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by MARTIN RAUSSEN
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A (k — l)-field o n S " " 1 may be given as a section q> of the fibre bundle

with fibre Vn^1 k^u or, equivalently, as a semi-orthogonal map, i.e., a map

which is isometric in the second variable and such that for the basis vector el€Uk and
every xeW

A section q> of pn(k induces a semi-orthogonal map by adjunction, i.e.,

A semi-orthogonal map fj. determines a section

r-1—>vn,k
°f Pn.k by adjunction and restriction [12].

A (k— l)-field q> on S""1 is called skew iff

(p'(-x,v)=-<p'{x,v).

q> is called orthogonal iff <p' is an orthogonal multiplication, i.e., iff q>' is isometric in
both variables. Obviously, orthogonal r-fields are skew. An r-field q> is called ortho-
gonalisable iff it is regularly homotopic to an orthogonal one, and non-orthogonalisable
otherwise.

Skew r-fields on spheres were studied by Milgram and Zvengrowski. They show that
every r-field on a sphere is regularly homotopic to a skew r-field [9]. They also remark
that, in general, not every vector field on a sphere is orthogonalisable. We give some
precise conditions for the existence of such non-orthogonalisable vector fields.
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Some more notational conventions: For a fibre bundle

p.ElB

the space of sections of p will be denoted by F(p). Let

On-l.^-ie^n-^S"-1)

denote the homotopy class of the trivial map, resp. the indentity, and

their preimages in the homotopy exact sequence associated to pn k. Notice that inclusion
induces the maps

Lemma 1. / / r(pnk) is non-empty, al is a bijection. As a consequence, there is a
bijection

such that

Proof. According to [7], Lemma 1.1, the map a0 is injective. As pnk is a fibration,
every homotopy into the base space S""1 ending with the identity map can be lifted to
a homotopy into the total space ending with a section.

According to Eckmann [4], every orthogonal multiplication

arises from a representation of the Clifford group Ck-1. If fc^0(4), there is a well-
determined ak-dimensional irreducible Q-j-representation Mk; if /c = 0(4), there are
exactly two non-equivalent irreducible representations Mk, M{. Here ak is given by

ax = 1, a 2
 = 2, a3 = aA = 4, a5 = a6 = a7 = a8 = 8, and ak + s = l6ak.

Thus, for n,k as above, n = i-ak, i>0, every n-dimensional Q-i-representation is
equivalent to

(a) i-Mk, /c#0(4)
(b) a-Ml@b-Ml, a + b = i, k = 0(4).
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The corresponding orthogonal multiplications, which are well-determined up to 0(n)-
conjugation, will be denoted by fi(i), resp. n(a,b). We are interested in the adjoints of
representatives n(i), /z(a, b):

Obviously, conjugation by a rotation does not alter the homotopy class of such a vector
field, whereas a non-rotation might do so [6]. A simple counting argument shows:

Proposition 1. / / ak divides n, and

(a) /c#0(4) and |n11_1(KB_1>ik_1)|>2 or
(b) * = 0(4) and |7rn_1(Fn_1,,_1)|>2((n/ak)+l),

then there is a non-orthogonalisable (k — l)-field on S""1.

In general, it is difficult to determine these homotopy groups. Therefore, we study the
boundary homomorphism

corresponding to the fibre bundle

in the cases (s,r)-(n — 1,/c — 1), resp. (n,k).

d will be applied to the adjoints

of semi-orthogonal maps
...[rpfc w rn>n » .O"
IX , IJ« A. [TO ""•" Utt .

Note that for an orthogonal map (i, there is also an adjunction

We also make use of the generalised J-homomorphisms [12]

The following propositions are the tools in our argument:

Proposition 2. [12] Ifn = k(2) andn>2k+l, then
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Proposition 3. [6][11]. For r<s, the diagram

commutes.

Lemma 2. For an orthogonal map

the following relation holds:

rk(ad (fi)) = (- 1)*" J(ad' (H

Our main result is:

Proposition 4. / / ak divides n, 2k +1 < n, and

(a) fc = 2(4) and 2-coker Jk-! #0 of
(b) fc = 0(4) and 2coker Jk_x #0 or

then there exists a non-orthogonalisable (k~l)-field on S"'1.

Proof. Obviously, the diagram

Kn-liVn-l.k-l)

d

commutes. Using Lemma 1 and Proposition 2, it follows that for any
serving as a base point,

According to Lemma 2, we get for every orthogonal map
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that

= ( - l)*"J(ad'

thus

Thus, the proposition is already proved if 2-coker J t _ ! # 0 . In the last case, we use the
calculation of iCO-groups via Clifford forms in [2]. The authors show that, for k<n,

where genk-^) = J. is a generating element. According to Proposition 2,

-
ak

On the other hand

< £OT 3(ad (n(a, b))\a + b = — > = < J(ad' (/i(a, b))) | a + b = —

J

Thus, under the second condition in Proposition 4(b), d applied to orthogonal forms
cannot fill out the image of d applied to semi-orthogonal forms.

Corollary, (a) For m^46, there is a non-orthogonalisable 3-field on S4"1"1.

(b) For q odd, there exist non-orthogonalisable 23-fields on Sq'2 ~i.

Proof, (a) 7c3(F3i3) = 7t3(0(3)) = Z; from Paechter's tables [10], we find that,
rc4i-i(Ku-i,3) = Z/24©Z/4, / ^ 2 . Apply Proposition 1.

(b) An inspection of Toda's tables [13], [14] and [1] shows that coker J2 3SZ/3.
Apply Proposition 4.

The same methods are useful to compare spaces of skew-linear, non-singular bilinear
and orthogonal maps (see [8], [3]). Two skew-linear maps <po,(Pi are called homotopic,
if there is a continuous path in the space of all skew-linear maps from <p0 to <p{, etc.

Proposition 5. (a) For k,n as in Proposition I or 4 there exists a skew-linear form

which is not homotopic to an orthogonal form.
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(b) //2-coker J t _ ! # 0 and ak divides n, there exists iV^O and a non-singular bilinear
form

which is not homotopic to an orthogonal form.

Remark. Thus, in these cases, even the sets of components of the spaces of skew-
linear, bilinear and orthogonal forms are different.

Proof. For a semi-orthogonal map

the Hopf-construction is given by

H(V) = JZ(ad (<?)) = £°° 3(ad (<p)) e ifk _ x.

Thus, the Hopf-construction applied to all semi-orthogonal forms yields just the set
]r°° d(nn_1(Vnk)), whereas applying it to only orthogonal forms gives us just the subset
described in the proof of Proposition 4.

(a) is now proved by representing every regular homotopy class of (fc — l)-fields on
S" ~1 by a skew (fc — l)-field q> [9] and regarding the skew-linear form <p'. In (b) we use
Lam's trick [8] to find a non-singular bilinear form

by Clifford suspensions applied to q>. This process does not alter the Hopf-construction.
On the other hand, a result of H. Hefter [5] shows, that

for every orthogonal form
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