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On 3-manifolds with Torus or Klein Bottle
Category Two

Wolfgang Heil and Dongxu Wang

Abstract. A subset W of a closed manifold M is K-contractible, where K is a torus or Klein bottle if
the inclusion W — M factors homotopically through a map to K. The image of 71 (W) (for any base
point) is a subgroup of 71 (M) that is isomorphic to a subgroup of a quotient group of 71 (K). Subsets
of M with this latter property are called Gx-contractible. We obtain a list of the closed 3-manifolds
that can be covered by two open Sx-contractible subsets. This is applied to obtain a list of the possible
closed prime 3-manifolds that can be covered by two open K-contractible subsets.

1 Introduction

The study of critical points for a smooth function on a manifold M" led Lusternik and
Schnirelmann to introduce what is today called the Lusternik—Schnirelmann category
for a manifold M", denoted by cat(M"). It is defined as the smallest number of sets,
open and contractible in M" needed to cover M". It is a homotopy invariant with
values between 2 and n + 1 and has been studied widely; many references can be
found in [3].

In [2], Clapp and Puppe generalized cat(M") as follows: For a fixed closed con-
nected k-manifold Ky, 0 < k < n — 1, a subset W in M" is said to be Ky-contractible
if there are maps: f: W — K and a: Ky — M", such that the inclusion map
t: W — M" is homotopic to « - f.

L
W —mF— M"

N

The Kj-category catg, (M") of M" is the smallest number of sets, open and
Ky-contractible needed to cover M". When Kj is a point P, catp(M")=cat(M"),
the Lusternik—Schnirelmann category. Note that a (in M) contractible set is Ko-
contractible, hence catg, (M") < cat(M"). If M" is closed, then applying homology
H, with 7,-coefficients to the above homotopy commutative diagram shows that
2 < catg,(M") < cat(M") < n+1.

In particular, if M is a closed 3-manifold, we are interested in the beginning case
when caty, (M) = 2. I K; is a closed manifold, the first nontrivial choice for Ky is S'.
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It was shown in [4] that a closed 3-manifold M has catq M = 2 if and only if ;M
is cyclic. From the results of Perelman (see e.g., [1]), this means that catg M> = 2
if and only if M is a lens space or the twisted S*-bundle over S' (here the term “lens
space” includes $* and $?xS'). We notice that, even though an S'-contractible open
set may not be homotopy equivalent to S! (and could be disconnected), this result
shows that cat(M) = 2 can be realized by a covering of M by two open solid tori or
solid Klein bottles, each homotopy equivalent to S'.

The next simplest choice for K is S? or P2. This case was considered in [6], where
it was shown that for a closed 3-manifold M, cate M = 2 if and only if M is S? or
an S*-bundle over S!, and catp M = 2 if and only if M = S*, P3, P*#P% or P*xS'.
We again observe that for cate M = 2, M can be covered by two open $?x1, each
homotopy equivalent to S?, and that catp» M = 2 can be realized by a covering of
M by two simple open pieces, each an open ball or open I-bundle over P2, i.e., each
homotopy equivalent to a point or P2.

In this paper we consider the case when Kj is a torus T or Klein bottle K.

Closely related to the Kj-category is the more algebraic Gk, -category, where 9,
is the set of subgroups of 3-manifold quotient groups of 7;(Kj). This is defined in
Section 2. One has 1 < catg,, (M) < catg, (M).

In Theorem 4.3 we list all closed 3-manifolds for which catg,.(M) = 2 and use
this to give in Theorem 5.1 a classification of all prime closed 3-manifolds M with
catr(M) = 2. It turns out that these M admit a covering by two simple T-contractible
open subsets, each homeomorphic to an (open) ball, an (open) solid torus or solid
Klein bottle, or an (open) I-bundle over T.

In Theorem 4.4 we list all closed 3-manifolds for which catg, (M) = 2. This is used
to list in Theorem 5.2 the possible prime closed 3-manifolds for which catg (M) = 2.
Here the obvious simple K-contractible pieces are (open) balls, (open) disk-bundles
over S!, and (open) I-bundles over K.

The proofs use techniques developed in [5,8,9].

2 K,-contractible Subsets and Basic Properties

Even though the definitions can be made for any space, we assume in this section that
M is a 3-manifold and Kj is a connected complex of dimension < 2.

Definition 2.1 A subset W is Ky-contractible (in M) if there are maps f: W — K,
and a: Ky — M such that the inclusion map ¢: W — M is homotopic to « - f.
Notice we do not require W to be connected. The Ky-category catg,(M) is defined
to be the smallest number m such that M can be covered by m open Kj-contractible
subsets.

A subset of a Kj-contractible subset is Kj-contractible.

Remark 2.2 1If a complex L is a retract of a 2-complex Kj, then an L-contractible
set is Ky-contractible.

This can be seen as follows. For an L-contractible set W C M, there are maps
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f:W — Land a: L — M suchthata - f >~ . Let j: L — Kj be the inclusion and
r: Ko — L the retraction. Then (ar) - (jf) ~ ¢. Thus W is Ky-contractible.

Clearly for Ky = T (the torus), a subset W of M that is homeomorphic to an I-
bundle over T is T-contractible. By the remark, a 3-ball, a solid torus, or a solid Klein
bottle in M are T-contractible.

For Ky = K (the Klein bottle), subsets W of M homeomorphic to I-bundles over
K, 3-balls, solid tori, or solid Klein bottles are K-contractible.

If W is Ky-contractible, then for every basepoint + € W, the image: 7, (7, (W, )) is
a subgroup of o, (7 (Ky, f(x))), which is isomorphic to a quotient Q of 1 (K, f(x*)).
We say that W is Q-contractible. More generally (see [9]), we have the following
definition.

Definition 2.3 Let G be a nonempty class of groups. A subset W of M is G-
contractible if for any base point x € W, the image ¢..(m; (W, %)) C m(M, *) belongs
to §. The smallest number m such that M admits a covering by open G-contractible
subsets is the G-category catg (M).

If G is closed under subgroups, then a subset of a §-contractible set is §-contrac-
tible.

A quotient group Q of a group G is a 3-manifold quotient, if Q can be realized as
the fundamental group of some 3-manifold. By considering covering spaces we see
that subgroups of 3-manifold quotients are 3-manifold quotients.

With these notations, a Ky-contractible subset is also G, -contractible, where G,
is the set of subgroups of 3-manifold quotients of Xy = m(Kj), and we have 1 <
catgy, (M) < catg, (M).

In particular, to classify closed 3-manifold M with catg, (M) = 2, where Kj is a
torus or Klein bottle, we first classify those M with catGy, (M) < 2. The first step is
to obtain in the next section a complete list of all subgroups of 3-manifold quotient
groups of 71 (T) and 7 (K).

We use the following notation:

o #:M? denotes a connected sum of k copies of a 3-manifold M°.

e L or L; denotes a lens space different from S* or §?x S!.

o 2%, TXS!, KxS! denote an S2-bundle over S!, a torus-bundle over S!, a Klein
bottle-bundle over S!, resp. The bundles may be product bundles.

¢ Tg denotes a T-semi bundle, i.e., a union of two twisted I-bundles over the torus
T along their (connected) torus boundary. (This terminology is due to Hatcher
[10].)

e K denotes either a K-semi bundle, i.e., a union of two twisted I-bundles over
the Klein bottle K along their (connected) boundary or a union of the oriented
twisted I-bundle over K and a twisted I-bundle over T along their (connected)
boundary.

3 3-manifold Quotient Groups of the Klein Bottle Group

In this section we list all compact 3-manifolds whose fundamental groups are isomor-
phic to a subgroup of a 3-manifold quotient of the torus T or Klein bottle K. This is
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easy for the fundamental group T of the torus, since the abelian groups that occur as
fundamental groups of 3-manifolds are well known (see e.g., [11, Thm 9.13]).
The set of subgroups of 3-manifold quotients of T = 7 x 7. is

Gg = {1, 2, 2, 7x 715, IX 1}

(for all m > 2).

The corresponding compact 3-manifolds are listed in the next proposition. Here
M denotes the 3-manifold obtained from the 3-manifold M by capping off all
2-sphere boundary componens with 3-balls.

Proposition 3.1 If M is a compact 3-manifold with m(M) € G, then M is one of
the following:

(i)  a lens space (including S°),

(ii) P*xI,

(iii) an S?-bundle over S,

(iv) a solid torus or solid Klein bottle,

(v) P?xSl,

(vi) an I-bundle over the torus.

To obtain an analogous result for 3-manifold quotients of the Klein bottle group,
we begin by listing all the possible isomorphism types of subgroups of the funda-
mental group X of the Klein bottle K.

Lemma 3.2 Let H be a nontrivial subgroup of X. If H has infinite index, then H is
isomorphic to 7; if H has finite index, then H is isomorphic to Z.xX 7. or K.

Proof If H C X has infinite index, the covering space X of the Klein bottle K corre-
sponding to H is a noncompact surface, so H is a free group. Since X is solvable, it
does not contain a free subgroup of rank 2, hence H = 7. If H C X has finite index,
then H 2 7;(X), where X is a finite sheeted covering of K. So X is a torus or a Klein
bottle, and the result follows. [ |

Next we list the normal subgroups of K. We represent K by
K={(ab:b'ab=a""').

Every g € X has a unique representation of the form a™b" by using the relation

s a’b’  ifriseven,
ba’ = o
a—b" ifrisodd.

Then for k # 0,

a" p™if nis even,
(@"b")* = {amb™  ifnis odd, kis odd,
bk if n is odd, k is even.
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Lemma 3.3 If H is a cyclic normal subgroup of X generated by a™b", then n is even
and either n = 0 or m = 0.

Proof Wehave a—'a™b"a = (a"b")¥ for some k. If n is odd, it follows that a™2b" =
a™b"™ (if k is odd), or a™2b" = b™ (if k is even), a contradiction.

Thus assume 7 is even. Then b= 2a™b"b = (a™b")* for some k, or a—"b"
It follows that m = 0 or n = 0. [ |

— amkbnk

Now consider non-cyclic normal subgroups H of K. We write H = (x, y) to mean
that H is generated by x and y (not necessarily normally generated by x and y). By
Lemma 3.2, a noncyclic subgroup of K can be generated by two elements. Further-
more, by [12, Proposition 3.4], we may assume that

(3.1) H = (a’,a"b"),where0 <m <r, n>0, withindex |X: H| = rn.
H is a Klein bottle group (resp. torus group), if  is odd (resp. n is even).

Lemma 3.4 Let H asin (3.1) be a normal subgroup of X.
Ifnis odd, then H = (a,b"), H = (a®,b"), or H = (a?, ab").
Ifnis even and m # 0, then H = (a*" a™b").

Proof (a) Suppose 7 is odd. Then for each k we have a%a"b"a* = a"~2*p" € H.
Hence, if m is even, b" € H, and if m is odd, ab" € H.

If m is even, a~'b"a = a~%b" € H, hence a*> € H and it follows that H =
(a",a* a™, b") = (a,b") if ris odd, and H = (a*, b") if r is even.

If mis odd, b= 'ab"b = a~'b" € H, and ab"(a~'b")~! = a> € H, and it follows
that H = (a", a*, ab") = {(a, b") if r is odd, and H = (a?,ab") if r is even.

(b) Now suppose that 7 is even and m # 0. Then b(a™b")b~! = a~"b" € H,
so (a"b")(a~"b") "' = " € H. It follows that a®” = (a")*(a™b")!, for some k, I,
and since H = 7 x 7 with generators a” and a”b", that | = 0, 2m = rk. But
0<rk=2m<2rs0k=1,ie,a*™ =da. [ ]

Using Lemmas 3.3 and 3.4 we can now determine which quotients G = X/H are
fundamental groups of 3-manifolds.

A prism manifold Mp is a Seifert fiber space obtained from the orientable twisted
I-bundle over the Klein bottle, (K xI),, and a solid torus V' by identifying their torus
boundaries. Its fundamental group has a presentation 7 (Mp) = (a,b : b~ 'ab =
a=',a"b*" = 1), where gcd(m, n) = 1 and the curve a”b*" on (K xI), is identified
with the meridian of V.

Proposition 3.5 Suppose G = K /H is the fundamental group of a 3-manifold. Then
Ge{l,2,,2,K,Z X 1,2, x 15, 7 (Mp) }, where Mp is a prism manifold.

Proof Suppose H is a proper normal subgroup of X and G = X/H = 7 (M). Since
G is finitely generated, we may assume that M is compact and, by filling in boundary
spheres with 3-balls, that OM contains no 2-spheres. In the arguments below we
repeatedly use the property that every subgroup of the 3-manifold group G is a 3-
manifold group. Let A = (a, b?) be the abelian subgroup of G generated by a and b
If n is even, we write 2n instead of n (where now n € N). Using Lemmas 3.3 and 3.4
we consider the following cases:
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(1) H=17Z,
(2) H= X, nodd,
(3) HX=Z x Z, n even.

In case (1), we have two subcases:

(la) G=(a,b: b 'ab=a ', b =1), AXZ X7, or
(Ib) G={a,b:blab=a""a" =1), AXL X1,

In (1a), the subgroup A is a 3-manifold group only for n = 1 or 2. For n = 1,
G={(a,b:blab=a ' b* =1) X7, % 1,.

Forn = 2,G = {a,b : b='ab = a~!,b* = 1), and we claim that this is not a
3-manifold group.

To see this, note that x = b? is the only element of order 2 in G. For if
w=a'b’ € G has order 2 and s is even, thenw € A ¥ Z x 7, = (a,x : ax =
xa,x* = 1), and so w = x. If s is odd, then w? = b* = x* = 1 € A implies s even, a
contradiction.

Now suppose G 2 (M) and let g: M — M be the 2-fold covering of M corre-
sponding to A. Then M is a punctured P>x S'. Let P2 = P*x{z}, for a point z € S'.
The generator w of g, (m(P3)) is the unique element w € G of order 2. If there is
a 2-sphere S in M, then g(8) is a projective plane P2 C OM and the generator w,
of 7, (P?) is equal to w in G. This is a contradiction, since w lifts to the generator of
71 (P2), whereas w, does not lift to a loop in S. So M = P?xS', and it follows that
M = P>xS', hence m{(M) 2 Z &7, % G.

In (1b), the subgroup A is a 3-manifold group only for m = 1 or 2. For m = 1,
G={(ab:blab=a'la=1)27Z Form=2,G=(a,b:blab=a""'a* =
1> =7 X 1,.

For case (2), we have three subcases:

(2a) G=(a,b:blab=ala=1,b"=1) 2 7,.
(2b) G={a,b:blab=a""'a>=1,0"=1) X7, x Z,.

Since nis odd, G = 7Z,,,.
(2c) G={(a,b:b"lab=a"',a* = 1,ab" = 1) = 7,,.

In case (3), we have two subcases:

(3a) G=(a,b: b 'ab=a"',a* = 1,a"p*" = 1) (m # 0).
(3b) G={a,b:blab=a"'a" =1, =1), AXZ, X7,

In (3a), a*" = 1 is a consequence of b~'ab = a~! and a”b*" = 1, hence
G={a,b:b"'ab=a""a"b*" =1).

For d = gcd(m,n) = mp + ng, x = a™4(b*)"%, y = a(b*)~P, the abelian
subgroup generated by a and b has presentation

A= <X,}/ Xy = yxaxd = l,yan/d = 1> = Za % Z2ﬂm/d =1L x ZZn’m’d;

where m = dm’,n = dn’. This is a 3-manifold group only for d = 1, and it follows
that G is the fundamental group of a prism manifold Mp, obtained from (K 1),
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the orientable twisted I-bundle over K with 7, (9(K XI),) generated by a and b?, by
attaching a solid torus V along 9(K xI), such that the meridian of V is identified
with the curve a™b*".

In (3b), if the subgroup A is a 3-manifold group, then gcd(r,n) = 1. If r is even,
r = 2k, then (a¥)~! = 4* and the subgroup Ay = (a*,b) = 7, x Z,, is not a
3-manifold group. So assume that r is odd. By Milnor [13], every element of order
2 in a finite 3-manifold group is central, hence (b")"'ab” = a. If n is odd, then
b=lab = a~! implies that (b")~'ab" = a1, so a* = 1. Since r is odd, then a" = 1
implies a = 1, a contradiction (since we assumed that r > 1).

Hence G = {(a,b : b~'ab = a~',a" = 1, b4 = 1), n’ > 1, r odd. Note that
there is a unique epimorphisms ¢: G — Z;. We now show that if M is 3-manifold
different from a lens space or a prism manifold and with finite fundamental group,
then there is no epimorphisms (M) — 7Z,.

By Perelman (see e.g., [1]), M is spherical, and by Orlik [14, p. 111, Theorem 2],
the fundamental groups of these M are isomorphic to Z; x T, (m = 3,4,5, 3%g),
where

Tw=(x,y:5" = (xy)’ = y" x* = 1) form = 3,4,5,

k

T3"8 = <x7}’722x2 = (x)’)z :yzvzxzil :}’72)’271 :xyaza = 1>(k2 1)7

and s is coprime to 30 for m = 5 and coprime to 6 in all other cases.
The abelianization of T, is 73, 75, 1 resp. for m = 3,4, 5 and the abelianization
of Tsig is Z3x. Since s is odd, there is no epimorphism Z; x T,, — 7. ]

Corollary 3.6 The set of subgroups of 3-manifold quotients of X is
9:}( = {1, Zn, Z, ZXZ, j(:, 7 X Zz, Zz * Zz, ™ (Mp)}7

where Mp is a prism manifold.

Proof The nontrivial subgroups of X are isomorphic to Z, ZxZ, and X. The proper
3-manifold quotients of X are listed in Proposition 3.5. In [8, Lemma 5] it is shown
that the only nontrivial 3-manifold subgroups of 7, * 7, are 7Z,, 7, and 7, * 7,.
If R is a subgroup of m;(Mp), consider the (finite sheeted) covering p: M — Mp
corresponding to R. The prism manifold Mp is a union of the orientable twisted K X I
and a solid torus V; since p~!(V') consists of solid tori, it follows that p~! (KXI) =~
KxI or TxI, and M is either a prism manifold or a lens space. ]

The compact 3-manifolds whose fundamental groups are as in Corollary 3.6 are
well known and are listed in the next proposition.

Proposition 3.7 If M is a compact 3-manifold with m,(M) € G, then M is one of
the following:

(i)  a lens space (including S°),

(ii) an S2-bundle over S,

(iii) P2xSt,

(iv) a prism manifold,
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(v) P3#P3, P*xI, P>#P*xI, P> x [#P>x],
(vi) an I-bundle over the torus or Klein bottle,
(vii) a solid torus or solid Klein bottle.

4 Closed 3-manifolds with G-category < 2.

In this section we let § = G5 or Go.
The following proposition is a restatement of Propositions 3.1 and 3.7 for closed
3-manifolds.

Proposition 4.1 Let M be a closed 3-manifold. Then

(i) catg, (M) = 1 ifand only if M is a lens space (including S®), an S>-bundle over
SY or P2xSY;

(ii) catg, (M) = 1ifand only if M is a lens space (including S*), an S*-bundle over
SY, P2x S, P#P3, or a prism manifold.

We now consider the case catg(M) = 2. Then by [8, Proposition 1] we may
assume that M is a union of compact (not necessarily connected) §-contractible
3-submanifolds W, W1, such that WoNW; = W, = OW, is a surface F (not nec-
essarily connected). For a component F’ of F and W/ of M — N(F) (where N(F) is
a product neighborhood of F), the images im(m;(F’) — m1(M)) and im(m (W/) —
m1(M)) are contained in im((m; (W;) — m;(M)), for i = 0, 1, and since G is closed
under subgroups, we conclude that F and the components of M — N(F) are §-con-
tractible. If a non-2-sphere component F’ of F is compressible in M — N(F), we
do surgery on a compressing disk to get a new decomposition of M with a new
G-contractible surface F of smaller complexity and such that the components of
M — N(F) are G-contractible. Here the complexity ¢(F) is 1, if F is the sphere; if
F is connected of genus g > 0, then ¢(F) = (2¢ — 1)w where w is the first infinite
ordinal; if F is not connected, the complexity of F is the sum of the complexities of
its components (see the proof of [7, Lemma 4]). Thus we may assume that every
non-sphere component of F is incompressible. If a 2-sphere component of F bounds
a ball in M, we delete it from F. Then every component of F and every component
C of M — N(F) is 7 -injective (i.e., the inclusions into M induce injections of funda-
mental groups). To sum up, we have the following ([9, Lemma 4]).

Lemma 4.2 ([9]) Let G be closed under subgroups and let M be a closed 3-manifold
with catg M < 2. Then there is a closed 2-sided surface F in M such that F and
M — N(F) are G-contractible and every component of F is an essential 2-sphere or in-
compressible. In particular, the inclusion of each component of F and each component
of M — N(F) into M is 7 -injective.

Theorem 4.3 Let M be a closed 3-manifold. Then catg. (M) = 2 if and only if M is
not as in Proposition 4.1 and for some i, j, k,m,n > 0,

M € { S*#;L#;(S* X S")#(P* x St (Ts)#(T xS } .

Proof We choose a 2-sided closed surface F C M as in Lemma 4.2 with a mini-
mal number of components. Since each component F’ of F is 7 -injective, 1 (F’) is
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isomorphic to a subgroup of a quotient of ZxZ; hence F’ is a two-sphere, projective
plane, or torus. Each component C of M — N(F) is Gg-contractible and 7 -injective,
hence C is as in Proposition 3.1. We cannot have Proposition 3.1(iv), since F’ is in-
compressible.

Suppose F’ is a torus and Cy, C; are adjacent components of M — N(F), such that
F’x{0} is a component of 9Cy and F'x {1} is a component of OC; (here we identify
N(F) with Fx [0, 1]). Then Cy, C; are punctured I-bundles over T.

If Cy # Cj, then C; cannot be a (punctured) product I-bundle, by the minimal-
ity of the number of components of F. Since in Proposition 3.1 there are no other
compact 3-manifolds with boundary a torus, Cy and C; are (punctured) twisted
I-bundles and Cy U F’x [0, 1] U C; is a (punctured) torus semi-bundle.

IfCy = Cy, then Cy =~ F'xIand CyUF’ x [0, 1] is a (punctured) T-bundle over S'.

By the same argument, if a component F’ is a projective plane, we obtain a punc-
tured P>xS! in M.

Hence the collection of 2-sphere components of F cuts M into punctured lens
spaces, punctured S? x S'’s, punctured T-bundles over S', punctured T-semi bundles,
and punctured P> xS"’s, and M is as in Theorem 4.3.

Conversely, if M is as in Theorem 4.3, we can find a disjoint collection F of
tori, projective planes, and 2-spheres that cuts M into punctured TxI’s, punc-
tured P?>xSVs, punctured S>xS"s, and punctured lens spaces. Let W, = FxI and
W; = M — N(F). Then W; is Gy-contractible fori = 0,l,and M = WoUW;. R

Using the same technique, we obtain the following theorem.

Theorem 4.4 Let M be a closed 3-manifold. Then catg, (M) = 2 if and only if M is
not as in Proposition 4.1 and for some i, j, k,m,n,s, t,r > 0,

M € { S#;L#;(S*XS")#1(P* x S" )t (Ts)#,(Ks)#(Tx S, (K x S")#, (Mp } .

Proof Following the above proof of Theorem 4.3, we obtain a 2-sided incompress-
ible closed surface F C M such that every component F’ of F is a two-sphere, pro-
jective plane, torus, or Klein bottle, and each component C of M — N(F) is Gy -con-
tractible, 7 -injective, with C as in Proposition 3.7, except as in Proposition 3.1(vii).
If a component of M — N(F) is a (punctured) connected sum as in case (v), we cut it
along the connected sum sphere and adjoin the resulting spheres to F. Also note that
P3 is a lens space. Now if a component F’ is a projective plane or Klein bottle, the
argument in the proof of Theorem 4.3 applies to yield a (punctured) Ks or Kx S'.

If F’ is a torus and Cy, C; are adjacent components of M — N(F), then each of
Cy, C, is a punctured I-bundle over T or the orientable punctured I-bundle over K
and we obtain a (punctured) T-bundle over S! or a (punctured) torus semi-bundle
or (punctured) K.

Then the collection of 2-sphere components of F cuts M into punctured lens
spaces, punctured S?xS's, punctured T- and K-bundles over S', punctured T and
K-semi bundles, punctured P?xS'’s, and prism manifolds Mp, and M is as in Theo-
rem 4.4.

The converse follows as above. ]
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5 Prime 3-manifolds with T- and K-category < 2.

Let L = T or L = K in this section.

Since an L-contractible set is G ¢ -contractible, 1 < catg, (M) < caty(M). If M is
closed, H3(M; Z,) ~ Z,, and the identity map id: H3(M; Z;) — H3(M; Z;) does not
factor through H3(L; Z,) = 0, hence cat; (M) > 2. If M is closed and cat, (M) = 2,
it follows that M is as in Theorem 4.3 for L = T and as in Theorem 4.4 for L = K.
However, not every member of the family

(5.1) {SP#;L#;(S* X S ) # (P> x S )t (Ts)#,(TXS")}, resp.
(5.2)  {S’#;L#;(S* XS )#k(P* X S" ) (Ts)#, (Ks)# (T S")#, (K x S")#,(Mp}

is of T- (resp. K-) category 2. In [8, Lemma 2], it is shown that if M is a closed
3-manifold with cat; (M) = 2, (where L is a 2-dimensional complex), then (for the
7,-rank)

rk(Hy (M;2,)) < rk(H\(L;2,)) + rk(H*(L; 2,)) .

Sofor L = T or L = K, the number of connected sum factors is restricted by
rk(H,(M; Z,)) < 3.
In the case that M is prime, we obtain the following theorem.

Theorem 5.1 Let M be a prime closed 3-manifold. Then caty(M) = 2 if and only if
M € {L,$*xS", P*xS", Ts, TxS'}.

Proof By the remarks above, it suffices to show that for every prime summand M of
(5.1), catg (M) = 2. Recall that solid tori, solid Klein bottles, and I-bundles over T
are T-contractible, and note that L, S2XS! are unions of two solid tori, resp. Klein
bottles along their boundary; P2xS! is a union of a twisted I-bundle over T and a
solid torus; Ts and TX S! are unions of two I-bundles over T. [ |

In the next theorem, denote by K a semi-bundle that is the union of two twisted
I-bundles over K.

Theorem 5.2 Let M be a prime closed 3-manifold.

(i) Ifcatg(M) = 2, then M € {L, $*xS', P*xS", Ts, Ks, TxS', KxS', Mp}.
(i) IfM € {L,$*xS', Ks,KxS', Mp}, then catg (M) = 2.

Proof For part (i) we list the prime summands of (5.2). For part (ii) recall that solid
tori, solid Klein bottles, and I-bundles over K are K-contractible; I?S and K xS are
unions of two I-bundles over K; each Mp is a union of the orientable twisted I-bundle
over K and a solid torus. [ |

In part (i), P?xS' can be obtained as a union of three solid tori and so is of K-
category at most 3. We do not know if catg (P> xS!) = 2.

Some T'x S are of K-category 2 and some are of K-category 3. To see this we show
the following proposition.
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Proposition 5.3 Suppose M is prime and 7, (M) is torsion free and does not contain
a subgroup isomorphic to the Klein bottle group X. Then catx(M) = 2 if and only if
M= S or M= S2xS

Proof If catg(M) = 2, then M = W, U W), and there are maps f;: W; — K,
a;j: K — M such that o; - f; ~ j;, where j;: W; — M is inclusion. For each
component W, of W;, j; (m(W/)) C ay,(m(K)) C m(M) is a quotient of K. By
Proposition 3.5 and the assumptions on (M), o, (7 (K)) is trivial or 7Z. Hence for
G = {1,7Z}, W; is G-contractible and catg(M) < 2. If catg(M) = 1, then M = S or
$2x St

The case that catg(M) = 2 does not occur; otherwise, by Proposition 4.2, there
is a 2-sided m-injective and G- contractible surface F. Then each component of F
is a 2-sphere. Since the 2-spheres of F are essential and M is prime, it follows that
M 22 §2xS!, ie., catg(M) = 1. ]

Example 5.4 TFor Ts = TxS!, it follows from this proposition that catx(Ts) # 2.
Since TxS' can be obtained as a union of three solid tori (with intersection along
their boundaries), catx(Ts) = 3.

For Ts = M,, the T-bundle over S' in [11, 12.3.Examples], with
m1(M,) = {a,b,t :ab =ba,t 'at =a 't 7'bt = b7 "),

we have catg(Ts) = 2, since M, is a union of two (orientable) twisted I-bundles
over K.
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