
= Mp(D) for some integer

p ≥ 1. By Lemma 2.1, a f (x1, . . . , xm)p
= 0 for all x1, . . . , xm ∈ R. The subset

T of R consisting of all elements f (x1, . . . , xm)p for x1, . . . , xm ∈ R clearly satisfies

uTu−1 ⊆ T for all invertible elements u ∈ R. Since a 6= 0, Lemma 2.2 asserts

that f (x1, . . . , xm)p
= 0 for all x1, . . . , xm ∈ R. Applying [11], we see that either

f (x1, . . . , xm) = 0 for all x1, . . . , xm ∈ R or R is a finite matrix ring over a finite

field.
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