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On the Negative Index Theorem for the
Linearized Non-Linear Schrödinger
Problem

Vitali Vougalter

Abstract. A new and elementary proof is given of the recent result of Cuccagna, Pelinovsky, and

Vougalter based on the variational principle for the quadratic form of a self-adjoint operator. It is

the negative index theorem for a linearized NLS operator in three dimensions.

1 Introduction

In this article we present what we believe to be a simpler proof of the recent result

of Cuccagna, Pelinovsky, and Vougalter [11]. It relates the spectrum of the linearized

NLS equation to the negative spectrum of the energy operator. We use the notations

of [11] and consider the linearized operator L = σ3H, where σ3 is the standard Pauli

matrix and H is the energy operator,

σ3 =

(

1 0

0 −1

)

, H =

(

−∆ + ω + f (x) g(x)

g(x) −∆ + ω + f (x)

)

,

while x ∈ R
3, ω > 0, and f , g : R

3 → R are exponentially decaying C∞ functions.

The spectral problem for the operator L is considered on L2(R
3, C

2),

(1.1) Lψ = zψ,

where ψ = (ψ1, ψ2)T . It arises when we linearize the Non-Linear Schrödinger (NLS)

equation on its special solution

(1.2) ψ = φ(x)eiωt ,

where φ : R
3 → R is C∞ and exponentially decreasing and solves the elliptic problem

−∆φ + ωφ + U (x)φ + F(φ2)φ = 0.

The existence of such standing wave solutions was proven for a broad class of non-

linearities (see [1–4, 16, 21]), and the functions f (x) and g(x) involved in the energy

operator are known explicitly (see [5, 11, 14, 23]):

f (x) = U (x) + F(φ2) + F ′(φ2)φ2, g(x) = F ′(φ2)φ2.
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738 V. Vougalter

The eigenvalues z of the spectral problem (1.1) are called unstable if ℑ(z) > 0, neu-

trally stable if ℑ(z) = 0 and stable if ℑ(z) < 0 (see [11, 22]). The studies of the

spectral properties of the linearized operator L play a significant role in the proofs of

the asymptotic stability of the NLS solitary waves (see [6, 8, 15, 18]).

For practical purposes, the system (1.1) can be conveniently rewritten in the new

variables ψ = (u + w, u − w)T :

(1.3) σ1Hu = zu ,

where u = (u, w)T , σ1 is the standard Pauli matrix, and H is the new energy operator:

σ1 =

(

0 1

1 0

)

, H =

(

L+ 0

0 L−

)

,

where L± = −∆ + ω + f (x) ± g(x). The numbers of the negative and the positive

eigenvalues of the operator H on L2(R
3, C

2) are called the negative and the positive

indices of H respectively and denoted as n(H) and p(H).

Apparently, there are several remarkable observations concerning the symmetries

of the spectrum of problem (1.3) with respect to both x and y axes. While the essen-

tial spectrum consists of two intervals: (−∞, ω] and [ω,∞), the eigenvalues could

be located anywhere in the complex plane. Their number and algebraic multiplicities

are finite (see [11, Proposition 2.2]).

If z is an eigenvalue with eigenvector u, then −z is another eigenvalue of problem

(1.3) with the corresponding eigenvector σ3u. We denote positive real and positive

imaginary eigenvalues and the corresponding eigenvectors as z
j
r and u

j
r , 1 ≤ j ≤ Nr

and zk
im and uk

im, 1 ≤ k ≤ Nim. If z is a complex eigenvalue with nonzero real

and imaginary parts, problem (1.3) has two additional eigenvalues z̄, and −z̄ and the

eigenvectors are ū and σ3ū, respectively. Let us denote the complex eigenvalues of

the linearized NLS problem located in the first open quadrant and the corresponding

eigenvectors as zl
c and ul

c, 1 ≤ l ≤ Nc.

As in [11], the eigenvalues of the operator L are assumed to be simple, which has

a trivial generalization to the case of semisimple eigenvalues and multiple eigenvalues

in the limiting case.

The energy functional for the problem is defined on H1(R
3, C

2) as h := 〈u, Hu〉.
Henceforth, the notation 〈f, g〉 stands for the inner product of f, g ∈ L2(R

3, C
2). The

inner product of f , g ∈ L2(R
3) is denoted as ( f , g). We simplify the analysis with the

following assumptions on the spectrum of problem (1.3), analogous to those of [11].

Assumption 1.1 The endpoints ±ω of the essential spectrum of the operator L are

neither resonances nor eigenvalues.

Assumption 1.2 The kernel of the operator σ1H is one-dimensional, while its gener-

alized kernel is two-dimensional, and ker(σ1H) = φ0, Ng(σ1H) = {φ0, φ1}, where

(1.4) φ0 = (0, φ)T , φ1 = (−∂ωφ, 0)T , and σ1Hφ1 = φ0.

Assumption 1.3 No real eigenvalues z of σ1H exist such that 〈u, Hu〉 = 0, where u

is the corresponding eigenvector of σ1H.
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The situation where resonances or eigenvalues occur at the endpoints of the es-

sential spectrum has been studied in recent works, [10]. It was shown that they are

structurally unstable under generic perturbations. Assumption 1.2 is natural, due to

the fact that the additional zero modes (∇φ, 0)T of the operator σ1H disappear in the

presence of a coordinate-dependent potential U (x) in the NLS equation. The case of

higher algebraic multiplicity for the generalized kernel is the blow-up situation and

was treated recently in [9]. The impact of real eigenvalues of zero energy on the neg-

ative index of the operator H and their bifurcations under generic perturbations was

considered in [22]. The eigenvalues embedded in the interior of the essential spec-

trum (−∞, −ω)∪ (ω, ∞) are also nongeneric, such that the eigenvalues of positive

energies disappear and those of negative energies produce the bound states in both

upper and lower half-planes when a perturbation is applied (see [11]). Thus we make

the assumption of their nonexistence. Such an assumption plays the significant role

in proving the dispersive estimates for Schrödinger operators (see [12]), the existence

of stable manifolds for an orbitally unstable NLS (see [20]). The nonexistence of res-

onances in the interior of the essential spectrum was proven in Proposition 2.3 of

[11].

Assumption 1.4 There are no eigenvalues embedded in the interior of the essential

spectrum (−∞, −ω) ∪ (ω, ∞) of the operator L.

Assumption 1.2 and the symmetry properties of the spectral problem imply that

the dimension of the pure point spectrum of the linearized operator is

dim(σp(σ1H)) = 2 + 2Nr + 2Nim + 4Nc.

Since real eigenvalues with zero energy are excluded, positive real eigenvalues corre-

spond to eigenvectors of either positive or negative energy, such that Nr = N+
r + N−

r .

The main result of the paper is the closure relation between the eigenvalues of

the linearized NLS problem and the negative index of the energy operator, which we

prove differently than in [11]. The case of coupled nonlinear Schrödinger equations

was studied in [17].

Theorem 1.5 Let Assumptions 1.1, 1.2, 1.3, and 1.4 be satisfied. Then Q ′(ω) 6= 0,

where Q(ω) =
∫

R3 φ2(x)dx is the squared L2 norm of the standing wave solution (1.2),

and the following closure relation is true for problem (1.3) on L2(R
3, C

2):

(1.5) n(H) = p(Q ′) + Nim + 2Nc + 2N−

r .

Here p(Q ′) = 1 if Q ′(ω) > 0, and p(Q ′) = 0 if Q ′(ω) < 0.

2 Proof of Theorem 1.5

As was shown in [11], the eigenvectors ui , u j corresponding to distinct eigenvalues

zi and z j , such that zi 6= ±z j , zi 6= ±z̄ j of problem (1.3) are skew-orthogonal, i.e.,

〈ui , σ1u j〉 = 0. The following elementary lemma extends these relations to the

generalized kernel of the linearized operator.
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Lemma 2.1 Let φi ∈ Ng(σ1H), i = 0, 1 and let u be the eigenvector of the operator

σ1H corresponding to an eigenvalue z, z 6= 0. Then

〈φi , σ1u〉 = 0, i = 0, 1 and 〈φ1, σ1φ0〉 = −
1

2
Q ′(ω) 6= 0.

Proof Via (1.3), Assumption 1.2 and (1.4),

〈φ0, σ1u〉 =
1

z
〈Hφ0, u〉 = 0,

〈φ1, σ1u〉 =
1

z
〈φ0, σ1u〉 = 0,

and

〈φ1, σ1φ0〉 = (−∂ωφ, φ) = −
1

2
Q ′(ω).

Thus Q ′(ω) does not vanish. Otherwise, by the Fredholm alternative theorem,

there exists a second generalized eigenvector in Ng(σ1H), which contradicts Assump-

tion 1.2.

The remaining orthogonality relations are between the eigenvectors correspond-

ing to the eigenvalues of the same kind: positive real, positive pure imaginary and the

complex located in the first open quadrant.

Lemma 2.2 It is true that

〈u j
r , σ1u j

r 〉 6= 0, 〈u j
r , σ1σ3u j

r 〉 = 0, 1 ≤ j ≤ Nr,(2.1)

〈uk
im, σ1uk

im〉 = 0, 〈uk
im, σ1ūk

im〉 6= 0, 1 ≤ k ≤ Nim,(2.2)

〈ul
c, σ1ul

c〉 = 〈ul
c, σ1σ3ul

c〉 = 〈ul
c, σ1σ3ūl

c〉 = 0,(2.3)

〈ul
c, σ1ūl

c〉 6= 0, 1 ≤ l ≤ Nc.

Proof By means of (1.3) and Assumption 1.3 we obtain

〈u j
r , σ1u j

r 〉 =
1

z
j
r

〈Hu j
r , u j

r 〉 6= 0.

A straightforward computation and the fact that both components of u
j
r are real val-

ued yield the second identity in (2.1).

The equality in (2.2) is an elementary consequence of the fact that the first com-

ponent of uk
im, 1 ≤ k ≤ Nim is real and the second one is pure imaginary (see [11]).

Now, 〈uk
im, σ1ūk

im〉, 1 ≤ k ≤ Nim and 〈ul
c, σ1ūl

c〉, 1 ≤ l ≤ Nc do not vanish, other-

wise by the Fredholm alternative theorem there would exist generalized eigenvectors

vk
im and vl

c satisfying

σ1Hvk
im = zk

imvk
im + uk

im, σ1Hvl
c = zl

cvl
c + ul

c,
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which contradicts the assumption that the eigenvalues are simple.

In the case of complex eigenvalues we express ul
c = (ul

R + iul
I , wl

R + iwl
I)

T , 1 ≤ l ≤
Nc. According to [11], the real and imaginary parts satisfy the following relations

(ul
R, wl

R) = −(ul
I , wl

I), (ul
R, wl

I) = (ul
I , wl

R), 1 ≤ l ≤ Nc.

An elementary computation using these identities yields (2.3).

Having established the orthogonality relations, we explicitly define the skew-or-

thogonal projection operator Pd onto the subspace Xd spanned by the eigenvectors

corresponding to the elements of the pure point spectrum of the linearized operator,

i.e.,

Xd := span
{

{φi}
1
i=0, {u j

r , σ3u j
r}

Nr

j=1, {uk
im, ūk

im}
Nim

k=1, {ul
c, ūl

c, σ3ul
c, σ3ūl

c}
Nc

l=1

}

Lemmas 2.1 and 2.2 yield the following corollary, which can be verified via a straight-

forward computation.

Corollary 2.3 Any f ∈ L2(R
3, C

2) can be decomposed as follows:

f =

1
∑

i=0

ci
0φi +

Nr
∑

j=1

(c j
r u j

r + d j
r σ3u j

r ) +

Nim
∑

k=1

(ck
imuk

im + dk
imūk

im)

+

Nc
∑

l=1

(cl
cul

c + dl
cūl

c + αl
cσ3ul

c + β l
cσ3ūl

c) + fc,

where

ci
0 =

−2〈σ1φ1−i , f〉

Q ′(ω)
, i = 0, 1,

c
j
r =

〈σ1u
j
r , f〉

〈σ1u
j
r , u

j
r 〉

, d
j
r = −

〈σ1σ3u
j
r , f〉

〈σ1u
j
r , u

j
r 〉

, 1 ≤ j ≤ Nr,

ck
im =

〈σ1ūk
im, f〉

〈σ1ūk
im, uk

im〉
, dk

im =
〈σ1uk

im, f〉

〈σ1uk
im, ūk

im〉
, 1 ≤ k ≤ Nim,

cl
c =

〈σ1ūl
c, f〉

〈σ1ūl
c, ul

c〉
, dl

c =
〈σ1ul

c, f〉

〈σ1ul
c, ūl

c〉
,

αl
c = −

〈σ1σ3ūl
c, f〉

〈σ1ūl
c, ul

c〉
, β l

c = −
〈σ1σ3ul

c, f〉

〈σ1ul
c, ūl

c〉
, 1 ≤ l ≤ Nc,

and 〈fc, σ1g〉 = 0 for any g ∈ Xd.

Definition 2.4 For an arbitrary function f ∈ L2(R
3, C

2)

Pdf := f − fc,

which is given explicitly in terms of the functions of the subspace Xd in Corollary 2.3.
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Remark It is easy to check that the projection operator satisfies the relation

P2
d = Pd.

We define the restriction of the quadratic form of the energy operator onto the

subspace Xd as H|Xd
:= P∗

d HPd, where P∗

d is the projection onto the generalized

eigenspaces of the adjoint operator Hσ1 and draw the conclusion about the num-

ber of negative eigenvalues of the restricted operator, which enables us to prove the

negative index theorem.

Proof of Theorem 1.5 Let us define the subspace X− ⊂ Xd as the space of vectors of

the form

u = ap(Q ′)φ1 +

N−r
∑

j=1

(a ju
j,−
r + b jσ3u j,−

r ) +

Nim
∑

k=1

ck(uk
im + skūk

im)

+

Nc
∑

l=1

dl(ul
c − e−iϕl ūl

c) + qlσ3(ul
c − e−iϕl ūl

c) ,

where u
j,−
r are the eigenvectors of σ1H corresponding to real eigenvalues of negative

energy,

eiϕl =
〈zl

cul
c, σ1ūl

c〉

|〈zl
cul

c, σ1ūl
c〉|

, sk = sign(zk
im〈uk

im, σ1ūk
im〉)

and a, a j , b j , ck, dl, ql ∈ C are arbitrary constants. Clearly dim X− = p(Q ′) +

2N−
r + Nim + 2Nc.

The orthogonality relations stated in Lemmas 2.1 and 2.2 along with equation

(1.3) enable us to show that X− is a negative subspace for the energy operator H and

for its restriction H|Xd
. Thus

〈Hu, u〉 = 〈H|Xd
u, u〉 = −

|a|2

2
p(Q ′)Q ′(ω) +

N−r
∑

j=1

(|a j |
2 + |b j |

2)〈Hu j,−
r , u j,−

r 〉

−

Nim
∑

k=1

2|ck|
2|〈zk

imuk
im, σ1ūk

im〉| −

Nc
∑

l=1

2(|dl|
2 + |ql|

2)|〈zl
cul

c, σ1ūl
c〉| < 0

for all u ∈ X−, u 6= 0. Therefore by the Rayleigh–Ritz theorem (see [19, Theorem

XIII.3]),

(2.4) n(H) ≥ p(Q ′) + 2N−

r + Nim + 2Nc, n(H|Xd
) ≥ p(Q ′) + 2N−

r + Nim + 2Nc.

To derive the lower bound on the positive index of H|Xd
, we introduce another auxil-
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iary subspace X+ ⊂ Xd of vectors of the form

v = a(1 − p(Q ′))φ1 +

N+
r

∑

j=1

(a ju
j,+
r + b jσ3u j,+

r ) +

Nim
∑

k=1

ck(uk
im − skūk

im)

+

Nc
∑

l=1

dl(ul
c + e−iϕl ūl

c) + qlσ3(ul
c + e−iϕl ūl

c) ,

where the eigenvectors u
j,+
r correspond to real eigenvalues of positive energy of the

linearized operator and a, a j , b j , ck, dl, ql ∈ C are arbitrary, such that dim X+ = 1 −
p(Q ′) + 2N+

r + Nim + 2Nc. A straightforward computation analogous to the one

above yields the negativity of the quadratic form of the operator −H|Xd
on any vector

v ∈ X+, v 6= 0. Hence via the Rayleigh–Ritz theorem

(2.5) p(H|Xd
) ≥ 1 − p(Q ′) + 2N+

r + Nim + 2Nc

The following orthogonal decomposition is the completeness of spectrum, and was

proven in Proposition 4.1 of [11] using the method of wave operators. The absence

of the residual spectrum was shown in [7] via the theory of Pontryagin spaces. Hence

L2(R
3, C

2) = Ran(P∗

d ) ⊕ Ran(I − Pd),

where Ran(I − Pd) coincides with the set of functions of the continuous spectrum of

the operator σ1H, and the subspaces involved in the direct sum above are mutually

orthogonal. Thus, we can decompose the zero mode φ0 of the linearized operator as

φ0 = φ∗

0 + φ∗∗

0 ,

where φ∗
0 ∈ Ran(P∗

d ), φ∗∗
0 ∈ Ran(I−Pd), and 〈φ∗

0 , φ∗∗
0 〉 = 0. Since φ0 /∈ Ran(I−Pd),

we have φ∗
0 6= 0 and it is the zero mode of the restricted operator H|Xd

. We choose

the basis out of the eigenvectors corresponding to negative and positive eigenvalues

of the operator H|Xd
, which numbers are estimated from below in (2.4) and (2.5)

respectively, and the zero mode φ∗
0 in the subspace Ran(P∗

d ), whose dimension equals

dim(Ran(P∗

d )) = 2 + 2Nr + 2Nim + 4Nc. Thus we obtain

(2.6) n(H) ≥ n(H|Xd
) = p(Q ′) + 2N−

r + Nim + 2Nc

for problem (1.3) on L2(R
3, C

2). It remains to show that this lower bound is

the equality. An elementary computation yields the identity, and we estimate the

quadratic forms of the operators involved in it:

(2.7) H = P∗

d HPd + (I − P∗

d )H(I − Pd) + (I − P∗

d )HPd + P∗

d H(I − Pd)

Let w ∈ L2(R
3, C

2) be arbitrary. For the quadratic form of the third operator in the

right side of (2.7), we have 〈(I − P∗

d )HPdw, w〉 = 〈σ1HPdw, σ1(I − Pd)w〉 = 0
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since σ1HPdw ∈ Xd and Ran(I − Pd) is skew-orthogonal to Xd (see Definition

2.4). Analogously, the quadratic form of the operator P∗

d H(I − Pd) vanishes for any

w ∈ L2(R
3, C

2). Since Ran(I − Pd) coincides with the set of functions of the contin-

uous spectrum of the linearized operator on which the energy operator H under our

assumptions is strictly positive (see [11, Theorem 2.11] and [7, Theorem 4]), we have

〈(I−P∗

d )H(I−Pd)w, w〉 ≥ 0. Hence 〈Hw, w〉 ≥ 〈H|Xd
w, w〉. Then by the min-max

principle (see [19]) n(H) ≤ n(H|Xd
). This inequality along with (2.6) yield identity

(1.5). Note that a similar argument using the min-max principle can be adopted for

proving the coercivity of the energy functional on the subspace of vector-functions

skew-orthogonal to the generalized kernel of the linearized NLS operator, which plays

a crucial role in the study of dynamics of NLS solitary waves in an external potential

(see [13]).

Acknowledgment The author thanks I. M. Sigal and D. Pelinovsky for many valu-
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doi:10.1016/S0294-1449(02)00018-5

[7] M. Chugunova and D. Pelinovsky, Count of eigenvalues in the generalized eigenvalue problem.
http://arxiv.org/abs/math/0602386.

[8] S. Cuccagna, On asymptotic stability of ground states of NLS. Rev. Math. Phys. 15(2003), no. 8,
877–903. doi:10.1142/S0129055X03001849

[9] A. Comech and D. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy.
Comm. Pure Appl. Math. 56(2003), no. 11, 1565–1607. doi:10.1002/cpa.10104

[10] , Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear
Schrödinger problem. J. Math. Phys. 46(2005), no. 5. doi:10.1063/1.1901345

[11] S. Cuccagna, D. Pelinovsky, and V. Vougalter, Spectra of positive and negative energies in the
linearized NLS problem. Comm. Pure Appl. Math. 58(2005), no. 1, 1–29. doi:10.1002/cpa.20050

[12] B. Erdogan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a
resonance and/or an eigenvalue at zero energy in dimension three: II. J. Anal. Math. 99(2006),
199–248. doi:10.1007/BF02789446
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