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ESTIMATES FOR SOLUTIONS OF WAVE 
EQUATIONS WITH VANISHING CURVATURE 

BERNARD MARSHALL 

1. Introduction. The solution of the Cauchy problem for a hyperbolic 
partial differential equation leads to a linear combination of operators Tt 

of the form 

TJ(!;) = m(£)exp(//\(£) )/(£)• 
For example, the solution of the initial value problem 

utt - Â w = 0 (x, /) e R" X (0, oo) 

u(x9 0) = 0 ut(x, 0) =f(x) 

is given by u(x, t) = Ttf(x) where 

TJ(0 = lfl_Isin(/|a )/(€). 
Peral proved in [11] that T, is bounded from LP(R") to If(Rn) if and only 
if 

1/2 - l/(« - 1) ^ I//? ^ 1/2 + l/(w - 1) ( 1 ^ / 7 ^ oo). 

From the homogeneity, the operator norm satisfies \\Tt\\ ̂  Ct for all 
/ > 0. If \(£) is positively homogeneous of degree one then the same result 
is true for the multiplier sin(fÀ(£) )/A(£) as long as the Gaussian curvature 
of 

2 = {f:|X(f)| = 1} 

does not vanish and L1 and L°° are replaced by H] and BMO. 
When there are lower order terms present the decay rate of the operator 

norm \\Tt\\ changes significantly. For the Klein-Gordon equation, 

utt — Â w + u = 0, 

the Fourier multiplier is sin(/Vl + |£|2)(1 + |£|2)~1 /2 and 

lirji ^ crnlp~2l/2p (t ^ i). 

This result appears in [8] and the nonradial case is in [9]. 
The purpose of this paper is to prove results like these for the case when 

the curvature of the surface 2 vanishes. Estimates will also be obtained for 
Tt as an operator from Lp to Lp. 
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WAVE EQUATIONS 1177 

At the heart of these results are estimates obtained for the Fourier 
transform of measures dp supported on 2. In [10] two types of estimates 
are obtained in dp. The first type concerns the behavior of the spherical 
averages of dp(x): 

(1) ctp(x) = \x\-("-])/20>(x') + h(x), x = \x\x'. 

The function & is integrable over the unit sphere and the averages of h 
over the spheres { |JC| = R} decrease faster than CR ^ )7 . The second 
type of estimate is one of the form 

(2) \âp(x)\ fk C(\ + \x\)-\ 

When the curvature of 2 does not vanish the constant v in (2) equals 
(n — l)/2 but when the curvature does vanish v < (n — l)/2. 

The estimates of Tt from LP to LP involve showing that an operator 
(/ — A)~z/27) is bounded on Hx. Since this means calculating the L1 norm 
of its kernel, estimate (1) is well-suited to this situation. The advantage of 
estimate (1) is that at least in an average sense dp decays as rapidly as 
the case where the curvature of 2 does not vanish. In fact the obstruction 
to better results is the lower order term h(x) and not the main term. For 
the LP to LP estimates it is necessary to calculate the L°° or BMO norm of 
the kernel for (/ - A)~z/2Tr In this case, inequality (2) seems more 
natural. 

2. The estimates for dp. A function/on R"~ will be said to be of type 
r if it satisfies the following conditions: 

(a) / (0 ) = 0, V/(0) = 0, and f(y) = P(y) + h*{y) for y in a 
neighborhood of the origin. 

(b) there is a direct sum of orthogonal subspaces V]9 . . . , Vs and 
polynomials P]9. .., Ps homogeneous of degree kx,. .., ks respectively 
such that Vx ®. . . 0 Vs = Rn] and 

s 

P(y) = P(ylt ...,ys)= 2 Pj(yj) y} e VJtj =l,...,s. 
7 = 1 

(c) for every y = 1,. . . , s, det d Pj(yj) = 0 implies j>-= 0. 
(d) the function h* contains only higher order terms y^ such that for 

every j = 1 , . . . , s, y^ is either independent of >>• or in the variables of V-, 
y^ has homogeneity = j8- ^ kj. Also 2 r fi- > 2 ' kj where the sums are over 
those j where y* is not independent of y y 

Define 

r = min{ (dim Vj)/(kj - \)\kj ¥= 2} if det d2f(0) = 0, 

and 

T = 2 if det d2f(0) * 0. 
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For example, the function 

f(y) = y\] + yki2 

is of type r = \/(k2 - 1) if 2 < k} ^ k2. 
A point £' on the surface 2 is of type T = T(£') if after a translation and 

an orthogonal change of coordinates in R" the surface near £' can be put in 
the form^/7 = f(y) where/is a function of type T on Rn~ . The surface 2 
will be of type T0 if every point £' on 2 is of type T = T(£') for some T 
and 

r0 = inf{r(£'):£' e 2} > 0. 

Let K(£') be the Gaussian curvature of 2 at £' and define 

.4(JC) = {£' G 2 : the tangent plane at £' is perpendicular to x}. 

Suppose that the surface near £' is transformed into >>„ = f(y) in such a 
way that the unit normal vector at £' pointing in the direction o f x is 
mapped into (0, - 1 ) e R""1 X R. Let y = y(|') be the number of 
positive eigenvalues of the matrix d2f(Q) minus the number of negative 
eigenvalues. Let do be surface area on 2, g e C°°(2). For any such 
function g e C°°(2) set 

<%)(*) = 2 g(o^vwWH)/2k(r)r , /2 

where f G I 

Define r, = -min(T0, 1) if 2 is not convex, and T] = 1/2 if 2 is 

convex. 

THEOREM 1. [10] Suppose that 2 is a compact (n — X)-dimensional C°° 
submanifold of R" of type r0 > 0, dco is surface area on 2, g G C°°(2), 
dju = gdco, and for every x e R", A (x) is a finite subset of 2. Then for every 
T < Tj there exist positive constants Cx and C2 such that 

R~("~l) Xl = tf ̂ (x) ~ R~(n~l)/2^(g)(x)\dx ^ C}R-{"-}+2T)/2 

for all R > 0 and 

R~("~]) Jlxl = R \0>(g)(x) \dx ^ C2 for all R > 0. 

If TQ > 1/2 then this theorem holds for r = 1/2. 

If the curvature of 2 does not vanish then the theorem holds for T = 1 
( [5] or [6] ). If 2 is not convex it seems unlikely that the theorem would 
hold for every T < 1. Near an inflection point of 2 in R2, â% has a sig
nificant secondary term. For example, if the surface is given locally by 
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£2 = è] then A( (e, 1) ) = 0 for every e > 0 even though (c, 1) is close to 
being perpendicular to the surface. It is the possibility of this type of 
situation that is reflected in the parameter Tj in Theorem 1. If 2 is convex 
there are no inflection points and TX = 1/2. It may be possible to improve 
this to T, = 1. 

Let S be the unit sphere in Rn. The proof of Theorem 1 in [10] 
generalizes easily to the case where g e C°°(S X 2). If x = rx\ 
(V, £') e S X 2, then the type of function encountered in Theorems 3 and 
4 is of the form 

g(x'9 O = (*' • €')*£($') 

where g <E C°°(2). 
We will describe now the phase function X(£). 

(i) X* is a real-valued function, positively homogeneous of degree one, 
X* G C°°(R" — {0} ), X* has no zeros in Rn — {0}. For convenience we 
assume X* ê 0. Let 0 < T2 = 1. Assume that 2 = {£:X*(£) = 1} is a 
surface for which 

R -(«-!) l^R\$(x) - R-{n-X),1ng)(x)\dx ^ c/r*"-1-2^'2 

for all i? > 0, g G C°°(S X 2). 
its leading term at infinity and 

Also 

and 

|X*(Ô I =§ C|X(£) I for all i 

\D»(\ -X*)(£)l ^ Q l i r 

| Z A « ) | ^ C^IMOMfl 

Rn 

for every multi-index /?. 
(iii) Assume that there is a smooth nonnegative function o on R and a 

constant L ^ 1 such that X(£) = a(X*(£) ), a(r) — r —> 0 as r —> oo, 

C,(l + , -)~L~2 â 
J2a 

idrk ^ Q ( i + r) 

C2(\ + r)- -L-2 

-L-2 r > 0, fc ^ 2. 

Ja / J r has a zero of order at most one at the origin and has no other 
zeros. 

The assumptions that X and X* be positive are for convenience only. The 
same proofs hold for negative phase functions. Condition (iii) implies that 
the level surfaces of X are all dilates of 2 . This is not strictly necessary but 
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it greatly simplifies the assumptions and proofs. 
For the Klein-Gordon equation, 

Mi) = V l + |£|2, \*(è) = \t\9 a(r) = V T T 7 , and L = 1. 

An example of an equation where the surface 2 is no longer convex is 
given by the homogeneous operator 

(D2 - AD\ - D2
X2)(D] - D\ - AD\) - e(D2

Xi + D2
xf 

where the constant e > 0 is chosen small enough that the four roots of the 
characteristic equation 

(T2 - 4£2 - £2)(T2 - i] - A&) - €(*? + ilf = 0 

are distinct for every £ = (£j, £2)- The two positive roots are given by 
homogeneous functions T = \\(£) and r = X2(0- The graphs of 

2,- = {fy® = 1} (; = 1, 2) 

are given in Figure 1. The shapes of the corresponding wave surfaces are 
drawn in Figure 2. 

Examples arise more naturally in the case of elastic waves in R3(See[l], 
[3] ). In this case the characteristic equation has six roots. The three 
positive roots lead to surfaces 2 j , 2 2 and 2 3 . The estimates of this paper 
deal with the "regularly hyperbolic" equations, in which these surfaces are 
disjoint. In [3], Duff uses a perturbed equation similar to the one in Figure 
1 to examine the singular case where the surfaces intersect. It is not clear 
however what such a perturbation will do to the LP estimates of this 
paper. 

3. The If estimates. Let VP(R") = If(R") if 1 < p < oo, V] = H\ and 
V°° = BMO. 

THEOREM 2. Let Tt be the transformation with Fourier multiplier 

m(& = sin(/A(£) )/A(£) 

where A(£) satisfies (i) and (ii). Then Tt is a bounded linear operator from 
Vp(R") to Vp(Rn) if 

1 1 1 1 1 
(3) - - < - < - + 

2 n + 1 — 2T2 p 2 n 4- 1 — 2T2 

where T2 < 1 is the constant in (i). The operator norm of Tt satisfies 

117,11 ^ a for allO < t ^ 1. 

From (3) it is evident that Theorem 1 with T2 = 1 would give the same 
range of p as when the curvature of 2 does not vanish, except that the 
endpoints would be missing. 
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Figure 1 

w, 

Figure 2 
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Proof. We will first show that the inhomogeneous case follows from the 
estimates where À is homogeneous. Suppose X* is the homogeneous part of 
X. Then 

sin(rX) sin(A*)f x„£_\ 

X* 

'cos(/X*)sin(/(X 

I X 

sin(rX*) 

Since w, satisfies 

(4) 1^,(01 ^ c^r1* 

where C^ is independent of /, then mx is a bounded multiplier on Z/\ 
1 < /? < oo, and on i/1 and BMO. Similarly, 

\Dim2d)\ tk cBm~m o < / ^ i. V 2 W I = /̂?' 

Therefore to prove Theorem 2 it suffices to consider a homogeneous phase 
function A(£). In fact, if X(£) is homogeneous then we may assume that 
/ = 1. 

By the Plancherel Theorem, (/ - A)1 /2ri is bounded from L2(R") to 
itself. We will prove that (/ - £ ) - < " - 1 - 2 * ) / ^ is bounded on Hl(R") for 
every T < T2. Since (/ — A)iy is a bounded linear operator on H (R/?) 
for y e JR, an interpolation using the analytic family of operators 
(7 — A)zTj shows that Tx is a bounded linear operator from Lp(Rn) to 
itself where 

1 - o o 1 1 
+ - = - and (1 - a) + a ( - l ) ( / i - 1 - 2T) - = 0. 

2 1 / 7 2 

This is equivalent to 

l i a i 1 
+ - = - + p 2 2 2 n + \ - 2T 

The corresponding estimates for 2 < p < oo follow from duality. 
If K0 is the kernel for the transformation (/ - A)~( , l~1-"2T)/4r1 then 

£ ,> , (1 +(A(Q) 2 ) - (^ 1 - 2 T ) / 4s in(X(g) ) 

A(0 

1 - 2 T ) / 4 

1 + \$~ ' V i + i£i2 / 
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Since the last expression on the right satisfies (4) it suffices to consider 
K(x) where 

K(t) = (1 + (MÔ)2)" ("" , _ 2 T ) / 4sin(X(Ô)A«). 
A 

It is natural to calculate the inverse Fourier transform of K by integrat
ing first over the surfaces (£:X(£) = r}. Let 2 = {£:X(£) = 1}. 

where d% is surface area on 2 and r"_ g(£') is the Jacobian for the change 
of coordinates. 

Because X is smooth in R" — {0} and positively homogeneous of degree 
one then 

£' • VX(£') = X(?) = 1 for any ? G 2. 

Since £' • VX(^')/|^,| |VX(£') | is the cosine of the angle between the radius 
that 

g(0 = s • vx«')/|*'| |vx(f) | = ( |f| IVX(É') | r1. 

4i(-rx) = /^W)* ' è = ri' 

If JJU = gdg then 

and 
/*oo 

(5) AT(x) = J 0 4i(-rx)(sin/-)( l + fV ( "~ l ~ 2 T ) / V , - 2 </r . 

By (i), 

âp(-rx) = (r\x\y("~l)/20>(-rx) + h(-rx) 

where 

Therefore 

(6) j ^ , !*(*)!* 

\dx + H(R) = Xl-J/o^-")XT-i;-— * ^ r x ) ( W _ I - 2 T ) / 2 
(sinr)r (AJ-3) /2 

where rt = (1 + r2)172 and 

0 * " " ' r ( n - l - 2 T ) / 2 ^ ^ 
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^ CR{ , ( w - l ) / 2 -

since r < T2. 
By Theorem 1, 

&(-rx) = 2 el^/AelH\24n~])/1\K(Z) | " 1 / 2 ( If I |VA(f) I ) _ 1 

where V4(JC) = A( — x) is the set of points in 2 = {£:X(£) = 1} such that 
the normal to 2 at £ is parallel to x. Thus the main term of (6) can be 
written as 

(8) ( I 2 
Too 

X Jo 

^ / 4 ( 2 7 7 ) ( , - l ) / 2 

fe^(x) /? ( f i - l ) / 2 , > / l*'l ivxtfo I k(f ) 
i l / 2 

:.£ (sin A-)r( j(«-3)/2 

J « - 1 - 2 T ) / 2 -rfr dx 

C 
, ( w - l ) / 2 R{ L-R 2 |W «0 •1/2 

X !/>tr 
3) / 2 sin r 

J-T 
dr 

rl 
Jx. 

If T < 1 then an integration by parts shows that 

(9) l/>f(f)"" 
•3)/2 ^ </r 

sin r- l - T \Jol |y i l 

.«-I 

It is a consequence of Theorem 1 that 

X, „ 2 Hi')\~mdx^ CR 
JW = R ?eA(x) 

This combined with (7) shows that 

jf, D \K(x)\dx ^ cR(n'X)n + cR{"-X)l2-\ 
J\x\ — R 

Therefore 

(10) JMS]\K(x)\dx^C. 
The estimates obtained thus far take care of the region { |x| = 1}. If 

\x\ > 1 then we begin by integrating by parts in (5). To integrate 

d)i(-rx)= X^(lfMVX(f)l)"'^' 
with respect to r it is convenient to introduce a partition of unity on 2. 
Suppose that x is restricted to a narrow cone T. The cone T is chosen so 
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narrow that |x, • %^/R is bounded away from zero for £2
 e A(x2), *i e T, 

x2 E T. This is possible since if £' G A(X) then 

|JC • £'|//i è C > 0. 

Clearly R" can be written as a finite union of such cones. Suppose that T] is 
a C°° function on 2 that equals one in a neighborhood of {£':£' e 4̂ (JC) for 
some x e F} and TJ is supported away from the set {£:JC •£' = () for some 
x <= T}. Then since (1 — 77) is supported in the part of 2 that is transverse 
to planes where x • £ is constant, we have 

i CN(\ + Rr)~N eixi(\ - î , ) (É 'XlÉ ' I IVX«') i r 'd 

for any N > 0. Also, by integrating 

f°° A r""2 

(13) J 0 dJH-rx)sin(rx) (n-X-27)/1
dr 

where d]i = rjdju. The integral in (13) is similar to (5) except for the 
factor 

l ( r f ) r ' £cR-k. 

Therefore, calculating as before and summing over the cones T gives 

J\x\ ,. , „ \K(x)\dx ^ cR-k{cR{"-])/2 + cR{"-])/2-J}. 
J\X\ K 

If k is chosen large enough this shows that K is integrable over the region 
{ |JC| ^ 1}. This together with (10) completes the proof of Theorem 2. 

The obstacle to getting a bounded operator on a large range of p is the 
error term h(x) in Theorem 1. To further illustrate this we will calculate 
the kernel K(x) if T2 = 1 in a simple case: n = 3 and 2 is convex and 
symmetric with respect to the origin. That is, x e 2 implies — x e 2 . 
Since the integral in (8) does not make sense when T2 = 1, K must be 
considered as the distributional inverse Fourier transform of the 
function 

m(0 = sin(X(0 )A(0 . 

If <p is any C°° function in the Schwartz class 6^ 

(14) fR„ K(x)<p(x)dx = (277)-" jf „ mfôfc&dè 

f°° sin r f 
J o r JR3 = (2TT)-3 / n — l,<p(x) 
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X Le-
iH — dx?dr 

J2 \t'\ \V\(P\ I If I IVX(I') 

According to Theorem 1 the principal part of the integral over 2 is 

(15) 0>{x) = 2 m-
f^)/-wiaivx(f)||/:(f)|1/2 

Since the multiplier is even we may assume that X = 0. We will show 
that this part of K(x) is a measure supported on the wave surface 
corresponding to 

2 = {É:A(8 = 1}. 

The wave surface is the set 

W = {x = VX(£):X(f) = 1}. 

Except where the curvature of 2 at £ vanishes the corresponding part of W 
is a smooth (n — l)-dimensional manifold in R" that crosses each ray from 
the origin at most once. The points of zero curvature in 2 correspond to 
cusps in W, as in Figures 1 and 2. See also [1] and [3]. In the present 
calculation, since 2 is convex, Wis star-shaped with respect to the origin. 
Therefore there is a function À# that is positively homogeneous of degree 
one in R'7 such that 

W = {x\\#(x) = 1}. 

The wave surface W is dual to the "slowness surface" 2 in the sense 
that 

2 = {£ = V\#(x):\#(x) = 1}. 

Consider the Gauss map 

? -> e = VÀ(0/ |VÀ(0 I 

from 2 to the unit sphere. The Gaussian curvature measures the change of 
area: /c(£')^£' = dO where dO is surface area on the unit sphere. Because X is 
homogeneous of degree one, 

e ' VX(?) = A(f ) = 1. 

Since the cosine of the angle between £' and JC' = VA(£r) is 

€'-VX(É')/|É'||VX(É')I = l/lfl Ivxo I 
then dx' = |jc'| \C\dO. Therefore 

dx' = K(0 \x'\ \?\dt 

where d£', dx' are surface area on 2 and W respectively. Similarly using 
the function X# associated to the wave surface, 
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4 ' = K#0O W\ \ÎW 

where K* is the curvature on W. Hence 

(16) K(f)KV)M2 |f |2 = l. 

This argument leading to (16) is taken from [3]. Because of the duality 
between 2 and W and the fact that 2 is convex, VÀ and VX# are inverses. 
Therefore it follows from the definition of A(x) that 

A(x) = {£' e 2:VA(£') is parallel to JC} 

= {vxV),vx#((-*m. 
Also the convexity of 2 implies that 

Y(VX#((±jc)')) = ± 2 . 

Finally, 

x • £' = ±X # (± jc ) (±xy • VA#( (±x) ' ) = ± A # ( ± J C ) . 

Since 2 is symmetric this last expression is 

±\*(x) ss ± p . 

Putting all this information into (15) shows that 

r\x\ 

4*\«x')\m . . _ 
sin(rp). 

rpW\ 
Let 

O(p) = JL cp(p̂ ) V ' if p > 0 
W 2TT2 ^ V Vl WOO | 

and O(p) = 0 if p ^ 0. Then the part of (14) that is associated with 
is 

f°° f 4TT|K(JC') | 1 / 2 

(2TT) J O sin r J R 3 <P(X) — sin(rp)dxdr 

/

oo /*oo 

o s i n r J o ®(p)sin(rP)dPdr 

= — sin r $(r)Jr = -($(1) ~ * ( - l ) ) = -*(1) 
2i J °° * * 

sin r $(r)dr = , . v - , _v . , , 
2 2 

| l / 2 . 

4TT ^ ** V|2(VA#(x') I 
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This shows that the part of K associated with <? is a measure on W and 
hence is a bounded operator on L](R3). This seems to suggest that Tt might 
be bounded for the full range 1 ^ p ^ oo. The problem is in knowing how 
to take care of h. 

THEOREM 3. Let Tt be the transformation with Fourier multiplier 

m(£) = émmx(i) 

where A(£) satisfies (i), (ii), (iii) and mx{£) is such that for every /?, 

(H) \Dimx(Q\ ^cp(\ + lar1-'*1. 
Then Tt is a bounded linear operator from Vp(Rn) to Vp(Rn) ifp satisfies (3). 
The operator norm of Tt is 

(18) ||7;|| ^ C / | 1 / / 7 _ 1 / 2 1 fori g / < o o 

where a = nifr2>\/2 and a > n + 1 - 2T2 ifr2 = 1/2. 

If on the other hand A(£) is positively homogeneous of degree one and 

satisfies (i) then Tt is bounded on Vp for p in the interval of (3) and 

\\Tt\\ ^Ct 1 ̂  / < oo. 

Proof If A? = 1, the problem of the curvature of 2 does not arise. We 
will therefore assume that « ^ 2 . 

Suppose that A(£) is homogeneous. By composing with a multiplier 
satisfying (4) we see that it suffices to consider the multiplier 

m(0 = ei,Xa\\ + |X(0lV / 2 . 

But 

= cos(A(Q ) i sin(/A(Q ) \(f) 

(i +(\(£))2)1/2 \(|) (i + IM6I2)172' 

From Theorem 2 and (4) it is clear that the second expression on the right 
is a bounded multiplier on Vp(Rn). For the first expression it is necessary 
to show that 

cos(MI)XMI)2 + t2rU2 

is bounded on Vp with norm independent of / for t = 1. This calculation 
is similar to the one carried out for sin(A(£) )/A(£) in the proof of 
Theorem 2. 

Now suppose that A(£) is not homogeneous. Let <p(s) be a C°° function 
of compact support on R such that <p is identically equal to one in a 
neighborhood of the origin. Then 
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an 

V *\ t ft (i + |£|2)172 

The multiplier -| 1 — <p C —̂  1 |exp(/7(A — A*) ) satisfies (4). Therefore 

application of the homogeneous part of this theorem shows that the 
second part of (19) is a bounded multiplier on LP with operator norm 
^ Ct ^ Ctnl2. This leaves just the first multiplier in (19). The rest of the 
proof follows from the next lemmas. 

LEMMA 1. Suppose that z > (n + l)/2 — r2 and r2 > 1/2. The operator 
with Fourier multiplier <p(\*/t)elt\\ + \2*)~z/2 is bounded from H\Rn) 
to H](Rn) with norm ^ Ct"/2 for / ^ 1. 

Ifr2 = 1/2 then for every r < r2 the operator is bounded on H (Rn) with 
norm ^ CTt{n + ])/2~T for t ^ 1. 

LEMMA 2. Ifr2 > 1/2 andn = 2 then q>(k^/t)eitX(\ + \\)~V2 is bounded 
on Hx(Rn) with mrm ^ Ct for t ^ 1. 

Lemma 2 completes the lower dimensional case n = 2. The operator in 
Lemma 1 is bounded on L (Rn) if Re z = 0. Therefore an interpolation 
proves that 

a exp(/7X)(l + A2) 1/2 

is a bounded multiplier on Lf(Rn) with norm ^ Cty if 

- < - H and y > max(l, n/(n + 1 — 2T2) ). 
p 2 n + 1 — 2T2 

If T2 > 1/2 we may take y = 1. 
Thus the proof of Theorem 3 will be complete when we prove Lemmas 1 

and 2. 

LEMMA 3. / / \g(r) | ë C(l + r )~ 5 / 2 , A(r) = to(r) + pr or A(r) = 
to(r) — pr «wJ H(s) = /Q exp(//z(r) )dr f/iert 

I/; 0 H(r)g(r)dr ^ Ct~]/2 fort ^ 1 

where C is a constant independent of t and p. 

iVtfo/ Since \d2hld?\ ^ Q ( l + r)~L~2 then by van der Corput's 
lemma ([13], p. 197) 

\H(r)\ ^ C(\ + rfL+2)/it-\n a n d 

7, 0 H(r)g(r)dr ^ crm 
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we may assume that a ^ 0. If h(r) = to(r) + pr then h'(r) ^ Ci. Since 

\H(r) - J / ( l ) | ^ C/f 

then 

I/; H(r)g(r)dr ^ a -1/2 

If h(r) = /a(r) — pr then /z'(j') can have at most one zero. Call this zero r0. 
Let 

[a, b] = [1, t] H [r 0 /2 , 2r0] 

where ^ = / if r0 = 2/ and è = 1 if 2r0 ^ 1. If r0 does not exist then a = t 
or b = 1 depending on which of \h'(oo) | and |A'(0) I is the smaller. If 
r e (1, #) and s e (1, r) then 

|A'(j) | ^ 1/2X25) - A'(j) - / : 
tdy 

(1 + >0 
Z. + 2 ^ a / j 2 > a / r 2 . 

This means that \H(r) | ^ C?lt and 

(20) | J i H(r)g(r)dr ^ O -1/2 

If 5 G (Z>, /-) then 

\h'(s) | > |A'(i) - h'(s/2) | 

= C l \ ^ T T J = Ctls1 > O/r 2 . 
y , / 2 ( 1 + y)L + 2 

In this case | / /(r) - H(b) | ë O 2 / / and 

(21) 

Also 
/ > ( ' ) - H(b) )g(r)dr Ct • 1 / 2 

(22) \j'hH(b)g(r)dr s c/-|/2(i + è)3/V3/2 ë cr l /2. 
Finally if r e [r0/2, 2/*0] we use van der Corput's lemma 

(23) I/: H(b)g(r)dr a - 1 / 2 

r 
J n 

2ro dr 

= a 
-1/2 

The combination of (20), (21), (22), and (23) completes the proof. 

Proof of Lemma 1. Again, by using (4) it suffices to consider the 
multiplier 

<p(K/t)elt\\ + \l)~z,\ 

The kernel for this transformation is 
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(24, KW . C / I /, t«V'<<1 + à~"\^ f-
Xdr 

TI|VX*(|')I 
we will show that ||A |̂|j S Cr where 

yS = max(«/2, (n + l)/2 - T2). 

As in the proof of Theorem 2 we will consider two regions separately: 

{/, = {JC:|X| ^ 0 and t/2 = {JC:|JC| > /} t ^ 1. 

Case 1. (x G L^) Integrate by parts in (14): 

di'dr 
X 

If I |VX»«') | 

X + EAx) 

l*'l|V\,tf')| ' 
where X = dX/dr. Ex(x) is the term arising from 

Because of (i) 

^ | = j£,(*)|^^y(logO«(""1,/2 

and 

(25) jf |£,(x) \dx ë ^ ! ^ i ) , ( « + i ) / 2 ë a « / 2 

Similarly we may use (i) to write 

C f°° eita r(n~])/2 fr\ 
K(x) = - J 0 ^ ( g ) ( - r x ) - M ( „ _ 1 ) / 2 ^ ^ - j ^ + E2(x) 

where 

o(r) = X(0 and g(x9 ?) = (x • *')( If |2|V\*(£') | ) _ 1 

since À' = a'|£'|. Also 

f CRn [ct r^-\)n 

L = R ^M \dx ̂  -^^ J 0 jj^f. 
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The integral is bounded either by R 7l log t ox R Tl depending on whether 
T2 > 1/2 o r r 2 ^ 1/2. Thus 

n^ f \F, \u < /0 (" + , ) / 2 -T 2 r 2 = i 1/2 

The wave surface is the union of finitely many smooth surfaces Wj with 
corresponding functions À* If T- is the cone generated by W} then 

Wj = {x e I\:Xjx) = 1}. 

Each point £' in A(x) is of the form VA^zbjt) for some y. Thus 

x • £' = ± ( ± J C ) • VA^±x) = ± X ^ ± J C ) . 

Let {p^} be an ordering of the set 

y {\p)} u y {-$-*)}. 

Then group the terms of ^ (g) accordingly: 

@(g)(-rx)= s ' , : ' , ^ " W - 1 ) / 2 i ^ ) r 1 / 2 

A/(JC) 

* = 1 

where 

*/M 
j ^ = R\Gk(x)\xYk(x)dx^CR\ 

For example, for the wave surface of Figure 2 many directions have a sum 
over six terms since a straight line through the origin can intersect W at six 
points. 

Let h(r) = to(r) + pkr. We are now left to consider the integrals 

We will first estimate these integrals assuming z = (n — l) /2. Define H{r) 
to be the primitive of exp(/7z(r) ) with H(0) = 0 (as in Lemma 3). Another 
integration by parts shows that 

e-*0 

-/:<,&(-;)}4 
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The integrals over [\x\ = R} of the boundary term at r = 6 go to zero as 
€ —» 0. The boundary term as N —» oo is zero since <p has compact support. 
We split the integral into two parts according to 

,M)̂ {} <{^U:)+!^V(:). 
dr V ) dr\ o'r\ J \ f / o'r\ t \ f / 

For the first term in (28) we use Lemma 3. The derivative is 

i!G(r"ii—* -! 
Therefore Lemma 3 shows that 

-l/:w:)^(r'''2H-'-''! 
The second term of (28) is supported in an interval of the form Cxt ^ r 

^ C2t. If pk^ 0 then h\r) ^ Ct and \H(r) | ^ Q . In this case 

I fc2i 1 (r\ r("-])/2 I 

C fC2t In-\)I2 

Suppose instead that pk < 0. The integral to be considered is 

too / « - D / 2 j / r \ 

= C/>(r)V(- ' )^ + £3 

where \E3\ ^ Cf_1. This integral will be split into two parts according 
to 

H(r) = {H(r) - H(Cxt)} + H(Cxt). 

Call the corresponding integrals Jx and J2- By integration, 

'. - fw^-
Clearly \JX | ta Ct. On the other hand we may integrate Jx : 

Hence 
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f°° 1 I (r\\ 1 17,1 ^ C / - L' - ) — — 

I M l ' ! , 
l T V/ / l (1 + r)L+] \t + pk\ 

^ c\t + P/ tr'. 

This shows that 

Also 

h = / ~ //(c,o^'(-;)* = /0
C" ^ > * . 

If /Ê ^ / then \pk/t\ = C. Therefore r0, the solution of 

h'(r) = t(of + ^ ) = 0, 

is also bounded independent of R and t. Thus r0 ^ C3. The part of the 
integral J2 over the interval 

i0 = [r0 - rm, r0 + r]/2] 
is clearly bounded by Ct~ . On the other hand if r £ I0 then 

\h\r) | = \h'(r) - A'(r0) I = / , /*"(*)* / ; 0 

C/ 
J r0 r0 (1 + S) 

If r ^ 2C3 then 

I fr I 
|A'(r)| ^ Ct\ \ ds\ ^ CV?. 

If r â 2C3 then 

\h'(r)\ â Q | ( l + r ) - L " ' - (1 + r0)-
L~]\ ê O . 

Therefore outside I0, \h\r) | ^ C\ft. This shows that 

|/2I ^ Cf"l/2. 
This completes the analysis of the terms arising from (28). We have shown 
that 

I f /V\ I < C|fifc(*) I f , - 1 / 2 , ,l/4i, , „ i-3/4-i 
\Kk(x) I = {R(n-\)/2 l ? + / 1/ + p/fcl }• 
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The calculations from (27) have been under the assumption that 
z = (n — l)/2 so that Lemma 3 could be applied in (29). If however 
z = y + (n — l)/2 where y > 0 then the integral in (27) equals 

-/:{/>^r''^M^K 
This is dominated by 

/r«'-"2+ '" ,i '+«.i"s")isG) ds 

<, C{t-V2 + ,1 ,4, , + P f c | - 3 / 4 } > 

Therefore from (25), (26), and (27), 

(31) j ^ |*(*) \dx S û ' + C l Xis, ^ W ^ ) 

x {r1/2 + ti/4\t + Pkr
3/4}dx. 

The first term can be approximated by using polar coordinates: 

â C 2 rV2 f' R~^~^2RndR = Cf11. 
, JO 

# For the second term it is more natural to integrate over the level sets of \k. 
Suppose that 

(32) ( # / \Gk(x) lx_r (*) |A/c(^}l dx ^ Cs". 

Since \pk\ ^ c#, the second term is bounded by 

c 2 r3/4 f" s-("-i)/2s"\t - sr3/4ds g cf 
, J 0 

C 

To prove (32) it suffices to show that 

^ A # Xr,(^), t, ,i/2 
* ' ^ ( x ) « * k ( £ ) I 

where £' = V\fx). By the argument leading to (16) this equals 

since the curvature of 2 is bounded and 2 has finite area. This completes 
the proof that 

/ IATCJC) \dx ^ cf + Cf'1. 

https://doi.org/10.4153/CJM-1985-064-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-064-9


1196 BERNARD MARSHALL 

Case 2. (x e U2). This calculation in this region is similar to that of 
Case 1. The kernel is given by 

}«h ' V,/|f||VX»(£')l 

As in the proof of Theorem 2 we will estimate K(x) in a small conic neigh
borhood of a point x0. Since R" is covered by finitely many such neighbor
hoods this will be sufficient. Let TJ be a function in C°°(Rn — {0} ) that is 
homogeneous of degree zero such that x0 • £/|x0| |£| is bounded away from 
zero in the support of 77 and ri = 1 in a conic neighborhood T0 of the set 
A(x0). Then 

^'-^mimi ^ CN(\ + Rry 

for any N > 0. This part of K(x) equals 

^ c/o' ' be-^^rrv-vm di'dr 

Jo J2 

If I |VX*(f ) I 

+ o(/R .- l /-- ,> / 2(i + ^ r ^ ) . 
If € > 0 this error term is integrable over the region |JC| = / and the 
integral is less than Cfn~1)/2 when N is sufficiently large. In the main term 
of (33) it is possible to replace r, and exp(/7À(r) ) by 1 and exp(/7À(0) ) 
leaving errors that are less than Cf11 if (n + 2)e < 2 and (« + l)c < 1 
respectively. But 

,w ( ,_„ ( | ) / ' - '^ 
if 1 iv\.cr> 1 

is, except for an error less than CR~€N, the inverse Fourier transform of 
1 ~~ vie)- Clearly TJ can also be chosen so that 

J^.a-ncovs-o. 
Then K0(x) = (1 — TJ)( — X) is the kernel of a Calderon-Zygmund singular 
integral operator, which is bounded on H\Rn). 

This now leaves 

Jo h 1 ww\// |f | |VM€')l 
for 1 G T. Integration by parts k times gives 

" J ' l - i i ^ i ' h ' W Jlflivx.(f)i 
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where k > (n 4- 3)/2. The main part of (34) is 

HX) = o* /* X ^ i ' v • r)-%(-;)^{Ç}«w, 
This integral is similar to (24) except for the factor t (x - g)~ . Since 
(x • if) k7](^) is a smooth function on 2 bounded by CR~k the 
calculations of Case 1 lead to an estimate similar to (31) except that the 
factor (t/R)k will make it integrable over the region |JC| ^ /. Therefore as 
in Case 1, 

^,\Ux)\XTdx ^ a? + cf2. 

The terms of 

in which <p( - ) is differentiated at least once satisfy 

ig^i^c^-vv1 7 2!^)!-
If the corresponding integral is K2(x) then 

l ^ R \K2(x)\Xrdx ^ Ctk~2R-k f0(R/rf-]VV/2r;]/2dr 

< çtk-\R(n-\)/2-k 

The other terms of g(r) arc less than 

l g 3 ( r ) | S C l * - V / V , 2 | » ( ; ) | -

Then 

X| = * l^3U) IXrrfx ^ Ctk~]R-k j l i R / r f - ^ V ^ d r 

^ C ^ - ' / i C - ' ^ - ^ l o g r . 

This shows that 

Xiê, |/:2 + ^3lxr^ ^ o(n~l)/2(i + log o ë a'I/2. 
The proof of Lemma 1 is now complete. 

Lemma 2 is a consequence of Lemma 1 since (1 4- \l)~t/2 is a bounded 
multiplier on H](Rn) for every e ^ 0. 
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4. The UP - UP' estimates. Showing that Tt is bounded from UP to LP' 
involves studying an operator (/ - A)~z /2r, from H] to L°°. This means 
calculating the L°° or possibly BMO norm of its kernel. Therefore instead 
of assuming that the slowness surface 

2 = {£:A*(|) = 1} 

satisfies Theorem 1 we will assume that for any C°° function g on 
S X 2 = { (*', ey.\x'\ = l , f e 2 } , 

(35) I j[ e~lxi'g(x', tW ?k C(\ + \x\ Y 

If the curvature of 2 does not vanish then v = (n — l)/2. 

THEOREM 4. Le/ 7) be the operator with multiplier exp(//X(£) )m,(£) w«ere 
A(£) satisfies (i), (ii), (iii) and W|(£) is as in (17). 77îe« Tt is a bounded linear 
operator from lf(R") to If'(R") if 

(36) 
1 < i 
2 /> 

1 
< - + 

2 

1 
(36) 

1 < i 
2 /> 

1 
< - + 

2 2(n - ") 

Also 

\\T,\\ ^ Lpt 

All 1 

for every ft > -0-
If À is homogeneous and the multiplier is sin(7A(£) )/A(£) then clearly by 

homogeneity we may take ft = (n — \)(\/p — 1/2). 

Proof. The proof of this theorem is similar to the case where the 
curvature of 2 does not vanish. This proof appears in [9]. We therefore 
give only an outline. We will show that (7 — A / 1 _ z ) / 2 r , / i s a bounded 
operator from H] to L°° for every z > n — v with operator norm ^ Ct~v. 
The statements of the theorem then follow by interpolation between this 
operator and (/ — A)]/2Tt, which is bounded on L2(Rn) by the Plancherel 
Theorem. 

By composing with multipliers satisfying (4) it suffices to consider 

m(Ô = *"*«>( 1 + (A*(£))Vz/2( 111 IVA.tf) I ) 

where £ = A*(£)£'. The kernel associated with this multiplier is 

K(x) = jf„ eixim(è)dè = / " j [ eixi+i'«MV + / V ' V - ' r f r . 

Let k = [v], the integral part of v. After integrating by parts k times 

(37) K(x) - (^)k / ~ j [ e " ° + ' * V - ^ ' ^ + *<*) 
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1/2 where WEW^ § Cfv ' . By (35), the integrand of (37) is bounded by 

Cr»-\->-*R-> = Cr;]~cR-v where £ > 0. 

Therefore 

(38) \K,(x)\ ^ c ( y ) j™ r;l-(R-'dr = c ( y ) *" 

If *> > A: then integrate by parts again in (37): 

CR^ /*OO /• 

W = J+Ï Jo h ******&> W* 

where \g\ ^ Cr?~1_z(fl + 1/r). Therefore as in (38), l 

(39) !#,(*) | â C - * 

Since A: ^ p < A: + 1, (38) and (39) together show that H^H^ ^ Ct v. 
This proves Theorem 4. 

When the curvature does not vanish a better approximation for the 
integral in (37) can be obtained by splitting the integral into parts 

.A/L 

Jo = Jo + J tUL' 
The interval from tXIL to oo can be still approximated using (35) so long as 
z > n — v, and 

I/; oo 

\/L\ = ^ l 

if z = n — v + aL and 0 < a ^ 1/2. The interval [0, tl/L] however 
presents a problem because in approximating 

]/L r JI-\ 

Jo J's ^
a+,'^(iv • o ^ ' /""'dr 

2 . ^ *' - ^ ( a f 
it is necessary to use (35) for the oscillation over 2 and van der Corput's 
lemma for the cancellation in r. To do both, as in [8] and [9], it appears 
necessary to get an expression for the leading term in (35). 
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