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On 3-manifolds with Torus or Klein Bottle
Category Two
Wolfgang Heil and Dongxu Wang

Abstract. A subset W of a closed manifold M is K-contractible, where K is a torus or Klein bottle if
the inclusion W → M factors homotopically through a map to K. The image of π1(W ) (for any base
point) is a subgroup of π1(M) that is isomorphic to a subgroup of a quotient group of π1(K). Subsets
of M with this latter property are called GK -contractible. We obtain a list of the closed 3-manifolds
that can be covered by two open GK -contractible subsets. This is applied to obtain a list of the possible
closed prime 3-manifolds that can be covered by two open K-contractible subsets.

1 Introduction

The study of critical points for a smooth function on a manifold Mn led Lusternik and
Schnirelmann to introduce what is today called the Lusternik–Schnirelmann category
for a manifold Mn, denoted by cat(Mn). It is defined as the smallest number of sets,
open and contractible in Mn needed to cover Mn. It is a homotopy invariant with
values between 2 and n + 1 and has been studied widely; many references can be
found in [3].

In [2], Clapp and Puppe generalized cat(Mn) as follows: For a fixed closed con-
nected k-manifold K0, 0 ≤ k ≤ n− 1, a subset W in Mn is said to be K0-contractible
if there are maps: f : W → K0 and α : K0 → Mn, such that the inclusion map
ι : W → Mn is homotopic to α · f .

W
ι

//

f   

Mn

K0

α

==

The K0-category catK0 (Mn) of Mn is the smallest number of sets, open and
K0-contractible needed to cover Mn. When K0 is a point P, catP(Mn)=cat(Mn),
the Lusternik–Schnirelmann category. Note that a (in M) contractible set is K0-
contractible, hence catK0 (Mn) ≤ cat(Mn). If Mn is closed, then applying homology
Hn with Z2-coefficients to the above homotopy commutative diagram shows that
2 ≤ catK0 (Mn) ≤ cat(Mn) ≤ n + 1.

In particular, if M is a closed 3-manifold, we are interested in the beginning case
when catK0 (M) = 2. If K0 is a closed manifold, the first nontrivial choice for K0 is S1.

Received by the editors March 27, 2013; revised August 24, 2013.
Published electronically October 12, 2013.
AMS subject classification: 57N10, 55M30, 57M27, 57N16.
Keywords: Lusternik–Schnirelmann category, coverings of 3-manifolds by open K-contractible sets.

526

https://doi.org/10.4153/CMB-2013-035-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-035-3


On 3-manifolds with Torus or Klein Bottle Category Two 527

It was shown in [4] that a closed 3-manifold M has catS1 M = 2 if and only if π1M
is cyclic. From the results of Perelman (see e.g., [1]), this means that catS1 M3 = 2
if and only if M is a lens space or the twisted S2-bundle over S1 (here the term “lens
space” includes S3 and S2×S1). We notice that, even though an S1-contractible open
set may not be homotopy equivalent to S1 (and could be disconnected), this result
shows that cat(M) = 2 can be realized by a covering of M by two open solid tori or
solid Klein bottles, each homotopy equivalent to S1.

The next simplest choice for K0 is S2 or P2. This case was considered in [6], where
it was shown that for a closed 3-manifold M, catS2 M = 2 if and only if M is S3 or
an S2-bundle over S1, and catP2 M = 2 if and only if M = S3, P3, P3#P3, or P2×S1.
We again observe that for catS2 M = 2, M can be covered by two open S2×I, each
homotopy equivalent to S2, and that catP2 M = 2 can be realized by a covering of
M by two simple open pieces, each an open ball or open I-bundle over P2, i.e., each
homotopy equivalent to a point or P2.

In this paper we consider the case when K0 is a torus T or Klein bottle K.
Closely related to the K0-category is the more algebraic GK0 -category, where GK0

is the set of subgroups of 3-manifold quotient groups of π1(K0). This is defined in
Section 2. One has 1 ≤ catGK0

(M) ≤ catK0 (M).
In Theorem 4.3 we list all closed 3-manifolds for which catGT (M) = 2 and use

this to give in Theorem 5.1 a classification of all prime closed 3-manifolds M with
catT(M) = 2. It turns out that these M admit a covering by two simple T-contractible
open subsets, each homeomorphic to an (open) ball, an (open) solid torus or solid
Klein bottle, or an (open) I-bundle over T.

In Theorem 4.4 we list all closed 3-manifolds for which catGK (M) = 2. This is used
to list in Theorem 5.2 the possible prime closed 3-manifolds for which catK(M) = 2.
Here the obvious simple K-contractible pieces are (open) balls, (open) disk-bundles
over S1, and (open) I-bundles over K.

The proofs use techniques developed in [5, 8, 9].

2 K0-contractible Subsets and Basic Properties

Even though the definitions can be made for any space, we assume in this section that
M is a 3-manifold and K0 is a connected complex of dimension≤ 2.

Definition 2.1 A subset W is K0-contractible (in M) if there are maps f : W → K0

and α : K0 → M such that the inclusion map ι : W → M is homotopic to α · f .
Notice we do not require W to be connected. The K0-category catK0 (M) is defined
to be the smallest number m such that M can be covered by m open K0-contractible
subsets.

A subset of a K0-contractible subset is K0-contractible.

Remark 2.2 If a complex L is a retract of a 2-complex K0, then an L-contractible
set is K0-contractible.

This can be seen as follows. For an L-contractible set W ⊂ M, there are maps
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f : W → L and α : L → M such that α · f ' ι. Let j : L → K0 be the inclusion and
r : K0 → L the retraction. Then (αr) · ( j f ) ' ι. Thus W is K0-contractible.

Clearly for K0 = T (the torus), a subset W of M that is homeomorphic to an I-
bundle over T is T-contractible. By the remark, a 3-ball, a solid torus, or a solid Klein
bottle in M are T-contractible.

For K0 = K (the Klein bottle), subsets W of M homeomorphic to I-bundles over
K, 3-balls, solid tori, or solid Klein bottles are K-contractible.

If W is K0-contractible, then for every basepoint ∗ ∈W , the image: i∗(π1(W, ∗)) is
a subgroup of α∗(π1(K0, f (∗))), which is isomorphic to a quotient Q of π1(K0, f (∗)).
We say that W is Q-contractible. More generally (see [9]), we have the following
definition.

Definition 2.3 Let G be a nonempty class of groups. A subset W of M is G-
contractible if for any base point ∗ ∈W , the image ι∗(π1(W, ∗)) ⊆ π1(M, ∗) belongs
to G. The smallest number m such that M admits a covering by open G-contractible
subsets is the G-category catG(M).

If G is closed under subgroups, then a subset of a G-contractible set is G-contrac-
tible.

A quotient group Q of a group G is a 3-manifold quotient, if Q can be realized as
the fundamental group of some 3-manifold. By considering covering spaces we see
that subgroups of 3-manifold quotients are 3-manifold quotients.

With these notations, a K0-contractible subset is also GK0 -contractible, where GK0

is the set of subgroups of 3-manifold quotients of K0 = π1(K0), and we have 1 ≤
catGK0

(M) ≤ catK0 (M).
In particular, to classify closed 3-manifold M with catK0 (M) = 2, where K0 is a

torus or Klein bottle, we first classify those M with catGK0
(M) ≤ 2. The first step is

to obtain in the next section a complete list of all subgroups of 3-manifold quotient
groups of π1(T) and π1(K).

We use the following notation:

• #kM3 denotes a connected sum of k copies of a 3-manifold M3.
• L or Li denotes a lens space different from S3 or S2×S1.
• S2×̃S1, T×̃S1, K×̃S1 denote an S2-bundle over S1, a torus-bundle over S1, a Klein

bottle-bundle over S1, resp. The bundles may be product bundles.
• TS denotes a T-semi bundle, i.e., a union of two twisted I-bundles over the torus

T along their (connected) torus boundary. (This terminology is due to Hatcher
[10].)

• KS denotes either a K-semi bundle, i.e., a union of two twisted I-bundles over
the Klein bottle K along their (connected) boundary or a union of the oriented
twisted I-bundle over K and a twisted I-bundle over T along their (connected)
boundary.

3 3-manifold Quotient Groups of the Klein Bottle Group

In this section we list all compact 3-manifolds whose fundamental groups are isomor-
phic to a subgroup of a 3-manifold quotient of the torus T or Klein bottle K. This is
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easy for the fundamental group T of the torus, since the abelian groups that occur as
fundamental groups of 3-manifolds are well known (see e.g., [11, Thm 9.13]).

The set of subgroups of 3-manifold quotients of T ∼= Z×Z is

GT = {1,Zm,Z,Z×Z2,Z×Z}

(for all m ≥ 2).
The corresponding compact 3-manifolds are listed in the next proposition. Here

M̂ denotes the 3-manifold obtained from the 3-manifold M by capping off all
2-sphere boundary componens with 3-balls.

Proposition 3.1 If M is a compact 3-manifold with π1(M) ∈ GT , then M̂ is one of
the following:

(i) a lens space (including S3),
(ii) P2×I,
(iii) an S2-bundle over S1,
(iv) a solid torus or solid Klein bottle,
(v) P2×S1,
(vi) an I-bundle over the torus.

To obtain an analogous result for 3-manifold quotients of the Klein bottle group,
we begin by listing all the possible isomorphism types of subgroups of the funda-
mental group K of the Klein bottle K.

Lemma 3.2 Let H be a nontrivial subgroup of K. If H has infinite index, then H is
isomorphic to Z; if H has finite index, then H is isomorphic to Z×Z or K.

Proof If H ⊆ K has infinite index, the covering space X of the Klein bottle K corre-
sponding to H is a noncompact surface, so H is a free group. Since K is solvable, it
does not contain a free subgroup of rank 2, hence H ∼= Z. If H ⊆ K has finite index,
then H ∼= π1(X), where X is a finite sheeted covering of K. So X is a torus or a Klein
bottle, and the result follows.

Next we list the normal subgroups of K. We represent K by

K = 〈a, b : b−1ab = a−1〉.

Every g ∈ K has a unique representation of the form ambn by using the relation

bras =

{
asbr if r is even,

a−sbr if r is odd.

Then for k 6= 0,

(ambn)k =


amkbnk if n is even,

ambnk if n is odd, k is odd,

bnk if n is odd, k is even.
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Lemma 3.3 If H is a cyclic normal subgroup of K generated by ambn, then n is even
and either n = 0 or m = 0.

Proof We have a−1ambna = (ambn)k for some k. If n is odd, it follows that am−2bn =
ambnk (if k is odd), or am−2bn = bnk (if k is even), a contradiction.

Thus assume n is even. Then b−1ambnb = (ambn)k for some k, or a−mbn = amkbnk.
It follows that m = 0 or n = 0.

Now consider non-cyclic normal subgroups H of K. We write H = 〈x, y〉 to mean
that H is generated by x and y (not necessarily normally generated by x and y). By
Lemma 3.2, a noncyclic subgroup of K can be generated by two elements. Further-
more, by [12, Proposition 3.4], we may assume that

(3.1) H = 〈ar, ambn〉,where 0 ≤ m < r, n > 0, with index |K : H| = rn.

H is a Klein bottle group (resp. torus group), if n is odd (resp. n is even).

Lemma 3.4 Let H as in (3.1) be a normal subgroup of K.
If n is odd, then H = 〈a, bn〉, H = 〈a2, bn〉, or H = 〈a2, abn〉.
If n is even and m 6= 0, then H = 〈a2m, ambn〉.

Proof (a) Suppose n is odd. Then for each k we have a−kambnak = am−2kbn ∈ H.
Hence, if m is even, bn ∈ H, and if m is odd, abn ∈ H.

If m is even, a−1bna = a−2bn ∈ H, hence a2 ∈ H and it follows that H =
〈ar, a2, am, bn〉 = 〈a, bn〉 if r is odd, and H = 〈a2, bn〉 if r is even.

If m is odd, b−1abnb = a−1bn ∈ H, and abn(a−1bn)−1 = a2 ∈ H, and it follows
that H = 〈ar, a2, abn〉 = 〈a, bn〉 if r is odd, and H = 〈a2, abn〉 if r is even.

(b) Now suppose that n is even and m 6= 0. Then b(ambn)b−1 = a−mbn ∈ H,
so (ambn)(a−mbn)−1 = a2m ∈ H. It follows that a2m = (ar)k(ambn)l, for some k, l,
and since H ∼= Z × Z with generators ar and ambn, that l = 0, 2m = rk. But
0 < rk = 2m < 2r, so k = 1, i.e., a2m = ar.

Using Lemmas 3.3 and 3.4 we can now determine which quotients G = K/H are
fundamental groups of 3-manifolds.

A prism manifold MP is a Seifert fiber space obtained from the orientable twisted
I-bundle over the Klein bottle, (K×̃I)o, and a solid torus V by identifying their torus
boundaries. Its fundamental group has a presentation π1(MP) = 〈a, b : b−1ab =
a−1, amb2n = 1〉, where gcd(m, n) = 1 and the curve amb2n on ∂(K×̃I)o is identified
with the meridian of V .

Proposition 3.5 Suppose G = K/H is the fundamental group of a 3-manifold. Then
G ∈ {1,Zn,Z,K,Z× Z2,Z2 ∗ Z2, π1(MP)}, where MP is a prism manifold.

Proof Suppose H is a proper normal subgroup of K and G = K/H = π1(M). Since
G is finitely generated, we may assume that M is compact and, by filling in boundary
spheres with 3-balls, that ∂M contains no 2-spheres. In the arguments below we
repeatedly use the property that every subgroup of the 3-manifold group G is a 3-
manifold group. Let A = 〈a, b2〉 be the abelian subgroup of G generated by a and b2.
If n is even, we write 2n instead of n (where now n ∈ N). Using Lemmas 3.3 and 3.4
we consider the following cases:
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(1) H ∼= Z,
(2) H ∼= K, n odd,
(3) H ∼= Z× Z, n even.

In case (1), we have two subcases:

(1a) G = 〈a, b : b−1ab = a−1, b2n = 1〉, A ∼= Z× Zn, or
(1b) G = 〈a, b : b−1ab = a−1, am = 1〉, A ∼= Z× Zm.

In (1a), the subgroup A is a 3-manifold group only for n = 1 or 2. For n = 1,
G = 〈a, b : b−1ab = a−1, b2 = 1〉 ∼= Z2 ∗ Z2.

For n = 2, G = 〈a, b : b−1ab = a−1, b4 = 1〉, and we claim that this is not a
3-manifold group.

To see this, note that x = b2 is the only element of order 2 in G. For if
w = arbs ∈ G has order 2 and s is even, then w ∈ A ∼= Z × Z2 = 〈a, x : ax =
xa, x2 = 1〉, and so w = x. If s is odd, then w2 = b2s = xs = 1 ∈ A implies s even, a
contradiction.

Now suppose G ∼= π1(M) and let g : M̃ → M be the 2-fold covering of M corre-
sponding to A. Then M̃ is a punctured P2×S1. Let P2

0 = P2×{z}, for a point z ∈ S1.
The generator w of g∗(π1(P2

0)) is the unique element w ∈ G of order 2. If there is
a 2-sphere S in ∂M̃, then g(S) is a projective plane P2

∗ ⊂ ∂M and the generator w∗
of π1(P2

∗) is equal to w in G. This is a contradiction, since w lifts to the generator of
π1(P2

0), whereas w∗ does not lift to a loop in S. So M̃ = P2×S1, and it follows that
M = P2×S1, hence π1(M) ∼= Z⊕ Z2 6∼= G.

In (1b), the subgroup A is a 3-manifold group only for m = 1 or 2. For m = 1,
G = 〈a, b : b−1ab = a−1, a = 1〉 ∼= Z. For m = 2, G = 〈a, b : b−1ab = a−1, a2 =
1〉 ∼= Z× Z2.

For case (2), we have three subcases:

(2a) G = 〈a, b : b−1ab = a−1, a = 1, bn = 1〉 ∼= Zn.
(2b) G = 〈a, b : b−1ab = a−1, a2 = 1, bn = 1〉 ∼= Z2 × Zn.

Since n is odd, G ∼= Z2n.

(2c) G = 〈a, b : b−1ab = a−1, a2 = 1, abn = 1〉 ∼= Z2n.

In case (3), we have two subcases:

(3a) G = 〈a, b : b−1ab = a−1, a2m = 1, amb2n = 1〉 (m 6= 0).
(3b) G = 〈a, b : b−1ab = a−1, ar = 1, b2n = 1〉, A ∼= Zr × Zn.

In (3a), a2m = 1 is a consequence of b−1ab = a−1 and amb2n = 1, hence

G = 〈a, b : b−1ab = a−1, amb2n = 1〉.

For d = gcd(m, n) = mp + nq, x = am/d(b2)n/d, y = aq(b2)−p, the abelian
subgroup generated by a and b2 has presentation

A = 〈x, y : xy = yx, xd = 1, y2nm/d = 1〉 ∼= Zd × Z2nm/d = Zd × Z2n ′m ′d,

where m = dm ′, n = dn ′. This is a 3-manifold group only for d = 1, and it follows
that G is the fundamental group of a prism manifold MP, obtained from (K×̃I)o,
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the orientable twisted I-bundle over K with π1(∂(K×̃I)o) generated by a and b2, by
attaching a solid torus V along ∂(K×̃I)o such that the meridian of V is identified
with the curve amb2n.

In (3b), if the subgroup A is a 3-manifold group, then gcd(r, n) = 1. If r is even,
r = 2k, then (ak)−1 = ak and the subgroup Ak = 〈ak, b〉 ∼= Z2 × Z2n is not a
3-manifold group. So assume that r is odd. By Milnor [13], every element of order
2 in a finite 3-manifold group is central, hence (bn)−1abn = a. If n is odd, then
b−1ab = a−1 implies that (bn)−1abn = a−1, so a2 = 1. Since r is odd, then ar = 1
implies a = 1, a contradiction (since we assumed that r > 1).

Hence G = 〈a, b : b−1ab = a−1, ar = 1, b4n ′ = 1〉, n ′ ≥ 1, r odd. Note that
there is a unique epimorphisms ϕ : G → Z4. We now show that if M is 3-manifold
different from a lens space or a prism manifold and with finite fundamental group,
then there is no epimorphisms π1(M)→ Z4.

By Perelman (see e.g., [1]), M is spherical, and by Orlik [14, p. 111, Theorem 2],
the fundamental groups of these M are isomorphic to Zs × Tm (m = 3, 4, 5, 3k8),
where

Tm = 〈x, y : x2 = (xy)3 = ym, x4 = 1〉 for m = 3, 4, 5,

T3k8 = 〈x, y, z : x2 = (xy)2 = y2, zxz−1 = y, zyz−1 = xy, z3k

= 1〉(k ≥ 1),

and s is coprime to 30 for m = 5 and coprime to 6 in all other cases.
The abelianization of Tm is Z3, Z2, 1 resp. for m = 3, 4, 5 and the abelianization

of T3k8 is Z3k . Since s is odd, there is no epimorphism Zs × Tm → Z4.

Corollary 3.6 The set of subgroups of 3-manifold quotients of K is

GK = {1,Zn,Z,Z×Z,K,Z× Z2,Z2 ∗ Z2, π1(MP)},

where MP is a prism manifold.

Proof The nontrivial subgroups of K are isomorphic to Z, Z×Z, and K. The proper
3-manifold quotients of K are listed in Proposition 3.5. In [8, Lemma 5] it is shown
that the only nontrivial 3-manifold subgroups of Z2 ∗ Z2 are Z2, Z, and Z2 ∗ Z2.
If R is a subgroup of π1(MP), consider the (finite sheeted) covering p : M̃ → MP

corresponding to R. The prism manifold MP is a union of the orientable twisted K×̃I
and a solid torus V ; since p−1(V ) consists of solid tori, it follows that p−1(K×̃I) ≈
K×̃I or T×I, and M̃ is either a prism manifold or a lens space.

The compact 3-manifolds whose fundamental groups are as in Corollary 3.6 are
well known and are listed in the next proposition.

Proposition 3.7 If M is a compact 3-manifold with π1(M) ∈ GK, then M̂ is one of
the following:

(i) a lens space (including S3),
(ii) an S2-bundle over S1,
(iii) P2×S1,
(iv) a prism manifold,
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(v) P3#P3, P2×I, P3#P2×I, P2×I#P2×I,
(vi) an I-bundle over the torus or Klein bottle,
(vii) a solid torus or solid Klein bottle.

4 Closed 3-manifolds with G-category ≤ 2.

In this section we let G = GT or GK.
The following proposition is a restatement of Propositions 3.1 and 3.7 for closed

3-manifolds.

Proposition 4.1 Let M be a closed 3-manifold. Then

(i) catGT
(M) = 1 if and only if M is a lens space (including S3), an S2-bundle over

S1, or P2×S1;
(ii) catGK

(M) = 1 if and only if M is a lens space (including S3), an S2-bundle over
S1, P2×S1, P3#P3, or a prism manifold.

We now consider the case catG(M) = 2. Then by [8, Proposition 1] we may
assume that M is a union of compact (not necessarily connected) G-contractible
3-submanifolds W0, W1, such that W0∩W1 = ∂W0 = ∂W1 is a surface F (not nec-
essarily connected). For a component F ′ of F and W ′

i of M − N(F) (where N(F) is
a product neighborhood of F), the images im(π1(F ′) → π1(M)) and im(π1(W ′

i ) →
π1(M)) are contained in im((π1(Wi) → π1(M)), for i = 0, 1, and since G is closed
under subgroups, we conclude that F and the components of M − N(F) are G-con-
tractible. If a non-2-sphere component F ′ of F is compressible in M − N(F), we
do surgery on a compressing disk to get a new decomposition of M with a new
G-contractible surface F of smaller complexity and such that the components of
M − N(F) are G-contractible. Here the complexity c(F) is 1, if F is the sphere; if
F is connected of genus g > 0, then c(F) = (2g − 1)ω where ω is the first infinite
ordinal; if F is not connected, the complexity of F is the sum of the complexities of
its components (see the proof of [7, Lemma 4]). Thus we may assume that every
non-sphere component of F is incompressible. If a 2-sphere component of F bounds
a ball in M, we delete it from F. Then every component of F and every component
C of M − N(F) is π1-injective (i.e., the inclusions into M induce injections of funda-
mental groups). To sum up, we have the following ([9, Lemma 4]).

Lemma 4.2 ([9]) Let G be closed under subgroups and let M be a closed 3-manifold
with catG M ≤ 2. Then there is a closed 2-sided surface F in M such that F and
M − N(F) are G-contractible and every component of F is an essential 2-sphere or in-
compressible. In particular, the inclusion of each component of F and each component
of M − N(F) into M is π1-injective.

Theorem 4.3 Let M be a closed 3-manifold. Then catGT
(M) = 2 if and only if M is

not as in Proposition 4.1 and for some i, j, k,m, n ≥ 0,

M ∈
{

S3#iL# j(S2×̃S1)#k(P2×S1)#m(TS)#n(T×̃S1)
}
.

Proof We choose a 2-sided closed surface F ⊂ M as in Lemma 4.2 with a mini-
mal number of components. Since each component F ′ of F is π1-injective, π1(F ′) is
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isomorphic to a subgroup of a quotient of Z×Z; hence F ′ is a two-sphere, projective
plane, or torus. Each component C of M − N(F) is GT-contractible and π1-injective,
hence C is as in Proposition 3.1. We cannot have Proposition 3.1(iv), since F ′ is in-
compressible.

Suppose F ′ is a torus and C0, C1 are adjacent components of M − N(F), such that
F ′×{0} is a component of ∂C0 and F ′×{1} is a component of ∂C1 (here we identify
N(F) with F×[0, 1]). Then C0, C1 are punctured I-bundles over T.

If C0 6= C1, then Ci cannot be a (punctured) product I-bundle, by the minimal-
ity of the number of components of F. Since in Proposition 3.1 there are no other
compact 3-manifolds with boundary a torus, C0 and C1 are (punctured) twisted
I-bundles and C0 ∪ F ′×[0, 1] ∪C ′1 is a (punctured) torus semi-bundle.

If C0 = C1, then C0 ≈ F ′×I and C0∪F ′×[0, 1] is a (punctured) T-bundle over S1.
By the same argument, if a component F ′ is a projective plane, we obtain a punc-

tured P2×S1 in M.
Hence the collection of 2-sphere components of F cuts M into punctured lens

spaces, punctured S2×̃S1’s, punctured T-bundles over S1, punctured T-semi bundles,
and punctured P2×S1’s, and M is as in Theorem 4.3.

Conversely, if M is as in Theorem 4.3, we can find a disjoint collection F of
tori, projective planes, and 2-spheres that cuts M into punctured T×̃I’s, punc-
tured P2×S1’s, punctured S2×̃S1’s, and punctured lens spaces. Let W0 = F×I and
W1 = M − N(F). Then Wi is GK-contractible for i = 0, 1, and M = W0 ∪W1.

Using the same technique, we obtain the following theorem.

Theorem 4.4 Let M be a closed 3-manifold. Then catGK
(M) = 2 if and only if M is

not as in Proposition 4.1 and for some i, j, k,m, n, s, t, r ≥ 0,

M ∈
{

S3#iL# j(S2×̃S1)#k(P2×S1)#m(TS)#n(KS)#s(T×̃S1)#t (K×̃S1)#r(MP

}
.

Proof Following the above proof of Theorem 4.3, we obtain a 2-sided incompress-
ible closed surface F ⊂ M such that every component F ′ of F is a two-sphere, pro-
jective plane, torus, or Klein bottle, and each component C of M − N(F) is GK-con-
tractible, π1-injective, with C as in Proposition 3.7, except as in Proposition 3.1(vii).
If a component of M − N(F) is a (punctured) connected sum as in case (v), we cut it
along the connected sum sphere and adjoin the resulting spheres to F. Also note that
P3 is a lens space. Now if a component F ′ is a projective plane or Klein bottle, the
argument in the proof of Theorem 4.3 applies to yield a (punctured) KS or K×̃S1.

If F ′ is a torus and C0, C1 are adjacent components of M − N(F), then each of
C0, C1 is a punctured I-bundle over T or the orientable punctured I-bundle over K
and we obtain a (punctured) T-bundle over S1 or a (punctured) torus semi-bundle
or (punctured) KS.

Then the collection of 2-sphere components of F cuts M into punctured lens
spaces, punctured S2×̃S1’s, punctured T- and K-bundles over S1, punctured T and
K-semi bundles, punctured P2×S1’s, and prism manifolds MP, and M is as in Theo-
rem 4.4.

The converse follows as above.
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5 Prime 3-manifolds with T- and K-category ≤ 2.

Let L = T or L = K in this section.
Since an L-contractible set is GL-contractible, 1 ≤ catGL

(M) ≤ catL(M). If M is
closed, H3(M; Z2) ' Z2, and the identity map id : H3(M; Z2)→ H3(M; Z2) does not
factor through H3(L; Z2) = 0, hence catL(M) ≥ 2. If M is closed and catL(M) = 2,
it follows that M is as in Theorem 4.3 for L = T and as in Theorem 4.4 for L = K.
However, not every member of the family

{S3#iL# j(S2×̃S1)#k(P2×S1)#m(TS)#n(T×̃S1)}, resp.(5.1)

{S3#iL# j(S2×̃S1)#k(P2×S1)#m(TS)#n(KS)#s(T×̃S1)#t (K×̃S1)#r(MP}(5.2)

is of T- (resp. K-) category 2. In [8, Lemma 2], it is shown that if M is a closed
3-manifold with catL(M) = 2, (where L is a 2-dimensional complex), then (for the
Z2-rank)

rk(H1

(
M; Z2)

)
≤ rk

(
H1(L; Z2)

)
+ rk

(
H2(L; Z2)

)
.

So for L = T or L = K, the number of connected sum factors is restricted by
rk(H1(M; Z2)) ≤ 3.

In the case that M is prime, we obtain the following theorem.

Theorem 5.1 Let M be a prime closed 3-manifold. Then catT(M) = 2 if and only if

M ∈ {L, S2×̃S1, P2×S1,TS,T×̃S1}.

Proof By the remarks above, it suffices to show that for every prime summand M of
(5.1), catK (M) = 2. Recall that solid tori, solid Klein bottles, and I-bundles over T
are T-contractible, and note that L, S2×̃S1 are unions of two solid tori, resp. Klein
bottles along their boundary; P2×S1 is a union of a twisted I-bundle over T and a
solid torus; TS and T×̃S1 are unions of two I-bundles over T.

In the next theorem, denote by K̃S a semi-bundle that is the union of two twisted
I-bundles over K.

Theorem 5.2 Let M be a prime closed 3-manifold.

(i) If catK (M) = 2, then M ∈ {L, S2×̃S1, P2×S1,TS,KS,T×̃S1,K×̃S1,MP}.
(ii) If M ∈ {L, S2×̃S1, K̃S,K×̃S1,MP}, then catK (M) = 2.

Proof For part (i) we list the prime summands of (5.2). For part (ii) recall that solid
tori, solid Klein bottles, and I-bundles over K are K-contractible; K̃S and K×̃S1 are
unions of two I-bundles over K; each MP is a union of the orientable twisted I-bundle
over K and a solid torus.

In part (i), P2×S1 can be obtained as a union of three solid tori and so is of K-
category at most 3. We do not know if catK (P2×S1) = 2.

Some T×̃S1 are of K-category 2 and some are of K-category 3. To see this we show
the following proposition.
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Proposition 5.3 Suppose M is prime and π1(M) is torsion free and does not contain
a subgroup isomorphic to the Klein bottle group K. Then catK (M) = 2 if and only if
M ∼= S3 or M ∼= S2×̃S1.

Proof If catK (M) = 2, then M = W0 ∪ W1, and there are maps fi : Wi → K,
αi : K → M such that αi · fi ' ji , where ji : Wi → M is inclusion. For each
component W ′

i of Wi , ji∗(π1(W ′
i )) ⊂ αi∗(π1(K)) ⊂ π1(M) is a quotient of K. By

Proposition 3.5 and the assumptions on π1(M), αi∗(π1(K)) is trivial or Z. Hence for
G = {1,Z}, Wi is G-contractible and catG(M) ≤ 2. If catG(M) = 1, then M ∼= S3 or
S2×̃S1.

The case that catG(M) = 2 does not occur; otherwise, by Proposition 4.2, there
is a 2-sided π1-injective and G- contractible surface F. Then each component of F
is a 2-sphere. Since the 2-spheres of F are essential and M is prime, it follows that
M ∼= S2×̃S1, i.e., catG(M) = 1.

Example 5.4 For TS = T×S1, it follows from this proposition that catK (TS) 6= 2.
Since T×S1 can be obtained as a union of three solid tori (with intersection along
their boundaries), catK (TS) = 3.

For TS = M2, the T-bundle over S1 in [11, 12.3.Examples], with

π1(M2) = 〈a, b, t : ab = ba, t−1at = a−1, t−1bt = b−1〉,

we have catK (TS) = 2, since M2 is a union of two (orientable) twisted I-bundles
over K.
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