

On 3-manifolds with Torus or Klein Bottle Category Two

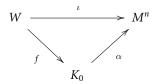
Wolfgang Heil and Dongxu Wang

Abstract. A subset W of a closed manifold M is K-contractible, where K is a torus or Klein bottle if the inclusion $W \to M$ factors homotopically through a map to K. The image of $\pi_1(W)$ (for any base point) is a subgroup of $\pi_1(M)$ that is isomorphic to a subgroup of a quotient group of $\pi_1(K)$. Subsets of M with this latter property are called \mathcal{G}_K -contractible. We obtain a list of the closed 3-manifolds that can be covered by two open \mathcal{G}_K -contractible subsets. This is applied to obtain a list of the possible closed prime 3-manifolds that can be covered by two open K-contractible subsets.

1 Introduction

The study of critical points for a smooth function on a manifold M^n led Lusternik and Schnirelmann to introduce what is today called the Lusternik–Schnirelmann category for a manifold M^n , denoted by $cat(M^n)$. It is defined as the smallest number of sets, open and contractible in M^n needed to cover M^n . It is a homotopy invariant with values between 2 and n + 1 and has been studied widely; many references can be found in [3].

In [2], Clapp and Puppe generalized $cat(M^n)$ as follows: For a fixed closed connected k-manifold K_0 , $0 \le k \le n-1$, a subset W in M^n is said to be K_0 -contractible if there are maps: $f: W \to K_0$ and $\alpha: K_0 \to M^n$, such that the inclusion map $\iota: W \to M^n$ is homotopic to $\alpha \cdot f$.



The K_0 -category $\operatorname{cat}_{K_0}(M^n)$ of M^n is the smallest number of sets, open and K_0 -contractible needed to cover M^n . When K_0 is a point P, $\operatorname{cat}_P(M^n) = \operatorname{cat}(M^n)$, the Lusternik–Schnirelmann category. Note that a (in M) contractible set is K_0 -contractible, hence $\operatorname{cat}_{K_0}(M^n) \leq \operatorname{cat}(M^n)$. If M^n is closed, then applying homology H_n with \mathbb{Z}_2 -coefficients to the above homotopy commutative diagram shows that $2 \leq \operatorname{cat}_{K_0}(M^n) \leq \operatorname{cat}(M^n) \leq n+1$.

In particular, if M is a closed 3-manifold, we are interested in the beginning case when $cat_{K_0}(M) = 2$. If K_0 is a closed manifold, the first nontrivial choice for K_0 is S^1 .

Received by the editors March 27, 2013; revised August 24, 2013.

Published electronically October 12, 2013.

AMS subject classification: 57N10, 55M30, 57M27, 57N16.

Keywords: Lusternik-Schnirelmann category, coverings of 3-manifolds by open K-contractible sets.

It was shown in [4] that a closed 3-manifold M has $\operatorname{cat}_{S^1} M = 2$ if and only if $\pi_1 M$ is cyclic. From the results of Perelman (see *e.g.*, [1]), this means that $\operatorname{cat}_{S^1} M^3 = 2$ if and only if M is a lens space or the twisted S^2 -bundle over S^1 (here the term "lens space" includes S^3 and $S^2 \times S^1$). We notice that, even though an S^1 -contractible open set may not be homotopy equivalent to S^1 (and could be disconnected), this result shows that $\operatorname{cat}(M) = 2$ can be realized by a covering of M by two open solid tori or solid Klein bottles, each homotopy equivalent to S^1 .

The next simplest choice for K_0 is S^2 or P^2 . This case was considered in [6], where it was shown that for a closed 3-manifold M, $\operatorname{cat}_{S^2} M = 2$ if and only if M is S^3 or an S^2 -bundle over S^1 , and $\operatorname{cat}_{P^2} M = 2$ if and only if $M = S^3, P^3, P^3 \# P^3$, or $P^2 \times S^1$. We again observe that for $\operatorname{cat}_{S^2} M = 2$, M can be covered by two open $S^2 \times I$, each homotopy equivalent to S^2 , and that $\operatorname{cat}_{P^2} M = 2$ can be realized by a covering of M by two simple open pieces, each an open ball or open I-bundle over P^2 , i.e., each homotopy equivalent to a point or P^2 .

In this paper we consider the case when K_0 is a torus T or Klein bottle K.

Closely related to the K_0 -category is the more algebraic \mathcal{G}_{K_0} -category, where \mathcal{G}_{K_0} is the set of subgroups of 3-manifold quotient groups of $\pi_1(K_0)$. This is defined in Section 2. One has $1 \leq \operatorname{cat}_{\mathcal{G}_{K_0}}(M) \leq \operatorname{cat}_{K_0}(M)$.

In Theorem 4.3 we list all closed 3-manifolds for which $cat_{\mathfrak{G}_{\mathbb{T}}}(M)=2$ and use this to give in Theorem 5.1 a classification of all prime closed 3-manifolds M with $cat_{\mathbb{T}}(M)=2$. It turns out that these M admit a covering by two simple T-contractible open subsets, each homeomorphic to an (open) ball, an (open) solid torus or solid Klein bottle, or an (open) I-bundle over \mathbb{T} .

In Theorem 4.4 we list all closed 3-manifolds for which $cat_{g_K}(M) = 2$. This is used to list in Theorem 5.2 the possible prime closed 3-manifolds for which $cat_K(M) = 2$. Here the obvious simple K-contractible pieces are (open) balls, (open) disk-bundles over S^1 , and (open) *I*-bundles over K.

The proofs use techniques developed in [5, 8, 9].

2 K_0 -contractible Subsets and Basic Properties

Even though the definitions can be made for any space, we assume in this section that M is a 3-manifold and K_0 is a connected complex of dimension ≤ 2 .

Definition 2.1 A subset W is K_0 -contractible (in M) if there are maps $f: W \to K_0$ and $\alpha: K_0 \to M$ such that the inclusion map $\iota: W \to M$ is homotopic to $\alpha \cdot f$. Notice we do not require W to be connected. The K_0 -category $\text{cat}_{K_0}(M)$ is defined to be the smallest number m such that M can be covered by m open K_0 -contractible subsets.

A subset of a K_0 -contractible subset is K_0 -contractible.

Remark 2.2 If a complex L is a retract of a 2-complex K_0 , then an L-contractible set is K_0 -contractible.

This can be seen as follows. For an L-contractible set $W \subset M$, there are maps

 $f: W \to L$ and $\alpha: L \to M$ such that $\alpha \cdot f \simeq \iota$. Let $j: L \to K_0$ be the inclusion and $r: K_0 \to L$ the retraction. Then $(\alpha r) \cdot (jf) \simeq \iota$. Thus W is K_0 -contractible.

Clearly for $K_0 = T$ (the torus), a subset W of M that is homeomorphic to an I-bundle over T is T-contractible. By the remark, a 3-ball, a solid torus, or a solid Klein bottle in M are T-contractible.

For $K_0 = K$ (the Klein bottle), subsets W of M homeomorphic to I-bundles over K, 3-balls, solid tori, or solid Klein bottles are K-contractible.

If W is K_0 -contractible, then for every basepoint $*\in W$, the image: $i_*(\pi_1(W,*))$ is a subgroup of $\alpha_*(\pi_1(K_0,f(*)))$, which is isomorphic to a quotient Q of $\pi_1(K_0,f(*))$. We say that W is Q-contractible. More generally (see [9]), we have the following definition.

Definition 2.3 Let \mathcal{G} be a nonempty class of groups. A subset W of M is \mathcal{G} -contractible if for any base point $* \in W$, the image $\iota_*(\pi_1(W,*)) \subseteq \pi_1(M,*)$ belongs to \mathcal{G} . The smallest number m such that M admits a covering by open \mathcal{G} -contractible subsets is the \mathcal{G} -category $\text{cat}_{\mathcal{G}}(M)$.

If $\mathcal G$ is closed under subgroups, then a subset of a $\mathcal G$ -contractible set is $\mathcal G$ -contractible.

A quotient group *Q* of a group *G* is a 3-manifold quotient, if *Q* can be realized as the fundamental group of some 3-manifold. By considering covering spaces we see that subgroups of 3-manifold quotients are 3-manifold quotients.

With these notations, a K_0 -contractible subset is also $G_{\mathcal{K}_0}$ -contractible, where $G_{\mathcal{K}_0}$ is the set of subgroups of 3-manifold quotients of $\mathcal{K}_0 = \pi_1(K_0)$, and we have $1 \le \operatorname{cat}_{\mathcal{G}_{K_0}}(M) \le \operatorname{cat}_{K_0}(M)$.

In particular, to classify closed 3-manifold M with $cat_{K_0}(M) = 2$, where K_0 is a torus or Klein bottle, we first classify those M with $cat_{G_{\mathcal{K}_0}}(M) \leq 2$. The first step is to obtain in the next section a complete list of all subgroups of 3-manifold quotient groups of $\pi_1(T)$ and $\pi_1(K)$.

We use the following notation:

- $\#_k M^3$ denotes a connected sum of *k* copies of a 3-manifold M^3 .
- L or L_i denotes a lens space different from S^3 or $S^2 \times S^1$.
- $S^2 \widetilde{\times} S^1$, $T \widetilde{\times} S^1$, $K \widetilde{\times} S^1$ denote an S^2 -bundle over S^1 , a torus-bundle over S^1 , a Klein bottle-bundle over S^1 , resp. The bundles may be product bundles.
- T_S denotes a T-semi bundle, i.e., a union of two twisted I-bundles over the torus
 T along their (connected) torus boundary. (This terminology is due to Hatcher
 [10].)
- *K*_S denotes either a *K*-semi bundle, *i.e.*, a union of two twisted *I*-bundles over the Klein bottle *K* along their (connected) boundary or a union of the oriented twisted *I*-bundle over *K* and a twisted *I*-bundle over *T* along their (connected) boundary.

3 3-manifold Quotient Groups of the Klein Bottle Group

In this section we list all compact 3-manifolds whose fundamental groups are isomorphic to a subgroup of a 3-manifold quotient of the torus *T* or Klein bottle *K*. This is

easy for the fundamental group \mathcal{T} of the torus, since the abelian groups that occur as fundamental groups of 3-manifolds are well known (see *e.g.*, [11, Thm 9.13]).

The set of subgroups of 3-manifold quotients of $\mathfrak{T} \cong \mathbb{Z} \times \mathbb{Z}$ is

$$\mathcal{G}_{\mathfrak{T}} = \{1, \mathbb{Z}_m, \mathbb{Z}, \mathbb{Z} \times \mathbb{Z}_2, \mathbb{Z} \times \mathbb{Z}\}$$

(for all $m \ge 2$).

The corresponding compact 3-manifolds are listed in the next proposition. Here \widehat{M} denotes the 3-manifold obtained from the 3-manifold M by capping off all 2-sphere boundary componens with 3-balls.

Proposition 3.1 If M is a compact 3-manifold with $\pi_1(M) \in \mathcal{G}_{\mathfrak{I}}$, then \widehat{M} is one of the following:

- (i) a lens space (including S^3),
- (ii) $P^2 \times I$,
- (iii) an S^2 -bundle over S^1 ,
- (iv) a solid torus or solid Klein bottle,
- (v) $P^2 \times S^1$,
- (vi) an I-bundle over the torus.

To obtain an analogous result for 3-manifold quotients of the Klein bottle group, we begin by listing all the possible isomorphism types of subgroups of the fundamental group $\mathcal K$ of the Klein bottle K.

Lemma 3.2 Let H be a nontrivial subgroup of K. If H has infinite index, then H is isomorphic to \mathbb{Z} ; if H has finite index, then H is isomorphic to $\mathbb{Z} \times \mathbb{Z}$ or K.

Proof If $H \subseteq \mathcal{K}$ has infinite index, the covering space X of the Klein bottle K corresponding to H is a noncompact surface, so H is a free group. Since \mathcal{K} is solvable, it does not contain a free subgroup of rank 2, hence $H \cong \mathbb{Z}$. If $H \subseteq \mathcal{K}$ has finite index, then $H \cong \pi_1(X)$, where X is a finite sheeted covering of K. So X is a torus or a Klein bottle, and the result follows.

Next we list the normal subgroups of \mathcal{K} . We represent \mathcal{K} by

$$\mathfrak{K} = \langle a, b : b^{-1}ab = a^{-1} \rangle.$$

Every $g \in \mathcal{K}$ has a unique representation of the form $a^m b^n$ by using the relation

$$b^r a^s = \begin{cases} a^s b^r & \text{if } r \text{ is even,} \\ a^{-s} b^r & \text{if } r \text{ is odd.} \end{cases}$$

Then for $k \neq 0$,

$$(a^m b^n)^k = \begin{cases} a^{mk} b^{nk} & \text{if } n \text{ is even,} \\ a^m b^{nk} & \text{if } n \text{ is odd, } k \text{ is odd,} \\ b^{nk} & \text{if } n \text{ is odd, } k \text{ is even.} \end{cases}$$

Lemma 3.3 If H is a cyclic normal subgroup of X generated by a^mb^n , then n is even and either n = 0 or m = 0.

Proof We have $a^{-1}a^mb^na = (a^mb^n)^k$ for some k. If n is odd, it follows that $a^{m-2}b^n = a^mb^{nk}$ (if k is odd), or $a^{m-2}b^n = b^{nk}$ (if k is even), a contradiction.

Thus assume n is even. Then $b^{-1}a^mb^nb = (a^mb^n)^k$ for some k, or $a^{-m}b^n = a^{mk}b^{nk}$. It follows that m = 0 or n = 0.

Now consider non-cyclic normal subgroups H of K. We write $H = \langle x, y \rangle$ to mean that H is generated by x and y (not necessarily *normally* generated by x and y). By Lemma 3.2, a noncyclic subgroup of K can be generated by two elements. Furthermore, by [12, Proposition 3.4], we may assume that

```
(3.1) H = \langle a^r, a^m b^n \rangle, where 0 \le m < r, n > 0, with index |\mathcal{K}: H| = rn.
```

H is a Klein bottle group (resp. torus group), if n is odd (resp. n is even).

```
Lemma 3.4 Let H as in (3.1) be a normal subgroup of \mathcal{K}. If n is odd, then H = \langle a, b^n \rangle, H = \langle a^2, b^n \rangle, or H = \langle a^2, ab^n \rangle. If n is even and m \neq 0, then H = \langle a^{2m}, a^m b^n \rangle.
```

Proof (a) Suppose n is odd. Then for each k we have $a^{-k}a^mb^na^k = a^{m-2k}b^n \in H$. Hence, if m is even, $b^n \in H$, and if m is odd, $ab^n \in H$.

If m is even, $a^{-1}b^na = a^{-2}b^n \in H$, hence $a^2 \in H$ and it follows that $H = \langle a^r, a^2, a^m, b^n \rangle = \langle a, b^n \rangle$ if r is odd, and $H = \langle a^2, b^n \rangle$ if r is even.

If *m* is odd, $b^{-1}ab^nb = a^{-1}b^n \in H$, and $ab^n(a^{-1}b^n)^{-1} = a^2 \in H$, and it follows that $H = \langle a^r, a^2, ab^n \rangle = \langle a, b^n \rangle$ if *r* is odd, and $H = \langle a^2, ab^n \rangle$ if *r* is even.

(b) Now suppose that n is even and $m \neq 0$. Then $b(a^mb^n)b^{-1} = a^{-m}b^n \in H$, so $(a^mb^n)(a^{-m}b^n)^{-1} = a^{2m} \in H$. It follows that $a^{2m} = (a^r)^k(a^mb^n)^l$, for some k, l, and since $H \cong \mathbb{Z} \times \mathbb{Z}$ with generators a^r and a^mb^n , that l = 0, 2m = rk. But 0 < rk = 2m < 2r, so k = 1, *i.e.*, $a^{2m} = a^r$.

Using Lemmas 3.3 and 3.4 we can now determine which quotients $G = \mathcal{K}/H$ are fundamental groups of 3-manifolds.

A *prism manifold* M_P is a Seifert fiber space obtained from the orientable twisted I-bundle over the Klein bottle, $(K \widetilde{\times} I)_o$, and a solid torus V by identifying their torus boundaries. Its fundamental group has a presentation $\pi_1(M_P) = \langle a, b : b^{-1}ab = a^{-1}, a^mb^{2n} = 1 \rangle$, where $\gcd(m, n) = 1$ and the curve a^mb^{2n} on $\partial(K \widetilde{\times} I)_o$ is identified with the meridian of V.

Proposition 3.5 Suppose $G = \mathcal{K}/H$ is the fundamental group of a 3-manifold. Then $G \in \{1, \mathbb{Z}_n, \mathbb{Z}, \mathcal{K}, \mathbb{Z} \times \mathbb{Z}_2, \mathbb{Z}_2 * \mathbb{Z}_2, \pi_1(M_P)\}$, where M_P is a prism manifold.

Proof Suppose H is a proper normal subgroup of $\mathcal K$ and $G=\mathcal K/H=\pi_1(M)$. Since G is finitely generated, we may assume that M is compact and, by filling in boundary spheres with 3-balls, that ∂M contains no 2-spheres. In the arguments below we repeatedly use the property that every subgroup of the 3-manifold group G is a 3-manifold group. Let $A=\langle a,b^2\rangle$ be the abelian subgroup of G generated by a and b^2 . If n is even, we write 2n instead of n (where now $n\in\mathbb N$). Using Lemmas 3.3 and 3.4 we consider the following cases:

- (1) $H \cong \mathbb{Z}$,
- (2) $H \cong \mathcal{K}$, n odd,
- (3) $H \cong \mathbb{Z} \times \mathbb{Z}$, n even.

In case (1), we have two subcases:

(1a)
$$G = \langle a, b : b^{-1}ab = a^{-1}, b^{2n} = 1 \rangle$$
, $A \cong \mathbb{Z} \times \mathbb{Z}_n$, or

(1b)
$$G = \langle a, b : b^{-1}ab = a^{-1}, a^m = 1 \rangle$$
, $A \cong \mathbb{Z} \times \mathbb{Z}_m$.

In (1a), the subgroup A is a 3-manifold group only for n = 1 or 2. For n = 1, $G = \langle a, b : b^{-1}ab = a^{-1}, b^2 = 1 \rangle \cong \mathbb{Z}_2 * \mathbb{Z}_2.$

For n=2, $G=\langle a,b:b^{-1}ab=a^{-1},b^4=1\rangle$, and we claim that this is not a 3-manifold group.

To see this, note that $x = b^2$ is the only element of order 2 in G. For if $w = a^r b^s \in G$ has order 2 and s is even, then $w \in A \cong \mathbb{Z} \times \mathbb{Z}_2 = \langle a, x : ax = a \rangle$ $xa, x^2 = 1$, and so w = x. If s is odd, then $w^2 = b^{2s} = x^s = 1 \in A$ implies s even, a contradiction.

Now suppose $G \cong \pi_1(M)$ and let $g \colon \widetilde{M} \to M$ be the 2-fold covering of M corresponding to A. Then \widetilde{M} is a punctured $P^2 \times S^1$. Let $P_0^2 = P^2 \times \{z\}$, for a point $z \in S^1$. The generator w of $g_*(\pi_1(P_0^2))$ is the unique element $w \in G$ of order 2. If there is a 2-sphere S in ∂M , then g(S) is a projective plane $P_*^2 \subset \partial M$ and the generator w_* of $\pi_1(P_*^2)$ is equal to w in G. This is a contradiction, since w lifts to the generator of $\pi_1(P_0^2)$, whereas w_* does not lift to a loop in S. So $M = P^2 \times S^1$, and it follows that $M = P^2 \times S^1$, hence $\pi_1(M) \cong \mathbb{Z} \oplus \mathbb{Z}_2 \ncong G$.

In (1b), the subgroup A is a 3-manifold group only for m = 1 or 2. For m = 1, $G = \langle a, b : b^{-1}ab = a^{-1}, a = 1 \rangle \cong \mathbb{Z}$. For m = 2, $G = \langle a, b : b^{-1}ab = a^{-1}, a^2 = a^{-1}$ $1\rangle \cong \mathbb{Z} \times \mathbb{Z}_2$.

For case (2), we have three subcases:

(2a)
$$G = \langle a, h : h^{-1}ah = a^{-1}, a = 1, h^n = 1 \rangle \cong \mathbb{Z}_m$$

(2a)
$$G = \langle a, b : b^{-1}ab = a^{-1}, a = 1, b^n = 1 \rangle \cong \mathbb{Z}_n$$
.
(2b) $G = \langle a, b : b^{-1}ab = a^{-1}, a^2 = 1, b^n = 1 \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_n$.

Since *n* is odd, $G \cong \mathbb{Z}_{2n}$.

(2c)
$$G = \langle a, b : b^{-1}ab = a^{-1}, a^2 = 1, ab^n = 1 \rangle \cong \mathbb{Z}_{2n}$$
.

In case (3), we have two subcases:

(3a)
$$G = \langle a, b : b^{-1}ab = a^{-1}, a^{2m} = 1, a^mb^{2n} = 1 \rangle \ (m \neq 0).$$

(3b)
$$G = \langle a, b : b^{-1}ab = a^{-1}, a^r = 1, b^{2n} = 1 \rangle$$
, $A \cong \mathbb{Z}_r \times \mathbb{Z}_n$.

In (3a), $a^{2m} = 1$ is a consequence of $b^{-1}ab = a^{-1}$ and $a^mb^{2n} = 1$, hence

$$G = \langle a, b : b^{-1}ab = a^{-1}, a^m b^{2n} = 1 \rangle.$$

For $d = \gcd(m, n) = mp + nq$, $x = a^{m/d}(b^2)^{n/d}$, $y = a^q(b^2)^{-p}$, the abelian subgroup generated by a and b^2 has presentation

$$A = \langle x, y : xy = yx, x^d = 1, y^{2nm/d} = 1 \rangle \cong \mathbb{Z}_d \times \mathbb{Z}_{2nm/d} = \mathbb{Z}_d \times \mathbb{Z}_{2n'm'd},$$

where m = dm', n = dn'. This is a 3-manifold group only for d = 1, and it follows that G is the fundamental group of a prism manifold M_P , obtained from $(K \times I)_o$, the orientable twisted *I*-bundle over *K* with $\pi_1(\partial(K \times I)_o)$ generated by *a* and b^2 , by attaching a solid torus *V* along $\partial(K \times I)_o$ such that the meridian of *V* is identified with the curve $a^m b^{2n}$.

In (3b), if the subgroup A is a 3-manifold group, then $\gcd(r,n)=1$. If r is even, r=2k, then $(a^k)^{-1}=a^k$ and the subgroup $A_k=\langle a^k,b\rangle\cong\mathbb{Z}_2\times\mathbb{Z}_{2n}$ is not a 3-manifold group. So assume that r is odd. By Milnor [13], every element of order 2 in a finite 3-manifold group is central, hence $(b^n)^{-1}ab^n=a$. If n is odd, then $b^{-1}ab=a^{-1}$ implies that $(b^n)^{-1}ab^n=a^{-1}$, so $a^2=1$. Since r is odd, then $a^r=1$ implies a=1, a contradiction (since we assumed that r>1).

Hence $G = \langle a, b : b^{-1}ab = a^{-1}, a^r = 1, b^{4n'} = 1 \rangle$, $n' \geq 1$, r odd. Note that there is a unique epimorphisms $\varphi \colon G \to \mathbb{Z}_4$. We now show that if M is 3-manifold different from a lens space or a prism manifold and with finite fundamental group, then there is no epimorphisms $\pi_1(M) \to \mathbb{Z}_4$.

By Perelman (see *e.g.*, [1]), M is spherical, and by Orlik [14, p. 111, Theorem 2], the fundamental groups of these M are isomorphic to $\mathbb{Z}_s \times T_m$ ($m = 3, 4, 5, 3^k 8$), where

$$T_m = \langle x, y : x^2 = (xy)^3 = y^m, x^4 = 1 \rangle$$
 for $m = 3, 4, 5,$
 $T_{3k_8} = \langle x, y, z : x^2 = (xy)^2 = y^2, zxz^{-1} = y, zyz^{-1} = xy, z^{3^k} = 1 \rangle (k \ge 1),$

and s is coprime to 30 for m = 5 and coprime to 6 in all other cases.

The abelianization of T_m is \mathbb{Z}_3 , \mathbb{Z}_2 , 1 resp. for m = 3, 4, 5 and the abelianization of $T_{3^k 8}$ is \mathbb{Z}_{3^k} . Since s is odd, there is no epimorphism $\mathbb{Z}_s \times T_m \to \mathbb{Z}_4$.

Corollary 3.6 The set of subgroups of 3-manifold quotients of K is

$$\mathcal{G}_{\mathcal{K}} = \{1, \mathbb{Z}_n, \mathbb{Z}, \mathbb{Z} \times \mathbb{Z}, \mathcal{K}, \mathbb{Z} \times \mathbb{Z}_2, \mathbb{Z}_2 * \mathbb{Z}_2, \pi_1(M_P)\},\$$

where M_P is a prism manifold.

Proof The nontrivial subgroups of \mathcal{K} are isomorphic to \mathbb{Z} , $\mathbb{Z} \times \mathbb{Z}$, and \mathcal{K} . The proper 3-manifold quotients of \mathcal{K} are listed in Proposition 3.5. In [8, Lemma 5] it is shown that the only nontrivial 3-manifold subgroups of $\mathbb{Z}_2 * \mathbb{Z}_2$ are \mathbb{Z}_2 , \mathbb{Z} , and $\mathbb{Z}_2 * \mathbb{Z}_2$. If R is a subgroup of $\pi_1(M_P)$, consider the (finite sheeted) covering $p \colon \widetilde{M} \to M_P$ corresponding to R. The prism manifold M_P is a union of the orientable twisted $K \times I$ and a solid torus V; since $p^{-1}(V)$ consists of solid tori, it follows that $p^{-1}(K \times I) \approx K \times I$ or $T \times I$, and \widetilde{M} is either a prism manifold or a lens space.

The compact 3-manifolds whose fundamental groups are as in Corollary 3.6 are well known and are listed in the next proposition.

Proposition 3.7 If M is a compact 3-manifold with $\pi_1(M) \in \mathcal{G}_{\mathcal{K}}$, then \widehat{M} is one of the following:

- (i) a lens space (including S^3),
- (ii) an S^2 -bundle over S^1 ,
- (iii) $P^2 \times S^1$,
- (iv) a prism manifold,

- (v) $P^3 \# P^3$, $P^2 \times I$, $P^3 \# P^2 \times I$, $P^2 \times I \# P^2 \times I$,
- (vi) an I-bundle over the torus or Klein bottle,
- (vii) a solid torus or solid Klein bottle.

4 Closed 3-manifolds with G-category ≤ 2 .

In this section we let $\mathcal{G} = \mathcal{G}_{\mathcal{T}}$ or $\mathcal{G}_{\mathcal{K}}$.

The following proposition is a restatement of Propositions 3.1 and 3.7 for closed 3-manifolds.

Proposition 4.1 Let M be a closed 3-manifold. Then

- (i) $\operatorname{cat}_{\mathfrak{G}_{\mathfrak{T}}}(M) = 1$ if and only if M is a lens space (including S^3), an S^2 -bundle over S^1 , or $P^2 \times S^1$;
- (ii) $cat_{\mathfrak{G}_{\mathfrak{K}}}(M)=1$ if and only if M is a lens space (including S^3), an S^2 -bundle over S^1 , $P^2\times S^1$, $P^3\# P^3$, or a prism manifold.

We now consider the case $cat_{\mathfrak{S}}(M) = 2$. Then by [8, Proposition 1] we may assume that M is a union of compact (not necessarily connected) G-contractible 3-submanifolds W_0 , W_1 , such that $W_0 \cap W_1 = \partial W_0 = \partial W_1$ is a surface F (not necessarily connected). For a component F' of F and W'_i of M - N(F) (where N(F) is a product neighborhood of F), the images $\operatorname{im}(\pi_1(F') \to \pi_1(M))$ and $\operatorname{im}(\pi_1(W_i') \to \pi_1(M))$ $\pi_1(M)$) are contained in im($(\pi_1(W_i) \to \pi_1(M))$, for i = 0, 1, and since \mathcal{G} is closed under subgroups, we conclude that F and the components of $\overline{M-N(F)}$ are \mathcal{G} -contractible. If a non-2-sphere component F' of F is compressible in M - N(F), we do surgery on a compressing disk to get a new decomposition of M with a new 9-contractible surface F of smaller complexity and such that the components of $\overline{M-N(F)}$ are \mathcal{G} -contractible. Here the complexity c(F) is 1, if F is the sphere; if F is connected of genus g > 0, then $c(F) = (2g - 1)\omega$ where ω is the first infinite ordinal; if F is not connected, the complexity of F is the sum of the complexities of its components (see the proof of [7, Lemma 4]). Thus we may assume that every non-sphere component of F is incompressible. If a 2-sphere component of F bounds a ball in M, we delete it from F. Then every component of F and every component \mathfrak{C} of $\overline{M-N(F)}$ is π_1 -injective (*i.e.*, the inclusions into M induce injections of fundamental groups). To sum up, we have the following ([9, Lemma 4]).

Lemma 4.2 ([9]) Let \mathfrak{G} be closed under subgroups and let M be a closed 3-manifold with $\operatorname{cat}_{\mathfrak{G}} M \leq 2$. Then there is a closed 2-sided surface F in M such that F and $\overline{M} - N(F)$ are \mathfrak{G} -contractible and every component of F is an essential 2-sphere or incompressible. In particular, the inclusion of each component of F and each component of $\overline{M} - N(F)$ into M is π_1 -injective.

Theorem 4.3 Let M be a closed 3-manifold. Then $cat_{g_{\pi}}(M) = 2$ if and only if M is not as in Proposition 4.1 and for some $i, j, k, m, n \ge 0$,

$$M \in \left\{ \left. S^3 \#_i L \#_j (S^2 \widetilde{\times} S^1) \#_k (P^2 \times S^1) \#_m (T_S) \#_n (T \widetilde{\times} S^1) \right\}.$$

Proof We choose a 2-sided closed surface $F \subset M$ as in Lemma 4.2 with a minimal number of components. Since each component F' of F is π_1 -injective, $\pi_1(F')$ is

isomorphic to a subgroup of a quotient of $\mathbb{Z} \times \mathbb{Z}$; hence F' is a two-sphere, projective plane, or torus. Each component C of M-N(F) is $G_{\mathfrak{T}}$ -contractible and π_1 -injective, hence C is as in Proposition 3.1. We cannot have Proposition 3.1(iv), since F' is incompressible.

Suppose F' is a torus and C_0 , C_1 are adjacent components of $\overline{M} - N(F)$, such that $F' \times \{0\}$ is a component of ∂C_0 and $F' \times \{1\}$ is a component of ∂C_1 (here we identify N(F) with $F \times [0, 1]$). Then C_0 , C_1 are punctured I-bundles over T.

If $C_0 \neq C_1$, then C_i cannot be a (punctured) product *I*-bundle, by the minimality of the number of components of *F*. Since in Proposition 3.1 there are no other compact 3-manifolds with boundary a torus, C_0 and C_1 are (punctured) twisted *I*-bundles and $C_0 \cup F' \times [0,1] \cup C'_1$ is a (punctured) torus semi-bundle.

If $C_0 = C_1$, then $C_0 \approx F' \times I$ and $C_0 \cup F' \times [0, 1]$ is a (punctured) T-bundle over S^1 . By the same argument, if a component F' is a projective plane, we obtain a punctured $P^2 \times S^1$ in M.

Hence the collection of 2-sphere components of F cuts M into punctured lens spaces, punctured $S^2 \times S^1$'s, punctured T-bundles over S^1 , punctured T-semi bundles, and punctured $T^2 \times S^1$'s, and $T^2 \times S^1$

Conversely, if M is as in Theorem 4.3, we can find a disjoint collection F of tori, projective planes, and 2-spheres that cuts M into punctured $T \times I$'s, punctured $P^2 \times S^1$'s, punctured $S^2 \times S^1$'s, and punctured lens spaces. Let $W_0 = F \times I$ and $W_1 = \overline{M - N(F)}$. Then W_i is $G_{\mathcal{K}}$ -contractible for i = 0, 1, and $M = W_0 \cup W_1$.

Using the same technique, we obtain the following theorem.

Theorem 4.4 Let M be a closed 3-manifold. Then $cat_{\mathfrak{G}_{\mathfrak{K}}}(M)=2$ if and only if M is not as in Proposition 4.1 and for some $i,j,k,m,n,s,t,r\geq 0$,

$$M \in \left\{ S^3 \#_i L \#_j (S^2 \widetilde{\times} S^1) \#_k (P^2 \times S^1) \#_m (T_S) \#_n (K_S) \#_s (T \widetilde{\times} S^1) \#_t (K \widetilde{\times} S^1) \#_r (M_P \right\}.$$

Proof Following the above proof of Theorem 4.3, we obtain a 2-sided incompressible closed surface $F \subset M$ such that every component F' of F is a two-sphere, projective plane, torus, or Klein bottle, and each component C of $\overline{M} - N(F)$ is G_{∞} -contractible, π_1 -injective, with C as in Proposition 3.7, except as in Proposition 3.1(vii). If a component of $\overline{M} - N(F)$ is a (punctured) connected sum as in case (v), we cut it along the connected sum sphere and adjoin the resulting spheres to F. Also note that P^3 is a lens space. Now if a component F' is a projective plane or Klein bottle, the argument in the proof of Theorem 4.3 applies to yield a (punctured) K_S or $K \times S^1$.

If F' is a torus and C_0 , C_1 are adjacent components of $\overline{M-N(F)}$, then each of C_0 , C_1 is a punctured I-bundle over T or the orientable punctured I-bundle over K and we obtain a (punctured) T-bundle over S^1 or a (punctured) torus semi-bundle or (punctured) K_S .

Then the collection of 2-sphere components of F cuts M into punctured lens spaces, punctured $S^2 \times S^1$'s, punctured T- and K-bundles over S^1 , punctured T and K-semi bundles, punctured T- and prism manifolds M_P , and M is as in Theorem 4.4.

The converse follows as above.

5 Prime 3-manifolds with T- and K-category ≤ 2 .

Let L = T or L = K in this section.

Since an L-contractible set is $\mathcal{G}_{\mathcal{L}}$ -contractible, $1 \leq \operatorname{cat}_{\mathcal{G}_{\mathcal{L}}}(M) \leq \operatorname{cat}_{\mathcal{L}}(M)$. If M is closed, $H_3(M; Z_2) \simeq Z_2$, and the identity map id: $H_3(M; Z_2) \to H_3(M; Z_2)$ does not factor through $H_3(L; Z_2) = 0$, hence $\operatorname{cat}_{\mathcal{L}}(M) \geq 2$. If M is closed and $\operatorname{cat}_{\mathcal{L}}(M) = 2$, it follows that M is as in Theorem 4.3 for L = T and as in Theorem 4.4 for L = K. However, not every member of the family

(5.1)
$$\{S^3 \#_i L \#_i (S^2 \times S^1) \#_k (P^2 \times S^1) \#_m (T_S) \#_n (T \times S^1) \}, \text{ resp.}$$

$$(5.2) \qquad \left\{ S^3 \#_i L \#_j (S^2 \widetilde{\times} S^1) \#_k (P^2 \times S^1) \#_m (T_S) \#_n (K_S) \#_s (T \widetilde{\times} S^1) \#_t (K \widetilde{\times} S^1) \#_r (M_P \right\}$$

is of T- (resp. K-) category 2. In [8, Lemma 2], it is shown that if M is a closed 3-manifold with $cat_L(M) = 2$, (where L is a 2-dimensional complex), then (for the \mathbb{Z}_2 -rank)

$$rk(H_1(M; \mathbb{Z}_2)) \leq rk(H_1(L; \mathbb{Z}_2)) + rk(H^2(L; \mathbb{Z}_2)).$$

So for L = T or L = K, the number of connected sum factors is restricted by $rk(H_1(M; Z_2)) \le 3$.

In the case that *M* is prime, we obtain the following theorem.

Theorem 5.1 Let M be a prime closed 3-manifold. Then $cat_T(M) = 2$ if and only if

$$M \in \{L, S^2 \widetilde{\times} S^1, P^2 \times S^1, T_S, T \widetilde{\times} S^1\}.$$

Proof By the remarks above, it suffices to show that for every prime summand M of (5.1), $cat_K(M) = 2$. Recall that solid tori, solid Klein bottles, and I-bundles over T are T-contractible, and note that L, $S^2 \times S^1$ are unions of two solid tori, resp. Klein bottles along their boundary; $P^2 \times S^1$ is a union of a twisted I-bundle over T and a solid torus; T_S and $T \times S^1$ are unions of two I-bundles over T.

In the next theorem, denote by \widetilde{K}_S a semi-bundle that is the union of two twisted *I*-bundles over K.

Theorem 5.2 Let M be a prime closed 3-manifold.

- (i) If $\operatorname{cat}_K(M) = 2$, then $M \in \{L, S^2 \times S^1, P^2 \times S^1, T_S, K_S, T \times S^1, K \times S^1, M_P\}$.
- (ii) If $M \in \{L, S^2 \widetilde{\times} S^1, \widetilde{K}_S, K \widetilde{\times} S^1, M_P\}$, then $cat_K(M) = 2$.

Proof For part (i) we list the prime summands of (5.2). For part (ii) recall that solid tori, solid Klein bottles, and *I*-bundles over *K* are *K*-contractible; \widetilde{K}_S and $K \cong S^1$ are unions of two *I*-bundles over *K*; each M_P is a union of the orientable twisted *I*-bundle over *K* and a solid torus.

In part (i), $P^2 \times S^1$ can be obtained as a union of three solid tori and so is of *K*-category at most 3. We do not know if $cat_K(P^2 \times S^1) = 2$.

Some $T \times S^1$ are of K-category 2 and some are of K-category 3. To see this we show the following proposition.

Proposition 5.3 Suppose M is prime and $\pi_1(M)$ is torsion free and does not contain a subgroup isomorphic to the Klein bottle group K. Then $cat_K(M) = 2$ if and only if $M \cong S^3$ or $M \cong S^2 \times S^1$.

Proof If $\operatorname{cat}_K(M) = 2$, then $M = W_0 \cup W_1$, and there are maps $f_i \colon W_i \to K$, $\alpha_i \colon K \to M$ such that $\alpha_i \cdot f_i \simeq j_i$, where $j_i \colon W_i \to M$ is inclusion. For each component W_i' of W_i , $j_{i_*}(\pi_1(W_i')) \subset \alpha_{i_*}(\pi_1(K)) \subset \pi_1(M)$ is a quotient of \mathcal{K} . By Proposition 3.5 and the assumptions on $\pi_1(M)$, $\alpha_{i_*}(\pi_1(K))$ is trivial or \mathbb{Z} . Hence for $\mathcal{G} = \{1, \mathbb{Z}\}$, W_i is \mathcal{G} -contractible and $\operatorname{cat}_{\mathcal{G}}(M) \leq 2$. If $\operatorname{cat}_{\mathcal{G}}(M) = 1$, then $M \cong S^3$ or $S^2 \widetilde{\times} S^1$.

The case that $\operatorname{cat}_{\mathcal{G}}(M) = 2$ does not occur; otherwise, by Proposition 4.2, there is a 2-sided π_1 -injective and \mathcal{G} - contractible surface F. Then each component of F is a 2-sphere. Since the 2-spheres of F are essential and M is prime, it follows that $M \cong S^2 \widetilde{\times} S^1$, *i.e.*, $\operatorname{cat}_{\mathcal{G}}(M) = 1$.

Example 5.4 For $T_S = T \times S^1$, it follows from this proposition that $\text{cat}_K(T_S) \neq 2$. Since $T \times S^1$ can be obtained as a union of three solid tori (with intersection along their boundaries), $\text{cat}_K(T_S) = 3$.

For $T_S = M_2$, the *T*-bundle over S^1 in [11, 12.3.Examples], with

$$\pi_1(M_2) = \langle a, b, t : ab = ba, t^{-1}at = a^{-1}, t^{-1}bt = b^{-1} \rangle,$$

we have $cat_K(T_S) = 2$, since M_2 is a union of two (orientable) twisted *I*-bundles over K.

References

- L. Bessières, G. Besson, S. Maillot, M. Boileau, and J. Porti, Geometrisation of 3-Manifolds. EMS Tracts in Mathematics, 13, European Mathematical Society, Zürich, 2010.
- [2] M. Clapp and D. Puppe, Invariants of the Lusternik-Schnirelmann type and the topology of critical sets. Trans. Amer. Math. Soc. 298(1986), no. 2, 603–620. http://dx.doi.org/10.1090/S0002-9947-1986-0860382-0
- [3] O. Cornea, G. Lupton, J. Oprea, and D. Tanré, Lusternik-Schnirelman category. Mathematical Surveys and Monographs, 103, American Mathematical Society, Providence, RI, 2003.
- [4] J. C. Gómez-Larrañaga, F. González-Acuña, and W. Heil, Fundamental groups manifolds with S¹-category 2. Math Z. 259(2008), no. 2, 419–432.
- [5] _____, 3-manifolds that are covered by two open bundles. Bol. Soc. Mat. Mexicana (3) 10(2004), Special issue, 171–179.
- [6] _____, S^2 and P^2 -category of manifolds. Topology Appl. 159(2012), no. 4, 1052–1058.
- [7] _____, Amenable categories of three-manifolds. Algebre. Geom. Topol. 13(2013), no. 2, 905–925.
- [8] _____, On the K-category of 3-manifolds for K a wedge of spheres or projective planes. Topol. Proc. 44(2014), 49–58. (E-published on May 24, 2013)
- [9] ____, Categorical group invariants of 3-manifolds. http://www.math.fsu.edu/~aluffi/archive/paper437.pdf
- [10] A. Hatcher, Notes on basic 3-manifold Topology. Lecture Notes. http://www.math.cornell.edu/~hatcher.
- [11] J. Hempel, 3-manifolds. Ann. of Math., 86, Princeton University Press, Princeton, NJ, 1976.
- [12] V. Matijević, Finite-sheeted covering maps over Klein bottle weak solenoidal spaces. Glas. Mat. Ser. III 42(62)(2007), no. 1, 19–41. http://dx.doi.org/10.3336/gm.42.1.02

- J. Milnor, *Groups which act without fixed points on Sⁿ*. Amer. J. Math. **79**(1957), 623–630. http://dx.doi.org/10.2307/2372566
 P. Orlik, *Seifert manifolds*. Lecture Notes in Mathematics, 291, Springer-Verlag, Berlin-New York,

Department of Mathematics, Florida State University, Tallahassee, Florida 32306, USA e-mail: heil@math.fsu.edu dxwang1981@gmail.com