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ESTIMATES FOR SOLUTIONS OF WAVE
EQUATIONS WITH VANISHING CURVATURE

BERNARD MARSHALL

1. Introduction. The solution of the Cauchy problem for a hyperbolic
partial differential equation leads to a linear combination of operators 7,
of the form

/N
Tf(&) = m©exp(iN®) [ (®).
For example, the solution of the initial value problem
u, — Au=0 (x,1) € R" X (0, c0)
u(x,0) =0 u,(x,0) = f(x)
is given by u(x, 1) = T,f(x) where

AN .
T./(¢) = & 'sin(dlé)) £ ).
Peral proved in [11] that 7, is bounded from L7 (R") to I”(R") if and only
if
12— 1U/n—-—1D)S1/p=12+1Un-1 (1=

= 00).

p
From the homogeneity, the operator norm satisfies ||7,]| = Ct for all
t > 0. If A(§) is positively homogeneous of degree one then the same result
is true for the multiplier sin(zA(§) )/A(§) as long as the Gaussian curvature
of

2= (&N =1}

does not vanish and L' and L™ are replaced by H' and BMO.
When there are lower order terms present the decay rate of the operator
norm ||7})| changes significantly. For the Klein-Gordon equation,

u, — Au+u=0,
the Fourier multiplier is sin(z V1 + |§|2)(1 + &%)~ "? and
IT)| = ¢ =22 (1 =z 1),

This result appears in [8] and the nonradial case is in [9].

The purpose of this paper is to prove results like these for the case when
the curvature of the surface = vanishes. Estimates will also be obtained for
T, as an operator from I to L.
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WAVE EQUATIONS 1177

At the heart of these results are estimates obtained for the Fourier
transform of measures du supported on Z. In [10] two types of estimates
are obtained in cﬁt The first type concerns the behavior of the spherical
averages of (ﬁt(x):

(1) dux) = IxI7"V22x) + h(x), x = |xlx".

The function £ is integrable over the unit sphere and the averages of &
over the spheres { |x| = R} decrease faster than CR~ "~ V’2. The second
type of estimate is one of the form

Q) ldux)l = ca + |x)7"

When the curvature of £ does not vanish the constant » in (2) equals
(n — 1)/2 but when the curvature does vanish » < (n — 1)/2.

The estimates of 7, from L” to L” involve showing that an operator
a—n"7 2T, is bounded on H'. Since this means calculating the L' norm
of its kernel, estimate (1) is well-suited to this situation. The advantage of
estimate (1) is that at least in an average sense (ﬁx decays as rapidly as
the case where the curvature of = does not vanish. In fact the obstruction
to better results is the lower order term A(x) and not the main term. For
the I to 17 estimates it is necessary to calculate the L* or BMO norm of
the kernel for (I — A)~% 2Tl. In this case, inequality (2) seems more
natural.

2. The estimates for dji. A function fon R" ! will be said to be of type
7 if it satisfies the following conditions:

(2) f(0) = 0, V/(0) = 0, and f(y) = P(y) + hu(y) for y in a
neighborhood of the origin.

(b) there is a direct sum of orthogonal subspaces Vi,..., ¥, and
polynomials P, ..., P, homogeneous of degree k|, ...,k respectively
such that ¥, @...® ¥ = R"" ' and

s
P(y) = P(yps-..np,) = Elpj(yj) ye€Vj=1...s
2

(c)foreveryj = 1,...,s, det dsz(yj) = 0 implies y;= 0.

(d) the function h, contains only higher order terms yB such that for
everyj = 1,...,s, yB is either independent of y; or in the variables of V,
P has homogeneity = 8, = k;. Also 2’ B; > 2’ k; where the sums are over

J
those j where yB is not independent of y;.

Define
. . . . 2 _
T = min{ (dim V)/(k; — 1):k; # 2} if det d°/(0) = O,
and
=2 if det d’/(0) # 0.
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For example, the function
) =y + 55
isof typer = 1/(ky, — 1)if 2 < ky = k,.
A point £ on the surface 2 is of type 7 = 7(§’) if after a translation and
an orthogonal change of coordinates in R" the surface near ¢ can be put in
the form y, = f(y) where fis a function of type r on R"~'. The surface =

will be of type 7, if every point § on 2 is of type 7 = 7(§') for some 7
and

7o = Inf{r(§):§ € Z} > 0.
Let k(§') be the Gaussian curvature of 2 at £ and define
A(x) = {¢ € Z: the tangent plane at §’ is perpendicular to x}.

Suppose that the surface near ¢ is transformed into y, = f(y) in such a
way that the unit normal vector at { pointing in the direction of x is
mapped into (0, —1) & R"! X R. Let y = y(¢) be the number of
positive eigenvalues of the matrix d°f(0) minus the number of negative
eigenvalues. Let dw be surface area on 2, g € C®(Z). For any such
function g € C*(2) set

P)Nx) = X g™ e @ ) |71
£edx)

where ¢ € 2.
1 . .
Define 7, = Emin('ro, 1) if 2 is not convex, and 7, = 1/2 if 2 is
convex.

THEOREM 1. [10] Suppose that = is a compact (n — 1)-dimensional C™°
submanifold of R" of type 7, > 0, dw is surface area on =, g € C™(Z),
du = gdw, and for every x € R", A(x) is a finite subset of =. Then for every
7 < 7, there exist positive constants C, and C, such that

R—(n—l) A|=R |(j‘l\1.(x) _ R—(n—l)/2@(g)(x) |dX = CIR——(n—I+2'r)/2

for all R > 0 and

R™7D fM:R |P(g)(x) ldx = C, for all R > 0.
If 7y > 1/2 then this theorem holds for 7 = 1/2.

If the curvature of = does not vanish then the theorem holds for 7 =1
([5] or [6] ). If = is not convex it seems unlikely that the theorem would
hold for every r << 1. Near an inflection point of = in R?, zﬁL has a sig-
nificant secondary term. For example, if the surface is given locally by
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£ = ﬁ then A( (¢, 1)) = 0 for every € > 0 even though (e, 1) is close to
being perpendicular to the surface. It is the possibility of this type of
situation that is reflected in the parameter 7, in Theorem 1. If 2 is convex
there are no inflection points and , = 1/2. It may be possible to improve

thisto 7, = 1.
Let S be the unit sphere in R”. The proof of Theorem 1 in [10]
generalizes easily to the case where g € C(S X Z). If x = rx/,

(¥, &) € § X Z, then the type of function encountered in Theorems 3 and
4 is of the form

g(x, &) = (' £)'5&)
where § € C™(2).
We will describe now the phase function A(§).
(i) A, is a real-valued function, positively homogeneous of degree one,
A € CT(R" — {0}), A, has no zeros in R" — {0}. For convenience we

assume A, = 0. Let 0 < 7, = 1. Assume that £ = {£&A(§) = 1} isa
surface for which

forallR > 0,g € C®(S X 2).
its leading term at infinity and

M@ | = CIN®| forall § € R".
Also

IDPON = M@ | = Cylel P
and

IDPA®) | = Cgh®) |18

for every multi-index S.
(iii) Assume that there is a smooth nonnegative function ¢ on R and a
constant L = 1 such that A(§) = o(A4(§)), o(r) — r > 0 as r — oo,

_ d*s _
a1+t zél—léc 1+ r) 72
1( ) drz 2( )
do | _ ~1-2 -
SF | =G+ r>04kz2

do/dr has a zero of order at most one at the origin and has no other
zZeros.

The assumptions that A and A, be positive are for convenience only. The
same proofs hold for negative phase functions. Condition (iii) implies that
the level surfaces of A are all dilates of 2. This is not strictly necessary but
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it greatly simplifies the assumptions and proofs.
For the Klein-Gordon equation,

AE) = VI + A MG = 1, o(r) = VI + A and L = 1.

An example of an equation where the surface X is no longer convex is
given by the homogeneous operator

(D} — 4D} — D )(D; — D} — 4D3) — «D; + DY)

X

where the constant € > 0 is chosen small enough that the four roots of the
characteristic equation

(7 = AE - )N — £ — ) — ] + ) = 0

are distinct for every £ = (£, §). The two positive roots are given by
homogeneous functions 7 = A;(§) and 7 = A,(£). The graphs of

S, =(ENO =1) (=12
are given in Figure 1. The shapes of the corresponding wave surfaces are
drawn in Figure 2.

Examples arise more naturally in the case of elastic waves in R® (See [1),
[3]). In this case the characteristic equation has six roots. The three
positive roots lead to surfaces 2, 3, and Z;. The estimates of this paper
deal with the “regularly hyperbolic” equations, in which these surfaces are
disjoint. In [3], Duff uses a perturbed equation similar to the one in Figure
1 to examine the singular case where the surfaces intersect. It is not clear
however what such a perturbation will do to the I” estimates of this
paper.

3. The I” estimates. Let V”(R") = I?(R")if | <p < oo, V! = H' and
V> = BMO.
THEOREM 2. Let T, be the transformation with Fourier multiplier
m(£) = sin(zA(£) )/A(§)

where N(§) satisfies (1) and (ii). Then T, is a bounded linear operator from
VP(R™) to VP (RY) if
1 1 1 1 1
B - <-< - —
2 n+1-—-21 p 2 n+1-—2n
where 7, <1 is the constant in (i). The operator norm of T, satisfies
T = Ct forall0 <t = 1.

From (3) it is evident that Theorem 1 with 7, = 1 would give the same
range of p as when the curvature of 2 does not vanish, except that the
endpoints would be missing.
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2,

2

Figure 1

Figure 2
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Proof. We will first show that the inhomogeneous case follows from the
estimates where A is homogeneous. Suppose A* is the homogeneous part of

A. Then
sin(fA\) B sin(t}\*){ ok }\*}
ST cos(t(A — A ))—}\—
N {cos(t)\*)sin(t(k - ?\*))}
A
(A
- S‘“}(\’* L@ + my®).

Since m, satisfies
@ IDEm®)| = Chlel P

where Cy is independent of ¢, then m, is a bounded multiplier on L,
1 < p < oo, and on H' and BMO. Similarly,

IDfmy&) | = Calél ™™ 0< 1= 1.

Therefore to prove Theorem 2 it suffices to consider a homogeneous phase
function A(§). In fact, if A(§) is homogeneous then we may assume that
t =1

By the Plancherel Theorem, (I — A)l/ T\ is bounded from L*(R") to
itself. We will prove that (I — A)f(”fl*ZT)/“Tl is bounded on H'(R") for
every 1 < 1,. Since (I — A)” is a bounded linear operator on H'(R")
for y € R, an interpolation using the analytic family of operators
(I — A)’T, shows that T, is a bounded linear operator from L*(R") to
itself where

1 1
+-=- and (1 —06) +o(—1)n —1—27)- =0.
1 4 2

1 1
. —
2 n+1-—2r

The corresponding estimates for 2 < p << oo follow from duality.
If K, is the kernel for the transformation (I — A)~ "~ !'727/4T, then

(1 + A& " 4in(A(8) )
AE)

1+ A® )2 (n—1-21)/4
< (5 £ )

1?0(5) =

https://doi.org/10.4153/CJM-1985-064-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-064-9

WAVE EQUATIONS 1183

Since the last expression on the right satisfies (4) it suffices to consider
K(x) where

K® = (1 + A& D) 12460 (\@) )/AE).

It is natural to calculate the inverse Fourier transform of K by integrat-
ing first over the surfaces {£:A(§) = r}. Let 2 = {&A() = 1}

o ix Sinr _ , ,
K(x) = fo ‘/;e 5(1 - %)‘”*"2”/4/” lg(&)dt dr

where d¢’ is surface area on = and /'~ ! g(£¢') is the Jacobian for the change
of coordinates.

Because A is smooth in R” — {0} and positively homogeneous of degree
one then

& -VANE) =A¢) =1 forany ¢ € 3.

Since & - VA(£)/1¢| IVA(E) | is the cosine of the angle between the radius
that

gE) =& - VNEV/IEIIVNE) | = (IE1IVAE) )
If du = gd§ then
i —rx) = fze”‘fg(é')ds' £=rt
and
S) K(x)= fzo d(—rx)(sin r)(1 + Ay~ 1720402,
By (i),
di(—rx) = (rlx) """ V2P(—rx) + h(—rx)
where

1

Ol /x| o h(=rx)ldx = C(Rr)~"7D27m,

Therefore

(6) f IK(x) |dx

ﬁl . / Py SO 7 e + H(R)

(n T (n—1-20/2
where r; = (1 + ,2)|/2 and

(RI') (n*l)/2—'rz
Rn 1

-2
(n T=21/2 Y dr

(M HR)| = C foo
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= CR(n—l)/2—1'2

since 7 < 7.
By Theorem 1,

P—rx) = 2 Mm@ T 2E1IVME) D)
&eAd(x)

where A(x) = A(—x) is the set of points in = = {§:A(§) = 1} such that
the normal to 2 at £ is parallel to x. Thus the main term of (6) can be
written as

eiyw/4(277)(n —1)/2

8
® /'-*'=R ¢ gm ROV 19N | () |12

o e (sin p)An T2
X/ AN (sin )’ ° dr

— dx
0 r(ln 1—21)/2
C / _
= 2 k@72
RO=D/2 Jix|=R ¢EA)
o el rYr ) 2sinr
X ./O e'xg (—) ~l:dr dx.
r ry

If 7 < 1 then an integration by parts shows that

S (n—3)/2 dr 1 00
(9) ‘/O elxg (_) sin rﬁ = 0 + 1 = C.
r n

It is a consequence of Theorem 1 that

L:R 2 k@) dx = cr

£ e€Ad(x)
This combined with (7) shows that
_A:R [K(x) |dx = cRD/2 4 (gn—D/2-1
Therefore

(10) _ng IK(x) ldx = C.

The estimates obtained thus far take care of the region { |x| = 1}. If
|x| > 1 then we begin by integrating by parts in (5). To integrate

di(—rx) = fz EIETIVAE) ) g

with respect to r it is convenient to introduce a partition of unity on 2.
Suppose that x is restricted to a narrow cone I'. The cone T is chosen so
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narrow that |x, - £|/R is bounded away from zero for & € A(x,), x;, € I,
x, € I'. This is possible since if &£ € A(x) then

x-&/R=C=>0.

Clearly R" can be written as a finite union of such cones. Suppose that 7 is
a C™ function on = that equals one in a neighborhood of {¢:¢ € A(x) for
some x € I'} and 7 is supported away from the set {£:x - £ = 0 for some
x € T'}. Then since (1 — 7) is supported in the part of 2 that is transverse
to planes where x - £ is constant, we have

fxe’*f(l — mE ¥ |VA(£')|)"d£" = Cy(1 + RV
for any N > 0. Also, by integrating

(oo} ~ . ’}'*2
(13) /0 d,u(—rx)sm(rx)rTInTl—T)/zdr
1 A d* [ (sin r)f" 2
= (—x-.f)k fo d"“(—rx)W{r(ln—IAZT)/z dr
where dii = mdu. The integral in (13) is similar to (5) except for the
factor
|- &) F = ceR7E

Therefore, calculating as before and summing over the cones I' gives

A:R IK(x) ldx = ¢cR™*{cR" V2 4 (RD/27Ty

If k is chosen large enough this shows that K is integrable over the region
{ x| = 1}. This together with (10) completes the proof of Theorem 2.

The obstacle to getting a bounded operator on a large range of p is the
error term h(x) in Theorem 1. To further illustrate this we will calculate
the kernel K(x) if 7, = 1 in a simple case: n = 3 and £ is convex and
symmetric with respect to the origin. That is, x € 2 implies —x € 2.
Since the integral in (8) does not make sense when 7, = 1, K must be
considered as the distributional inverse Fourier transform of the
function

m(§) = sin(A(€) )/A().

If ¢ is any C* function in the Schwartz class %,

(14) /,;n K(x)e(x)dx = 2m)™" .. m(E)e($)dé

—en” ] T fpe o)
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i d¢
X = x/d
ée G

According to Theorem 1 the principal part of the integral over X is

2We11ry/4e—1x-§

g%ﬂMWWWNW@WT

Since the multiplier is even we may assume that A = 0. We will show
that this part of K(x) is a measure supported on the wave surface
corresponding to

S — (EN®) = 1}
The wave surface is the set
W= {x = INO:AE@) = 1}.

Except where the curvature of X at § vanishes the corresponding part of W
is a smooth (n — 1)-dimensional manifold in R” that crosses each ray from
the origin at most once. The points of zero curvature in 2 correspond to
cusps in W, as in Figures 1 and 2. See also [1] and [3]. In the present
calculation, since X is convex, W is star-shaped with respect to the origin.
Therefore there is a function A* that is positively homogeneous of degree
one in R” such that

W= {xN(x) = 1}.

(15) 2(x) =

The wave surface W is dual to the “slowness surface” X in the sense
that

S = & = W) NP (x) = 1)
Consider the Gauss map
§— 0 =VAE)/IVAE) |

from = to the unit sphere. The Gaussian curvature measures the change of
area: k(§)d¢ = df where df is surface area on the unit sphere. Because A is
homogeneous of degree one,

&-VNE) = AN¢) = 1

Since the cosine of the angle between £ and x’ = VA({) is
§ - VMEVIETIVAE) | = 1/IE1IVAE) |

then dx’ = |x’| |¢|df. Therefore
dx’ = k(&) |x'| 1§'dé

where df’, dx’ are surface area on = and W respectively. Similarly using
the function A* associated to the wave surface,
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& = " () |x'| |¢'ldx’
where ” is the curvature on W. Hence
(16) k(@) (x) WP =1

This argument leading to (16) is taken from [3]. Because of the duality
between = and W and the fact that = is convex, VA and VA™ are inverses.
Therefore it follows from the definition of A4 (x) that

A(x) = {§ € Z:VA(¢) is parallel to x}
= (W (x), W ((=x)) }.

Also the convexity of 3 implies that

YV ((£x))) = 2.
Finally,

x & = =N (Ex)(Ex) - WF((£x)) = =N (£x).
Since £ is symmetric this last expression is

+N(x) = *p.
Putting all this information into (15) shows that

2‘7TIK(X’) |l/2

.@(X) — r|x| {e—irp+i77/2 + eirp—i'rr/Z}
drle(x) |2
= sin(rp).
rplx’|
Let

Ix(x)l”zdx .

P(p) = — / ifp>0
P ) |

and ®(p) = 0 if p = 0. Then the part of (14) that is associated with &
1s

_ (o) 4 n 172
Qm) 3 f sin r L q;(x)L"(x—,U— sin(rp)dxdr
0 plx’|

= f 0 sin r / 0 D(p)sin(rp)dpdr

1 [ . 2 T T
= ——Z—i . sinr O(r)dr = E(‘I)(l) —®(—1)) = E(D(l)
B _1_ iK(x,)ll/de
= 4,/ W WV o |
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This shows that the part of K associated with £ is a measure on W and
hence is a bounded operator on L'(R%). This seems to suggest that 7, might
be bounded for the full range 1 = p = co. The problem is in knowing how
to take care of A.

THEOREM 3. Let T, be the transformation with Fourier multiplier
m(@) = ¢™Om (@)
where N(§) satisfies (1), (i1), (iii) and m,(§) is such that for every B,
(17) IDfmy®)| = cy1 + e~
Then T, is a bounded linear operator from VP (R") to V¥ (R") if p satisfies (3).

The operator norm of T, is

(18) |IT) = ¢ M1 for 1 = 1< o

wherea = nif 1y > 1/2anda>n + 1 = 2r,if 1, = 1/2.
If on the other hand N§) is positively homogeneous of degree one and
satisfies (i) then T, is bounded on V? for p in the interval of (3) and

ITN=C 1=t<oo.

Proof. If n = 1, the problem of the curvature of = does not arise. We
will therefore assume that n = 2.

Suppose that A(¢) is homogeneous. By composing with a multiplier
satisfying (4) we see that it suffices to consider the multiplier

mE) = ™M + |\ PV
But

m() = —SOE) i sin(AE) ) A
(1 + A@)»M"” AN A+ RGP
From Theorem 2 and (4) it is clear that the second expression on the right

is a bounded multiplier on V?(R"). For the first expression it is necessary
to show that

cos(AN(®) YAE)? + 7172

is bounded on V? with norm independent of ¢ for + = 1. This calculation
is similar to the one carried out for sin(A(£))/A(§) in the proof of
Theorem 2.

Now suppose that A(§) is not homogeneous. Let ¢(s) be a C* function
of compact support on R such that ¢ is identically equal to one in a
neighborhood of the origin. Then

eit)\ ()\*) eit)\
19 I ——— D)=
TR A ra T
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e
1 - O :
MW A TR

A
The multiplier {1 - q)( 5 )}exp(zt()\ — A, ) satisfies (4). Therefore an

application of the homogeneous part of this theorem shows that the
second part of (19) is a bounded multiplier on I with operator norm
= Ct = Cr"?. This leaves just the first multiplier in (19). The rest of the
proof follows from the next lemmas.

LEMMA 1. Suppose that z > (n + 1)/2 — 1y and 7y > 1/2. The operator
with Fourzer multiplier o(\, /t)e” (1 + A2)"%'% is bounded from H'(R")
to H' (R") with norm = Ct"? fort = 1.

If ) = 1/2 then for every t < , the operator is bounded on H'(R") with
norm = Ct("ﬂ)/2 Tfort = 1.

LEMMA 2.If 1y > 1/2 and n = 2 then ¢(A« /t)e")‘(l + A2 ) 172 is bounded
on H'(R") with nerm = Ct for t Z 1.

Lemma 2 completes the lower dimensional case n = 2. The operator in
Lemma 1 is bounded on LZ(R") if Re z = 0. Therefore an interpolation
proves that

A _
qo(—*)exp(it}\)(l + A2
¢
is a bounded multiplier on I (R") with norm = Ct" if

1 1
- <

1
-+ ———— and > max(l, n/(n + 1 — 27,)).
P 2 n+1—2rn v ( ( 2))

If ) > 1/2 we may take y = 1.
Thus the proof of Theorem 3 will be complete when we prove Lemmas 1
and 2.

Lemma 3. If |g(r)]| = C(1 + 172 h(r) = to(r) + pr or h(r) =
to(r) — pr and H(s) = f(s) exp(ih(r) )dr then

=c"? forrz

14
‘fo H(r)g(r)dr
where C is a constant independent of t and p.

Proof. Since |d*h/dr*| = Ct(1 + r) 172 then by van der Corput’s
lemma ( [13], p. 197)

H(r)| = C(Q + r) 72712 and

é Ct-]/2
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we may assume that o = 0. If A(r) = to(r) + pr then A'(r) = Ct. Since
|H(r) — H(1)| = C/t

then

U'] H(r)g(r)dr| = C1™ "2

If h(r) = to(r) — pr then A’'(r) can have at most one zero. Call this zero r,,
Let

[a, b] = [1, 1] N [ry/2, 2ry)

where a = tif ry = 2rand b = 1if 2ry = 1. If ry does not exist then a = ¢
or b = 1 depending on which of |h'(co)| and |#’(0) | is the smaller. If
r € (1,a)and s € (1, r) then

|h (S)| |h (2S) - h(S)| Cfs ﬁ‘——z = CI/S2 > Ct/rz.

This means that |[H(r)| = Cr*/t and

=V

(20) |/1 H(r)g(r)dr
If s € (b, r) then
()| > H(s) = H(s/D)|

§Cf LMEC[/SZ>CI/I'2.
Y2 (1 + y)

In this case |H(r) — H(b)| = Cr*/t and

=c V2

(21) f,, (H(r) — H(b))g(r)dr
Also

= Ct—l/Z(l + b)3/2b—3/2 = Ct_l/z.

(22) fh H(b)g(r)dr

Finally if r € [ry/2, 2ry] we use van der Corput’s lemma

2o dr '
< —l/2f =z —1/2
= (Ct w2y Ct .

b
23) /a H(b)g(r)dr

The combination of (20), (21), (22), and (23) completes the proof.

Proof of Lemma 1. Again, by using (4) it suffices to consider the
multiplier

oA /0)e™N1 + A2)"72,

The kernel for this transformation is
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. o . de’ n—ld
(24) K(X) _ Cfo'/;:eltkelxﬁ(l + r2) g/2(p(';‘)E,|$|v%\(T;'

we will show that [|K|, = Ct® where
B = max(n/2, (n + 1)/2 — 1,).
As in the proof of Theorem 2 we will consider two regions separately:
={x:Ix] =t} and U, = {x:|x]| >} =1

Case 1. (x € U,) Integrate by parts in (14):
oo .
K(X) _ g /0 1 lr}\d {eIX'£(1 + ,,2)—2/2’}1—1(?(’;‘)}
t

1)\' dr
d¢'dr
1E'TIVALE) |
00 E
C f f ( ) ”>‘+IX£(—1—_+WQ)(")
d¢'dr

X ——— E
evne | D

where X' = dA/dr. E|(x) is the term arising from
Hamel))
a\a + A\
Because of (i)
C .
,/l;lzk |E\(x) ldx = 7(1og )R ~1/2
and
@5 [ o 1B dx s OBz <
M= t

Similarly we may use (i) to write
r(n— 1)/2

C [ i1 ’
K(x) = 7 .[0 -@(g)(_r )— o W(p( )dr + EZ(X)

where
o(r) = M&) and g(x, &) = (x - ) EPVAE) )

since N = o'|¢|. Also

Ct [(n—=1)/2
/ |Ey(x) ldx = CI_Q'; 5 f o —dr
|x|=R R/ 0 (R,-)Tz,w]
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The integral is bounded either by R~ " log r or R~ " depending on whether
7, > 1/2 or 7, = 1/2. Thus

cnthen 7, =172
Ct 2 0 1) > 172

1A

o) [, 1B lax

1A

c,

The wave surface is the union of finitely many smooth surfaces W/ with
corresponding functions }\f. If I, is the cone generated by W/ then

W = {x € I;:\{x) = 1}.

Each point £ in A(x) is of the form V)\ﬁix) for some j. Thus
x & = H(Fxx)- V)\ﬁix) = i‘)\ﬁix).

Let {p,} be an ordering of the set
U N0} U U {=AT0 )

Then group the terms of #(g) accordingly:

Pg)—rx) = X Mei”‘"f’(2w)"’_"”lx(é’) |~172
£ <00 1] 1VALE) |
M(x)

> G (x)e'
k=1

where

~/|;|=R |Gy (x) [xp (x)dx = CR".

For example, for the wave surface of Figure 2 many directions have a sum
over six terms since a straight line through the origin can intersect W at six
points.

Let h(r) = to(r) + p,r. We are now left to consider the integrals

00 (n—1)/2
CG,(x) G ' q>(r)dr.

tR(n—I)/Z 0 o;rzl P

27) K (x) = t

We will first estimate these integrals assuming z = (n — 1)/2. Define H(r)
to be the primitive of exp(ih(r) ) with H(0) = 0 (as in Lemma 3). Another
integration by parts shows that

CG,(x) . An= 2 (r) N
Kt = a=nm im A HO——=—9{ ]|
0 !

N d r(n—‘])/z (r } }
fe H(r);{ o P ;) drq.
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The integrals over { |x| = R} of the boundary term at r = € go to zero as
€ — 0. The boundary term as N — oo is zero since ¢ has compact support.
We split the integral into two parts according to

d { } d {r("*l)/z} (r) An D2 (r)
28 - = — —. + 1 _ .
(28) dr dr\ o'r] "\ o'r] t(p t
For the first term in (28) we use Lemma 3. The derivative is

(n—1)/2
4 {l(i) }‘g ca + )7
dr \a' \r|

Therefore Lemma 3 shows that

. H(r).p( )jr{ol (_l)(n—wz}dr

The second term of (28) is supported in an interval of the form C;t = r
= Cyt. If p, 2 0 then A'(r) Z Ct and |H(r)| = Ct. In this case

(30) Ucrl (f)H(r)r(n_lz)/zdr

a’ry
C Cyt f (n—1)/2
f dr = c" 72

Suppose instead that p, << 0. The integral to be considered is

Cfoo H(r) "_1/21 (;)dr

C fo H(r)—«p’(f)dr + E,
t t

where |E;| = Ct~'. This integral will be split into two parts according
to

(29) = ci V2

J

H(r) = {H(r) — H(C,t)} + H(C1).

Call the corresponding integrals J; and J,. By integration,

Cyt ,.) .
- 2 ) oih(r)
Jp = -/Cnf'p(t e"dr.

Clearly |J;| = Ct. On the other hand we may integrate J:

J = 0 iogr+itry it(o—r) (T d
1= J, € e 9 ; r.

Hence
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1 r 1
Ull =C o ‘P’(‘)
t t7 1+ pyl
r t 1
- dr
(P(t) 1+ r)LH [t + pgl

This shows that
L= e+ op 7Y
Also

(e'e} 1 Cyt
Jy = fo H(Clt)—tp’(f)dr = /’01 "y,
t t

If R = 1 then |p,/1] = C. Therefore r,, the solution of
W(ry = 1o’ + 2%y =0,
t

is also bounded independent of R and t. Thus r, = C;. The part of the
integral J, over the interval
Iy=1Try — t 2y + 177

is clearly bounded by Ct~ /2. On the other hand if r & I, then

lh'(r) |

) - ool = | [ was

r ds
[
ol + S)L+2

If r = 2C;5 then

Wyl = Ct’f: ds| = C/t.
If r 2 2G5 then 0
Wl zcla+rn M —a+rp) Yz
Therefore outside I, |h'(r) | = Cv/t. This shows that
I, = V2
This completes the analysis of the terms arising from (28). We have shown
that
K (x)| = %ﬁ—k—(ﬁ—)zl {t—l/2 4+ Pk|_3/4}-
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The calculations from (27) have been under the assumption that
z = (n — 1)/2 so that Lemma 3 could be applied in (29). If however
z =y + (n — 1)/2 where y > 0 then the integral in (27) equals

SIS ) e k()

This is dominated by
( : )
ds \s]

o)
fo {t‘l/2 + t]/4|t + pk|—3/4}

= C{I_l/z + tl/4lt + kaV3/4}‘

ds

Therefore from (25), (26), and (27),
|Gk(x) l
31 -/I;fét K(x)|dx = c + CZ FE r‘( x)
% {t—l/Z + ll/4|1 + pk|*3/4}dx.

The first term can be approximated by using polar coordinates:
t
< —3/2 / —(n—1)/2pn _ n/2
=cC ; t o R R"dR = C1"?.

For the second term it is more natural to integrate over the level sets of A}.
Suppose that

IN(x) |

—L———dx = (5
Ix| [VA(x) |

(32) A (x)=s Gy (x) X (x)
Since |p,| = cR, the second term is bounded by

cS v f;'s—(n—l)/zsnlt _ s = o2,
k
To prove (32) it suffices to show that
2 f dX
)\f(x) \ er(x)lx(gr) |]/2

k
where ¢ = Vkﬁx). By the argument leading to (16) this equals
k(€)1 IVAE) | €]
> ®1'”

since the curvature of X is bounded and X has finite area. This completes
the proof that

& = c [ )" = C

f =, K () ldx = cf + ¢
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Case 2. (x € U,). This calculation in this region is similar to that of
Case 1. The kernel is given by

_ A i xE -1~z f) d¢dr
K(x) Cfo_ée A qa(t _———li’l A |

As in the proof of Theorem 2 we will estimate K(x) in a small conic neigh-
borhood of a point x,,. Since R" is covered by finitely many such neighbor-
hoods this will be sufficient. Let n be a function in C*°(R" — {0} ) that is
homogeneous of degree zero such that x; - £/|x,| £| is bounded away from
zero in the support of n and 7 = 1 in a conic neighborhood I'; of the set
A(xp). Then

dt ’
€1 1VAE) |
for any N > 0. This part of K(x) equals

L ¢¥ 51— m(9) Cy(1 + Rr)™"

R ) "dr
33 i\ jx-§ _ dé
R A O e oan @)

t
+ 0<fR(_, A2+ Rr)_Ndr).

If € > 0 this error term is integrable over the region |x| = ¢ and the
integral is less than C/"~D/2 when N is sufficiently large. In the main term
of (33) it is possible to replace r; and exp(itA(r) ) by 1 and exp(ifA(0) )
leaving errors that are less than C/"? if (n+ 2)e<<2and (n + 1)e < 1
respectively. But

R 7 g dr
f f L = () )
1€ 1VAL(E) |
is, except for an error less than CR™V, the inverse Fourier transform of
1 — n(§). Clearly 5 can also be chosen so that

f,a:, (1 = n(&))dé = 0.

Then Ky(x) = (1 — n)(—x) is the kernel of a Calderon-Zygmund singular
integral operator, which is bounded on H'(R").
This now leaves

K(x) = C/ fe’!%e’xﬁr” ry € )e (r)lgllééif'i'(‘g)l

for x € T. Integration by parts k times gives

o eix‘g {,)l—l r i[)\} .n(g’)dg'dl‘
(34) K*(X) = C/ L(—IX s/) dr r"i' (p(;)e m
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where kK > (n + 3)/2. The main part of (34) is
[e) k 1—1
Lk ictting ek (T4 [T —
K\(x) = Ct f . fze (x - £) "’(t)_drk {—ri }du(£ )dr

This integral is similar to (24) except for the factor *x - &)k Since
(x - §’)4kn(£’) is a smooth function on X bounded by CR ¥ the
calculations of Case 1 lead to an estimate similar to (31) except that the
factor (/R )k will make it integrable over the region |x| = t. Therefore as
in Case 1,

le, |Ky(x) [xrdx = c® + 2.
The terms of

d* {'ﬂ-l (’) m\}
8(")—m r“"p;e

. . ry. .. . .
in which «p(—) is differentiated at least once satisfy
t

()l

If the corresponding integral is K,(x) then

|gz(r) l = Ctk*2’ﬂ/2rl‘-l/2

t
/I;d:R |Ky(x) Ixpdx = CI* 2Rk ,[O (R/r)("-”/zr"/zr,—”zdr
é Ctk—lR(n-l)/Z—k.

The other terms of g(r) are less than

al

Ctk_lR_k f:) (R/r)(n—l)/zrn/2rl—3/2dr
= CHFTIRUTD2 7K 1og ¢,

lgy(r) | = CFE 1232

Then

1A

/|x| _g [K3(x) [xrdx

This shows that

/|;‘2, |K2 + K3Ixrdx = Ct("_‘)/z(] + log 1) = cr'l.

The proof of Lemma 1 is now complete.

€/2

Lemma 2 is a consequence of Lemma 1 since (1 + }\i)_ is a bounded

multiplier on H'(R") for every e = 0.
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4. The I’ — I estimates. Showing that T, is bounded from L* to L*'
involves studying an operator (I — A)_Z/zT, from H' to L°°. This means
calculating the L* or possibly BMO norm of its kernel. Therefore instead
of assuming that the slowness surface

2 ={&M9 = 1)

satisfies Theorem 1 we will assume that for any C* function g on
SX I ={,§NIxl=1¢§ € Z},

(35)

'[Ee—i'x'glg(X’, §dg'l = C(1 + Ix]) .
If the curvature of £ does not vanish then v = (n — 1)/2.

THEOREM 4. Let T, be the operator with multiplier exp(itA(§) Ym,(§) where
A(§) satisfies (1), (i1), (iii) and m(§) is as in (17). Then T, is a bounded linear
operator from I¥(R") to I¥ (R") if

1 1
(36) - =- S
2 p 2 2n—v)
Also
ITI=Cpe™® 121

1 1
for every B > 21/(— - —).
¥4 2

If A is homogeneous and the multiplier is sin(fA(£) )/A(§) then clearly by
homogeneity we may take 8 = (n — 1)(1/p — 1/2).

Proof. The proof of this theorem is similar to the case where the
curvature of £ does not vanish. This proof appears in [9]. We therefore
give only an outline. We will show that (I — A)'"?2T f is a bounded
operator from H' to L™ for every z > n — v with operator norm = Ct™ .
The statements of the theorem then follow by interpolation between this
operator and (I — A)'/ 2T,, which is bounded on L2(R") by the Plancherel
Theorem.

By composing with multipliers satisfying (4) it suffices to consider

m(&) = ™1 + A& (VA |)
where § = A, (§)¢. The kernel associated with this multiplier is

K(x) = A ¢ im(&)ds = / o fze‘*'“"“"’)dg'(l + )
Let k = [v], the integral part of ». After integrating by parts k times

R\ [ iotin " ld
(37) K(x) — (’7) /0 L eIIU+IX£(l'xl. gl)kdgrri(ol)l:‘ + E(X)
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where ||E|l,, = Cr~"~ 2 By (35), the integrand of (37) is bounded by
CrT_l_”_zR_" = Cr]_]_‘R_V where € > 0.

Therefore

k [oo k
(38) IKi(x)| = C(B) _/ r,_'_‘R_”dr = C(B) R~
t 0 t

If » > k then integrate by parts again in (37):

CR*
KI(X) k+| / / no+tx£g(x §)dg dr

where |[g| = C ’*""(R + 1/r). Therefore as in (38),
R\AtT
(39) |K(x)| = C(T) R

Since k = v < k + 1, (38) and (39) together show that ||K||., = Ct™".
This proves Theorem 4.

When the curvature does not vanish a better approximation for the
integral in (37) can be obtained by splitting the integral into parts

) L )
fO - fO + fr""'

The interval from 1'% to co can be still approximated using (35) so long as
z>n — », and

i
[I/l_

if z=n — v+ aL and 0 < a = 1/2. The interval [0, ¢'/%] however
presents a problem because in approximating

[y fem o era (‘f’

it is necessary to use (35) for the oscillation over 2 and van der Corput’s
lemma for the cancellation in r. To do both, as in [8] and [9], it appears
necessary to get an expression for the leading term in (35).

—V—a
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