ESTIMATES FOR SOLUTIONS OF WAVE EQUATIONS WITH VANISHING CURVATURE

BERNARD MARSHALL

1. Introduction. The solution of the Cauchy problem for a hyperbolic partial differential equation leads to a linear combination of operators T_{t} of the form

$$
\widehat{T_{t} f}(\xi)=m(\xi) \exp (i t \lambda(\xi)) \hat{f}(\xi) .
$$

For example, the solution of the initial value problem

$$
\begin{aligned}
& u_{t t}-\Delta_{x} u=0 \quad(x, t) \in \mathbf{R}^{n} \times(0, \infty) \\
& u(x, 0)=0 \quad u_{t}(x, 0)=f(x)
\end{aligned}
$$

is given by $u(x, t)=T_{t} f(x)$ where

$$
\widehat{T_{t} f}(\xi)=|\xi|^{-1} \sin (t|\xi|) \hat{f}(\xi)
$$

Peral proved in [11] that T_{t} is bounded from $L^{p}\left(\mathbf{R}^{n}\right)$ to $L^{p}\left(\mathbf{R}^{n}\right)$ if and only if

$$
1 / 2-1 /(n-1) \leqq 1 / p \leqq 1 / 2+1 /(n-1) \quad(1 \leqq p \leqq \infty)
$$

From the homogeneity, the operator norm satisfies $\left\|T_{t}\right\| \leqq C t$ for all $t>0$. If $\lambda(\xi)$ is positively homogeneous of degree one then the same result is true for the multiplier $\sin (t \lambda(\xi)) / \lambda(\xi)$ as long as the Gaussian curvature of

$$
\Sigma=\{\xi:|\lambda(\xi)|=1\}
$$

does not vanish and L^{1} and L^{∞} are replaced by H^{1} and BMO.
When there are lower order terms present the decay rate of the operator norm $\left\|T_{t}\right\|$ changes significantly. For the Klein-Gordon equation,

$$
u_{t t}-\Delta_{x} u+u=0,
$$

the Fourier multiplier is $\sin \left(t \sqrt{1+|\xi|^{2}}\right)\left(1+|\xi|^{2}\right)^{-1 / 2}$ and

$$
\left\|T_{t}\right\| \leqq C t^{-n|p-2| / 2 p} \quad(t \geqq 1)
$$

This result appears in [8] and the nonradial case is in [9].
The purpose of this paper is to prove results like these for the case when the curvature of the surface Σ vanishes. Estimates will also be obtained for T_{t} as an operator from L^{p} to $L^{p^{\prime}}$.

[^0]At the heart of these results are estimates obtained for the Fourier transform of measures $d \mu$ supported on Σ. In [10] two types of estimates are obtained in $\hat{d \mu}$. The first type concerns the behavior of the spherical averages of $\hat{d \mu}(x)$:

$$
\begin{equation*}
\widehat{a_{\mu}}(x)=|x|^{-(n-1) / 2} \mathscr{P}\left(x^{\prime}\right)+h(x), \quad x=|x| x^{\prime} . \tag{1}
\end{equation*}
$$

The function \mathscr{P} is integrable over the unit sphere and the averages of h over the spheres $\{|x|=R\}$ decrease faster than $C R^{-(n-1) / 2}$. The second type of estimate is one of the form

$$
\begin{equation*}
|\widehat{d \mu}(x)| \leqq C(1+|x|)^{-\nu} . \tag{2}
\end{equation*}
$$

When the curvature of Σ does not vanish the constant ν in (2) equals $(n-1) / 2$ but when the curvature does vanish $\nu<(n-1) / 2$.

The estimates of T_{t} from L^{p} to L^{p} involve showing that an operator $(I-\Delta)^{-z / 2} T_{t}$ is bounded on H^{1}. Since this means calculating the L^{1} norm of its kernel, estimate (1) is well-suited to this situation. The advantage of estimate (1) is that at least in an average sense $\widehat{d \mu}$ decays as rapidly as the case where the curvature of Σ does not vanish. In fact the obstruction to better results is the lower order term $h(x)$ and not the main term. For the L^{p} to $L^{p^{\prime}}$ estimates it is necessary to calculate the L^{∞} or BMO norm of the kernel for $(I-\Delta)^{-z / 2} T_{t}$. In this case, inequality (2) seems more natural.
2. The estimates for $\hat{d \mu}$. A function f on \mathbf{R}^{n-1} will be said to be of type τ if it satisfies the following conditions:
(a) $f(0)=0, \nabla f(0)=0$, and $f(y)=P(y)+h_{*}(y)$ for y in a neighborhood of the origin.
(b) there is a direct sum of orthogonal subspaces V_{1}, \ldots, V_{s} and polynomials P_{1}, \ldots, P_{s} homogeneous of degree k_{1}, \ldots, k_{s} respectively such that $V_{1} \oplus \ldots \oplus V_{s}=\mathbf{R}^{n-1}$ and

$$
P(y)=P\left(y_{1}, \ldots, y_{s}\right)=\sum_{j=1}^{s} P_{j}\left(y_{j}\right) \quad y_{j} \in V_{j}, j=1, \ldots, s
$$

(c) for every $j=1, \ldots, s$, det $d^{2} P_{j}\left(y_{j}\right)=0$ implies $y_{j}=0$.
(d) the function h_{*} contains only higher order terms y^{β} such that for every $j=1, \ldots, s, y^{\beta}$ is either independent of y_{j} or in the variables of V_{j}, y^{β} has homogeneity $\equiv \beta_{j} \geqq k_{j}$. Also $\Sigma^{\prime} \beta_{j}>\Sigma^{\prime} k_{j}$ where the sums are over those j where y^{β} is not independent of y_{j}.

Define

$$
\tau=\min \left\{\left(\operatorname{dim} V_{j}\right) /\left(k_{j}-1\right): k_{j} \neq 2\right\} \quad \text { if } \operatorname{det} d^{2} f(0)=0,
$$

and

$$
\tau=2 \text { if } \operatorname{det} d^{2} f(0) \neq 0
$$

For example, the function

$$
f(y)=y_{1}^{k_{1}}+y_{2}^{k_{2}}
$$

is of type $\tau=1 /\left(k_{2}-1\right)$ if $2<k_{1} \leqq k_{2}$.
A point ξ^{\prime} on the surface Σ is of type $\tau=\tau\left(\xi^{\prime}\right)$ if after a translation and an orthogonal change of coordinates in \mathbf{R}^{n} the surface near ξ^{\prime} can be put in the form $y_{n}=f(y)$ where f is a function of type τ on \mathbf{R}^{n-1}. The surface Σ will be of type τ_{0} if every point ξ^{\prime} on Σ is of type $\tau=\tau\left(\xi^{\prime}\right)$ for some τ and

$$
\tau_{0}=\inf \left\{\tau\left(\xi^{\prime}\right): \xi^{\prime} \in \Sigma\right\}>0
$$

Let $\kappa\left(\xi^{\prime}\right)$ be the Gaussian curvature of Σ at ξ^{\prime} and define

$$
A(x)=\left\{\xi^{\prime} \in \Sigma: \text { the tangent plane at } \xi^{\prime} \text { is perpendicular to } x\right\} .
$$

Suppose that the surface near ξ^{\prime} is transformed into $y_{n}=f(y)$ in such a way that the unit normal vector at ξ^{\prime} pointing in the direction of x is mapped into $(0,-1) \in \mathbf{R}^{n-1} \times \mathbf{R}$. Let $\gamma=\gamma\left(\xi^{\prime}\right)$ be the number of positive eigenvalues of the matrix $d^{2} f(0)$ minus the number of negative eigenvalues. Let $d \omega$ be surface area on $\Sigma, g \in C^{\infty}(\Sigma)$. For any such function $g \in C^{\infty}(\Sigma)$ set

$$
\mathscr{P}(g)(x)=\sum_{\xi^{\prime} \in A(x)} g\left(\xi^{\prime}\right) e^{i \gamma \pi / 4} e^{-i x \cdot \xi}(2 \pi)^{(n-1) / 2}\left|\kappa\left(\xi^{\prime}\right)\right|^{-1 / 2}
$$

where $\xi^{\prime} \in \boldsymbol{\Sigma}$.
Define $\tau_{1}=\frac{1}{2} \min \left(\tau_{0}, 1\right)$ if Σ is not convex, and $\tau_{1}=1 / 2$ if Σ is convex.
Theorem 1. [10] Suppose that Σ is a compact $(n-1)$-dimensional C^{∞} submanifold of \mathbf{R}^{n} of type $\tau_{0}>0$, d ω is surface area on $\Sigma, g \in C^{\infty}(\Sigma)$, $d \mu=g d \omega$, and for every $x \in \mathbf{R}^{n}, A(x)$ is a finite subset of Σ. Then for every $\tau<\tau_{1}$ there exist positive constants C_{1} and C_{2} such that

$$
R^{-(n-1)} \int_{|x|=R}\left|\hat{d \mu}(x)-R^{-(n-1) / 2} \mathscr{P}(g)(x)\right| d x \leqq C_{1} R^{-(n-1+2 \tau) / 2}
$$

for all $R>0$ and

$$
R^{-(n-1)} \int_{|x|=R}|\mathscr{P}(g)(x)| d x \leqq C_{2} \text { for all } R>0
$$

If $\tau_{0}>1 / 2$ then this theorem holds for $\tau=1 / 2$.
If the curvature of Σ does not vanish then the theorem holds for $\tau=1$ ([5] or [6]). If Σ is not convex it seems unlikely that the theorem would hold for every $\tau<1$. Near an inflection point of Σ in $\mathbf{R}^{2}, \widehat{\mu \mu}$ has a significant secondary term. For example, if the surface is given locally by
$\xi_{2}=\xi_{1}^{3}$ then $A((\epsilon, 1))=\emptyset$ for every $\epsilon>0$ even though $(\epsilon, 1)$ is close to being perpendicular to the surface. It is the possibility of this type of situation that is reflected in the parameter τ_{1} in Theorem 1. If Σ is convex there are no inflection points and $\tau_{1}=1 / 2$. It may be possible to improve this to $\tau_{1}=1$.

Let S be the unit sphere in \mathbf{R}^{n}. The proof of Theorem 1 in [10] generalizes easily to the case where $g \in C^{\infty}(S \times \Sigma)$. If $x=r x^{\prime}$, $\left(x^{\prime}, \xi^{\prime}\right) \in S \times \Sigma$, then the type of function encountered in Theorems 3 and 4 is of the form

$$
g\left(x^{\prime}, \xi^{\prime}\right)=\left(x^{\prime} \cdot \xi^{\prime}\right)^{k} \widetilde{g}\left(\xi^{\prime}\right)
$$

where $\widetilde{g} \in C^{\infty}(\Sigma)$.
We will describe now the phase function $\lambda(\xi)$.
(i) λ_{*} is a real-valued function, positively homogeneous of degree one, $\lambda_{*} \in C^{\infty}\left(\mathbf{R}^{n}-\{0\}\right), \lambda_{*}$ has no zeros in $\mathbf{R}^{n}-\{0\}$. For convenience we assume $\lambda_{*} \geqq 0$. Let $0<\tau_{2} \leqq 1$. Assume that $\Sigma=\left\{\xi: \lambda_{*}(\xi)=1\right\}$ is a surface for which

$$
R^{-(n-1)} \int_{|x|=R}\left|\hat{d \mu}(x)-R^{-(n-1) / 2} \mathscr{P}(g)(x)\right| d x \leqq C_{1} R^{-\left(n-1-2 \tau_{2}\right) / 2}
$$

for all $R>0, g \in C^{\infty}(S \times \Sigma)$.
its leading term at infinity and

$$
\left|\lambda_{*}(\xi)\right| \leqq C|\lambda(\xi)| \quad \text { for all } \xi \in \mathbf{R}^{n} .
$$

Also

$$
\left|D^{\beta}\left(\lambda-\lambda_{*}\right)(\xi)\right| \leqq C_{\beta}|\xi|^{-|\beta|}
$$

and

$$
\left|D^{\beta} \lambda(\xi)\right| \leqq C_{\beta}|\lambda(\xi)||\xi|^{-|\beta|}
$$

for every multi-index β.
(iii) Assume that there is a smooth nonnegative function σ on \mathbf{R} and a constant $L \geqq 1$ such that $\lambda(\xi)=\sigma\left(\lambda_{*}(\xi)\right), \sigma(r)-r \rightarrow 0$ as $r \rightarrow \infty$,

$$
\begin{aligned}
& C_{1}(1+r)^{-L-2} \leqq\left|\frac{d^{2} \sigma}{d r^{2}}\right| \leqq C_{2}(1+r)^{-L-2} \\
& \left|\frac{d^{k} \sigma}{d r^{k}}(r)\right| \leqq C_{k}(1+r)^{-L-2} r>0, k \geqq 2 .
\end{aligned}
$$

$d \sigma / d r$ has a zero of order at most one at the origin and has no other zeros.

The assumptions that λ and λ_{*} be positive are for convenience only. The same proofs hold for negative phase functions. Condition (iii) implies that the level surfaces of λ are all dilates of Σ. This is not strictly necessary but
it greatly simplifies the assumptions and proofs.
For the Klein-Gordon equation,

$$
\lambda(\xi)=\sqrt{1+|\xi|^{2}}, \lambda_{*}(\xi)=|\xi|, \sigma(r)=\sqrt{1+r^{2}}, \text { and } L=1
$$

An example of an equation where the surface Σ is no longer convex is given by the homogeneous operator

$$
\left(D_{t}^{2}-4 D_{x_{1}}^{2}-D_{x_{2}}^{2}\right)\left(D_{t}^{2}-D_{x_{1}}^{2}-4 D_{x_{2}}^{2}\right)-\epsilon\left(D_{x_{1}}^{2}+D_{x_{2}}^{2}\right)^{2}
$$

where the constant $\epsilon>0$ is chosen small enough that the four roots of the characteristic equation

$$
\left(\tau^{2}-4 \xi_{1}^{2}-\xi_{2}^{2}\right)\left(\tau^{2}-\xi_{1}^{2}-4 \xi_{2}^{2}\right)-\epsilon\left(\xi_{1}^{2}+\xi_{2}^{2}\right)^{2}=0
$$

are distinct for every $\xi=\left(\xi_{1}, \xi_{2}\right)$. The two positive roots are given by homogeneous functions $\tau=\lambda_{1}(\xi)$ and $\tau=\lambda_{2}(\xi)$. The graphs of

$$
\Sigma_{j}=\left\{\xi: \lambda_{j}(\xi)=1\right\} \quad(j=1,2)
$$

are given in Figure 1. The shapes of the corresponding wave surfaces are drawn in Figure 2.

Examples arise more naturally in the case of elastic waves in \mathbf{R}^{3} (See [1], [3]). In this case the characteristic equation has six roots. The three positive roots lead to surfaces Σ_{1}, Σ_{2} and Σ_{3}. The estimates of this paper deal with the "regularly hyperbolic" equations, in which these surfaces are disjoint. In [3], Duff uses a perturbed equation similar to the one in Figure 1 to examine the singular case where the surfaces intersect. It is not clear however what such a perturbation will do to the L^{p} estimates of this paper.
3. The L^{p} estimates. Let $V^{p}\left(\mathbf{R}^{n}\right)=L^{p}\left(\mathbf{R}^{n}\right)$ if $1<p<\infty, V^{1}=H^{1}$, and $V^{\infty}=$ BMO.

Theorem 2. Let T_{t} be the transformation with Fourier multiplier

$$
m(\xi)=\sin (t \lambda(\xi)) / \lambda(\xi)
$$

where $\lambda(\xi)$ satisfies (i) and (ii). Then T_{t} is a bounded linear operator from $V^{p}\left(\mathbf{R}^{n}\right)$ to $V^{p}\left(\mathbf{R}^{n}\right)$ if
(3) $\frac{1}{2}-\frac{1}{n+1-2 \tau_{2}}<\frac{1}{p}<\frac{1}{2}+\frac{1}{n+1-2 \tau_{2}}$
where $\tau_{2}<1$ is the constant in (i). The operator norm of T_{t} satisfies

$$
\left\|T_{t}\right\| \leqq C t \text { for all } 0<t \leqq 1
$$

From (3) it is evident that Theorem 1 with $\tau_{2}=1$ would give the same range of p as when the curvature of Σ does not vanish, except that the endpoints would be missing.

Figure 1

Figure 2

Proof. We will first show that the inhomogeneous case follows from the estimates where λ is homogeneous. Suppose λ^{*} is the homogeneous part of λ. Then

$$
\begin{aligned}
\frac{\sin (t \lambda)}{\lambda} & =\frac{\sin \left(t \lambda^{*}\right)}{\lambda^{*}}\left\{\cos \left(t\left(\lambda-\lambda^{*}\right)\right) \frac{\lambda^{*}}{\lambda}\right\} \\
& +\left\{\frac{\cos \left(t \lambda^{*}\right) \sin \left(t\left(\lambda-\lambda^{*}\right)\right)}{\lambda}\right\} \\
& \equiv \frac{\sin \left(t \lambda^{*}\right)}{\lambda^{*}} m_{1}(\xi)+m_{2}(\xi) .
\end{aligned}
$$

Since m_{1} satisfies

$$
\begin{equation*}
\left|D_{\xi}^{\beta} m_{1}(\xi)\right| \leqq C_{\beta}|\xi|^{-|\beta|} \tag{4}
\end{equation*}
$$

where C_{β} is independent of t, then m_{1} is a bounded multiplier on L^{p}, $1<p<\infty$, and on H^{1} and BMO. Similarly,

$$
\left|D_{\xi}^{\beta} m_{2}(\xi)\right| \leqq\left. C_{\beta} t \xi\right|^{-|\beta|} \quad 0<t \leqq 1 .
$$

Therefore to prove Theorem 2 it suffices to consider a homogeneous phase function $\lambda(\xi)$. In fact, if $\lambda(\xi)$ is homogeneous then we may assume that $t=1$.

By the Plancherel Theorem, $(I-\Delta)^{1 / 2} T_{1}$ is bounded from $L^{2}\left(\mathbf{R}^{n}\right)$ to itself. We will prove that $(I-\Delta)^{-(n-1-2 \tau) / 4} T_{1}$ is bounded on $H^{1}\left(\mathbf{R}^{n}\right)$ for every $\tau<\tau_{2}$. Since $(I-\Delta)^{i y}$ is a bounded linear operator on $H^{1}\left(\mathbf{R}^{n}\right)$ for $y \in R$, an interpolation using the analytic family of operators $(I-\Delta)^{z} T_{1}$ shows that T_{1} is a bounded linear operator from $L^{p}\left(\mathbf{R}^{n}\right)$ to itself where

$$
\frac{1-\sigma}{2}+\frac{\sigma}{1}=\frac{1}{p} \quad \text { and } \quad(1-\sigma)+\sigma(-1)(n-1-2 \tau) \frac{1}{2}=0 .
$$

This is equivalent to

$$
\frac{1}{p}=\frac{1}{2}+\frac{\sigma}{2}=\frac{1}{2}+\frac{1}{n+1-2 \tau} .
$$

The corresponding estimates for $2<p<\infty$ follow from duality.
If K_{0} is the kernel for the transformation $(I-\Delta)^{-(n-1-2 \tau) / 4} T_{1}$ then

$$
\begin{aligned}
\widehat{K}_{0}(\xi) & =\frac{\left(1+(\lambda(\xi))^{2}\right)^{-(n-1-2 \tau) / 4} \sin (\lambda(\xi))}{\lambda(\xi)} \\
& \times\left(\frac{1+(\lambda(\xi))^{2}}{1+|\xi|^{2}}\right)^{(n-1-2 \tau) / 4}
\end{aligned}
$$

Since the last expression on the right satisfies (4) it suffices to consider $K(x)$ where

$$
\hat{K}(\xi)=\left(1+(\lambda(\xi))^{2}\right)^{-(n-1-2 \tau) / 4} \sin (\lambda(\xi)) / \lambda(\xi) .
$$

It is natural to calculate the inverse Fourier transform of \hat{K} by integrating first over the surfaces $\{\xi: \lambda(\xi)=r\}$. Let $\Sigma=\{\xi: \lambda(\xi)=1\}$.

$$
K(x)=\int_{0}^{\infty} \int_{\Sigma} e^{i x \cdot \xi} \frac{\sin r}{\left(1+r^{2}\right)^{(n-1-2 \tau) / 4} r} r^{n-1} g\left(\xi^{\prime}\right) d \xi^{\prime} d r
$$

where $d \xi^{\prime}$ is surface area on Σ and $r^{n-1} g\left(\xi^{\prime}\right)$ is the Jacobian for the change of coordinates.

Because λ is smooth in $\mathbf{R}^{n}-\{0\}$ and positively homogeneous of degree one then

$$
\xi^{\prime} \cdot \nabla \lambda\left(\xi^{\prime}\right)=\lambda\left(\xi^{\prime}\right)=1 \quad \text { for any } \xi^{\prime} \in \Sigma
$$

Since $\xi^{\prime} \cdot \nabla \lambda\left(\xi^{\prime}\right) /\left|\xi^{\prime}\right|\left|\nabla \lambda\left(\xi^{\prime}\right)\right|$ is the cosine of the angle between the radius that

$$
g\left(\xi^{\prime}\right)=\xi^{\prime} \cdot \nabla \lambda\left(\xi^{\prime}\right) /\left|\xi^{\prime}\right|\left|\nabla \lambda\left(\xi^{\prime}\right)\right|=\left(\left|\xi^{\prime}\right|\left|\nabla \lambda\left(\xi^{\prime}\right)\right|\right)^{-1}
$$

If $d \mu=g d \xi^{\prime}$ then

$$
\hat{d \mu}(-r x)=\int_{\Sigma} e^{i x \cdot \xi} g\left(\xi^{\prime}\right) d \xi^{\prime} \quad \xi=r \xi^{\prime}
$$

and

$$
\begin{equation*}
K(x)=\int_{0}^{\infty} \widehat{d \mu}(-r x)(\sin r)\left(1+r^{2}\right)^{-(n-1-2 \tau) / 4} r^{n-2} d r \tag{5}
\end{equation*}
$$

By (i),

$$
\widehat{d \mu}(-r x)=(r|x|)^{-(n-1) / 2 \mathscr{P}(-r x)}+h(-r x)
$$

where

$$
\frac{1}{R^{n-1}} \int_{|x|=R}|h(-r x)| d x \leqq C(R r)^{-(n-1) / 2-\tau_{2}} .
$$

Therefore
(6) $\quad \int_{|x|=R}|K(x)| d x$

$$
=\int_{|x|=R}\left|\int_{0}^{\infty} \mathscr{P}(-r x) \frac{(\sin r) r^{(n-3) / 2}}{r_{1}^{(n-1-2 \tau) / 2}} d r\right| d x+H(R)
$$

where $r_{1}=\left(1+r^{2}\right)^{1 / 2}$ and

$$
\begin{equation*}
|H(R)| \leqq C \int_{0}^{\infty} R^{n-1} \frac{(R r)^{-(n-1) / 2-\tau_{2}}}{r_{1}^{(n-1-2 \tau) / 2}} r^{n-2} d r \tag{7}
\end{equation*}
$$

$$
\leqq C R^{(n-1) / 2-\tau_{2}}
$$

since $\tau<\tau_{2}$.
By Theorem 1,

$$
\mathscr{P}(-r x)=\sum_{\xi^{\prime} \in A(x)} e^{i \gamma \pi / 4} e^{i x \cdot \xi^{\prime}}(2 \pi)^{(n-1) / 2}\left|K\left(\xi^{\prime}\right)\right|^{-1 / 2}\left(\left|\xi^{\prime}\right|\left|\nabla \lambda\left(\xi^{\prime}\right)\right|\right)^{-1}
$$

where $A(x)=A(-x)$ is the set of points in $\Sigma=\{\xi: \lambda(\xi)=1\}$ such that the normal to Σ at ξ is parallel to x. Thus the main term of (6) can be written as

$$
\begin{align*}
& \int_{|x|=R} \left\lvert\, \sum_{\xi^{\prime} \in A(x)} \frac{e^{i \gamma \pi / 4}(2 \pi)^{(n-1) / 2}}{R^{(n-1) / 2}\left|\xi^{\prime}\right|\left|\nabla \lambda\left(\xi^{\prime}\right)\right|\left|\kappa\left(\xi^{\prime}\right)\right|^{1 / 2}}\right. \tag{8}\\
& \left.\times \int_{0}^{\infty} e^{i x \cdot \xi^{\prime}} \frac{(\sin r) r^{(n-3) / 2}}{r_{1}^{(n-1-2 \tau) / 2}} d r \right\rvert\, d x \\
& \leqq \frac{C}{R^{(n-1) / 2}} \int_{|x|=R} \sum_{\xi^{\prime} \in A(x)}\left|\kappa\left(\xi^{\prime}\right)\right|^{-1 / 2} \\
& \times\left|\int_{0}^{\infty} e^{i x \cdot \xi^{\prime}}\left(\frac{r}{r_{1}}\right)^{(n-3) / 2} \frac{\sin r}{r_{1}^{1-\tau}} d r\right| d x .
\end{align*}
$$

If $\tau<1$ then an integration by parts shows that

$$
\begin{equation*}
\left|\int_{0}^{\infty} e^{i x \cdot \xi^{\prime}}\left(\frac{r}{r_{1}}\right)^{(n-3) / 2} \sin r \frac{d r}{r_{1}^{1-\tau}}\right| \leqq\left|\int_{0}^{1}\right|+\left|\int_{1}^{\infty}\right| \leqq C . \tag{9}
\end{equation*}
$$

It is a consequence of Theorem 1 that

$$
\int_{|x|=R} \sum_{\xi \in A(x)}\left|\kappa\left(\xi^{\prime}\right)\right|^{-1 / 2} d x \leqq C R^{n-1}
$$

This combined with (7) shows that

$$
\int_{|x|=R}|K(x)| d x \leqq c R^{(n-1) / 2}+c R^{(n-1) / 2-\tau}
$$

Therefore

$$
\begin{equation*}
\int_{|x| \leqq 1}|K(x)| d x \leqq C . \tag{10}
\end{equation*}
$$

The estimates obtained thus far take care of the region $\{|x| \leqq 1\}$. If $|x|>1$ then we begin by integrating by parts in (5). To integrate

$$
\widehat{d \mu}(-r x)=\int_{\Sigma} e^{i x \cdot \xi \cdot \xi}\left(\left|\xi^{\prime}\right|\left|\nabla \lambda\left(\xi^{\prime}\right)\right|\right)^{-1} d \xi^{\prime}
$$

with respect to r it is convenient to introduce a partition of unity on Σ. Suppose that x is restricted to a narrow cone Γ. The cone Γ is chosen so
narrow that $\left|x_{1} \cdot \xi_{2}^{\prime}\right| / R$ is bounded away from zero for $\xi_{2}^{\prime} \in A\left(x_{2}\right), x_{1} \in \Gamma$, $x_{2} \in \Gamma$. This is possible since if $\xi^{\prime} \in A(x)$ then

$$
\left|x \cdot \xi^{\prime}\right| / R \geqq C>0
$$

Clearly \mathbf{R}^{n} can be written as a finite union of such cones. Suppose that η is a C^{∞} function on Σ that equals one in a neighborhood of $\left\{\xi^{\prime}: \xi^{\prime} \in A(x)\right.$ for some $x \in \Gamma\}$ and η is supported away from the set $\left\{\xi: x \cdot \xi^{\prime}=0\right.$ for some $x \in \Gamma\}$. Then since $(1-\eta)$ is supported in the part of Σ that is transverse to planes where $x \cdot \xi$ is constant, we have

$$
\left|\int_{\Sigma} e^{i x \cdot \xi}(1-\eta)\left(\xi^{\prime}\right)\left(\left|\xi^{\prime}\right|\left|\nabla \lambda\left(\xi^{\prime}\right)\right|\right)^{-1} d \xi^{\prime}\right| \leqq C_{N}(1+R r)^{-N}
$$

for any $N>0$. Also, by integrating

$$
\begin{align*}
& \int_{0}^{\infty} \hat{d \widetilde{\mu}}(-r x) \sin (r x) \frac{r^{n-2}}{r_{1}^{(n-1-2 \tau) / 2}} d r \tag{13}\\
& =\frac{1}{(x \cdot \xi)^{k}} \int_{0}^{\infty} \hat{d \widetilde{\mu}}(-r x) \frac{d^{k}}{d r^{k}}\left\{\frac{(\sin r) r^{n-2}}{r_{1}^{(n-1-2 \tau) / 2}}\right\} d r
\end{align*}
$$

where $d \widetilde{\mu}=\eta d \mu$. The integral in (13) is similar to (5) except for the factor

$$
\left|\left(x \cdot \xi^{\prime}\right)\right|^{-k} \leqq c R^{-k}
$$

Therefore, calculating as before and summing over the cones Γ gives

$$
\int_{|x|=R}|K(x)| d x \leqq c R^{-k}\left\{c R^{(n-1) / 2}+c R^{(n-1) / 2-\tau}\right\}
$$

If k is chosen large enough this shows that K is integrable over the region $\{|x| \geqq 1\}$. This together with (10) completes the proof of Theorem 2.

The obstacle to getting a bounded operator on a large range of p is the error term $h(x)$ in Theorem 1. To further illustrate this we will calculate the kernel $K(x)$ if $\tau_{2}=1$ in a simple case: $n=3$ and Σ is convex and symmetric with respect to the origin. That is, $x \in \Sigma$ implies $-x \in \Sigma$. Since the integral in (8) does not make sense when $\tau_{2}=1, K$ must be considered as the distributional inverse Fourier transform of the function

$$
m(\xi)=\sin (\lambda(\xi)) / \lambda(\xi)
$$

If φ is any C^{∞} function in the Schwartz class \mathscr{S},

$$
\begin{align*}
\int_{\mathbf{R}^{n}} K(x) \varphi(x) d x & =(2 \pi)^{-n} \int_{\mathbf{R}^{n}} m(\xi) \hat{\varphi}(\xi) d \xi \tag{14}\\
& =(2 \pi)^{-3} \int_{0}^{\infty} \frac{\sin r}{r} \int_{\mathbf{R}^{3}} \varphi(x)
\end{align*}
$$

$$
\times \int_{\Sigma} e^{-i x \cdot \xi} \frac{d \xi^{\prime}}{\left|\xi^{\prime}\right|\left|\nabla \lambda\left(\xi^{\prime}\right)\right|} d x r^{2} d r .
$$

According to Theorem 1 the principal part of the integral over Σ is

$$
\begin{equation*}
\mathscr{P}(x)=\sum_{\xi^{\prime} \in A(x)} \frac{2 \pi e^{i \pi \gamma / 4} e^{-i x \cdot \xi}}{r|x|\left|\xi^{\prime}\right|\left|\nabla \lambda\left(\xi^{\prime}\right)\right|\left|K\left(\xi^{\prime}\right)\right|^{1 / 2}} \tag{15}
\end{equation*}
$$

Since the multiplier is even we may assume that $\lambda \geqq 0$. We will show that this part of $K(x)$ is a measure supported on the wave surface corresponding to

$$
\Sigma=\{\xi: \lambda(\xi)=1\}
$$

The wave surface is the set

$$
W=\{x=\nabla \lambda(\xi): \lambda(\xi)=1\} .
$$

Except where the curvature of Σ at ξ vanishes the corresponding part of W is a smooth ($n-1$)-dimensional manifold in \mathbf{R}^{n} that crosses each ray from the origin at most once. The points of zero curvature in Σ correspond to cusps in W, as in Figures 1 and 2. See also [1] and [3]. In the present calculation, since Σ is convex, W is star-shaped with respect to the origin. Therefore there is a function $\lambda^{\#}$ that is positively homogeneous of degree one in \mathbf{R}^{n} such that

$$
W=\left\{x: \lambda^{\#}(x)=1\right\} .
$$

The wave surface W is dual to the "slowness surface" Σ in the sense that

$$
\Sigma=\left\{\xi=\nabla \lambda^{\#}(x): \lambda^{\#}(x)=1\right\} .
$$

Consider the Gauss map

$$
\xi^{\prime} \rightarrow \theta=\nabla \lambda\left(\xi^{\prime}\right) /\left|\nabla \lambda\left(\xi^{\prime}\right)\right|
$$

from Σ to the unit sphere. The Gaussian curvature measures the change of area: $\kappa\left(\xi^{\prime}\right) d \xi^{\prime}=d \theta$ where $d \theta$ is surface area on the unit sphere. Because λ is homogeneous of degree one,

$$
\xi^{\prime} \cdot \nabla \lambda\left(\xi^{\prime}\right)=\lambda\left(\xi^{\prime}\right)=1
$$

Since the cosine of the angle between ξ^{\prime} and $x^{\prime}=\nabla \lambda\left(\xi^{\prime}\right)$ is

$$
\left.\xi^{\prime} \cdot \nabla \lambda\left(\xi^{\prime}\right) /\left|\xi^{\prime}\right|\left|\nabla \lambda\left(\xi^{\prime}\right)\right|=1 /\left|\xi^{\prime}\right| \mid \nabla \lambda \xi^{\prime}\right) \mid
$$

then $d x^{\prime}=\left|x^{\prime}\right|\left|\xi^{\prime}\right| d \theta$. Therefore

$$
d x^{\prime}=\kappa\left(\xi^{\prime}\right)\left|x^{\prime}\right|\left|\xi^{\prime}\right| d \xi
$$

where $d \xi^{\prime}, d x^{\prime}$ are surface area on Σ and W respectively. Similarly using the function $\lambda^{\#}$ associated to the wave surface,

$$
d \xi^{\prime}=\kappa^{\#}\left(x^{\prime}\right)\left|x^{\prime}\right|\left|\xi^{\prime}\right| d x^{\prime}
$$

where $\kappa^{\#}$ is the curvature on W. Hence

$$
\begin{equation*}
\kappa\left(\xi^{\prime}\right) \kappa^{\#}\left(x^{\prime}\right)\left|x^{\prime}\right|^{\prime}\left|\xi^{\prime}\right|^{2}=1 . \tag{16}
\end{equation*}
$$

This argument leading to (16) is taken from [3]. Because of the duality between Σ and W and the fact that Σ is convex, $\nabla \lambda$ and $\nabla \lambda^{\#}$ are inverses. Therefore it follows from the definition of $A(x)$ that

$$
\begin{aligned}
A(x) & =\left\{\xi^{\prime} \in \Sigma: \nabla \lambda\left(\xi^{\prime}\right) \text { is parallel to } x\right\} \\
& =\left\{\nabla \lambda^{\#}\left(x^{\prime}\right), \nabla \lambda^{\#}\left((-x)^{\prime}\right)\right\} .
\end{aligned}
$$

Also the convexity of Σ implies that

$$
\gamma\left(\nabla \lambda^{\#}\left((\pm x)^{\prime}\right)\right)= \pm 2 .
$$

Finally,

$$
x \cdot \xi^{\prime}= \pm \lambda^{\#}(\pm x)(\pm x)^{\prime} \cdot \nabla \lambda^{\#}\left((\pm x)^{\prime}\right)= \pm \lambda^{\#}(\pm x) .
$$

Since Σ is symmetric this last expression is

$$
\pm \lambda^{\#}(x) \equiv \pm \rho .
$$

Putting all this information into (15) shows that

$$
\begin{aligned}
\mathscr{P}(x) & =\frac{2 \pi\left|\kappa\left(x^{\prime}\right)\right|^{1 / 2}}{r|x|}\left\{e^{-i r \rho+i \pi / 2}+e^{i r \rho-i \pi / 2}\right\} \\
& =\frac{4 \pi\left|\kappa\left(x^{\prime}\right)\right|^{1 / 2}}{r \rho\left|x^{\prime}\right|} \sin (r \rho) .
\end{aligned}
$$

Let

$$
\Phi(\rho)=\frac{\rho}{2 \pi^{2}} \int_{W} \varphi\left(\rho x^{\prime}\right) \frac{\left|\kappa\left(x^{\prime}\right)\right|^{1 / 2} d x^{\prime}}{\left|x^{\prime}\right|\left|\nabla \lambda^{\#}\left(x^{\prime}\right)\right|} \quad \text { if } \rho>0
$$

and $\Phi(\rho)=0$ if $\rho \leqq 0$. Then the part of (14) that is associated with \mathscr{P} is

$$
\begin{aligned}
& (2 \pi)^{-3} \int_{0}^{\infty} \sin r \int_{\mathbf{R}^{3}} \varphi(x) \frac{4 \pi\left|\kappa\left(x^{\prime}\right)\right|^{1 / 2}}{\rho\left|x^{\prime}\right|} \sin (r \rho) d x d r \\
& =\int_{0}^{\infty} \sin r \int_{0}^{\infty} \Phi(\rho) \sin (r \rho) d \rho d r \\
& =-\frac{1}{2 i} \int_{-\infty}^{\infty} \sin r \hat{\Phi}(r) d r=\frac{\pi}{2}(\Phi(1)-\Phi(-1))=\frac{\pi}{2} \Phi(1) \\
& =\frac{1}{4 \pi} \int_{W} \varphi\left(x^{\prime}\right) \frac{\left|\kappa\left(x^{\prime}\right)\right|^{1 / 2} d x^{\prime}}{\left|x^{\prime}\right|^{2}\left(\nabla \lambda^{\#}\left(x^{\prime}\right) \mid\right.} .
\end{aligned}
$$

This shows that the part of K associated with \mathscr{P} is a measure on W and hence is a bounded operator on $L^{1}\left(\mathbf{R}^{3}\right)$. This seems to suggest that T_{t} might be bounded for the full range $1 \leqq p \leqq \infty$. The problem is in knowing how to take care of h.

Theorem 3. Let T_{t} be the transformation with Fourier multiplier

$$
m(\xi)=e^{i t \lambda(\xi)} m_{1}(\xi)
$$

where $\lambda(\xi)$ satisfies (i), (ii), (iii) and $m_{1}(\xi)$ is such that for every β,

$$
\begin{equation*}
\left|D_{\xi}^{\beta} m_{1}(\xi)\right| \leqq C_{\beta}(1+|\xi|)^{-1-|\beta|} \tag{17}
\end{equation*}
$$

Then T_{t} is a bounded linear operator from $V^{p}\left(\mathbf{R}^{n}\right)$ to $V^{p}\left(\mathbf{R}^{n}\right)$ if p satisfies (3). The operator norm of T_{t} is

$$
\begin{equation*}
\left\|T_{t}\right\| \leqq C_{\alpha} t^{\alpha|1 / p-1 / 2|} \quad \text { for } 1 \leqq t<\infty \tag{18}
\end{equation*}
$$

where $\alpha=n$ if $\tau_{2}>1 / 2$ and $\alpha>n+1-2 \tau_{2}$ if $\tau_{2} \leqq 1 / 2$.
If on the other hand $\lambda(\xi)$ is positively homogeneous of degree one and satisfies (i) then T_{t} is bounded on V^{p} for p in the interval of (3) and

$$
\left\|T_{t}\right\| \leqq C t \quad 1 \leqq t<\infty
$$

Proof. If $n=1$, the problem of the curvature of Σ does not arise. We will therefore assume that $n \geqq 2$.

Suppose that $\lambda(\xi)$ is homogeneous. By composing with a multiplier satisfying (4) we see that it suffices to consider the multiplier

$$
m(\xi)=e^{i t \lambda(\xi)}\left(1+|\lambda(\xi)|^{2}\right)^{-1 / 2}
$$

But

$$
m(\xi)=\frac{\cos (t \lambda(\xi))}{\left(1+(\lambda(\xi))^{2}\right)^{1 / 2}}+\frac{i \sin (t \lambda(\xi))}{\lambda(\xi)} \frac{\lambda(\xi)}{\left(1+|\lambda(\xi)|^{2}\right)^{1 / 2}}
$$

From Theorem 2 and (4) it is clear that the second expression on the right is a bounded multiplier on $V^{p}\left(\mathbf{R}^{n}\right)$. For the first expression it is necessary to show that

$$
\cos (\lambda(\xi))\left(\lambda(\xi)^{2}+t^{2}\right)^{-1 / 2}
$$

is bounded on V^{p} with norm independent of t for $t \geqq 1$. This calculation is similar to the one carried out for $\sin (\lambda(\xi)) / \lambda(\xi)$ in the proof of Theorem 2.

Now suppose that $\lambda(\xi)$ is not homogeneous. Let $\varphi(s)$ be a C^{∞} function of compact support on \mathbf{R} such that $\boldsymbol{\varphi}$ is identically equal to one in a neighborhood of the origin. Then

$$
\begin{equation*}
\frac{e^{i t \lambda}}{\left(1+|\xi|^{2}\right)^{1 / 2}}=\varphi\left(\frac{\lambda_{*}}{t}\right) \frac{e^{i i \lambda}}{\left(1+|\xi|^{2}\right)^{1 / 2}} \tag{19}
\end{equation*}
$$

$$
+\left(1-\varphi\left(\frac{\lambda_{*}}{t}\right)\right) e^{i t\left(\lambda-\lambda_{*}\right)} \frac{e^{i t \lambda_{*}}}{\left(1+|\xi|^{2}\right)^{1 / 2}} .
$$

The multiplier $\left\{1-\varphi\left(\frac{\lambda_{*}}{t}\right)\right\} \exp \left(i t\left(\lambda-\lambda_{*}\right)\right)$ satisfies (4). Therefore an application of the homogeneous part of this theorem shows that the second part of (19) is a bounded multiplier on L^{p} with operator norm $\leqq C t \leqq C t^{n / 2}$. This leaves just the first multiplier in (19). The rest of the proof follows from the next lemmas.

Lemma 1. Suppose that $z>(n+1) / 2-\tau_{2}$ and $\tau_{2}>1 / 2$. The operator with Fourier multiplier $\varphi\left(\lambda_{*} / t\right) e^{i t \lambda}\left(1+\lambda_{*}^{2}\right)^{-z / 2}$ is bounded from $H^{1}\left(\mathbf{R}^{n}\right)$ to $H^{1}\left(\mathbf{R}^{n}\right)$ with norm $\leqq C t^{n / 2}$ for $t \geqq 1$.
If $\tau_{2} \leqq 1 / 2$ then for every $\tau<\tau_{2}$ the operator is bounded on $H^{1}\left(\mathbf{R}^{n}\right)$ with norm $\leqq C_{\tau} t^{(n+1) / 2-\tau}$ for $t \geqq 1$.

Lemma 2. If $\tau_{2}>1 / 2$ and $n=2$ then $\varphi\left(\lambda_{*} / t\right) e^{i t \lambda}\left(1+\lambda_{*}^{2}\right)^{-1 / 2}$ is bounded on $H^{1}\left(\mathbf{R}^{n}\right)$ with n $\mathbf{n} r m \leqq C t$ for $t \geqq 1$.

Lemma 2 completes the lower dimensional case $n=2$. The operator in Lemma 1 is bounded on $L^{2}\left(\mathbf{R}^{n}\right)$ if $\operatorname{Re} z=0$. Therefore an interpolation proves that

$$
\varphi\left(\frac{\lambda_{*}}{t}\right) \exp (i t \lambda)\left(1+\lambda^{2}\right)^{-1 / 2}
$$

is a bounded multiplier on $L^{p}\left(\mathbf{R}^{n}\right)$ with norm $\leqq C t^{\gamma}$ if

$$
\frac{1}{p}<\frac{1}{2}+\frac{1}{n+1-2 \tau_{2}} \quad \text { and } \quad \gamma>\max \left(1, n /\left(n+1-2 \tau_{2}\right)\right)
$$

If $\tau_{2}>1 / 2$ we may take $\gamma=1$.
Thus the proof of Theorem 3 will be complete when we prove Lemmas 1 and 2.

Lemma 3. If $|g(r)| \leqq C(1+r)^{-5 / 2}, h(r)=t \sigma(r)+\rho r$ or $h(r)=$ $t \sigma(r)-\rho r$ and $H(s)=\int_{0}^{s} \exp (i h(r)) d r$ then

$$
\left|\int_{0}^{t} H(r) g(r) d r\right| \leqq C t^{-1 / 2} \quad \text { for } t \geqq 1
$$

where C is a constant independent of t and ρ.
Proof. Since $\left|d^{2} h / d r^{2}\right| \geqq C t(1+r)^{-L-2}$ then by van der Corput's lemma ([13], p. 197)

$$
\begin{aligned}
& |H(r)| \leqq C(1+r)^{(L+2) / 2} t^{-1 / 2} \text { and } \\
& \left|\int_{0}^{1} H(r) g(r) d r\right| \leqq C t^{-1 / 2}
\end{aligned}
$$

we may assume that $\sigma \geqq 0$. If $h(r)=t \sigma(r)+\rho r$ then $h^{\prime}(r) \geqq C t$. Since

$$
|H(r)-H(1)| \leqq C / t
$$

then

$$
\left|\int_{1}^{t} H(r) g(r) d r\right| \leqq C t^{-1 / 2}
$$

If $h(r)=t \sigma(r)-\rho r$ then $h^{\prime}(r)$ can have at most one zero. Call this zero r_{0}. Let

$$
[a, b]=[1, t] \cap\left[r_{0} / 2,2 r_{0}\right]
$$

where $a=t$ if $r_{0} \geqq 2 t$ and $b=1$ if $2 r_{0} \leqq 1$. If r_{0} does not exist then $a=t$ or $b=1$ depending on which of $\left|h^{\prime}(\infty)\right|$ and $\left|h^{\prime}(0)\right|$ is the smaller. If $r \in(1, a)$ and $s \in(1, r)$ then

$$
\left|h^{\prime}(s)\right| \geqq\left|h^{\prime}(2 s)-h^{\prime}(s)\right| \geqq C \int_{s}^{2 s} \frac{t d y}{(1+y)^{L+2}} \geqq C t / s^{2}>C t / r^{2}
$$

This means that $|H(r)| \leqq C r^{2} / t$ and

$$
\begin{equation*}
\left|\int_{1}^{a} H(r) g(r) d r\right| \leqq C t^{-1 / 2} . \tag{20}
\end{equation*}
$$

If $s \in(b, r)$ then

$$
\begin{aligned}
\left|h^{\prime}(s)\right| & >\left|h^{\prime}(s)-h^{\prime}(s / 2)\right| \\
& \geqq C \int_{s / 2}^{s} \frac{t d y}{(1+y)^{L+2}} \geqq C t / s^{2}>C t / r^{2} .
\end{aligned}
$$

In this case $|H(r)-H(b)| \leqq C r^{2} / t$ and

$$
\begin{equation*}
\left|\int_{b}^{t}(H(r)-H(b)) g(r) d r\right| \leqq C t^{-1 / 2} \tag{21}
\end{equation*}
$$

Also

$$
\begin{equation*}
\left|\int_{b}^{t} H(b) g(r) d r\right| \leqq C t^{-1 / 2}(1+b)^{3 / 2} b^{-3 / 2} \leqq C t^{-1 / 2} \tag{22}
\end{equation*}
$$

Finally if $r \in\left[r_{0} / 2,2 r_{0}\right]$ we use van der Corput's lemma

$$
\begin{equation*}
\left|\int_{a}^{b} H(b) g(r) d r\right| \leqq C t^{-1 / 2} \int_{r_{0} / 2}^{2 r_{0}} \frac{d r}{r}=C t^{-i / 2} \tag{23}
\end{equation*}
$$

The combination of (20), (21), (22), and (23) completes the proof.
Proof of Lemma 1. Again, by using (4) it suffices to consider the multiplier

$$
\boldsymbol{\varphi}\left(\lambda_{*} / t\right) e^{i t \lambda}\left(1+\lambda_{*}^{2}\right)^{-z / 2} .
$$

The kernel for this transformation is

$$
\begin{equation*}
K(x)=C \int_{0}^{1} \int_{\Sigma} e^{i t \lambda} e^{i x \cdot \xi}\left(1+r^{2}\right)^{-z / 2} \varphi\left(\frac{r}{t}\right) \frac{d \xi^{\prime} r^{n-1} d r}{\left|\xi^{\prime}\right|\left|\nabla \lambda_{*}\left(\xi^{\prime}\right)\right|} \tag{24}
\end{equation*}
$$

we will show that $\|K\|_{1} \leqq C t^{\beta}$ where

$$
\beta=\max \left(n / 2,(n+1) / 2-\tau_{2}\right)
$$

As in the proof of Theorem 2 we will consider two regions separately:

$$
U_{1}=\{x:|x| \leqq t\} \quad \text { and } \quad U_{2}=\{x:|x|>t\} \quad t \geqq 1 .
$$

Case 1. $\left(x \in U_{1}\right)$ Integrate by parts in (14):

$$
\begin{aligned}
K(x) & =\frac{C}{t} \int_{0}^{\infty} \int_{\Sigma} \frac{1}{i \lambda^{\prime}} e^{i t \lambda} \frac{d}{d r}\left\{e^{i x \cdot \xi}\left(1+r^{2}\right)^{-z / 2} r^{n-1} \varphi\left(\frac{r}{t}\right)\right\} \\
& \times \frac{d \xi^{\prime} d r}{\left|\xi^{\prime}\right|\left|\nabla \lambda_{*}\left(\xi^{\prime}\right)\right|} \\
& =\frac{C}{t} \int_{0}^{\infty} \int_{\Sigma}\left(\frac{x \cdot \xi^{\prime}}{\lambda^{\prime}}\right) e^{i t \lambda+i x \xi} \frac{r^{n-1}}{\left(1+r^{2}\right)^{z / 2}} \varphi\left(\frac{r}{t}\right) \\
& \times \frac{d \xi^{\prime} d r}{\left|\xi^{\prime}\right|\left|\nabla \lambda_{*}\left(\xi^{\prime}\right)\right|}+E_{1}(x)
\end{aligned}
$$

where $\lambda^{\prime}=d \lambda / d r$. $E_{\mathrm{l}}(x)$ is the term arising from

$$
\frac{d}{d r}\left\{\frac{r^{n-1}}{\left(1+r^{2}\right)^{2 / 2}} \varphi\left(\frac{r}{t}\right)\right\}
$$

Because of (i)

$$
\int_{|x|=R}\left|E_{1}(x)\right| d x \leqq \frac{C}{t}(\log t) R^{(n-1) / 2}
$$

and

$$
\begin{equation*}
\int_{|x| \leqq t}\left|E_{1}(x)\right| d x \leqq \frac{C(\log t)}{t} t^{(n+1) / 2} \leqq C t^{n / 2} \tag{25}
\end{equation*}
$$

Similarly we may use (i) to write

$$
K(x)=\frac{C}{t} \int_{0}^{\infty} \mathscr{P}(g)(-r x) \frac{e^{i t \sigma}}{\sigma^{\prime}} \frac{r^{(n-1) / 2}}{|x|^{(n-1) / 2} r_{1}^{2}}\left(\frac{r}{t}\right) d r+E_{2}(x)
$$

where

$$
\sigma(r)=\lambda(\xi) \quad \text { and } \quad g\left(x, \xi^{\prime}\right)=\left(x \cdot \xi^{\prime}\right)\left(\left|\xi^{\prime}\right|^{2}\left|\nabla \lambda_{*}\left(\xi^{\prime}\right)\right|\right)^{-1}
$$

since $\lambda^{\prime}=\sigma^{\prime}\left|\xi^{\prime}\right|$. Also

$$
\int_{|x|=R}\left|E_{2}(x)\right| d x \leqq \frac{C R^{n}}{t R^{(n-1) / 2}} \int_{0}^{C t} \frac{r^{(n-1) / 2}}{(R r)^{\tau_{2}} r_{1}^{2}} d r
$$

The integral is bounded either by $R^{-\tau_{2}} \log t$ or $R^{-\tau_{2}}$ depending on whether $\tau_{2}>1 / 2$ or $\tau_{2} \leqq 1 / 2$. Thus

$$
\begin{align*}
\int_{|x| \leqq t}\left|E_{2}(x)\right| d x & \leqq \begin{cases}C t^{(n+1) / 2-\tau_{2}} & \tau_{2} \leqq 1 / 2 \\
C t^{(n+1) / 2-\tau_{2}} \log t & \tau_{2}>1 / 2\end{cases} \tag{26}\\
& \leqq C t^{\beta}
\end{align*}
$$

The wave surface is the union of finitely many smooth surfaces W_{j} with corresponding functions $\lambda_{j}^{\#}$. If Γ_{j} is the cone generated by W_{j} then

$$
W_{j}=\left\{x \in \Gamma_{j}: \lambda_{j}^{\#}(x)=1\right\} .
$$

Each point ξ^{\prime} in $A(x)$ is of the form $\nabla \lambda_{j}^{\#}(\pm x)$ for some j. Thus

$$
x \cdot \xi^{\prime}= \pm(\pm x) \cdot \nabla \lambda_{j}^{\#}(\pm x)= \pm \lambda_{j}^{\#}(\pm x)
$$

Let $\left\{\rho_{k}\right\}$ be an ordering of the set

$$
\cup_{j}\left\{\lambda_{j}^{\#}(x)\right\} \cup \cup_{j}\left\{-\lambda_{j}^{\#}(-x)\right\} .
$$

Then group the terms of $\mathscr{P}(g)$ accordingly:

$$
\begin{aligned}
\mathscr{P}(g)(-r x) & =\sum_{\xi^{\prime} \in A(x)} \frac{x \cdot \xi^{\prime} e^{i \gamma \pi / 4}}{\left|\xi^{\prime}\right|\left|\nabla \lambda_{*}\left(\xi^{\prime}\right)\right|} e^{i r x \cdot \xi^{\prime}}(2 \pi)^{(n-1) / 2}\left|\kappa\left(\xi^{\prime}\right)\right|^{-1 / 2} \\
& \equiv \sum_{k=1}^{M(x)} G_{k}(x) e^{i \rho_{k} r}
\end{aligned}
$$

where

$$
\int_{|x|=R}\left|G_{k}(x)\right| \chi_{\Gamma_{k}}(x) d x \leqq C R^{n}
$$

For example, for the wave surface of Figure 2 many directions have a sum over six terms since a straight line through the origin can intersect W at six points.

Let $h(r)=t \sigma(r)+\rho_{k} r$. We are now left to consider the integrals

$$
\begin{equation*}
K_{k}(x)=\frac{C G_{k}(x)}{t R^{(n-1) / 2}} \int_{0}^{\infty} e^{i h(r)} \frac{r^{(n-1) / 2}}{\sigma^{\prime} r_{1}^{2}} \varphi\left(\frac{r}{t}\right) d r \tag{27}
\end{equation*}
$$

We will first estimate these integrals assuming $z=(n-1) / 2$. Define $H(r)$ to be the primitive of $\exp (i h(r))$ with $H(0)=0$ (as in Lemma 3). Another integration by parts shows that

$$
\begin{aligned}
K_{k}(x) & =\frac{C G_{k}(x)}{t R^{(n-1) / 2}} \lim _{\substack{N \rightarrow \infty \\
\epsilon \rightarrow 0}}\left\{\left.H(r) \frac{r^{(n-1) / 2}}{\sigma^{\prime} r_{1}^{2}} \varphi\left(\frac{r}{t}\right)\right|_{\epsilon} ^{N}\right. \\
& \left.-\int_{\epsilon}^{N} H(r) \frac{d}{d r}\left\{\frac{r^{(n-1) / 2}}{\sigma^{\prime} r_{1}^{2}} \varphi\left(\frac{r}{t}\right)\right\} d r\right\}
\end{aligned}
$$

The integrals over $\{|x|=R\}$ of the boundary term at $r=\epsilon$ go to zero as $\epsilon \rightarrow 0$. The boundary term as $N \rightarrow \infty$ is zero since φ has compact support. We split the integral into two parts according to

$$
\begin{equation*}
\frac{d}{d r}\left\}=\frac{d}{d r}\left\{\frac{r^{(n-1) / 2}}{\sigma^{\prime} r_{1}^{z}}\right\} \varphi\left(\frac{r}{t}\right)+\frac{r^{(n-1) / 2}}{\sigma^{\prime} r_{1}^{2}} \frac{1}{t} \varphi^{\prime}\left(\frac{r}{t}\right)\right. \tag{28}
\end{equation*}
$$

For the first term in (28) we use Lemma 3. The derivative is

$$
\left|\frac{d}{d r}\left\{\frac{1}{\sigma^{\prime}}\left(\frac{r}{r_{1}}\right)^{(n-1) / 2}\right\}\right| \leqq C(1+r)^{-3} .
$$

Therefore Lemma 3 shows that

$$
\begin{equation*}
\left|\int_{0}^{C t} H(r) \varphi\left(\frac{r}{t}\right) \frac{d}{d r}\left\{\frac{1}{\sigma^{\prime}}\left(\frac{r}{r_{1}}\right)^{(n-1) / 2}\right\} d r\right| \leqq C t^{-1 / 2} \tag{29}
\end{equation*}
$$

The second term of (28) is supported in an interval of the form $C_{1} t \leqq r$ $\leqq C_{2} t$. If $\rho_{k} \geqq 0$ then $h^{\prime}(r) \geqq C t$ and $|H(r)| \leqq C t$. In this case

$$
\begin{align*}
& \left\lvert\, \int_{C_{1} t}^{C_{2} t} \frac{1}{t} \varphi^{\prime}\left(\frac{r}{t}\right) H(r)^{\left.\frac{r^{(n-1) / 2}}{\sigma^{\prime} r_{1}^{z}} d r \right\rvert\,}\right. \tag{30}\\
& \leqq \frac{C}{t^{2}} \int_{C_{1} t}^{C_{2} t} \frac{r^{(n-1) / 2}}{r_{1}^{z}} d r \leqq C t^{n-z-2} .
\end{align*}
$$

Suppose instead that $\rho_{k}<0$. The integral to be considered is

$$
\begin{aligned}
J & =C \int_{0}^{\infty} H(r) \frac{r^{(n-1) / 2}}{\sigma^{\prime} r_{1}^{2}} \frac{1}{t} \varphi^{\prime}\left(\frac{r}{t}\right) d r \\
& =C \int_{0}^{\infty} H(r) \frac{1}{t} \varphi^{\prime}\left(\frac{r}{t}\right) d r+E_{3}
\end{aligned}
$$

where $\left|E_{3}\right| \leqq C t^{-1}$. This integral will be split into two parts according to

$$
H(r)=\left\{H(r)-H\left(C_{1} t\right)\right\}+H\left(C_{1} t\right) .
$$

Call the corresponding integrals J_{1} and J_{2}. By integration,

$$
J_{1}=\int_{C_{1} t}^{C_{2} t}\left(\frac{r}{t}\right) e^{i h(r)} d r .
$$

Clearly $\left|J_{1}\right| \leqq C t$. On the other hand we may integrate J_{1} :

$$
J_{1}=\int_{0}^{\infty} e^{i i_{k} r+i t r}\left\{e^{i t(\sigma-r)} \varphi\left(\frac{r}{t}\right)\right\} d r
$$

Hence

$$
\begin{aligned}
\left|J_{1}\right| & \leqq C \int_{0}^{\infty} \frac{1}{t}\left|\varphi^{\prime}\left(\frac{r}{t}\right)\right| \frac{1}{\left|t+\rho_{k}\right|} \\
& +\left|\varphi\left(\frac{r}{t}\right)\right| \frac{t}{(1+r)^{L+1}} \frac{1}{\left|t+\rho_{k}\right|} d r \\
& \leqq C\left|t+\rho_{k}\right|^{-1} .
\end{aligned}
$$

This shows that

$$
\left|J_{1}\right| \leqq C t^{1 / 4}\left|t+\rho_{k}\right|^{-3 / 4}
$$

Also

$$
J_{2}=\int_{0}^{\infty} H\left(C_{1} t\right) \frac{1}{t} \varphi^{\prime}\left(\frac{r}{t}\right) d r=\int_{0}^{C_{1} t} e^{i h(r)} d r .
$$

If $R \leqq t$ then $\left|\rho_{k} / t\right| \leqq C$. Therefore r_{0}, the solution of

$$
h^{\prime}(r)=t\left(\sigma^{\prime}+\frac{\rho_{k}}{t}\right)=0
$$

is also bounded independent of R and t. Thus $r_{0} \leqq C_{3}$. The part of the integral J_{2} over the interval

$$
I_{0}=\left[r_{0}-t^{-1 / 2}, r_{0}+t^{-1 / 2}\right]
$$

is clearly bounded by $C t^{-1 / 2}$. On the other hand if $r \notin I_{0}$ then

$$
\begin{aligned}
\left|h^{\prime}(r)\right| & =\left|h^{\prime}(r)-h^{\prime}\left(r_{0}\right)\right|=\left|\int_{r_{0}}^{r} h^{\prime \prime}(s) d s\right| \\
& \geqq C t\left|\int_{\mathrm{r}_{0}}^{\mathrm{r}} \frac{d s}{(1+s)^{L+2}}\right| .
\end{aligned}
$$

If $r \leqq 2 C_{3}$ then

$$
\left|h^{\prime}(r)\right| \geqq C t\left|\int_{r_{0}}^{r} d s\right| \geqq C \sqrt{t}
$$

If $r \geqq 2 C_{3}$ then

$$
\left|h^{\prime}(r)\right| \geqq C t\left|(1+r)^{-L-1}-\left(1+r_{0}\right)^{-L-1}\right| \geqq C t .
$$

Therefore outside $I_{0},\left|h^{\prime}(r)\right| \geqq C \sqrt{t}$. This shows that

$$
\left|J_{2}\right| \leqq C t^{-1 / 2}
$$

This completes the analysis of the terms arising from (28). We have shown that

$$
\left|K_{k}(x)\right| \leqq \frac{C\left|G_{k}(x)\right|}{t R^{(n-1) / 2}}\left\{t^{-1 / 2}+t^{1 / 4}\left|t+\rho_{k}\right|^{-3 / 4}\right\}
$$

The calculations from (27) have been under the assumption that $z=(n-1) / 2$ so that Lemma 3 could be applied in (29). If however $z=\gamma+(n-1) / 2$ where $\gamma>0$ then the integral in (27) equals

$$
-\int_{0}^{\infty}\left\{\int_{0}^{s} e^{i h(r)} \frac{1}{\sigma^{\prime}}\left(\frac{r}{r_{1}}\right)^{(n-1) / 2} \varphi\left(\frac{r}{t}\right) d r\right\} \frac{d}{d s}\left(\frac{1}{s_{1}^{\gamma}}\right) d s
$$

This is dominated by

$$
\begin{aligned}
& \int_{0}^{\infty}\left\{t^{-1 / 2}+t^{1 / 4}\left|t+\rho_{k}\right|^{-3 / 4}\right\}\left|\frac{d}{d s}\left(\frac{1}{s_{1}^{\gamma}}\right)\right| d s \\
& \leqq C\left\{t^{-1 / 2}+t^{1 / 4}\left|t+\rho_{k}\right|^{-3 / 4}\right\} .
\end{aligned}
$$

Therefore from (25), (26), and (27),

$$
\begin{align*}
\int_{|x| \leqq t}|K(x)| d x & \leqq C t^{\beta}+C \sum_{k} \int_{|x| \leqq t} \frac{\left|G_{k}(x)\right|}{t R^{(n-1) / 2}} \chi_{\Gamma_{k}}(x) \tag{31}\\
& \times\left\{t^{-1 / 2}+t^{1 / 4}\left|t+\rho_{k}\right|^{-3 / 4}\right\} d x .
\end{align*}
$$

The first term can be approximated by using polar coordinates:

$$
\leqq C \sum_{k} t^{-3 / 2} \int_{0}^{t} R^{-(n-1) / 2} R^{n} d R=C t^{n / 2}
$$

For the second term it is more natural to integrate over the level sets of $\lambda_{k}^{\#}$. Suppose that
(32) $\int_{\lambda_{k}^{\#}(x)=s}\left|G_{k}(x)\right| \chi_{\Gamma_{k}}(x) \frac{\left|\lambda_{k}^{\#}(x)\right|}{|x|\left|\nabla \lambda_{k}^{\#}(x)\right|} d x \leqq C s^{n}$.

Since $\left|\rho_{k}\right| \leqq c R$, the second term is bounded by

$$
C \sum_{k} t^{-3 / 4} \int_{0}^{c t} s^{-(n-1) / 2} s^{n}|t-s|^{-3 / 4} d s \leqq C t^{n / 2}
$$

To prove (32) it suffices to show that

$$
\sum_{k}\left|\int_{\lambda_{k}^{\neq}(x)}, \chi_{\Gamma_{k}}(x) \frac{d x}{\left|\kappa\left(\xi^{\prime}\right)\right|^{1 / 2}}\right| \leqq C
$$

where $\xi^{\prime}=\nabla \lambda_{j}^{\#}(x)$. By the argument leading to (16) this equals

$$
\int_{\Sigma} \frac{\left|\kappa\left(\xi^{\prime}\right)\right|\left|\nabla \lambda\left(\xi^{\prime}\right)\right|\left|\xi^{\prime}\right|}{\left|\kappa\left(\xi^{\prime}\right)\right|^{1 / 2}} d \xi^{\prime} \leqq C \int_{\Sigma}\left|\kappa\left(\xi^{\prime}\right)\right|^{1 / 2} d \xi^{\prime} \leqq C
$$

since the curvature of Σ is bounded and Σ has finite area. This completes the proof that

$$
\int_{|x| \leqq t}|K(x)| d x \leqq C t^{\beta}+C t^{n / 2}
$$

Case 2. $\left(x \in U_{2}\right)$. This calculation in this region is similar to that of Case 1. The kernel is given by

$$
K(x)=C \int_{0}^{\infty} \int_{\Sigma} e^{i t \lambda} e^{i x \cdot \xi} r^{n-1} r_{1}^{-z} \varphi\left(\frac{r}{t}\right) \frac{d \xi^{\prime} d r}{\left|\xi^{\prime}\right|\left|\nabla \lambda_{*}\left(\xi^{\prime}\right)\right|}
$$

As in the proof of Theorem 2 we will estimate $K(x)$ in a small conic neighborhood of a point x_{0}. Since \mathbf{R}^{n} is covered by finitely many such neighborhoods this will be sufficient. Let η be a function in $C^{\infty}\left(\mathbf{R}^{n}-\{0\}\right)$ that is homogeneous of degree zero such that $x_{0} \cdot \xi /\left|x_{0}\right||\xi|$ is bounded away from zero in the support of η and $\eta \equiv 1$ in a conic neighborhood Γ_{0} of the set $A\left(x_{0}\right)$. Then

$$
\left|\int_{\Sigma} e^{i x \cdot \xi}(1-\eta(\xi)) \frac{d \xi^{\prime}}{\left|\xi^{\prime}\right|\left|\nabla \lambda\left(\xi^{\prime}\right)\right|}\right| \leqq C_{N}(1+R r)^{-N}
$$

for any $N>0$. This part of $K(x)$ equals

$$
\begin{align*}
& C \int_{0}^{R^{\epsilon-1}} \int_{\Sigma} e^{i t \lambda} e^{i x \cdot \xi} r^{n-1} r_{1}^{-z}(1-\eta(\xi)) \frac{d \xi^{\prime} d r}{\left|\xi^{\prime}\right|\left|\nabla \lambda_{*}\left(\xi^{\prime}\right)\right|} \tag{33}\\
& +O\left(\int_{\mathrm{R}^{\epsilon-1}}^{\mathrm{t}} r^{(n-1) / 2}(1+R r)^{-N} d r\right)
\end{align*}
$$

If $\epsilon>0$ this error term is integrable over the region $|x| \geqq t$ and the integral is less than $C t^{(n-1) / 2}$ when N is sufficiently large. In the main term of (33) it is possible to replace r_{1} and $\exp (i t \lambda(r))$ by 1 and $\exp (i t \lambda(0))$ leaving errors that are less than $C t^{n / 2}$ if $(n+2) \epsilon<2$ and $(n+1) \epsilon<1$ respectively. But

$$
\int_{0}^{R^{\kappa}-1} \int_{\Sigma} e^{i x \cdot \xi}(1-\eta(\xi)) \frac{r^{n-1} d \xi^{\prime} d r}{\left|\xi^{\prime}\right|\left|\nabla \lambda_{*}\left(\xi^{\prime}\right)\right|}
$$

is, except for an error less than $C R^{-\epsilon N}$, the inverse Fourier transform of $1-\eta(\xi)$. Clearly η can also be chosen so that

$$
\int_{|\xi|=1}(1-\eta(\xi)) d \xi=0
$$

Then $K_{0}(x)=(1-\eta)(-x)$ is the kernel of a Calderon-Zygmund singular integral operator, which is bounded on $H^{1}\left(\mathbf{R}^{n}\right)$.

This now leaves

$$
K_{*}(x)=C \int_{0}^{\infty} \int_{\Sigma} e^{i t \lambda} e^{i x \cdot \xi} r^{n-1} r_{1}^{-z} \eta\left(\xi^{\prime}\right) \varphi\left(\frac{r}{t}\right) \frac{d \xi^{\prime} d r}{\left|\xi^{\prime}\right|\left|\nabla \lambda_{*}\left(\xi^{\prime}\right)\right|}
$$

for $x \in \Gamma$. Integration by parts k times gives

$$
\begin{equation*}
K_{*}(x)=C \int_{0}^{\infty} \int_{\Sigma} \frac{e^{i x \cdot \xi}}{\left(-i x \cdot \xi^{\prime}\right)^{k}} \frac{d^{k}}{d r^{k}}\left\{\frac{r^{n-1}}{r_{1}^{2}} \varphi\left(\frac{r}{t}\right) e^{i t \lambda}\right\} \frac{\eta\left(\xi^{\prime}\right) d \xi^{\prime} d r}{\left|\xi^{\prime}\right|\left|\nabla \lambda_{*}\left(\xi^{\prime}\right)\right|} \tag{34}
\end{equation*}
$$

where $k>(n+3) / 2$. The main part of (34) is

$$
K_{1}(x)=C t^{k} \int_{0}^{\infty} \int_{\Sigma} e^{i x \cdot \xi+i t \lambda}\left(x \cdot \xi^{\prime}\right)^{-k} \varphi\left(\frac{r}{t}\right) \frac{d^{k}}{d r^{k}}\left\{\frac{r^{n-1}}{r_{1}^{2}}\right\} d \widetilde{\mu}\left(\xi^{\prime}\right) d r
$$

This integral is similar to (24) except for the factor $t^{k}\left(x \cdot \xi^{\prime}\right)^{-k}$. Since $\left(x \cdot \xi^{\prime}\right)^{-k} \eta\left(\xi^{\prime}\right)$ is a smooth function on Σ bounded by $C R^{-k}$ the calculations of Case 1 lead to an estimate similar to (31) except that the factor $(t / R)^{k}$ will make it integrable over the region $|x| \geqq t$. Therefore as in Case 1 ,

$$
\int_{|x| \geqq t}\left|K_{1}(x)\right| \chi_{\Gamma} d x \leqq C t^{\beta}+C t^{n / 2}
$$

The terms of

$$
g(r)=\frac{d^{k}}{d r^{k}}\left\{\frac{r^{n-1}}{r_{1}^{2}} \varphi\left(\frac{r}{t}\right) e^{i t \lambda}\right\}
$$

in which $\varphi\left(\frac{r}{t}\right)$ is differentiated at least once satisfy

$$
\left.\left|g_{2}(r)\right| \leqq\left. C t^{k-2} r^{n / 2} r_{1}^{-1 / 2}\right|_{\varphi}\left(\frac{r}{t}\right) \right\rvert\, .
$$

If the corresponding integral is $K_{2}(x)$ then

$$
\begin{aligned}
\int_{|x|=R}\left|K_{2}(x)\right| \chi_{\Gamma} d x & \leqq C t^{k-2} R^{-k} \int_{0}^{t}(R / r)^{(n-1) / 2} r^{n / 2} r_{1}^{-1 / 2} d r \\
& \leqq C t^{k-1} R^{(n-1) / 2-k}
\end{aligned}
$$

The other terms of $g(r)$ are less than

$$
\left|g_{3}(r)\right| \leqq C t^{k-1} r^{n / 2} r_{1}^{-3 / 2}\left|\varphi\left(\frac{r}{t}\right)\right|
$$

Then

$$
\begin{aligned}
\int_{|x|=R}\left|K_{3}(x)\right| \chi_{\Gamma} d x & \leqq C t^{k-1} R^{-k} \int_{0}^{t}(R / r)^{(n-1) / 2} r^{n / 2} r_{1}^{-3 / 2} d r \\
& \leqq C t^{k-1} R^{(n-1) / 2-k} \log t .
\end{aligned}
$$

This shows that

$$
\int_{|x| \geqq t}\left|K_{2}+K_{3}\right| \chi_{\Gamma} d x \leqq C t^{(n-1) / 2}(1+\log t) \leqq C t^{n / 2}
$$

The proof of Lemma 1 is now complete.
Lemma 2 is a consequence of Lemma 1 since $\left(1+\lambda_{*}^{2}\right)^{-\epsilon / 2}$ is a bounded multiplier on $H^{1}\left(\mathbf{R}^{n}\right)$ for every $\epsilon \geqq 0$.
4. The $L^{p}-L^{p^{\prime}}$ estimates. Showing that T_{t} is bounded from L^{p} to $L^{p^{\prime}}$ involves studying an operator $(I-\Delta)^{-z / 2} T_{t}$ from H^{1} to L^{∞}. This means calculating the L^{∞} or possibly BMO norm of its kernel. Therefore instead of assuming that the slowness surface

$$
\Sigma=\left\{\xi: \lambda_{*}(\xi)=1\right\}
$$

satisfies Theorem 1 we will assume that for any C^{∞} function g on $S \times \Sigma=\left\{\left(x^{\prime}, \xi^{\prime}\right):\left|x^{\prime}\right|=1, \xi^{\prime} \in \Sigma\right\}$,

$$
\begin{equation*}
\left|\int_{\Sigma} e^{-i x \cdot \xi^{\prime}} g\left(x^{\prime}, \xi^{\prime}\right) d \xi^{\prime}\right| \leqq C(1+|x|)^{-\nu} \tag{35}
\end{equation*}
$$

If the curvature of Σ does not vanish then $\nu=(n-1) / 2$.
Theorem 4. Let T_{t} be the operator with multiplier $\exp (i t \lambda(\xi)) m_{1}(\xi)$ where $\lambda(\xi)$ satisfies (i), (ii), (iii) and $m_{1}(\xi)$ is as in (17). Then T_{t} is a bounded linear operator from $L^{p}\left(\mathbf{R}^{n}\right)$ to $L^{p}\left(\mathbf{R}^{n}\right)$ if

$$
\begin{equation*}
\frac{1}{2} \leqq \frac{1}{p}<\frac{1}{2}+\frac{1}{2(n-v)} \tag{36}
\end{equation*}
$$

Also

$$
\left\|T_{t}\right\| \leqq C_{\beta} t^{-\beta} \quad t \geqq 1
$$

for every $\beta>2 \nu\left(\frac{1}{p}-\frac{1}{2}\right)$.
If λ is homogeneous and the multiplier is $\sin (t \lambda(\xi)) / \lambda(\xi)$ then clearly by homogeneity we may take $\beta=(n-1)(1 / p-1 / 2)$.

Proof. The proof of this theorem is similar to the case where the curvature of Σ does not vanish. This proof appears in [9]. We therefore give only an outline. We will show that $(I-\Delta)^{(1-z) / 2} T_{t} f$ is a bounded operator from H^{1} to L^{∞} for every $z>n-\nu$ with operator norm $\leqq C t^{-\nu}$. The statements of the theorem then follow by interpolation between this operator and $(I-\Delta)^{1 / 2} T_{t}$, which is bounded on $L^{2}\left(\mathbf{R}^{n}\right)$ by the Plancherel Theorem.

By composing with multipliers satisfying (4) it suffices to consider

$$
m(\xi)=e^{i t \lambda(\xi)}\left(1+\left(\lambda_{*}(\xi)\right)^{2}\right)^{-z / 2}\left(\left|\xi^{\prime}\right|\left|\nabla \lambda_{*}\left(\xi^{\prime}\right)\right|\right)
$$

where $\xi=\lambda_{*}(\xi) \xi^{\prime}$. The kernel associated with this multiplier is

$$
K(x)=\int_{\mathbf{R}^{n}} e^{i x \cdot \xi} m(\xi) d \xi=\int_{0}^{\infty} \int_{\Sigma} e^{i x \cdot \xi+i t \sigma(r)} d \xi^{\prime}\left(1+r^{2}\right)^{-z / 2} r^{n-1} d r
$$

Let $k=[\nu]$, the integral part of ν. After integrating by parts k times

$$
\begin{equation*}
K(x)=\left(\frac{i R}{t}\right)^{k} \int_{0}^{\infty} \int_{\Sigma} e^{i t \sigma+i x \cdot \xi}\left(i x^{\prime} \cdot \xi^{\prime}\right)^{k} d \xi^{\prime} \frac{r^{n-1} d r}{r_{1}^{z}\left(\sigma^{\prime}\right)^{k}}+E(x) \tag{37}
\end{equation*}
$$

where $\|E\|_{\infty} \leqq C t^{-\nu-1 / 2}$. By (35), the integrand of (37) is bounded by

$$
C r_{1}^{n-1-\nu-z} R^{-\nu}=C r_{1}^{-1-\epsilon} R^{-\nu} \quad \text { where } \epsilon>0
$$

Therefore
(38) $\left|K_{1}(x)\right| \leqq C\left(\frac{R}{t}\right)^{k} \int_{0}^{\infty} r_{1}^{-1-\epsilon} R^{-\nu} d r=C\left(\frac{R}{t}\right)^{k} R^{-\nu}$.

If $\nu>k$ then integrate by parts again in (37):

$$
K_{1}(x)=\frac{C R^{k}}{t^{k+1}} \int_{0}^{\infty} \int_{\Sigma} e^{i t \sigma+i x \cdot \xi} g\left(x^{\prime}, \xi\right) d \xi^{\prime} d r
$$

where $|g| \leqq C r_{1}^{n-1-z}(R+1 / r)$. Therefore as in (38),

$$
\begin{equation*}
\left|K_{1}(x)\right| \leqq C\left(\frac{R}{t}\right)^{k+1} R^{-\nu} \tag{39}
\end{equation*}
$$

Since $k \leqq \nu<k+1$, (38) and (39) together show that $\|K\|_{\infty} \leqq C t^{-\nu}$. This proves Theorem 4.

When the curvature does not vanish a better approximation for the integral in (37) can be obtained by splitting the integral into parts

$$
\int_{0}^{\infty}=\int_{0}^{t^{1 / L}}+\int_{t^{1 / L}}^{\infty}
$$

The interval from $t^{1 / L}$ to ∞ can be still approximated using (35) so long as $z>n-\nu$, and

$$
\left|\int_{t^{\prime / L}}^{\infty}\right| \leqq C t^{-\nu-\alpha}
$$

if $z=n-\nu+\alpha L$ and $0<\alpha \leqq 1 / 2$. The interval [$0, t^{1 / L}$] however presents a problem because in approximating

$$
\int_{0}^{t^{1 / L}} \int_{\Sigma} e^{i t \sigma+i x \cdot \xi}\left(i x^{\prime} \cdot \xi^{\prime}\right)^{k} d \xi^{\prime} \frac{r^{n-1} d r}{r_{1}^{z}\left(\sigma^{\prime}\right)^{k}}
$$

it is necessary to use (35) for the oscillation over Σ and van der Corput's lemma for the cancellation in r. To do both, as in [8] and [9], it appears necessary to get an expression for the leading term in (35).

References

1. V. T. Buchwald, Elastic waves in anisotropic media, Proc. Roy. Soc. London, Ser. A, 253 (1959), 563-580.
2. R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II (Interscience Publishers, New York, 1962).
3. G. F. D. Duff, The Cauchy problem for elastic waves in an anisotropic medium, Philos. Trans. Roy. Soc. London, Ser. A, 252 (1960), 249-273.
4. A. Greenleaf, Principal curvature and harmonic analysis, Indiana Math. J. 30 (1981), 519-537.
5. C. Herz, Fourier transforms related to convex sets, Ann. of Math. 75 (1962), 81-92.
6. E. Hlawka, Über Integrale auf konvexen Körpern I, Monatsh. Math. 54 (1950), 1-36; II, ibid. 54 (1950), 81-99.
7. W. Littmann, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766-770.
8. B. Marshall, W. Strauss and S. Wainger, $L^{p}-L^{q}$ estimates for the Klein-Gordon equation, J. Math. pures et appl. 59 (1980), 417-440.
9. B. Marshall, $L^{p}-L^{q}$ multipliers of anisotropic wave equations, Indiana Math. J. 33 (1984), 435-457.
10. -The Fourier transforms of smooth measures on hypersurfaces of \mathbf{R}^{n+1}, Can. J. Math.
11. J. Peral, L^{p} estimates for the wave equation, J. Funct. Anal. 36 (1980), 114-145.
12. R. S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), 705-714.
13. A. Zygmund, Trigonometric series (Cambridge U. Press, 1959).

McGill University,

Montreal, Quebec

[^0]: Received June 25, 1984. This research was supported by NSERC Grant U0074

