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Abstract

It is well known that spectral methods (tau, Galerkin, collocation) have a condition number
of O(N4) where N is the number of retained modes of polynomial approximations. This
paper presents some efficient spectral algorithms, which have a condition number of O(N2),
based on the ultraspherical-Galerkin methods for the integrated forms of second-order
elliptic equations in one and two space variables. The key to the efficiency of these
algorithms is to construct appropriate base functions, which lead to systems with specially
structured matrices that can be efficiently inverted. The complexities of the algorithms are
a small multiple of Nd+i operations for a d-dimensional domain with (N — \)d unknowns,
while the convergence rates of the algorithms are exponentials with smooth solutions.

2000 Mathematics subject classification: primary 65N35; secondary 65N22,65F05, 35J05.
Keywords and phrases: spectral-Galerkin method, ultraspherical polynomials, Poisson and
Helmholtz equations.

1. Introduction

The problem of approximating solutions of differential equations by spectral meth-
ods, known as Galerkin approximations, involves the projection onto the span of
some appropriate set of basis functions. The members of the basis functions may
automatically satisfy the auxiliary conditions imposed on the problem, such as initial,
boundary or more general conditions. Alternatively, these conditions may be imposed
as constraints on the expansion coefficients, as in the Lanczos r-method ([17]).

It is of fundamental importance to realize that the choice of the basis functions
is responsible for the superior approximation properties of spectral methods when
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compared with the finite difference and finite element methods. The choice of different
basis functions leads to different spectral approximations; for instance, trigonometric
polynomials for periodic problems, Chebyshev, Legendre, ultraspherical and Jacobi
polynomials for non-periodic problems, Laguerre polynomials for problems on the
half-line, and Hermite polynomials for problems on the whole line.

Spectral methods provide a computational approach which has achieved substantial
popularity over the last four decades. They have gained new popularity in automatic
computations for a wide class of physical problems in fluid and heat flow. The
principal advantage of the spectral methods lies in their ability to achieve accurate
results with substantially fewer degrees of freedom.

This paper aims to develop some efficient spectral algorithms based on the ultra-
spherical-Galerkin methods (UGM) for elliptic second-order differential equations in
one and two space variables but by considering their integrated forms.

Spectral methods (see, for instance, Ben-Yu [1,2], Canuto et al. [4], Doha [5-7],
Gotlieb and Orszag [12] and Siyyam and Syam [23]) involve representing the solution
to a problem in terms of a truncated series of smooth global functions. They give
very accurate approximations for a smooth solution with relatively few degrees of
freedom. For Dirichlet problems, Heinrichs [14] uses the Chebyshev polynomials
as basis functions. It turns out that for the well-known standard spectral methods
(tau, Galerkin, collocation) the condition number is very large and grows as O(N4),
see Orszag [19]. Heinrichs [15] proposes a spectral method based on a subclass of
orthogonal ultraspherical polynomials (a — 3/2) for solving the Helmholtz equation
in two dimensions subject to Dirichlet homogeneous boundary conditions with a
symmetric and sparse matrix, whose condition number grows only as O(N2); and he
shows in [16] that certain algebraic spectral multigrid methods can be efficiently used
for solving the resulting system. Doha and Abd-Elhameed [10] use ultraspherical-
Galerkin approximations to develop a generalization of the improved technique of
Heinrichs [14] and Shen [21,22].

In this paper we are concerned with direct solution techniques for the integrated
forms of second-order elliptic equations, using ultraspherical-Galerkin approxima-
tions. We present two appropriate bases for the UGM applied to the integrated forms
of Helmholtz elliptic equations with various boundary conditions. This leads to dis-
crete systems with specially structured matrices that can be efficiently inverted. We
note that two algorithms, namely, the Legendre and Chebyshev-Galerkin approxima-
tions, and some other very interesting cases, can be obtained directly as special cases
from our proposed ultraspherical-Galerkin approximations.

The remainder of this paper is organized as follows. In Section 2 we give some
properties of ultraspherical polynomials, and in Section 3 we discuss two algorithms
for solving the integrated forms of Helmholtz equations in one and two dimensions.
In Section 4 we consider the integrated forms of the general second-order elliptic
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differential equations. In Section 5 we present some numerical results. Finally, some
concluding remarks are given in Section 6.

2. Some properties of ultraspherical polynomials

The ultraspherical polynomials {C^ix), n = 0, 1, 2, . . . , a e (-1/2, oo)} are a
sequence of orthogonal polynomials on the interval (— 1, 1) with respect to the weight
function w(x) = (1 - *2)"~1/2, that is,

(x)dx = f°' m *"' (2.1)
ynn, m = n,

where
VWn\r(a + 1/2) =

" (2a)n(n+a)r(a)' "'"
They are eigenfunctions of the Sturm-Liouville problem

(1 - x2)4>"{x) - (2a + l)x<p'(x) + n(n + 2a)<t>(x) = 0.

For our present purposes, it is convenient to weigh the ultraspherical polynomials
so that Cj,a)(l) = 1, n = 0, 1, 2, This is not the usual standardization but has
the desirable properties that C®\x) are identical to the Chebyshev polynomials of
the first kind, C{J/2)(x) are the Legendre polynomials Ln{x), and Cj,l)(x) is equal to
(l/(n + l))Un(x), where Un(x) are the Chebyshev polynomials of the second kind.

In this form the ultraspherical polynomials may be generated by using the recurrence
relation (n + 2a)C^l(x) = 2(n + a)xC?\x) - nC^,(x), n = 1, 2, 3, . . . , starting
from C^\x) = 1 and C,(a)00 = x, or obtained from Rodrigues' formula

The special values

will be of important use later.
Let f(x) be an infinitely differentiable function defined on the closed inter-

val [ -1 , 1]. Then we can write f(x) = Yl7=obn)Cna)(x)> a n d f o r t h e / t n derivative
of f(x) in the form

oo

f'\x) = Y.^C^ix), I = 0, 1, . . . , q - 1,
n=0
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and in particular f^(x) = T,Zob"C!,a)(x), bn = bf\ then

A(«) 2-"Vy( 1)' (q\^n ~ q + 2 ; + a ) r ( " ~ q + j + a ) A
7=0 ^ '

where n > q for a ^ 0, n > <? for a = 0, and

n!r(a + l/2) " H

If we define the q times repeated integration of C^a)(x) by

t h e n q times

. , - , „ > , . 2-«n! 4^y ^i/q\ r(n-j+a)r(n+q-2j+2a)

+ q-j+a + l)

-2j + a)C%q_2j(x), (2.2)

where q > 0, n > q + 1 for a = 0; q > 0, n > <? for a ^ 0. For the proof, see
Doha [9]. Another interesting formula is

2T(k + 2a)^ (k + l - 2j)\

for all k, I > 0, where, for a ^ 0,

and au(k) = Qik + l -2j)/k, for a = 0, and where /*(*) = (Jt + \)/{k + a),
v(k) = 2 - /x(k), aoo(k) = 1. For the proof, see Doha [8].

The following five lemmas will be of fundamental importance in what follows.

LEMMA 2.1.

(1 - x2)Cla\x) = -akCf22{x) + (ak + pk)C<?\x) - fSkC
(
k%(x), (2.4)

where

k(k - 1) _
l) ' ~ a)(Ac + a
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PROOF. Set / = 2 in relation (2.3) to get

2(x) + (1 - ak - pk)Cf\x) + ftC&

365

and hence we have relation (2.4).

LEMMA 2.2.

where

S2(n) =

0,
(« - 1)2

4(n+a - l)2(n+2a - 2)2

1

)

2{n+a- l)(n
(n + 2a)2

1)'

n = 0 , 1,

, n>2,

n = 0 , 1,

n > 2,

4(n + l)2(n + a)2'

and in particular, for n = 2 am/ a = 0

5,(2) = -3/16.

PROOF. By setting q = 2 in relation (2.2), we obtain

/(2.B) = i r (A*-02 c W
" 4 L(«+a-l)2(« + 2o!-2)2 ""2

2 (tt)

(n+a-l)(n+or+l) "

where n > 3 for a = 0 and n > 2 for a 7̂  0,

4(1 + a) L

(2 a) !
7' (JC) = 12(2 + a )

2ct)Cf \x)]

,(2,0), = - - ^ r o o o - ]-T2(X) + ^ r 4 ( * ) ,
16 6 4o

and hence we have relations (2.6) and (2.7).

D

(2.5)

(2.6)

(2.7)

D
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L E M M A 2.3.

[6]

where

0,
—n

(n + 2a)

2(n+a)(n + 2a-l) ' ~ '

and in particular, for n = 1 and a = 0,

y , ( l ) = - 1 / 4 .

PROOF. If we set q = 1 in relation (2.2), we get

where n > 2 for a = 0, and n > 1 for a ^ 0,

/0<'-«>0c) = C\a)(x), and /,(l'0)(

and hence we have relations (2.8) and (2.9).

L E M M A 2.4. For \i - j\ < 2

= l/4[-T0(x) + T2(x)},

(jjc\a\x)dxdx,Cf\x)\ = S2(i)hi i = j ,

S3(i)hl+2 i = j - 2,

0, i + j odd.

(2.8)

(2.9)

•

PROOF. From relation (2.5) and making use of the orthogonality relation (2.1), we
can show for i + j odd that

(Jjcja)(x)dxdx,Cf)(x)\ =0,

but for \i — j \ <2,i + j even, and after performing some lengthy manipulations, we

get

2 i=j + 2,

8i(.i)hi i = j ,

83(i)hi+2 i = j - 2. •
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LEMMA 2.5. For \i - j \ < 1,

0 i + j even.

PROOF. The proof of this lemma is not difficult, and it can be accomplished by
following a similar procedure to that of Lemma 2.4. •

3. Helmholtz equations

We are interested in using the UGM to solve the Helmholtz equation

Piii — AM = g in Q. — Id, u\aQ = 0, (3.1)

where / = (—1, 1) and d — 1,2, but by considering its integrated form.
Let us first introduce some basic notation that will be used in the upcoming sections.

We set SN = span{C<a)(jc), C\a\x),..., C£J2(JC)}, VN = [v e SN : v(±l ) = 0}, then
the standard ultraspherical-Galerkin approximation to (3.1) is to find un € Vf, such
that

Px{uN, v)w - ( A H * , v)a = (g, v)w. for all v e Vd
N, (3.2)

where co(x) = nf=i(l ~ xf)a~]/2 and {u, v)w = f^uvcodx is the scalar product in
the weighted space L^iQ.). The norm in L^(£2) will be denoted by || • ||w.

Let us denote H^(Q) as the weighted Sobolev spaces with the norm ||v||j.w. It is
well known (see, for example, Canutoe/ al. [4]) that for fii > 0, s > landw € H^(£l),
that the following optimal error estimate holds:

II" - M o , + N\\u - uN\U.a < C(s)N~s\\u\\Silo.

Although approximation (3.2) achieves the optimal convergence rate, its practical
value depends on the choice of a basis for V$. It is essential for the sake of efficiency
to choose an appropriate basis for V$ such that the resulting linear system is as simple
as possible.

However, to the best of our knowledge, the only Chebyshev and Legendre bases
available in the literature are

(1) VN = span{(p2(x), fo(x),..., <pN(x)} wi th
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and

\Lk{x) - L0(x), A: even,

[Lfc(*)-Li(.*:), fcodd,

\Lk{x) L0(x), A: even,
4>k(x) = { or 4>k(x) = (1 -

[ L ( ) L ( ) fcdd

see Canuto e/ al. [4], Heinrichs [14], and Gottlib and Orszag [12]. Unfortunately, all
these bases lead to linear systems with full matrices even in the simplest case fi\ = 0.
(2) VN = span{<po(x), Mx), • •., <t>N-i(x)} with <f,k{x) = Tk(x) - Tk+2(x) and

4>k(x) = Lk(x) - Lk+2(x); see Shen [21,22].

These bases lead to discrete systems with either special matrices that can be efficiently
inverted or sparse matrices for variational formulations.

The interested reader is referred to Doha and Abd-Elhameed [10] for efficient
spectral-Galerkin algorithms for direct solution of second-order equations using ultra-
spherical polynomials.

An alternative approach to differentiating solution expansions is to integrate the
differential equation q times, where q is the order of the equation. An advantage of
this approach is that the general equation in the algebraic system then contains a finite
number of terms. Phillips and Karageorghis [20] have followed this approach, see also
Fox and Parker [11]. An explicit formula expressing the integration of ultraspherical
polynomials in terms of ultraspherical polynomials themselves is given in Doha [9].

3.1. One-dimensional Helmholtz equation It is of fundamental importance to note
here that the crucial task in applying the Galerkin-spectral approximations is how to
choose an appropriate basis for VN such that the linear systems resulting from (3.2)
and its integrated form are as simple as possible.

In this section, we consider two kinds of bases to numerically solve the one-
dimensional Helmholtz equation

i n / = (-1,1), I I ( ± 1 ) = 0,

but by considering its integrated form, namely,

(x)dxdx-u(x) = f(x)+d0C^(x) + dlC\a\x) in / = ( -1 , 1),
J J

K ( ± 1 ) = 0 .

(i) The first choice of basis. We choose the basis functions of the expansion

4>k(x) = (l-x2)Cla\x), k = 0,l,...,N-2, (3.4)

which fulfills the boundary conditions of (3.3).
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LEMMA 3.1. We have, for arbitrary constants ak,

N-2 N

£ a t ( l - x2)C(
k°\x) = J^ekCla\x), (3.5)

k=0 k=0

where ek = —fik-.2ak-2 + (ak + fik)ak — ak+2ak+2, and

k{k - 1) (k-
4(k + a)(k + a - 1) ' Pk ~ 4(k + a)(k + aYk =

Moreover, if

r r N~2

" - x2)C(
k\x) dxdx = y^ EkC

(
k\x), (3.6)

N-2 N+2
.2\/-.(<*)/

k=0 *=0

then Ek = ek-2S3(k - 2) + ek82(k) + ek+2S{{k + 2), k = 0, 1 , . . . , N + 2.

PROOF. If we write £ £ , 2 f l * 0 - x2)Cf\x) = Y.LoekCf\x), then it is not
difficult to show, by using Lemma 2.1, that ek = —fik-2ak-2 + («* + Pk)ak — ak+2ak+2-
Since

ff f^ak(l-x
2)Cia\x) dxdx = Yjek 11 C?\x) dx dx,

L*=o A=O

then making use of Lemma 2.2 (Formula (2.5)) immediately yields

E^-^KfV) \dxdx

N

k=0

Finally, if we write

N-2 -i N+2

Y,a"(X -x2)Cf\x) dxdx = J2
*=o J t=o

then Ek = ek-2^{k — 2) + ek82(k) + ek+28i(k + 2), and this completes the proof of
Lemma 3.1. D

THEOREM 3.2. IfuN(x) = Y,k=oak(] ~ x2)Cla)(x) is the Galerkin approximation
to (3.3), then the expansion coefficients {ak, k = 0, I, ..., N — 2} satisfy the matrix
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system (fi\A + E)a = /*, where the nonzero elements of matrices A and E are given
by

- ( * + 2a - 4 ) 4a k 4NTZ7,iwi , 7 T 'I6(k - \)2{k + a - 4 ) 4

(it + 2a - 2)2(2fc2 + (2a - 5)* + 2a2 - a - 3)
8(*-l)2(* + a

S(k + a - 2)2(k + a + 1)2

(A: + l)2(2fe2 + (6a + 5)ik + 6a2 + 9a - 3)

= 2,...,N -2,

- 1,..., N 4,

-16(*
(k + a + l)4(fc + 2a)2

(fe + 2a - 2)2

A{k + a - 2)2

(it2 + 2aJk + 2a2 - a - 1)

a = (ao, fli, • • •, «*-2)r, / * = (/2*. /3*.. . . , ftf, fk* =
where hk is as defined in relation (2.1).

PROOF. The application of the Galerkin method to (3.3) gives

(piJJuNdxdx-uN,4>k{x)\ =(f(x)+doc£\x)+dlC\a\x),<t>k(x))w, (3.7)

where (j>k(x) is given by (3.4). Substitution of formulae (3.5) and (3.6) into (3.7) yields

( N+2 N \

fr J2 EjCf\x) - J2 ejCf\x), (1 - x2)Cf\x)
J=° J=° I w

^ 1 f \ ) . (3.8)The constants of integration d0 and d\ would disappear if we take k > 4 in (3.8), and
if we substitute (2.4) into (3.8) and make use of the orthogonality relation (2.1), then
we get

+ (fi\Ek - ek)(ak + fik)hk - (PiEk+2 - ek+2)Pkhk+2

A ) / t - A/t+2. k = 4,5,...,N + 2. (3.9)
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Now, it is not difficult to show that (3.9) holds for fk_2 = (fi\Ek-2 — ek-2)hk_2,

k = 2,3,...,N; (3.10)

this means that, instead of solving (3.9), we can solve the neater system (3.10), which
is equivalent to (3.7). This linear system may be put in the form

(/3lEk-ek) = f*, k = 2,3,...,N,

which in turn may be written in the matrix form

OM + E)a = f*,

and this completes the proof of Theorem 3.2.

(3.11)

(3.12)

D

COROLLARY 3.3. If a = 0, then the nonzero elements of A and E in system (3.12)
are given by

dk.k-2 = '

ak,k+2 = •

-1/96,
-1

-5/32,
-3

[8(Jfc-l)(JH
- 1

*

-1)

= 4,
> ̂

k

, k

= 2

>3,

ak,k =

5/24, k = 2,
5/192, k = 3,

> k > 4,

16(*)2'

"* •*+«- 8 ( * _ 1)3 '

fl/2, * = 2,

**'* 11/4, k>3,

ekik+4 = 1/4.

COROLLARY 3.4. If a = 1, then the nonzero elements of A and E in system (3.12)
are given by

-(k + l) [21/64, k = 2,
,,,, ' n , ak,k = { (k + l)(2k + 1)
16(A: — 3)(A: — 1)2 , k > 3,

[8(k-l)2k(k + 2)
-3(k2 + 2k-l) (k + l)(2k + 3)

<*k,k+2 —

Ok.k+6 =
(k + 2)2(k + 5) '

«*.*+2 = - l / 2 ,

*'* 4(k - 1)'

3)'
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COROLLARY 3.5. If a = 1/2, then the nonzero elements of A and E in system
(3.12) are given by

ak,k+2 —

- ( * - 3)2

24(k — 1 ll\,
l/v / / ^J4

-6(Jfc2 +
2\k - 3/2)2

24(k + 3/2)4

-2()t2 + k -
(2k - \)(2k

k-

(* +

+ 3)

3)
• 3/2)2'

2(2A:2 - 4A: - 3)
<3w 23(2A: - 5/2)3(2k + 3)

(4£2 + 16A: + 9)
^ , w 23(2A: — l)(/t + 3 /2) 3 '

C M C ~ 2 2 ( A : - 3 / 2 ) 2 '

Ct.c+4 22(it + 3/2)2'

In particular, if fi\ = 0, a e (—1/2, oo), then the system in this case is Ea = /*,
where the matrix £ is a special upper triangular matrix.

REMARK 3.6. If /J, 7̂  0 and a e (-1/2, 00), then the system (3.12) can be solved
by LU factorization.

(ii) The second choice of basis. Here, we choose <j>k(x) to be of the form

<pk(x) = C?\x) - O * ) . (3.13)

This choice may be considered as a generalization of the bases used by Shen [18,19].
It is now clear that (3.3) is equivalent, for k = 0, 1 , . . . , N, to

Px (jfuNdxdx,4>k(x)j -(uN,4>k(x))w = (f(x)+d0+d,Cf\x),(j>k{x))w. (3.14)

The constants Jo and d\ would not appear if we take k > 2 in (3.14), therefore we get

j8, (jf uN dxdx, C?\x) - C(
k%(x)\ - (uN, Cf\x) - C%2(x))w

= (f(x),Cla\x)-Ci%(x))w, k=2,3,...,N. (3.15)

Let us denote fk = ( / , <pk(x))w, f = (f2, •. . , fN)T, uN(x) = Yfn=2an~i4>n-2(x),
a = (a0, ..., aN-2)T', A = (akJ)2<kj<N and B = (bkj)z<kJ<N, then (3.15) is equivalent
to the matrix equation

<ftlA + B)a = f, (3.16)

where the nonzero elements of matrices A and B are given explicitly in the following
theorem.
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THEOREM 3.7. If we take <j>k(x) as defined in (3.13), and if we denote

°kj = ( / / 4>j-2(.x) dxdx, <j>k{x) I and bkj = - ( 0 ,_ 2 (* ) , <Pk(x))w,

then VN = span[(po(x),<j)i(x),... ,4>N(x)}, and the nonzero elements (akj), (bkj),
2 < k, j < N, are given by

-r(l/2)r(a

ak,k+2 =

T(l/2)r(a + l/2)k\(2k2 + (2a - 3)k + 2a2 + 3a - 2)
2r(a)(2a)k(k - l)2(k + a - 2){k + a)(k + a + 2) '

-3r( l /2)r(a + \/2)k\{k + a + l)(2k2 + 4(a + l)k + 4a2 + 10a - 2)
4r(a)(2a)t0fc + a - \)2{k + a + 2)2(Jk + 2a)2

r(l/2)T(a + l/2)(Jt + 2)!(2A:2 + (6a + 1 l)Jfc + 6a2 + 21a + 12)
2T{a){2a)k+2{k + a)(jfc + a + 2)(k + a + 4)(Jfc + 2a + 2)2 '

4)! _ rq /2 ) r (a +1/2)^!
2)3 ' ** ~ F(a)(2a)k(k + a) '

- r ( l /2 ) r (a + \/2)k\{k + a + 1)(2A:2 + (4a + 4)k + 4a2 + 6a)

•a)(k + a+2)(k + 2a)2

k'k+4 = r(a)(2a)k+2(k+a+2)

PROOF. The proof of this theorem is not difficult, but it is rather lengthy, and it can
be accomplished by following the same procedure used in proving Theorem 3.2. •

REMARK 3.8. For k + j odd, akj = bkj = 0. Hence system (3.16) of order TV — 1
can be decoupled into two separate systems of order N/2 and (N/2 — 1), respectively.
In this way one needs to solve two systems of order n instead of one of order 2n,
which leads to substantial savings.

COROLLARY 3.9. If a = 0, then the nonzero elements (akj), (bkJ),for2 < k, j < N,
are given as follows:

In

Qk,k-2 =
—Tt

S(k-l)2'
8(2*-3)(Jfc +

JT(2k+l)

= 2,3,

k=4,...,N,
<KK- iM/c-t-z;

_ -3n(k2 + 2k- 1) TT(2A: + 3 )
ak.k+2 — T7i ,x / , , ,̂x . ak.k+4 =
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COROLLARY 3.10. If a = 1, then the nonzero elements {akj), {bkj),for 2 < k, j <
N, are given as follows:

-n n{2k2-k + 3)
'k'2 = %{k-\)2{k)2'

 Uk'k ~~
-3n(k2 + 4k + 6) n(2k2 + Ilk + 39)
4(* - 1)3(* + 3) ' Qk*+*

2^ . _
k,k+6 o//. i i \ / j . i A\/I. i c\?1 ** -+- I ) 2 '

n

COROLLARY 3.11. If a = 1/2, then the nonzero elements {akj), {bkj), for 2 <
k, j < N, are given as follows:

- 1 8

4{k - 3 /2) 3 '
-3{2k + 3)

4{k- \/2)2{k + 5/2)
- 1

4(A: +5/2)3 '
-4{2k + 3)

{2k+\){2k + 5Y

2

h, ,
°k,k+A

{2k-

2

{2k +
2

l " ( 2 ) t +

3){2k + l){2k + 5)

•l)(2* + 5)(2* + 9)

5)
bk,k+2 —

REMARK 3.12. If £i ^ 0, a e (—1/2, oo), we explicitly form the LU factorization
$XA + B = LU.

3.2. Two-dimensional Heimholtz equation Now we consider the Heimholtz equa-

tion in two dimensions {d = 2)

^ 4 + T T ) = 8(x, y) in fi = ( - l , l ) 2 , w|8n = 0,

3x2 9y2 /

but in its integrated form, namely

= fix, y) + r{x)C^{y) + s{x)C^{y) + t{y)C^a){x)

+ v{y)C\a){x), \nQ,uUn = 0, (3.17)

where r{x), s{x), t{y) and v{y) are arbitrary functions in x and y respectively, and

fix, y) = jf \ff g{x, y) dxdx] dydy.
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It is clear that if we take </>*(*) as defined in (3.13), then V^ = span{<t>k(x)<pj(y) :

k,j = 0 , 1 , . . . , N}. Let us denote uN = T,kj=2uk-2,j-2<t>k-2(x)<Pj-2(y), fkj =
(f,<Pk(x)<pj(y))a, U = (ukj)kj=0,\,. ,N-2, F = (fkj)kj=2,3 N, then applying the
Galerkin method to (3.17) we obtain the matrix equation

PXAUAT + BUAT + AUBT = F, (3.18)

where A and B are the matrices defined in Theorem 3.7.
This equation can be solved by the matrix decomposition method described in

Buzbee et al. [3] and Haidvogel and Zang [13]. Now, let D be the diagonal matrix
whose diagonal elements are the eigenvalues of A~l B, and let E be the matrix formed
by the eigenvectors of A~lB. Then A~XBE = ED. Applying A"1 to (3.17), we
obtain /3,C/Ar + A~XBUAT + UBT = A~lF. Setting U = EV, the preceding
equation becomes £ ,£VA T + EDVAT + EVBT = A~XF. Now applying £" ' to the
preceding equation and setting G = E~lA~lF, we find

P1VAT + DVAT + VBT = G. (3.19)

L e t v p = (Vpo, V p i , . . . , v p N - 2 ) T , g p = (gpo, g P \ , •••, g P N - 2 ) T f o r p = 0 , . . . , N — 2 .

Then the pth row of (3.18) becomes

(Pi+kP)Avp + Bvp = gp, p = 0,l,...,N -2, (3.20)

which is equivalent to (N — 1) one-dimensional equations of the form (3.16). In
summary, the solution of (3.17) consists of the following four steps:

(1) Compute the eigenpairs D, E for A~XB and compute £" ' .
(2) Compute G = E~lA~lF.
(3) Obtain V by solving (3.19).
(4) Sett/ = EV.

It is worth mentioning here that the previous procedure can be applied to (3.17),
but with (j>k{x) as defined in (3.4). In this case we get the matrix equation

faAUAT + AUET + EUAT = F,

where A and E are the matrices defined in Theorem 3.2. This system has the same
method of solution as that of (3.18).

4. Extensions to more general problems in one dimension

The UGM can be applied to more general problems. In this section, we describe
several extensions in one dimension.
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4.1. Mixed-type boundary conditions When other boundary conditions are pre-
scribed, it is necessary to construct a basis incorporating the boundary conditions.
Now consider the equation fi\u{x) + fiiu'{x) — u"(x) = g(x) in / = (—1, 1), and
instead, we deal with its integrated form

0, If u(x)dxdx + p2 I u(x)dx-u(x) = f(x) + do + diC\a\x) in/, (4.1)

with the mixed homogeneous boundary conditions

1) = 0, a2u(-l) + k2u'(-\) = 0.

Let WN = {v e SN : a,v(±l) + A.,V(±1) = 0, i = 1,2}, then the standard
ultraspherical-Galerkin approximation to (4.1) is to find uN € WN such that, for all
ve WN,

P\( uNdxdx,v\ +#>( uNdx,v\ ~(uN,v)w

= (f(x) + do + dlCf\x),v)w. (4.2)

We can find an appropriate basis for WN by setting

4>k{x) = Cia\x) + dkC^(x) + ekCi%(x), (4.3)

where dk and ek are the unique constants such that <pk(x) e WN, k = 0,1,..., N — 2.
Therefore WN = span{</>000, <p] (x), . . . , <pN(x)}, where

. 4(2a + l)(a,A2+a2A,)(A: + a + l) Den(fc 1)
dk = , ek = , (4.4)

Den(fc) Den(k)

where

l)(a,A.2-a2A,)[(JH-l)(Jk+2a +

and uN = Ylt=2 ak-24>k-2{x).
Now (4.2) is equivalent to the matrix equation

{ C)a = f, (4.5)

where the nonzero elements of the matrices A = (akj), B = (bkj) and C = (ckj),
2 < k, j < N, are given explicitly in the following theorem.
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THEOREM 4.1. Let <f)k{x) be as defined in (4.3) and denote

akj = ( / / <t>j-i<,x) dx dx, (pk(x) j ,

ckj = (4>j_2(x), <Pk(x))w.

Then the nonzero elements of the matrices A, B and C in system (4.5) are given as
follows:

ak,k-2 = ek_4S3(k - 2)hk, ak,k_x = 83(k - 2)dk-3hk + ek^383(k - \)dkhk+x,

ak,k = (83(k - 2) + ek_282(k))hk + dk-2dkS3(k - \)hk+x + ek_2ekS3(k)hk+2,

aklk+\ = 82(k)dk.yhk + (S3(k - 1) + et_,«2(* + D)dkhk+i + ek83{k)dk_xhk+2,

ak,k+2 = (S2(k) + ek8t (k + 2))hk + 82{k + \)d2
khk+x + {83{k) + ek82(k + 2))ekhk+2,

= 8x(k + 2)hk +8x(k + 3)dkdk+2hk+x + (82(k + 2) + ek+28x (k + 4))ekhk+2,

ak,k+5 = 8t (k + 3)dkhk+x + ek8x (k + 4)dk+3hk+2, akik+6 = ek8x (k + 4)hk+2,

bktk-x = ek_3y2(k - \)hk, bkM = y2(k - \)dk_2hk + ek_2y2(k)dkhk+x,

bk,k+x = (y2(k - 1) + ek_xyx{k + l))hk + y2(k)dk-Xdkhk+x + y2(k + l)ek-Xekhk+2,

bk,k+2 = Y\(k+ \)dkhk + (y2(k) + ekyx(k + 2))hk+x + eky2(k + \)dkhk+2,

bk,k+3 = y\(k+ l)hk + yx(k + 2)dkdk+xhk+x + (y2(k + 1) + yx(k + 3))ekhk+2,

bk,k+4 = y\(k + 2)dkhk+x + ekyx (k + 3)dk+2hk+2, bktk+5 = ekyx (k + 3)hk+1,

Ck.k = c*-2,t+2 = ek-2hk, ck:k+2 =hk + d\hkJrX + e2
khk+2,

Q-u+2 = dk-Xhk + dkek-Xhk+x,

where {8x(k), 82(k), 83(k)}, {yx(k), y2(k)} and {dk, ek) are given by (2.6)-(2.7), (2.8)-
(2.9) and (4.4), respectively, while hk is defined by (2.1).

PROOF. The proof of this theorem is rather lengthy but not difficult, and it can be
accomplished by following the same procedures used in proving Theorem 3.2 and by
using Lemma 2.3. •

4.1.1. Dirichletproblem In the special case where ax = a2 = 1, A.i = X2 = 0 (that
is, the homogeneous Dirichlet boundary condition), we have, in particular, dk = 0,
ek = - 1 , and accordingly the basis functions cpk(x), k = 0, I, ..., N - 2, take the
form given in (3.13).

It is of fundamental importance to note here that all the results of Theorem 3.7 can
be obtained immediately as a special case from Theorem 4.1.
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4.1.2. Neumann problem In this case, where ai = a2 = 0, A.) = A.2 = 1, we have
dk = 0,ek = -k(k + 2a)/(k + 2)(k + 2a + 2) and

In summary, all the results of such a case are given in the following theorem and its
corollaries.

THEOREM 4.2. Let <pk(x) be defined as in (4.6), then the nonzero elements of
matrices A, B and C in system (4.5) are given as follows:

T(l /2)r(a + \/2){k - 3)\(k - A){k + 2a - 4)(k + 2a - 1)
Ok,k-2 ~

4r(a)(2a)k(k
T(l /2)r(a + 1/2)(A: - 2)\(k + 2a - 2)

2r(a)(2a)t+,(Jt + 2)(k + a - 2)(jfc + a)(k + a + 2)(* + 2a + 2)
x [2k4 + k\6a + 1) + A:2(6a2 + 9a + 4) + 2k(2a3 + 13a2 + 13a - 6)

O-k.k+2 — ~~

x [3k4 + \2k3(a + 1) + A:2(18a2 + 55a +41)

+ 2fc(6a3 + 37a2 + 60a + 29) + 8(2a3 + 1 la2 + 17a + 6)],

r ( l /2)T(a + l/2)0fc + \)\(k + a + 1)

' 2r(a)(2a),+2(A: + a)3(k + a + 4){k + 2a + 2)3

x [2k4 + 5k\2a + 3) + fc2(18a2 + 63a + 46)

+ 2/k(6a3 + 35a2 + 61a +40) + 4(2a3 + 15a2 + 34a + 24)],

T(l/2)r(a + l/2)k(k + 4)\(k + 2a)
4r(a)(2a)i+2(Jk + 2)(k + a + 2)3(k + 2a + 2)\k + 2a + 3)'
r ( l / 2 ) r ( a + l/2)(k - 3)(k - 2)\{k + 2a - 3)

bk,k-\ = —

_ r ( l / 2 ) r ( a + 1/2)(A: - 1)!(A: + 2a - 1)
k'k+l ~ 2r{a)(2a)k{k + 2){k + a - 1)(A: + a + 2){k + 2a)3

x [3k4 + A:3(10a + 7) + 4k1(3oi1 + 8a + 5)

+ 4A:(2a3 + 13a2 + 16a + 2) + 8(2a3 + 7a2 + 7a + 2)],

k'k+3 2r(a)(2a)k+i(k + 2) (it + a)(k + a + 3)(* + 2a + 2)2(k + 2a + 3)

x [3k4 + A:3(14a + 17) + 2A:2(12a2 + 37a + 25)

+ 4/t(4a3 + 22a2 + 36a + 21) + 8(2a3 + 1 la2 + 18a + 9)],
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T(l/2)r(a + 1/2) (* + 3)ft(ft + l)!(ft + 2a)

2r(a)(2a)*+2(ft + a
r(l/2)r(a + l/2)(k - 2)(k - l)!(ft + 2a-2)

Ck.k = Ck-2,k+2 = -

Ck,k+2 =

r(a)(2a)*(ft
2r(l/2)r(a + l/2)ft!(ft + a + l)(ft + 2a)

r(a)(2a),+2(ft + 2)(ft + a)(ft + a + 2)(ft + 2a + 2)2

x [ft4 + 4ft3(a + 1) + ft2(6a2 + 19a + 12)
+ ft(4a3 + 26a2 + 38a + 16) + 4(2a3 + 7a2 + 7a + 2)].

COROLLARY 4.3. Ifa = 0, then the nonzero elements of matrices A, B and C in
system (4.5) are given by

w(k — 4 t 2 rr(7k4 -I- ft3 -I- 4ft2 — 12ft 4- 32^

dk.k-2 = -

ak,k+2 = ~

O-k.k+4 —

8(ft - 2)(ft - 2 ) 3 ' *'* 4(ft - I)ft2(ft + 2)3

7r(3ft4 + 12ft3 + 41ft2 + 58ft + 48)

4(ft - l)(ft + 2)4(ft + 3) '

;r(2ft4 + 15ft3 + 46ft2 + 80ft + 96)

nk2 _ n(k- 3)2

2)3(A + 3) ' *'*-' ~ "
_ 7r(3it4 + Ik3 + 20k2 + Sk+ 16)

M+1 =

n(k + I)(3ft4 + 17ft3 + 50ft2 + 84ft + 72) ;rft2

bk t+i = rr- , , bkik+5 = . . . , n

T T ( A : - 2 ) 2

Ck,k-ck-2,k+2- 2Jfc3~'

COROLLARY 4.4. Ifa = \, then the nonzero elements of matrices A, B and C in
system (4.5) are given by

n(k-4) n(2k4 + 7ft3 + 19ft2 + 44ft + 108)
8(ft- l)2(f t- l)3 ' *•* 4(ft-l)2(ft + l)2(ft+l)4

37T(ft2 + 4ft + 6)(ft2 + 4ft + 16)
4(ft)(ft+l)2(ft + 3)2(ft + 4)3 '

n (2ft4 + 25ft3 +127ft2+285ft + 300) nk

ak,k+2 = -

Ok,k+4 =

_ 7r(ft-3) _ 7r(3ft4+ 17ft3 + 64ft2 + 132ft + 144)
*•*"' ~ ~4ft2(ft + l ) 2 ' M + 1 ~ 4ft2(ft + 2)2(ft + 3)2(ft + 4) '

4(*+l)6(* + 3)(* + 5) ' Ck-k+6 8(ft + 3)3(ft+4)2'

jr(3ft4+31ft3 + 148ft2 + 332ft + 320) nk
bk,k+i = , bkf+5 =4(ft+l)(ft + 2)2(ft+4)2(ft+5) ' * ' w 4(ft + 3)(ft+4)3'
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7l(k - 2)
Ck'k = Ck-2k+2 = -2(k + mk + 2y CkM2 =

COROLLARY 4.5. If a = 1/2, then the nonzero elements of matrices A, B and C in
system (4.5) are given by

(k - 4)2 S(k4 -I- 2k3 + 5k2 + 4k + 30)
<*k,k-2 = — "4(ik - 2)2(2ifc - 3 / 2 ) 3 ' (k)4(2k - 3)(2k

(2k + 3)(3k4 + 18fc3 + 73*2 + 138A: + 140)

8(k4 + 10A:3 + 4U2 + 80Jk + 90)
(it + 2)4(2£ + l)(2Jt + 5)(2Jfc + 9)'

2(k - l)2(k -
6(k2 + 2k + 4)(k2 + 2k + 5)

2)(2Jfc-l)(2Jfc + 5)'
6()t4 + 8A:3 + 3lk2 + 60k + 56)

2(k - 2)2

4(2A: + 3)(fr4 + 6A:3 + 23*2 + 42fc + 30)

4.2. Nonhomogeneous boundary conditions In this case, the integrated form of the
general second-order differential equation (4.1) is subject to the boundary conditions

- l ) = e2. (4.7)

In such a case we proceed as follows: Set

V(x) =u(x)-Ex- F, (4.8)

where E = (a,e2 - a2ei)/W, F = (e,(A2 - a2) - s2(a, + A.,))/ W and W = axX2-
a2k\ — 2axa2 ^ 0. The transformation (4.8) turns the nonhomogeneous boundary
conditions (4.7) into the homogeneous boundary conditions

l) + X2V'(-l) = 0. (4.9)

Hence it suffices to solve the following modified equation

0, JJ V(x)dxdx + p2jv(x)dx - V(x) = f*(x), (4.10)
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subject to the homogeneous mixed boundary conditions (4.9), where V(x) is given by
(4.8), and

f*(x) =

/8,(l+2a)£
12(2 +a) 2 ( }

If we apply the Galerkin method to the modified equation (4.10), we get the
equivalent system of equations

(faA + p2B + C)a = f*, (4.11)

where A, B and C are the matrices defined in Theorem 4.1 and / * = (/2*, /3*, . . . , /^ ) ,
where

/ ; = ( l + 2 c r )
•" 12(2+ « ) ' " " "'•" * 3 '
fk, k > 4.

REMARK 4.6. In the case of W = 0, the previous treatment fails but we can take
the approximate solution in the form uN(x) = <po{x) + Xlt=i ak<t>k{x), where the basis
{4>k(x) : k = 0,1,..., N — 2} is chosen so that (/>0(x) satisfies the nonhomogeneous
boundary conditions and so that every 0^(x), k = 1,2, ..., N — 2, satisfies the
homogeneous parts of the boundary conditions.

5. Numerical results

In this section we give some numerical results obtained by using the algorithms
presented in the previous sections.

It is worth mentioning that the pure spectral-Galerkin method is rarely used in
practice, since for a general right-hand side function / one is unable to exactly compute
its representation by ultraspherical polynomials. In fact, the so-called pseudospectral
method is used to treat the right-hand side; that is, we replace / by its polynomial
interpolation over the set of Gauss-Lobatto points.

We consider the following example.

EXAMPLE 1. Consider the one-dimensional nonhomogeneous Helmholtz equation

-u" + b2u = eax, Are [-1,1], «(±l) = 0, (5.1)
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TABLE 1. Maximum pointwise error of u — u^ for N = 4, 8, 16, 20.

[22]

N

4

8

16

20

a

1

1

1

1

b

0

0

0

0

a
3/2
1

1/2
0

-0.2
-0.45
3/2

1
1/2
0

-0.2
-0.45
3/2

1
1/2
0

-0.2
-0.45
3/2

1
1/2
0

-0.2
-0.45

UG1
2.111 x
1.808 x
1.465 x
1.075 x
8.960 x
8.258 x
9.405 x
6.599 x
4.171 x
2.252 x
1.643 x
1.621 x

9.884 x
9.662 x
9.532 x
4.796 x
9.521 x
7.942 x
9.884 x
9.662 x
9.532 x
4.796 x
9.521 x
7.942 x

10~J

io-3

io-3

lO"3

io-4

io-4

io-8

io-8

io-8

io-8

io-8

10"8

,0-16

,0- ,6

,0-16

io-16

,0-16

,0-16

,0-16
,0-16
,0-16

,0-16
,0-16

,0-16

UG2
2.363
2.374
2.374
1.810
1.677
1.502
1.583
1.251
9.405
6.599
5.373
4.223
5.414
5.414
5.356
8.058
6.773
5.641
5.414
5.414
5.356
8.058
6.773
5.641

x 10"3

x 10"3

x 10"3

x IO-2

x 10"3

x IO-3

x 10"7

x 10"7

x 10"8

x 10"8

x IO-8

x IO-8

x 10"16

x 10"16

x 10"16

x 10"16

x 10"16

x 10"16

x 10"16

x 10"16

x IO-16

x 10"16

x 10"16

x IO-16

a

2

2

2

2

b

1

1

1

1

UG1
2.445 x
2.211 x
1.725 x
1.284 x
1.093 x

8.0465 x
1.766 x
1.245 x
7.486 x
3.542 x
3.160 x
2.878 x
3.018 x
2.207 x
1.044 x
4.186 x
2.983 x
2.503 x
7.126 x
7.308 x
7.192 x
7.257 x
6.857 x
6.922 x

10"2

io-2

io-2

io-2

io-2

io-3

io-5

io-5

io-6

io-6

io-6

io-6

io-14

io-14

io-14

io-15

io-15

io-15

JQ-16

,0-16
,0-16
,0-16

io-'6
,0-16

UG2
2.984
2.736
2.445
2.110
1.962
1.764
2.925
2.338
1.766
1.245
5.373
7.691
1.073
6.853
4.039
2.212
1.715
1.184
7.617
7.342
7.867
7.674
7.512
7.033

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

io-2

io-2

io-2

io-2

io-2

io-2

io-5

io-5

io-5

io-5

10"6

io-6

10"IJ

io-14

io-14

io-14

lO"14

10"14

,0-16

io-16

,0-16
,0-16
,0-16
,0-16

with an exact smooth solution
-bx

«(*) =
_ b) cosech(26) - ehx sinh(a + b) cosech(2b)

"II" [—1, 1], «

b2-a2

Now the integrated form of (5.1) is

_ e"X (a) (a)

a2 ° '
We shall compare the ultraspherical-Galerkin approximations obtained, using the

first and second choices of bases (UG1) and (UG2), for some different values of the
parameter a .

(i) For UG1, uN = Ylk=o a*( l ~ x2)C^(.x), where the vector of unknowns a is
the solution of the system

(b2A + E)a = / * , (5.2)

where the nonzero elements of matrices A and E axe those given in Theorem 3.2, and

f* = —-
J ni

•Ik+a(a), k = 2,3,...,N,
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TABLE 2. Cond(£) fora = 0, 1/2, 1.

383

N
4
8
16
32
64
4
8
16
32
64
4
8
16
32
64

a

0

0.5

1

^min

2.500 x 10"'

3.428 x 10"'
2.871 x 10"'
2.669 x 10"'
2.581 x 10"'
2.539 x 10"'
4.166 x 10"'
3.214 x 10"'
2.833 x 10-'
2.661 x 10-'
2.579 x 10-'

aw

5.000 x 10-'

6.666 x 10"'

7.500 x 10"'

Cond(£)
2
2
2
2
2

1.9444
2.32143
2.49722
2.58266
2.62483
1.800
2.3333
2.6471
2.81818
2.90769

where /„(•) represents the modified Bessel function of the first kind (see Luke [18,
page 32]).

(ii) ForUG2, uN = Yi%=oak{Ck"'>(x) ~ ^ " 2 ^ ) ) ,

(b2A + B)a = / , (5.3)

and the nonzero elements of matrices A and B are those given in Theorem 3.7, and

2nV(2a) r ,
/ * = - I

k+a+2
(a)], k = 2,

Table 1 lists the maximum pointwise error of u — uN using the UGM with various
choices of a, a, b and N.

The main source of roundoff errors comes from the matrix decomposition. For
UG1, the system resulting from the integrated form of — u" — g(x) is Ea = /*,
where E is an upper triangular matrix whose diagonal elements are

1/2,

1/4,

k = 2, a = 0,

k = 3, 4 , . . . , N, a = 0,
2a- 2)2

a4(k + a-2)2

Thus we note that the condition number for E behaves like O (k°) for every value of a.
For UG2, the resulting system is Ba = / , where B is also an upper triangular matrix
with

JTT/2, a = 0,

bkk = ( r( l /2)r>
r(a)(2a)k(k
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and accordingly, its condition number behaves like Oik2") for large values of k and
a > - 1 / 2 .

Tables 2 and 3 illustrate the condition numbers for matrix E in (5.2) and matrix B
in (5.3), respectively.

REMARK 5.1. If we add b2A to matrix E of system (5.2) and add b2A to matrix
B of system (5.3), then we find that the eigenvalues of matrices D = E + b2A and
C = B + b2A are all real positive. Moreover, the effect of these additions does not
significantly change the values of the condition numbers for the two systems. This
means that the matrices E and B, which resulted from the integrated form of the
highest derivatives of the differential equations under investigation, play the most
important role in the propagation of the roundoff errors. The numerical results of
Table 4 illustrates this remark.

TABLE 3. Cond(fl) fora = 0, 1/2, 1.

N
4
8
16
32
64
4
8
16
32
64
4
8
16
32
64

a

0

0.5

1

O^min

1.571

2.222 x 10"'
1.176 x 10"'
6.060 x 10"2

3.676 x 10"2

1.550 x 10"2

6.281 x 10"2

1.939 x 10"2

5.433 x 10"3

1.445 x 10"3

3.713 x 10-4

^max

1.571

4.000 x 10-'

1.745 x 10"'

Cond(B)
1
1
1
1
1

1.800
3.400
6.600

1.300 x 10'
2.580 x 10'

2.777
9.000

3.211 x 10'
1.210 x 102

4.694 x 102

Cond(B)/W

4.500 x 10"'
4.250 x 10~'
4.125 x 10"'
4.062 x 10"'
4.031 x 10"'

Cond(B)/JV2

1.736 x 10-'
1.406 x 10"'
1.254 x 10"'
1.181 x 10"'
1.146 x 10-'

6. Concluding remarks

We have presented a systematic way to construct appropriate bases for the UGM
applied to the integrated forms of general second-order differential equations in one
dimension and, in particular, the integrated forms for Helmholtz equations in one and
two dimensions. We have also developed efficient direct solvers, whose complexities
are a small multiple of Nd+] operations in a rf-dimensional domain, with (N — I)**
unknowns.
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TABLE 4. The condition number for the matrix C = b2A + B for a = 0, 1/2, 1.

385

N
4
8
16
32
64
4
8
16
32
64
4
8
16
32
64

a

0

0.5

1

1.512
1.332
1.322
1.322
1.322

2.237 x 10"'
1.149 x 10"'
5.982 x 10"2
3.055 x lO-2

1.544 x lO-2

6.377 x lO-2

1.922 x 10"2
5.404 x 10-3

1.437 x 10"3

3.711 x 10"4

2.414
2.425
2.425
2.425
2.425

5.589 x 10-'
5.590 x 10"'
5.590 x 10"'
5.590 x 10"'
5.590 x 10-'

2.559 x 10"'

Cond(C)
1.595
1.819
1.833
1.833
1.833
2.636
5.131
9.861

1.930 x 10'
3.819 x 10'

4.013
1.331 x 10'
4.737 x 10'
1.780 x 102

6.897 x 102

Cond(C)/N

6.592 x 10"'
6.414 x 10"'
6.163 x 10"'
6.033 x 10"'
5.967 x 10"'

Cond(C)/W2

2.508 x 10"'
2.081 x 10-'
1.850 x 10"'
1.738 x 10-'
1.684 x 10"1

The two algorithms, namely, the Legendre and Chebyshev Galerkin methods can be
obtained as special cases from our UGM by taking a = 1 /2 and a = 0, respectively.
Although we concentrated on applying our algorithms to solve constant coefficient
differential equations, we do claim that such algorithms can be applied to solve not
only differential equations with polynomial varying coefficients of any order but also
evolution equations.
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