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Estimates of Henstock-Kurzweil Poisson
Integrals

Erik Talvila

Abstract. If f is a real-valued function on [−π, π] that is Henstock-Kurzweil integrable, let ur(θ) be

its Poisson integral. It is shown that ‖ur‖p = o(1/(1 − r)) as r → 1 and this estimate is sharp for

1 ≤ p ≤ ∞. If µ is a finite Borel measure and ur(θ) is its Poisson integral then for each 1 ≤ p ≤ ∞

the estimate ‖ur‖p = O((1− r)1/p−1) as r → 1 is sharp. The Alexiewicz norm estimates ‖ur‖ ≤ ‖ f ‖
(0 ≤ r < 1) and ‖ur − f ‖ → 0 (r → 1) hold. These estimates lead to two uniqueness theorems for

the Dirichlet problem in the unit disc with Henstock-Kurzweil integrable boundary data. There are

similar growth estimates when u is in the harmonic Hardy space associated with the Alexiewicz norm

and when f is of bounded variation.

1 Introduction

In this paper we consider estimates of Poisson integrals on the unit circle with respect
to Alexiewicz and Lp norms. Define the open disk in R

2 as D := {reiθ | 0 ≤ r

< 1, −π ≤ θ < π}. The Poisson kernel is

Φr(θ) := (1 − r2)/[2π(1 − 2r cos θ + r2)] = [1 + 2

∞
∑

n=1

rn cos(nθ)]/(2π).

Let f : R → R be 2π-periodic. The Poisson integral of f is its convolution with the
Poisson kernel

P[ f ](reiθ) := f ∗ Φr(θ) =

∫ π

−π

f (φ)Φr(φ− θ) dφ.

Since ∂D has no end points, an appropriate form of the Alexiewicz norm of f is

‖ f ‖ := supI⊂R

∣

∣

∫

I
f
∣

∣ where I is an interval in R of length not exceeding 2π. Let HK

denote the 2π-periodic functions f : R → R with finite Alexiewicz norm. Of course,
with the same periodicity convention, Lp ( HK for all 1 ≤ p ≤ ∞. Write ‖ f ‖A

for the Alexiewicz norm over set A. The Alexiewicz norm is discussed in [8]. The

variation of f over one period is denoted V f . The set of 2π-periodic functions with
finite variation over one period is denoted BV. For a function u : D → R we write
ur(θ) = u(reiθ).
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134 Erik Talvila

The Dirichlet problem, of finding a function harmonic in the disc with prescribed
boundary values, is one of the foundational problems in elliptic partial differential

equations. An understanding of its solution has been a stepping stone to the study of
analytic functions in the complex plane and of the solutions of more general elliptic
equations. Owing to the simple geometry of the disc there is an explicit integral
representation for solutions through (1). As a Lebesgue integral, the Poisson integral

has been studied intensively. For the major results, see [1, 11].

The following results are well known [1]. Suppose that 1 ≤ p ≤ ∞ and f ∈ Lp.
If |θ0| ≤ π and z ∈ D, we say that z → eiθ0 nontangentially if there is 0 ≤ α < π/2
such that z → eiθ0 within the sector {ζ ∈ D : | arg(ζ − eiθ0 )| < α}. Write ur(θ) =

P[ f ](reiθ). Then

ur is harmonic in D.(1)

‖ur‖p ≤ ‖ f ‖p for all 0 ≤ r < 1.(2)

If 1 ≤ p <∞ then ‖ur − f ‖p → 0 as r → 1.(3)

u(reiθ) → f (θ0) for almost all θ0 as z → eiθ0 nontangentially in D.(4)

We examine analogues of these results when f is Henstock-Kurzweil integrable
(Theorem 6). We also prove that the growth estimate ‖ur‖p = o(1/(1 − r)) is sharp
for f ∈ HK and 1 ≤ p ≤ ∞ (Theorem 1). If µ is a finite Borel measure and ur(θ) is

its Poisson integral then for each 1 ≤ p ≤ ∞ the estimate ‖ur‖p = O((1 − r)1/p−1)
as r → 1 is sharp (Remarks 2). The Poisson integral of a function in HK need not
be the difference of two positive harmonic functions (Remarks 4). There are similar
growth estimates when u is in hHK, the harmonic Hardy space associated with the

Alexiewicz norm (Theorem 5). The Poisson integral provides an isometry from HK

into (but not onto) hHK (Theorem 8). In Theorem 9 we consider the above results
for functions of bounded variation. Theorem 10 and Theorem 11 establish unique-
ness conditions for the Dirichlet problem using the Alexiewicz norm. Example 12

shows the applicability of the uniqueness theorems. All the results also hold when we
use the wide Denjoy integral [3].

Since Φr and 1/Φr are of bounded variation on ∂D, necessary and sufficient for
the existence of P[ f ] in D is that f be integrable, i.e., the Henstock-Kurzweil integral
∫ π

−π
f is finite. In [2], integration by parts was used to show that we can differentiate

under the integral sign. This in turn shows that P[ f ] is harmonic in D and that
P[ f ] → f nontangentially, almost everywhere on ∂D. In [3, Theorem 4, p. 238],
necessary and sufficient conditions were given for determining when a function that
is harmonic in D is the Poisson integral of an HK function. Corresponding results

when ‖ur‖p are uniformly bounded have been known for some time (for example,
[1, Theorem 6.13]).

2 Growth Estimates

Our first result is to show that for 1 ≤ p ≤ ∞, we have ‖ur‖p = o(1/(1 − r)) and
this estimate is sharp. That is, (1 − r)‖ur‖p → 0 as r → 1 (1 ≤ p < ∞) and
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Estimates of Henstock-Kurzweil Poisson Integrals 135

supθ∈[−π,π](1 − r)|P[ f ](reiθ)| → 0 as r → 1 (p = ∞). Thus, for p = ∞, the
manner of approach to the boundary is unrestricted. This same estimate for p = ∞
was obtained for L1 functions in [11]. We show these estimates are the best possible
under our minimal existence hypothesis. The proof uses the inequality

(5)
∣

∣

∣

∫ π

−π

f g
∣

∣

∣
≤ ‖ f ‖

(

inf
[−π,π]

|g| + V g
)

,

which is valid for all f ∈ HK and g of bounded variation on [−π, π]. This was
proved in [9, Lemma 24].

Theorem 1 Let f ∈ HK. For reiθ ∈ D let ur(θ) = P[ f ](reiθ).

(a) We have supθ∈[−π,π] |P[ f ](reiθ)| = o(1/(1 − r)) as r → 1, and this estimate is

sharp in the sense that if ψ : D → (0,∞) and ψ(reiθ) = o(1/(1 − r)) as r → 1,

then there is a function f ∈ HK such that P[ f ] 6= o(ψ) as r → 1.

(b) Let 1 ≤ p < ∞. Then ‖ur‖p = o(1/(1 − r)) as r → 1, and this estimate is sharp

in the sense that if ψ : [0, 1) → (0,∞) and ψ(r) = o(1/(1 − r)) as r → 1, then

there is a function f ∈ HK such that ‖ur‖p 6= o(ψ(r)) as r → 1.

Proof (a) Let Ψr(φ) := (1− r)2/(1−2r cosφ+ r2) with Ψ1(0) := 1. Let 0 < δ < π.
Then

2π(1 − r)P[ f ](reiθ)

1 + r
=

∫

|φ−θ|<δ

f (φ)Ψr(φ− θ) dφ +

∫

δ<|φ−θ|<π

f (φ)Ψr(φ− θ) dφ.

Given ǫ > 0, take δ small enough so that ‖ f ‖[θ−δ,θ+δ] < ǫ for all θ. Using (5),

∣

∣

∣

∫

|φ−θ|<δ

f (φ)Ψr(φ− θ) dφ
∣

∣

∣
≤ 2‖ f ‖[θ−δ,θ+δ].

And

∣

∣

∣

∣

∫ θ−δ+2π

θ+δ

f (φ)Ψr(φ− θ) dφ

∣

∣

∣

∣

≤ ‖ f ‖
[ 2(1 − r)2

1 − 2r cos δ + r2
− (1 − r)2

(1 + r)2

]

→ 0 as r → 1.

To prove this estimate is sharp, suppose ψ : D → (0,∞) is given. It suffices to

show that P[ f ](rneiθn ) 6= o(ψ(rneiθn )) for some sequence {rneiθn} ∈ D with rn → 1.
Take 0 < θn < π/2 and decreasing to 0. Let an = ψ(rneiθn ). Take 0 < αn ≤
min(π/2, (θn−1 − θn)/2, (θn − θn+1)/2, 1 − rn) with θ0 := π. Then the intervals
(θn − αn, θn + αn) are disjoint and cos(αn) ≥ 1 − α2

n/2. Let fn = π(1 − rn)an/αn.

Define

f (φ) =

{

fn, |φ− θn| < αn for some n

0, otherwise.
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Now,

2πP[ f ](rneiθn ) = (1 − r2
n)

∞
∑

k=1

fk

∫ θk+αk

θk−αk

dφ

r2
n − 2rn cos(θn − φ) + 1

≥ 2(1 − r2
n) fn αn

r2
n − 2rn cos(αn) + 1

≥ 2(1 + rn)(1 − rn) fn αn

(1 − rn)2 + rnα2
n

.

Hence, P[ f ](rneiθn ) ≥ an, and f ∈ L1 if
∑

fk αk = π
∑

(1 − rk)ak < ∞. Since
(1−rk)ak → 0, there is a subsequence {(1−rn)an}n∈I defined by an unbounded index
set I ⊂ N such that

∑

k∈I(1 − rk)ak < ∞. Now take f (φ) = fn when |φ− θn| < αn

for some n ∈ I, and f (φ) = 0, otherwise. Then f ∈ L1 and P[ f ](rneiθn ) ≥ ψ(rneiθn )

for all n ∈ I.

(b) Suppose 1 ≤ p <∞. From part (a), we can write ur(θ) = wr(θ)/(1−r) where

supθ∈[−π,π] |wr(θ)| → 0 as r → 1. Furthermore, wr is periodic and real analytic on R

for each 0 ≤ r < 1. Let 1 ≤ p <∞. Then

‖ur‖p =
1

1 − r

[

∫ π

−π

|wr(θ)|p dθ
] 1/p

≤ (2π)1/p

1 − r
sup

θ∈[−π,π]

|wr(θ)|.

Hence, ‖ur‖p = o(1/(1 − r)) as r → 1.

To prove this estimate is sharp, first consider p = 1. Let ψ : [0, 1) → (0,∞) with
ψ(r) = o(1/(1 − r)) be given. Although HK is not complete, it is barrelled [8]. The
Uniform Boundedness Principle [7] applies and this shows the existence of f ∈ HK

such that ‖ur‖1 6= o(ψ(r)). We can see this as follows.

Define rn = 1 − 1/n for n ∈ N. Let fn(θ) = ψ(rn) sin(nθ). Then

‖ fn‖ = ψ(rn)

∫ π/n

0

sin(nθ) dθ

= 2ψ(rn)/n

= 2(1 − rn)ψ(rn) → 0 as n → ∞.

For 0 ≤ r < 1, define Sr : HK → L1 by Sr[ f ](θ) = P[ f ](reiθ)/ψ(r) for each

f ∈ HK. Write ur(θ) = P[ f ](reiθ). Using (5),

(6) ‖ur‖1 =

∫ π

−π

∣

∣

∣

∫ π

−π

f (φ)Φr(φ− θ) dφ
∣

∣

∣
dθ

≤ 2π‖ f ‖ [inf Φr + VΦr]

= ‖ f ‖
( 1 + 6r + r2

1 − r2

)

.
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Therefore, ‖Sr‖ ≤ 1+6r+r2

ψ(r)(1−r2)
and, for each 0 ≤ r < 1, Sr is a bounded linear operator

from HK to L1.
We have Sr[ fn](θ) = ψ(rn)rn sin(nθ)/ψ(r) so that

(7) ‖Srn
[ fn]‖1 = rn

n

∫ π

−π

| sin(nθ)|dθ

= 4
(

1 − 1/n
)n → 4/e as n → ∞.

It follows that {Srn
} is not equicontinuous. The Uniform Boundedness Principle [7,

Theorem 11, p. 299] now shows that {Srn
} is not pointwise bounded on HK. Hence,

there exists f ∈ HK such that supn ‖urn
‖1/ψ(rn) = ∞ and hence ‖ur‖1 6= o(ψ(r))

as r → 1.
The case p > 1 is similar. In place of (6), we have

‖ur‖p ≤ (2π)1/p−1‖ f ‖(1 + 6r + r2)/(1 − r2).

And, in place of (7),

‖Srn
[ fn]‖p =

(

1 − 1/n
)n

[

2
√
π Γ((1 + p)/2)

Γ(1 + p/2)

]1/p

.

Remarks 2 The “little oh” order relation in Theorem 1(a) is false for measures. If
µ is a finite Borel measure on [−π, π), write ur(θ) = P[µ](reiθ). Then ‖ur‖∞ ≤
Φr(0)µ([−π, π)) = O(1/(1 − r)). The Dirac measure shows this estimate is sharp.

For 1 ≤ p < ∞, let ur(θ) = P[µ](reiθ). The Minkowski inequality for integrals
[4, Theorem 6.19] gives

‖ur‖p =

∥

∥

∥

∥

∫ π

−π

Φr(φ− ·) dµ(φ)

∥

∥

∥

∥

p

≤
∫ π

−π

‖Φr(φ− ·)‖p dµ(φ)

= ‖Φr‖p µ([−π, π)).

And for µ = δ, the Dirac measure, let vr(θ) = P[δ](reiθ). Then

(8) ‖vr‖p = ‖Φr‖p

=
1 − r2

2π

(

∫ π

−π

dφ

(1 − 2r cosφ + r2)p

) 1/p

= (2π)1/p−1(1 − r2)1/p−1
[

2F1(1 − p, 1 − p; 1; r2)
]1/p

.

Equation (8) is from integral 3.665.2 in [5] and the hypergeometric linear transfor-
mation [5, 9.131.1]. For these values of the parameters, the hypergeometric function

is bounded for 0 ≤ r ≤ 1 and 2F1(1 − p, 1 − p; 1; 1) = Γ(2p − 1)/Γ2(p) 6= 0.
It follows that ‖ur‖p = O((1 − r)1/p−1) as r → 1. The Dirac measure shows this
estimate is sharp.

The estimate for p = 1 appears as Theorem 6.4(a) in [1].
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Several results follow immediately from these estimates. For 1 ≤ p < ∞, denote
the harmonic Hardy spaces by

hp := {u : D → R | ∆u = 0 in D, sup
0≤r<1

‖ur‖p <∞}.

And h∞ is the set of bounded functions that are harmonic in D. The harmonic Hardy
space associated with the Alexiewicz norm is defined as

hHK := {u : D → R | ∆u = 0, sup
0≤r<1

‖ur‖ <∞}.

This is a normed linear space under the norm ‖u‖HK := sup0≤r<1 ‖ur‖.

Corollary 3 For 1 ≤ p ≤ ∞ we have hp * hHK.

Proof We have hq ⊂ hp ⊂ hHK for all 1 ≤ p < q ≤ ∞. And, by Theorem 1(b),
there is f ∈ HK with ur(θ) := P[ f ](reiθ) and ‖ur‖1 6= O(1).

Remarks 4 There is a function f ∈ HK such that P[ f ] is not the difference of two
positive harmonic functions. This follows since functions in h1 are characterised as
being the difference of two positive harmonic functions. See [1, Exercise 6.9].

When u ∈ hHK we can get slightly different estimates than in Theorem 1. (cf. [1,
Proposition 6.16 and Exercise 6.11]).

Theorem 5 Let 1 ≤ p ≤ ∞. If u ∈ hHK then ‖ur‖p ≤ (2π)1/p 2r‖u‖HK

π(1−r)
for

1/2 ≤ r < 1 and ‖ur‖p ≤ (2π)1/p 2‖u‖HK

π for 0 ≤ r ≤ 1/2. (Replace the term (2π)1/p

by 1 when p = ∞.) The order relations are sharp as r → 1.

Proof Fix z = reiθ ∈ D and 0 < t < 1 − r. If 0 < t ≤ r then, by the Mean Value

Property for harmonic functions, u(z) = (πt2)−1
∫ r+t

r−t

∫ θ+θ0

θ−θ0
u(ρeiφ) dφ ρ dρ, where

θ0 = arccos[(r2 + ρ2 − t2)/(2rρ)] and 0 ≤ θ0 ≤ π/2. Hence,

|u(z)| ≤ 1

πt2

∫ r+t

r−t

ρ dρ sup
|ρ−r|<t

∣

∣

∣

∫ θ+θ0

θ−θ0

u(ρeiφ) dφ
∣

∣

∣
≤ 2r

πt
‖u‖HK.

Now let t → 1 − r when 1/2 ≤ r < 1 and let t → r when 0 ≤ r ≤ 1/2. This
establishes the estimates for p = ∞. The estimates for 1 ≤ p < ∞ follow from this.
The case r = 0 is similar.

Note that if u(reiθ) = Φr(θ) then ‖u‖HK = 1 and ‖Φr‖∞ = (1 + r)/[2π(1 −
r)]. So, the order relation for ‖ur‖∞ is sharp as r → 1. For 1 ≤ p < ∞, the
implied order relation O(1/(1 − r)) is sharp as r → 1 owing to the example in the
proof of Theorem 1(b). For, suppose we are given ψ : [0, 1) → (0,∞) with ψ(r) =

o((1−r)−1) as r → 1. From Theorem 1(b) we know there is a function f ∈ HK such

that if ur(θ) = P[ f ](reiθ) then lim supr→1 ‖ur‖p/ψ(r) = ∞. And, by the following
Theorem 6(a), ‖ur‖ ≤ ‖ f ‖ so u ∈ hHK.

Now consider the analogues of (2) and (3) for the Alexiewicz norm.
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Theorem 6 Let f ∈ HK. For reiθ ∈ D define ur(θ) := P[ f ](reiθ). Then

(a) ‖ur‖ ≤ ‖ f ‖ for all 0 ≤ r < 1, i.e., ‖u‖HK ≤ ‖ f ‖.

(b) ‖ur − f ‖ → 0 as r → 1
(c) In (b), the decay of ‖ur − f ‖ to 0 can be arbitrarily slow.

Proof (a) Let α ∈ R and 0 < β −α ≤ 2π. Then, by [3, Theorem 57, p. 58], we can
interchange the orders of integration to compute

∫ β

α

ur =

∫ π

−π

f (φ)vr(φ) dφ,

where vr(θ) = P[χ[α,β]](reiθ).

If β−α = 2π then vr = 1 and the result is immediate. Now assume 0 < β−α <
2π. For fixed r, the function vr has a maximum at φ1 := (α+β)/2 and a minimum at
φ2 := φ1 + π. Use the Bonnet form of the Second Mean Value Theorem for integrals
[3, p. 34] to write

∫ β

α

ur =

∫ φ2

φ1

f (φ)vr(φ) dφ +

∫ φ1+2π

φ2

f (φ)vr(φ) dφ

= vr(φ1)

∫ ξ1

φ1

f (φ) dφ + vr(φ1)

∫ φ1+2π

ξ2

f (φ) dφ

= vr(φ1)

∫ ξ1

ξ2−2π

f (φ) dφ

where φ1 < ξ1 < φ2 and φ2 < ξ2 < φ1 + 2π. And

∣

∣

∣

∣

∫ β

α

ur

∣

∣

∣

∣

≤ max
θ∈[−π,π]

vr(θ)

∣

∣

∣

∣

∫ ξ1

ξ2−2π

f

∣

∣

∣

∣

≤ ‖ f ‖.

It follows that ‖ur‖ ≤ ‖ f ‖.
(b) Let α ∈ R and 0 < β − α ≤ 2π. We have

(9)
∫ β

α

[

ur(θ) − f (θ)
]

dθ =

∫ β

α

[
∫ π

−π

Φr(φ− θ) f (φ) dφ− f (θ)

∫ π

−π

Φr(φ) dφ

]

dθ

=

∫ π

−π

Φr(φ)

∫ β

α

[

f (θ + φ) − f (θ)
]

dθ dφ.

The reversal of integrals in (9) is justified by [3, Theorem 58, p. 60]. We now have

‖ur − f ‖ ≤ sup
0≤β−α≤2π

∣

∣

∣

∣

∫ π

−π

Φr(φ)

∫ β

α

[

f (θ + φ) − f (θ)
]

dθ dφ

∣

∣

∣

∣

≤ P[g](r) where g(φ) = ‖ f (φ + ·) − f (·)‖.
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But if f ∈ HK then f is continuous in the Alexiewicz norm, i.e., ‖ f (φ + · )− f ( · )‖
→ 0 as φ→ 0. See [10]. Hence, g is continuous at 0 so P[g](r) → 0 as r → 1.

(c) Let f be positive on (0, 1) and vanish elsewhere. Then ur is positive for 0 ≤
r < 1. We then have

‖ur − f ‖ ≥
∫ 0

−π

ur(φ) dφ

=

∫ 1

0

f (θ)P[χ[−π,0]](reiθ) dθ.

Now, as r → 1

P[χ[−π,0]](reiθ) →











0, 0 < θ < π

1/2, θ = −π, 0, π
1, −π < θ < 0.

But, the convergence is not uniform. Let a decay rate be given by A : [0, 1] →
(0, 1/2), where A(r) decreases to 0 as r increases to 1. It is easy to show, for exam-
ple, using a cubic spline, that A has a decreasing C1 majorant with limit 0 as r → 1.
So, we can assume A ∈ C1([0, 1)). By keeping θ close enough to 0 we can keep

P[χ[−π,0]](reiθ) bounded away from 0 for all r. To see this, write ρ := (1 + r)/(1− r).
Then

‖ur − f ‖ ≥
∫ 1−r

0

f (θ)P[χ[−π,0]](reiθ) dθ

=
1

π

∫ 1−r

0

f (θ)

{

π

2
− arctan

[

ρ tan

(

θ

2

)]

+ arctan

[

1

ρ
tan

(

θ

2

)]}

dθ

≥
∫ 1−r

0

f (θ)

{

1

2
− 1

π
arctan

[

ρ tan

(

θ

2

)]}

dθ

≥
∫ 1−r

0

f (θ)

{

1

2
− ρ θ

2π cos(θ/2)

}

dθ

≥
(

1

2
− 1

π cos(1/2)

)
∫ 1−r

0

f (θ) dθ.

We can now let

f (θ) :=







−
(

1
2
− 1

π cos(1/2)

)−1

A ′(1 − θ), 0 < θ < 1

0, otherwise.

And

‖ur − f ‖ ≥ −
∫ 1−r

0

A ′(1 − θ) dθ = A(r).
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Remarks 7

1. We have equality in (a) when f is of one sign.
2. Part (a) and dilation show that if 0 ≤ r ≤ s < 1 then ‖ur‖ = ‖P[us]r/s‖ ≤ ‖us‖

(cf. [1, Corollary 6.6]).
3. The triangle inequality and (b) show that ‖ur‖ → ‖ f ‖ as r → 1.

4. In (c), ‖ur − f ‖ can decay to 0 arbitrarily fast. Take f to be constant!
5. The same proof shows that we can choose f ∈ Lp to make ‖ur − f ‖p tend to 0

arbitrarily slowly. For 1 ≤ p <∞, let

f (θ) :=







(

1
2
− 1

π cos(1/2)

)−1

p1/p [A(1 − θ)]
1−1/p

[

−A ′(1 − θ)
]1/p

, 0 < θ < 1

0, otherwise.

and then ‖ur − f ‖p ≥ A(r).

Theorem 8 The mapping P : HK → hHK, f 7→ P[ f ], is an isometry into, but not

onto, hHK.

Proof Let f ∈ HK and u = P[ f ]. From Remarks 7.2 and 7.3,

‖u‖HK = sup
0≤r<1

‖ur‖ = lim
r→1

‖ur‖ = ‖ f ‖.

Hence, P is an isometry.

However, P is not onto hHK. Let F be continuous on [−π, π] such that F(−π) =

0, F is 2π-periodic and F is not in ACG∗, i.e., F is not an indefinite Henstock-Kurzweil

integral. See [3] for the definition of ACG∗. The function

(10) vr(θ) := F(π)Φr(π − θ) −
∫ π

−π

Φ
′
r (φ− θ)F(φ) dφ

is harmonic in D (using dominated convergence). Let α ∈ R and 0 < β − α ≤ 2π.
Then

∫ β

α

vr(θ) dθ = F(π)

∫ β

α

Φr(π − θ) dθ −
∫ π

−π

F(φ)

∫ β

α

Φ
′
r (φ− θ) dθ dφ

= F(π)P[χ[α,β]](−r) + P[F](reiα) − P[F](reiβ).

So, ‖vr‖ ≤ 3 max |F| and v ∈ hHK. If there was f ∈ HK such that v = P[ f ] then

write G(θ) :=
∫ θ

−π
f . Since G ∈ ACG∗, we have

(11) v(reiθ) = G(π)Φr(π − θ) −
∫ π

−π

Φ
′
r (φ− θ)G(φ) dφ.
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Comparing (10) and (11), letting r → 0 shows G(π) = F(π). Write H := F −
G. Expand Φ

′
r (θ) = (−1/π)

∑∞
n=1 nrn sin(nθ). The series converges uniformly and

absolutely on compact subsets of D. Then for all reiθ ∈ D,

0 =

∫ π

−π

H(φ)

∞
∑

n=1

nrn sin[n(φ− θ)] dφ

=

∞
∑

n=1

nrn

∫ π

−π

H(φ) sin[n(φ− θ)] dφ.

For all n ≥ 1 and all θ ∈ R we have
∫ π

−π
H(φ) sin[n(φ − θ)] dφ = 0. Since H is

continuous, it is constant. But then F differs from G by a constant. This contradicts

the assumption that F 6∈ ACG∗. Thus, no such F exists and P is not onto hHK.

3 Bounded Variation

Define the 2π-periodic functions of normalised bounded variation by NBV :=
{g : R → R | g is 2π-periodic, V g < ∞, g(−π) = 0, g is right continuous}. Us-
ing the variation as a norm, NBV is a Banach space that is the dual of HK [8].
Analogues of Theorems 1 and 6 now take the following form.

Theorem 9 Let g ∈ BV and v = P[g].

(a) If g ∈ NBV then vr → g weak* in NBV as r → 1.

(b) For all 0 ≤ r < 1, ‖vr‖∞ ≤ inf |g| + V g.

(c) If g ∈ NBV then ‖vr‖∞ ≤ V g for all 0 ≤ r < 1.

(d) V vr ≤ V g for all 0 ≤ r < 1.
(e) There is σ ∈ NBV such that if wr(θ) = P[σ](reiθ) then V [wr − σ] 9 0 as

r → 1. And there is τ ∈ BV such that if wr(θ) = P[τ ](reiθ) and τ (θ) = [τ (θ+) +
τ (θ−)]/2 for all θ ∈ [−π, π] then V (wr − τ ) 9 0 as r → 1.

(f) Let

hBV := {u : D → R | ∆u = 0, ‖u‖BV <∞},
where ‖u‖BV := sup0≤r<1 Vur. The mapping P : NBV → hBV, g 7→ P[g], is an

isometric isomorphism between the Banach spaces NBV and hBV.

Proof (a) Let f ∈ HK. Write u = P[ f ]. Then, using (5) and Theorem 6(b),

∣

∣

∣

∣

∫ π

−π

f (vr − g)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ π

−π

(ur − f )g

∣

∣

∣

∣

(12)

≤ ‖ur − f ‖V g(13)

→ 0 as r → 1.(14)

The interchange of orders of integration in (12) is valid by [3, p. 58, Theorem 57].
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(b),(c) These follow immediately from (5).
(d) Let {(sn, tn)} be a sequence of disjoint intervals in (−π, π). Then

∑

|vr(sn) − vr(tn)| =

∑

∣

∣

∣

∣

∫ π

−π

Φr(φ)
[

g(φ + sn) − g(φ + tn)
]

dφ

∣

∣

∣

∣

≤ P[1](r) V g = V g.

(e) Let −π < a < b < π, σ = χ[a,b) and wr(θ) = P[σ](reiθ). Then σ ∈ NBV

and

|wr(b) − σ(b) − wr(−π) + σ(−π)| = wr(b) − wr(−π) → 1/2 as r → 1.

So, V (wr − σ) 9 0.
Note that if we replace τ (θ) by [σ(θ+) +σ(θ−)]/2 and now let wr(θ) = P[τ ](reiθ)

then wr(θ) → τ (θ) for all θ ∈ [−π, π]. But, V (wr − τ ) → 2 as r → 1. (Since

wr(a) and wr(b) → 1/2 as r → 1.)
(f) Let σ ∈ NBV and wr(θ) = P[σ](reiθ). By (d), ‖w‖BV ≤ Vσ. From (a),

wr → σ weak* in NBV, hence (cf. [1, 6.8]),

Vσ ≤ lim inf
r→1

V wr ≤ lim inf
r→1

‖w‖BV = ‖w‖BV.

And P is an isometry.
To show P is onto hBV, let w ∈ hBV. Since HK is separable [8], every norm-

bounded sequence in HK
∗ contains a weak* convergent subsequence [1, Theorem

6.12]. But {wr} is norm-bounded in NBV, so there is a subsequence {wr j
} and

σ ∈ NBV such that for all f ∈ HK we have
∫ π

−π
f wr j

→
∫ π

−π
fσ as r j → 1. To

show w = P[σ], fix reiθ ∈ D. Then, since each function wr j
is continuous on D and

harmonic in D, it is the Poisson integral of its boundary values, i.e.,

(15) w(r jreiθ) =

∫ π

−π

Φr(φ− θ)wr j
(φ) dφ.

Now, w is continuous on D, Φr(· − θ) ∈ HK and wr j
is of bounded variation on ∂D,

uniformly for j ≥ 1. Using weak* convergence, taking the limit r j → 1 in (15) yields
w(reiθ) = P[σ](reiθ). Thus, NBV and hBV are isomorphic. Since NBV is a Banach

space, hBV is as well.

4 The Dirichlet Problem

Under an Alexiewicz norm boundary condition, we can prove uniqueness for the
Dirichlet problem.

Theorem 10 Let f ∈ HK. The Dirichlet problem

u ∈ C2(D)(16)

∆u = 0 in D(17)

‖ur − f ‖ → 0 as r → 1(18)

has the unique solution u = P[ f ].
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Proof First note that from Theorem 6(b) and [2, Proposition 1], u = P[ f ] is cer-
tainly a solution of (16), (17) and (18).

Suppose there were two solutions u and v. Write w = u − v. Then w satisfies (16)
and (17). And ‖wr‖ ≤ ‖ur − f ‖ + ‖vr − f ‖, which has limit 0 as r → 1. Since w is
harmonic in D it has the trigonometric expansion

(19) w(reiθ) =
a0

2
+

∞
∑

n=1

rn [an cos(nθ) + bn sin(nθ)] ,

the series converging uniformly and absolutely on compact subsets of D. Fix 0 ≤
r < 1. We have ‖wr‖ ≥ |

∫ π

−π
wr| = π|a0|. Letting r → 1 shows a0 = 0. And, for

n ≥ 1, we have ‖wr cos(n · )‖ ≥ |
∫ π

−π
wr(θ) cos(nθ) dθ| = πrn|an|. As well,

‖wr cos(n · )‖ ≤ ‖wr‖
{

inf
|θ|≤π

| cos(nθ)| + V [θ 7→ cos(nθ)]
}

= 4n‖wr‖.

Therefore, 4n‖wr‖ ≥ πrn|an|. Letting r → 1 shows an = 0. Similarly, bn = 0. It
follows that w = 0 and we have uniqueness.

In [6], Shapiro gave a uniqueness theorem that combined a pointwise limit with
an Lp condition. There is an analogue for the Alexiewicz norm.

Theorem 11 Suppose ∆u = 0 in D and there exists f ∈ HK such that

ur(θ) → f (θ) for each θ ∈ [−π, π)(20)

‖ur‖ = o(1/(1 − r)) as r → 1.(21)

Then u = P[ f ].

Proof As in Theorem 10, suppose w is a solution of the corresponding homoge-

neous problem ( f = 0). Let α, β ∈ R with 0 < β − α ≤ 2π. Following the proof of
Theorem 3 in [6] and using (5),

∣

∣w(r2eiθ)
∣

∣ =
∣

∣P[wr](reiθ)
∣

∣

≤ ‖wr‖ g(r)

2π(1 − r)
,

where g(r) := (1 + 6r + r2)/(1 + r). But, g(r) ≤ g(1) = 4. Hence, by (21), ‖wr2‖∞ =

o(1/(1−r)2) and so ‖wr‖∞ = o(1/(1−r)2) as r → 1. It follows from [6, Theorem 1]
that w = 0.

As pointed out in [6], neither (20) nor (21) can be relaxed. If ur → f except for
one value θ0 ∈ [−π, π) then we can add a multiple of Φr(θ−θ0) to u(reiθ). If in place
of (21) we have ‖ur‖ = O(1/(1 − r)) then we can add a multiple of Φ

′
r to ur, since

for each θ ∈ R, Φ ′
r (θ) → 0 as r → 1.
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Example 12 (a) Let f ∈ HK \ L1. Then the unique solution to (16)–(18) is u =

P[ f ]. In this case, the Lp norms of ur need not be bounded as r → 1. If we are given

a harmonic function v such that the Alexiewicz norms ‖vr‖ are uniformly bounded
for 0 ≤ r < 1, then we cannot infer the existence of g ∈ HK such that v = P[g].
This is because HK is not complete.

(b) Let v(z) = (1 + z)/(1 − z) and w(z) = v(z)e−v(z). Define

u(reiθ) = Re(w(reiθ))

=

(1 − r2) cos
(

2r sin θ
1−2r cos θ+r2

)

+ 2r sin θ sin
(

2r sin θ
1−2r cos θ+r2

)

exp(2πΦr(θ))(1 − 2r cos θ + r2)
.

Let

f (θ) := lim
r→1

ur(θ) =

{

(

sin θ
1−cos θ

)

sin
(

sin θ
1−cos θ

)

, 0 < |θ| < π

0, |θ| = 0, π.

Note that f /∈ Lp for any 1 ≤ p ≤ ∞. The set function µ defined by µ(A) =
∫

A
f

is not a signed Borel measure. Thus, u is not the Lebesgue-Poisson integral of any Lp

function or measure. Since f (θ) ∼ (2/θ) sin(2/θ) as θ → 0 we have f ∈ HK. And

|(1 − r)ur(θ)| ≤ (1 − r)e−1 +
2r e−1

1 + r
≤ 1/2.

By dominated convergence, ‖(1 − r)ur‖ → 0 as r → 1. And, by Theorem 11, u =

P[ f ]. There is a similar result for the imaginary part of w.

(c) Let w(z) = [1/(1 − z)]e[1/(1−z)] and define

u(reiθ) = Re(w(reiθ))

=

(1 − r cos θ) cos
(

r sin θ
1−2r cos θ+r2

)

− r sin θ sin
(

r sin θ
1−2r cos θ+r2

)

exp
(

r cos θ−1
1−2r cos θ+r2

)

(1 − 2r cos θ + r2)
.

Let

f (θ) := lim
r→1

ur(θ) =







√
e

[

(1−cos θ) cos

(

sin θ
2(1−cos θ)

)

−sin θ sin

(

sin θ
2(1−cos θ)

)

2(1−cos θ)

]

, 0 < |θ| ≤ π

∞, θ = 0.

Although f ∈ HK, Theorem 11 does not apply since f is not a real-valued function.

Indeed, (1− r)ur(0) = exp(1/(1− r)) → ∞ as r → 1. From Theorem 1, u is not the
Poisson integral of any function in HK (nor Lp function nor measure). In particular,
u 6= P[ f ].

In examples (b) and (c), the origin is the only point of nonabsolute summability
of f . For each 0 ≤ λ < 2π, an example is given in [2] of the Poisson integral of
a function in HK whose set of points of nonabsolute summability in (−π, π) has
measure λ.
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