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EXTENSION OF THREE THEOREMS FOR FOURIER SERIES
ON THE DISC TO THE TORUS

A.G, MlAMEE

We extend three well-known facts of Fourier series on the disc to

Fourier series on the torus, a theorem of Riesz, a theorem of Szego,

and the fact that any function in H can be factored as the

product of two functions in H . Here the role of negative

integers is played by the lattice points in the third quadrant.

In earlier extensions of these theorems this role was played by

half-planes.

1. Introduction

In the theory of functions of one complex variable i t is well-known

that a function / in the Hardy class H can be factored in the form

(1.1) / = gh

as the product of two functions g and h in H The following

question generalizing this fact to functions of two complex variables is

raised in Helson and Lowdenslager ([2] , p. 178) : Let R be a set of

lattice points of the plane not containing the origin, which is closed

under addition. Can every surmable function f with Fourier series of

the form

/~«oo+ I V "

be factored as in (1.1), with the factors g and h being square sunmable

functions with the same kind of Fourier series as f in (1.2)7
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336 A.G. Miamee

Helson and Lowdenslager [2] gave a complete posi t ive answer for

some regions R , ca l led hatf-planes, which have the following property:

(m,n) 6 R i f and only i f (-m,-n) ? R , unless m=n=O .

The following i n t e r e s t i n g regions are typ ica l ha l f -p lanes :

(1.3) S = { (m,n) : m < - 1 , n e Z} U { (o,n) : n < -1}

(1.4) T = {(m,n) : m e Z, n < -1} u {(m,0 •. m < -1}

The t h i r d quadrant

(1.5) Q = {(m,n) -. m < 0, n < 0} - {(0,0)}

because of it connection with the analytic functions of two variables

(see ([2], p.178), [7]) as well as its connection with prediction theory

of random fields (see [5] and [8]) , seems the most important region to be

considered. This is why the problem for the third quadrant has been

explicitly raised by Helson and Lowdenslager ([2], p. 178).

The aim of this article is to give an answer to this factorisation

problem by providing a set of sufficient conditions for that to happen.

We should mention that the answer to the problem is in general in the

negative (see Rudin [7], p. 67). We will also extend two further well-

known facts from function theory on the unit disc to function theory on

the torus: the prediction error formula due to Szego and the theorem of

F. and M. Reisz which proves that every measure whose negative Fourier

coefficients vanish is absolutely continuous.

After setting up the necessary notation and terminology in section 2

we will prove these three theorems in sections 3, 4 and 5 respectively.

In order to prove our results we use techniques used by Helson and

Lowdenslager in [2] together with some results concerning stationary

fields.

We mention finally that, like the well-known strong connection

between function theory on the unit disc and prediction theory of

stationary random processes, there is quite a strong tie between function

theory on the torus and prediction theory of stationary random fields.

For more on this see Helson and Lowdenslager [2] , [3], Korezlioglu and

Loubaton [5], and Soltani IS].
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2. Preliminaries

Let X be an element of a Hilbert space H for all integers m

2
and n . X is called a stationary field on Z if for all integers

m,n,r,s the inner product of X and X depends only on m - r and

n - s , i.e., if we have

(Xrm>Xrs) = p{m~r' n~s) '

In this case p{m,n) = (X , X ) is a positive definite function on the

2
group of lattice points Z . Thus there exists a nonnegative measure y ,

called the spectral measure of the field X , defined on the Borel sets

of the torus

0 < 9 < 2TT, 0 < a < 2TT

such that

(2.1) p{m,n) = | e~t(mQ+na)dv , for all m,n e Z .

If y is absolutely continuous with respect to the normalized Lebesgue

measure da = —-— , its Radon-Nikodym derivative W is called the

spectral density of the field.

L denotes the Hilbert space of all functions on the torus which are

square summable with respect to the measure \i . From (2.1) it is clear

that the operator

y ^ -i(mQ+na)
rnn

extends to an isomorphism from

Hv = the closed subspace of H spanned by a l l X 's ,•
A ffjyi

2
onto L . This isomorphism is called the Kolmogrov isomorphism between

the time domain and spectral domain.

For any subset M of Z we define HV(M) (respectively H (M))
A y

as the closed subspace spanned by all X , (respectively e ) ,

2
(m,n) S M , in the Hilbert space H (respectively L ).
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Let l/T , HT , and #^" stand for ff«(Af) where M is the set

{(r,s) •. i<m, s€-Z] , {{r,s) : r G z, s < n} and {{r,s) : r < m, s < n]

respectively. H , H and H are defined similarly. For a

spectral density W , by L , H , H , and ft we will denote the

w w w w

corresponding spaces where y is replaced by wda . Finally P , P
and c star
respectively.

and t^ stand for the orthogonal projections onto HT , #„ and Hy

DEFINITION 2.1 . A stationary field X , (m,n) e Z2 is said to
rm

have a quarter-plane moving average representation if there is a white

noise v and constants b with Y \b I < °° such that

' ip,q)eQ ™ ^V.n+q '

f o r a l l ( m , n ) G Z 2 .

We n e e d t h e f o l l o w i n g t h e o r e m p r o v e d b y S o l t a n i ( [S] , T h e o r e m 4 . 3 ) .

THEOREM 2.2. Let X be a stationary field with spectral measure

y . Then X has a quarter-plane moving average representation if and

only if it has a spectral density w satisfying the following conditions

(i) log w e L ,

(ii) Fourier coefficients of log w vanish outside QU(-Q) u {(0,0)},

00 0°° °°0(%vi) H = H n Hu U u

We also need the following definitions.

DEFINITIONS 2 .3 .

(a) We say that the stationary random field X has the commutative
run

property if

(b) A nonnegative measure \i is said to have the commutative

property if i t s corresponding stationary field has the

commutative property.
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The following theorem shows the connection of this commutative

property with conditions (i) , (ii) , and (iii) of Theorem 2.2.

THEOREM 2.4. The absolutely continuous nonnegative measure y whose

density w has the property log wda > -°° has the commutative property

if and only if it satisfies conditions (ii) and (iii) of theorem 2.2.

Proof. The proof follows from Theorem 2.2 above and proposition

2.1.6 in Korezlioglu and Loubaton [5].

3. Factorization Theorem

In this section we will prove one of the main results of this a r t ic le ,

namely a factorization theorem concerning factoring H functions as a

product of two H functions (Theorem 3.1).

A summable nonnegative function W on the torus will be called

factorable with respect to the half-plane S , defined by (1.3), i f there

exists a function <j> of the form

• « < " > - « o o +

such that

(3.2) W(e,a) = |(j>(6,a) |2 .

Such a factor if is called optimal if

(3.3) leoo'2 = exp( log Wdo)

and the optimal factor is unique up to multiplication by a constant of

modulus 1, [3]. Helson and Lowdenslager [2] have proved that a nonnegative

summable function W has such an optimal factor with respect to S if

and only if log W £ L . In fact, to construct this factor they take the

function H to be the projection of the function 1 on the subspace H (S)

w

and then show [2] that

eX = | l + H\2 w ,

where X = log wda , thus arriving at the factorization

A/2 2(3.4) W = 1 + H = 1*1'
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eX/2

with i> = -z 77 . I t is then shown that the square summable function 41

1 + ti

has the required series representation, namely

, ,- > e r -i(mB+na)
(3-5) * =T-m= e00 + , ̂  e m e

Now we can state and prove our theorem concerning the factorability of

H functions as the product of two a functions.

THEOREM 3.1. Let f be a summable function on the torus whose

Fourier series is of the form

I-. r\ j- ~ V -i(mQ+na)

(3.6) f ~ aQQ + 2. arme '

where Q is the third quadrant defined by (1.5). Suppose that

(i) log |f| 6 L1 ,

(ii) Fourier coefficients of log |f | vanish outside QU(-Q) u { ( 0 , 0 ) } ,

0°° °°0 .00

l/l Ifl I/I
Then there exist square summable functions g and h , with the same

Foruier series as for f in (3.6), such that

f ~ 9n •

Proof. Taking W = \f\ then W is a nonnegative function with

log W £ L (by (i)) hence by what was proved above, W has the optimal

factorization

(3.7) |f| = W = e
1 + H

Now working with the half-plane T of (1.4), instead of the half-plane S

of (1.3), one can similarly factor W with respect to T as

A/2 2
(3.8) |f| = w =

X + K

where K is the projection of 1 on H (7) . On the other hand, by
w

Theorem 2.2, the stationary field X corresponding to the density

function W has a quarter-plane moving average representation, namely

there exists a white noise v and constants b with ^ \b I < °°
mn mn u mn
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Xrm = &00V00

C = lT for all m.n .
A V

Thus we see that HV{S) = H (S) and HV(T) = H (T) . Using this fact
A V A V

one can see that the projections of Xn- on H~(S) and HV(T) are

UU o A

same and equal to the projection of X on Hy{Q) . In fact, these

projections are simply

I b v .

Thus their Kolmogrov isomorphs are the same and belong to H (Q) . But

their isomorphs are just H and K . Hence we have

(3.9) H = K e H AQ) .

This means that there exists a sequence P of polynomials of the form

(3.6) such that

Pn * H in Ll '

which implies that

which means

hence

1 + P •* 1 + H i n L 2 .n w

1 + P •* 1 + H i n i 1

71 W

(1 +P )W ->• (1 +#)U in Lj ,
n do

(1 +Pn)f -* (1 +H)f in L^o .

This implies that (1 +H)f , and hence

h = e~X/2(l +H)f

has t h e r e q u i r e d F o u r i e r s e r i e s given in ( 3 . 5 ) . Thus, t a k i n g t h e f a c t o r
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we

>

to be

. Lu)

have the factorization

9

A.G.

gX/2

1 +

Miamee

H '

We know that h , at least, has the required series representation. Now

the function g given by (3.10) has a Fourier series of the form (3.5)

and similarly we have

, -i (mQ+na)
TTT = fcoo + , E brm

Now since H = K , and hence

eX/2 eX/2

1 + H 1 + K 9 '

the function g has a Fourier series of the desired form:

, r , -i{mB+na)

Finally we note that square summability of the factors follows from the

fact that the factors g and h as given above have the following

prope rty

(3.1D \g\2 = \h\2 = \f\ .

This completes the proof of our theorem. •

As a corollary to Theorem 3.1, and particularly (3.11), one arrives

at the following:

COROLLARY 3.2. Any function on the unit sphere of the Hardy space

H of the torus can be factored as the product of two functions on the

unit sphere of the Hardy space H of the torus.

To state the next theorem we need to give the following definition.

I?daDEFINITION 3.3. Let h he a function in iR (1 < p < ») with

Fourier series of the form
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, r -i{mQ+na)
h~%0+ , I arme

{mn)£Q

then (a) the function h is called outer if

log |h\da = 1°9 fda = log |aQ0! > -=° ,

(b) we call the function h to be strongly outer if its inverse

h~X lies in fl°° with w = \h\2 .

REMARK 3.4. One can see that strongly outer functions are always

outer and in the case of functions of one complex variable every outer

function is strongly outer, too.

Now we can prove the following theorem.

THEOREM 3.5. Let f be a svmmable function on the torus. Then f

has a factorization

f=gh
such that

(a) g and h are functions with

\f\ = \g\2 = \h\2 ,

(b) h has Fourier series as in (3.6), and

(c) g is strongly outer

if and only if f has a Fourier series of the form (3.6) and (i)> (ii),

and (Hi) of Theorem 3.1 hold.

Proof. If / is a summable function with a Fourier series of the

form (3.6) which satisfies (i), (ii) , and (iii) , then the proof of

Theorem 3.1 shows that the functions g and h employed there have the

properties (a), (b), and (c).

Conversely, suppose that the summable function f can be factored as

f = gh

with g and h satisfying (a), (b), and (c). Then by (a) we have

log |/| = 2 log \g\ .

From the fact that g , as an outer function, has the properties described
for f in (i) and (ii) , the corresponding results (i) and (ii) for f
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-1 _ rjoo
follow immediately. Now since g is strongly outer then g fe I f I •

Thus there exists a sequence P of trigonometric polynomials of the

form (3.8) and a sequence of numbers a such that

a + P -*• g in L\ „. .
n n y | / |

Hence

- I i 2
an + Pn - g~

X\2 |/|do - 0 ,

which means

[an + Pn)9 " Xl da "* ° *

Thus 1 belongs to the closed subspace spanned by je , m > 0 ,

n > 0 . Thus T h e o r e m 2 . 1 8 o f S o l t a n i [S] i m p l i e s t h a t fl\T = a\T n 5 ,
A A /t

and hence (iii) holds.

4. SzegO's Theorem

In this section we will give an extension of the following theorem

of Szego [9] which plays a key role in the prediction theory of stationary

stochastic processes :

If v is a finite nonnegative measure defined on the Borel set

of the circle 0 < 6 < 2n , whose absolutely continuous part is
7* fl

w(e )de/2Tr then we have

exp ( log W do) = Inf |l + P\2 dv ,
J p JP

where P ranges over the trigonometric polynomials of the form

_ ie 2i6 nie
P = a e + a e + ... + a e

The solution of the prediction problem for any region R of la t t ice

points of Z requires an appropriate generalization of Szego's theorem

for that region.

Helson and Lowdenslager [2] found the following generalisation of

Szego's theorem for the half-planes R which i s important in the

prediction of stationary fields with respect to the half-planes.
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THEOREM 4.1. Let y be a finite nonnegative measure on the torus

whose absolutely continuous part is w(e ,e jdQda/4n . Then

(4.1) Inf |l + P\ dv = Inf |l + P\ wda = exp ( log wda) ,
p ) pi i

where P ranges over the trigonometric polynomials of the form

(4 .2 ) P = ] a e-i{mQ+na) .

When the prediction of stationary fields with respect to a quarter-

plane, say the third quadrant, is considered, we need an extension of

Szego's theorem for the third quadrant. In this section we give such an

extension, however we need to assume that our measure y has the

commutative property. These kinds of conditions arise frequently whenever

one is trying to extend a fact concerning functions of one complex

variable to functions of two complex variables, with the set of nonnegative

integers being now replaced by the third quadrant (compare Kallianpur and

Mandrekar [4], Korezlioglu and Loubaton [5], and Soltani [&]).

THEOREM 4.2. Let y be a measure having the commutative property.

Let v and w be as in Theorem 4.1. Then

(4.3) Inf M l + M\2 dv = exp ( log wda) ,
M ' '

where M ranges over the trigonometric polynomials of the form

(4 .4 ) M= l a e-
i(mQ+na) .

Proof. We first note that since the class of polynomials M in (4.4)

is smaller than the class of polynomials P in (4.2), we have

(4.5) Inf |l + M\2 d\i > exp ( log wda) .
M ' '

Then we claim that the function H , namely the projection of 1 on

H (S) , belongs to H (Q) . Hence there exists polynomials M of the

form (4.4) such that

or, equivalently,

M •* H in L2
n y
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which implies

1 + M + 1 + H in L2

n u

M l + Mn\ dv •* M l + H\ dv .

But this together with the fact that

|l + H\ d\i = exp ( log wda) ,

(proven by Heldon and Lowdenslager [2]), shows that

(4.6) 11 + M | d\i •* exp ( log wda) .

Now (4.5) and (4.6) imply the desired relation (4.3). Thus we just have

to prove the above claim. To do this we first note that p and hence its

corresponding stationary field X has the commutative property, and

then we notice that since X , £ Hv , for all k > 0 , we have
171 fYt K. A

P°mX = X and p ' 7 7 " 1 ""x = p " 7 " 1 °° P°nX = P™'1 nX
m,n-k m,n-k m,n-k m,n-k m,n-k '

for a l l k > 0 . Thus we get

Since each term in the right hand side belongs to HY(Q) , the term on the
A

left belongs to Hy(Q) which means that its isomorph H must belong to

H (Q) . This completes the proof of the claim and hence the theorem. O
W

This together with Theorem 2.4 gives the following corollary.

COROLLARY 4.3. If w -is a nonnegative surrmable function satisfying

(i), (ii) j and (Hi) of Theorem 3.1, then we have

Inf |l + M\ wda = exp ( log wda) ,
M J J

where M ranges over all trigonometric polynomials of the form (4.4).
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5. Riesz's Type Theorem

Continuing along the path of the last two sections, in this section

we give an extension of the following result due to F. and M. Riesz [6]

to the measures on the torus: If y is a bounded complex measure on

the unit circle whose Fourier coefficients vanish for negative integers,

then y is absolutely continuous with respect to the Lebesgue measure.

Bochner [1] proved the following extension of this result for measures

on the torus: Suppose the complex measure y on the torus has

vanishing Fourier coefficients on a sector of plane with opening angle

greater than n , then y is absolutely continuous with respect to the

Lebesgue measure on the torus. Here, passing from the measures on the

circle to measures on the torus, Bochner replaced the set of negative

integers by a half-plane, but we are interested in replacing it by the

third quadrant. We will use the prediction theoretical techniques of

Helson and Lowdenslager [2] of their proof of the same theorem.

We start with the following lemma.

LEMMA 5.1. Let y be a complex measure whose total variation

measure has the commutative property. If the Fourier coefficients of y
s

the singular part of y , vanish on Q , then its coefficient at (0,0)

vanishes too.

Proof. Let v denote the total variation of y . By theorem 4.2

and its proof the projection H of 1 on H (Q) satisfies

(5.1) ll + H\2 dv = 0 .

j s

Since H is in H (Q) there exists a sequence M of trigonometric

polynomials of the form (4.4) such that
M •* H , in L2 .
n v

Hence

which implies

M + H , i n L2 ,n

1 + M + l + H i n L 2 ,n v 's
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and hence

I l l + M I 2 dv -> I l l + H\2 dv ,

w h i c h , t o g e t h e r w i th ( 5 . 1 ) , i m p l i e s

- M | dv •*• 0 .

Now one can see tha t t h i s implies

(5.2) | l + M \ dv •+ 0 ,

and hence

f
( 1 + M ) d\i -»• 0 .

Yl S

But, by our assumption, | Mjd\x^ = 0 . Hence

h = o ,

and this completes the proof. D

Proofs of the following two results are similar to those of the

corresponding results in Helson and Lowdenslager [2], and hence omitted.

COROLLARY 5.2. Let y be a complex measure whose total variation

measure v has the commutative property. If the Fourier coefficients of

y j the singular part of y , vanish on
s

(5.3) Qrs = {im,n) : m < r , n < s} - { (r,s)}

then its Fourier coefficient at (r,s) vanishes too.

LEMMA 5.3. Let y be a complex measure on the torus whose total

variation v has the commutative property. If the Fourier coefficients of

y vanish on Q 3 then the coefficients of its singular and absolutely

continuous part vanish there separately.

Now we can prove the following Riesz-Bochner type theorem, where the

semigroup of negative integers of Z is now replaced by the semigroup of

lattice points of the third quadrant Q of Z
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THEOREM 5.4. Let T be an open sector of the plane containing the

third quadrant Q . If the Fourier coefficients of the complex measure

y , whose total variation has the commutative property, vanish on T , then

li is absolutely continuous.

Proof. We can assume that this sector T is centred at the origin,

since otherwise it will contain such a sector. Now since Q is

contained in T , using Lemma 5.3 for Q = Q , we conclude that y
s

has no nonzero coefficient on Q , and by Lemma 5.1 even at the origin.

On the other hand there exists a lattice point with second coordinate 1

V1'1
in T . Calling this point (m ,1) , then Q clearly is contained

V1'1
in T . Thus applying Lemma 5.3, this time to Q , we concludeV1'1
that the Fourier coefficients of y on Q are zero. Hence by

s

corollary 5.2 its Fourier coefficient is zero at (m +1,1) as well.

Now one can see that if m +2 < 0 the Fourier coefficients of y

V2'1
v a n ish on § . I n fact we have

m +2,1 m-+1,1
Q c Q u«U{(m0 + 1,1)}

and we have already shown that the Fourier coefficients of u vanish
777+1,1 S

on Q , Q , and at (m+1,1) . Now using corollary 5.2 again we
see that the Fourier coefficient of u vanishes at (m +2,1) . If we

s u
continue in this fashion we see that the coefficients of y on all

s

lattice points of the form (m,l) with m < 0 are zero. Now we can

start an argument similar to that above with those lattice points in the

left half-plane whose second coordinate is 2 instead of 1 . This will

ensure us that all the corresponding Fourier coefficients vanish. Thus

we can conclude that the coefficients of y in the left half-plane are
s

all zero. A similar argument shows that the Fourier coefficients of y
s

must vanish in the lower half-plane as well. Thus the Fourier coefficients

of y are zero in a sector with opening of — and hence the Bochner

theorem implies the desired result.
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