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A combined experimental and numerical approach to the analysis of the secondary
stability of realistic swept-wing boundary layers is presented. Global linear stability
theory is applied to experimentally measured base flows. These base flows are
three-dimensional laminar boundary layers subject to spanwise distortion due to the
presence of primary stationary crossflow vortices. A full three-dimensional description
of these flows is accessed through the use of tomographic particle image velocimetry
(PIV). The stability analysis solves for the secondary high-frequency modes of type
I and type II, ultimately responsible for turbulent breakdown. Several pertinent
parameters arising from the application of the proposed methodology are investigated,
including the mean flow ensemble size and the measurement domain extent. Extensive
use is made of the decomposition of the eigensolutions into the terms of the
Reynolds–Orr equation, allowing insight into the production and/or destruction of
perturbations from various base flow features. Stability results demonstrate satisfactory
convergence with respect to the mean flow ensemble size and are independent of the
handling of the exterior of the measurement domain. The Reynolds–Orr analysis
reveals a close relationship between the type I and type II instability modes with
spanwise and wall-normal gradients of the base flow, respectively. The structural
role of the in-plane velocity components in the perturbation growth, topology and
sensitivity is identified. Using the developed framework, further insight is gained
into the linear growth mechanisms and later stages of transition via the primary and
secondary crossflow instabilities. Furthermore, the proposed methodology enables the
extension and enhancement of the experimental measurement data to the pertinent
instability eigenmodes. The present work is the first demonstration of the use of a
measured base flow for stability analysis applied to the swept-wing boundary layer,
directly avoiding the modelling of the primary vortices receptivity processes.
Key words: boundary layer stability, parametric instability

1. Introduction
Swept-wing crossflow-dominated boundary layers subject to low free-stream

turbulence are well known to develop stationary streamwise-oriented crossflow vortices

† Email address for correspondence: k.j.groot@tudelft.nl
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as a primary instability. Despite the small amplitude of the primary vortices, they
result in a mean flow distortion giving rise to high-frequency secondary instabilities,
which ultimately breakdown to turbulence, see Reed, Saric & Arnal (1996), Saric,
Reed & White (2003), White & Saric (2005) and Bonfigli & Kloker (2007).
Detailed information on the secondary instabilities, specifically their amplification and
spatial topology, is instrumental in understanding, and ultimately predicting, where
laminar–turbulent transition will occur. The main effect of the primary stationary
crossflow vortices on the laminar flow is to redistribute momentum across the
boundary layer by advection about their vortical axes. Downwash and upwash events
on the respective sides of the crossflow vortex result in a spanwise modulation of
the, otherwise spanwise homogeneous, boundary layer in the form of a series of high-
and low-speed regions. The resulting instantaneous and mean flow present elevated
shear stress components in two spatial directions.

For engineering purposes, transition prediction is typically performed using the
classical semi-empirical eN-method, where N indicates the natural logarithm of the
integrated growth of the velocity perturbation, originally developed 60 years ago by
Smith & Gamberoni (1956), Van Ingen (1956) and Van Ingen (2008), correlating
the perturbation amplification to the transition location. Malik, Li & Chang (1994)
and Malik et al. (1999) further explored the applicability of the eN-method to the
secondary instability, by accounting for the mean flow distortion induced by the
primary instability and validating their results against the experiments of Kohama,
Saric & Hoos (1991). Related experiments on the forcing and receptivity of secondary
crossflow instabilities are reported on by Bippes & Lerche (1997), Kawakami, Kohama
& Okutsu (1998) and Bippes (1999). Kawakami et al. (1998), Chernoray et al. (2010)
and Serpieri & Kotsonis (2018) performed phase-locked hot-wire measurements
revealing the secondary instability’s instantaneous flow structure.

Malik, Li & Chang (1996) identified 3 classes of instabilities in the distorted base
flow. Here, the classification by Koch et al. (2000) is followed. First, the type I mode
is generated by the spanwise shear layer in the upwash region of the primary vortex.
Second, the type II mode is mainly generated by wall-normal shear and lives on the
top of the primary vortex. In the nomenclature of Malik et al. (1996), these modes
are also referred to as the z- and y-modes, respectively. Third, Koch et al. define
the type III mode, which is the travelling primary crossflow instability subject to the
distorted base flow. The type I and II modes are proper secondary instabilities to the
stationary primary crossflow vortex and are observed at frequencies typically one order
of magnitude higher than type III (Koch et al. 2000; Wassermann & Kloker 2002;
White & Saric 2005).

A handle to the stability features of secondary perturbations can be obtained by
applying a linear stability analysis to the distorted base flow. This accounts for
the respective flow inhomogeneities in a chosen plane, i.e. the flow itself and all
zw- and y-shear components, see Theofilis (2003). For conciseness, the base flow
distorted by the primary instability will be referred to as the base flow. The stability
equations form a system of two-dimensional partial differential equations (PDEs)
that, together with boundary conditions, can be cast into an eigenvalue problem.
Investigations of this type for crossflow instabilities have been applied by Fischer,
Hein & Dallmann (1993), Malik et al. (1994, 1999), Janke & Balakumar (2000)
and Bonfigli & Kloker (2007). This method is computationally relatively cheap, but
cannot account for nonlinear perturbation dynamics or receptivity. An alternative
approach is direct numerical simulation (DNS), i.e. solving the three-dimensional
linear or fully nonlinear perturbation dynamics directly in the form of an initial
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Secondary crossflow instability of measured base flow 607

value problem. This approach is computationally expensive and care has to be taken
specifying inhomogeneous initial and in-/outflow boundary conditions (Wassermann
& Kloker 2002).

The sensitivity of stability results to the base flow is notorious, see Arnal (1994),
Reed et al. (1996) and Theofilis (2003). However, the literature indicates this does
not impede the success of the stability approach in predicting the behaviour of the
perturbation field. This applies even in the case of some turbulent flows, see Jordan
& Colonius (2013) for example, in which case the Reynolds stresses are significantly
more dominant than in the present. This applies to secondary crossflow instability
analysis in two ways: with respect to boundary layer receptivity and the representation
of the base flow. The former is fixed by, for example, micron-sized surface roughness
near the leading edge and free-stream turbulence. The secondary instability modes, in
turn, depend strongly on the state of the primary vortices. In previous investigations,
the latter are computed by performing nonlinear parabolized stability equation (NPSE)
simulations or DNS, see Malik et al. (1999), Bonfigli & Kloker (2007). However,
these techniques require careful receptivity calibration for the initial conditions. An
important example is provided by Fischer et al. (1993), who successfully model
the base flow combining the linear primary instability eigenfunctions with measured
amplitude information. That work illustrates that a good model representation of
the base flow can suffice for obtaining secondary stability information. Bonfigli &
Kloker (2007) found that accurately representing the small in-plane (wall-normal and
crossflow) velocity components is crucial in this regard; reporting significant growth
rate reductions. Kloker and coworkers exploited this by controlling the developed
crossflow vortices with suction and plasma actuators (Kloker 2008; Messing &
Kloker 2010; Friederich & Kloker 2012; Dörr & Kloker 2015; Dörr & Kloker 2016).
However, only a conceptual account of how these components affect the secondary
stability modes is given in Bonfigli & Kloker (2007).

1.1. Present study
Previous work identifies that the modelling of the base flow requires special care. In
the present work, the complication of modelling the primary instability is directly
circumvented by measuring the distorted base flow. The time averaged flow is
accessed using tomographic particle image velocimetry (tomo-PIV), fully resolving
the three-dimensional boundary layer flow and the mean flow distortion effect due
to the primary vortex. The used experimental results are published independently;
see Serpieri & Kotsonis (2016). The combination of this experimental and stability
approach has also been applied to the flow in the aft of micro-ramp vortex generator,
see Groot et al. (2016).

Avoiding modelling the receptivity of the primary crossflow vortices this way comes
at a cost concerning the sensitivity of the stability results to the parameters of the
experimental mean flow. The base flow in this work is represented by forming the
mean of instantaneous vector fields under the hypothesis that the difference between
the base and mean flow becomes negligible as the ensemble size is increased; i.e.
the ‘mean = base flow’ hypothesis. Fischer & Dallmann (1991) argue this is a valid
assumption in the linear amplification region of the instability of interest, given the
mean flow distortion is properly accounted for. The experimentally observed amplitude
of the secondary perturbations is large: 10 % of the free-stream velocity. Therefore,
next to quantifying the negligibility of effects associated with other parameters, the
sensitivity to the ensemble size, denoted by Nfr, is a main subject of investigation
amongst the results of this study.
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Modelling the primary vortices can be argued to be relatively trivial in cases where
they indeed appear as a nearly periodic sequence in the spanwise direction, but
this becomes challenging in practical cases where the crossflow vortices appear non-
periodically or even merge. Numerical approaches in this regard are artificial or highly
simplified, see Bonfigli & Kloker (2007) and Choudhari, Li & Paredes (2016). The
current study opens the possibility to analyse cases that are relevant to the realistic
confinements of wind tunnel experiments. In this regard, the sensitivity argument
can be used inversely. The current approach, per definition, incorporates all features
that are inherent to the experiment; features that might be overlooked by modelling
the primary vortices numerically or require opportune calibration with experimental
datasets. Furthermore, the secondary eigenmode information is of inherent interest
for this particular case. Identifying the instantaneous flow with the eigenmode allows
clarification of its underlying stability and growth physics expressed in the terms
of the Reynolds–Orr equation, see Malik et al. (1999) and Schmid & Henningson
(2001). In this regard, the main focus will lie on the contributions of the in-plane flow
to the Reynolds–Orr terms. Furthermore, the expected dependencies on the Reynolds
number and the primary vortex amplitude are checked. Lastly, the approach can be
used to extend and enhance experimental measurability as resolving the instantaneous
flow field is considerably more challenging than the mean flow in an experimental
framework. Thus, within the limits of the assumptions that the instantaneous field
is mainly composed of the linear mode superposed on a steady flow, the current
approach can be used to identify and describe the pertinent mode to degrees of
accuracy beyond what is currently possible in the experimental framework alone.

The article is arranged as follows. First the distorted base flow is characterized in
§ 2, followed by the formulation and numerics of the stability problem in § 3. The
latter section also considers the Reynolds–Orr equation emphasizing the (de)stabilizing
effect of the (in-plane) advection terms. The results are presented in § 4, starting off
with the analysis of a reference case using all Nfr= 500 instantaneous frames in § 4.1,
followed by the Nfr-convergence study in § 4.2 and the effect of the wall-normal
domain extrapolation in § 4.4. The applicability of the Gaster transformation is briefly
confirmed in § 4.5, allowing for the use of temporal solutions for the experimental
validation in § 4.6. Thereafter the effects of the primary vortex strength and the
Reynolds number are considered in §§ 4.7 and 4.9, respectively. The article is
concluded in § 5.

2. Experimental base flow
In this study, the mean velocity field obtained with three-dimensional tomo-PIV

measurements is used as the base flow for the secondary stability analysis. A detailed
description of the experimental set-up is given by Serpieri & Kotsonis (2016). The
experiment was performed in the TU Delft Low Turbulence Tunnel (LTT) facility.
The model is a 45◦ swept wing featuring an airfoil that is an adaptation of the
NACA66018 shape, called 66018M3J, with a small leading edge radius to avoid
attachment line instability. The geometric angle of attack of the wing was set to
3◦, in order to enhance development of the crossflow instability at the pressure
side, i.e. the measurement side. At this angle of attack, the pressure minimum is
attained at X/cX = 63 %, where X is parallel to the tunnel walls and cX the chord
in the X-direction (cX = 1.27 m). The full Cp-distribution is given by Serpieri &
Kotsonis (2016). The wind tunnel inflow velocity is Q∞ = 25.6 m s−1, yielding
Reynolds number RecX = 2.17 × 106 based on the chord and free-stream velocity
and Mach number M = 0.075. The free-stream turbulence intensity was found to be
Tu/Q∞ = 0.07 % at Q∞ = 24 m s−1.
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Flow

Leading edge

Inviscid streamline

Crossflo
w vortex

FIGURE 1. (Colour online) Definition of (left to right) crossflow-vortex-attached (xw, zw),
inviscid-streamline-attached (xs, zs), wing-attached (x, z) and tunnel-attached (X, Z)
coordinate systems. The origin of the (xw, zw) system is at X/cX = 45 %. The individual
coordinate system insets present the angles at the 45.6 % chord location.

The tomo-PIV measurement is performed centred at the 45 % chord location in the
midspan of the wing. This streamwise position is where the crossflow vortices saturate,
signifying the onset of secondary instability. The slight downstream location X/cX =

45.6 % is therefore considered for the stability analysis, 8 mm downstream the origin.
At that location, the vortices and inviscid streamline have an angle of 5.0◦ and 1.74◦
(counter-clockwise positive), respectively, with Q∞.

Due to the complexity of the flow topology, several coordinate systems are defined,
as illustrated in figure 1. The tunnel-attached system, (X, Y, Z), has X parallel to
Q∞, Z in the spanwise direction perpendicular to the tunnel walls and Y normal
to the ZX-plane. The crossflow-vortex-attached system, (xw, y, zw), is aligned with
the primary crossflow vortices, i.e. xw is parallel to the vortices, y wall normal
with respect to the airfoil and zw spanwise, perpendicular to the xwy-plane. Unless
otherwise specified, this will be the main coordinate system used to display the
results. The related streamwise and spanwise velocity components are indicated with
the subscript w. The inviscid-streamline-attached system, (xs, y, zs), is aligned with the
inviscid flow direction; the related streamwise and spanwise (true crossflow) velocity
components have the subscript s, i.e. the inviscid edge crossflow velocity Ws,e is
zero, per definition. The wing-attached system, (x, y, z), is obtained by rotating
the (X, Y, Z)-system 45◦ about the Y-axis. x is orthogonal to the leading edge, z
parallel to the leading edge and y orthogonal to the zx-plane. The origin of the
(xw, y, zw)-system is placed at the 45 % chord, spanwise centre position. The primary
instability is conditioned by installing an array of cylindrical discrete roughness
elements (DRE, Reibert et al. 1996; Saric, Carrillo & Reibert 1998) at X/cX = 2.5 %
parallel to the leading edge, with a spanwise spacing of 9 mm along z, this being
the naturally occurring wavelength at the transition location. The elements’ diameter
and height are 2.8 mm × 10 µm. The projection of the roughness spacing on the
zw-direction is 9 cos 40◦ = 6.89 mm. This length is denoted by λr and used as the
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primary length scale for the entirety of this work. The inviscid edge velocity in the
direction of the primary vortex at X/cX = 45.6 %, Uw,e, is 28.0 m s−1. This is used
as the velocity scale throughout this work and is denoted with Ue.

2.1. Tomographic PIV
The tomo-PIV set-up consisted of four cameras, that were mounted in an arc
configuration, located approximately one metre away from the model. The laser
light enters the wind tunnel along the Z-direction. The final field of view was
35× 35× 3 mm3 and centred at X/cX = 45 %. Volume reconstruction and correlation
were performed in a coordinate system aligned with the primary crossflow vortices,
i.e. in the xw-direction. The final interrogation volume size is 2.6× 0.67× 0.67 mm3

in (xw, y, zw), providing sufficient spatial resolution for both primary and secondary
instability features. Given that PIV relies upon correlating the movement of particles
in this finite interrogation volume, a spatial smoothing effect cannot be avoided, see
Schrijer & Scarano (2008). A 75 % overlap of adjacent interrogation volumes is used.
The final vector field was interpolated on a grid with a 0.15 mm spacing in all
directions, only implying interpolation in xw.

The tomo-PIV measurement resolves all velocity and velocity-derivative components.
Two-component hot-wire measurements covering the crossflow velocity have been
reported by Deyhle & Bippes (1996), but Bonfigli & Kloker (2007) emphasize the
sensitivity of the stability results to the wall-normal velocity component specifically.
This is also confirmed by Malik et al. (1994). This sensitivity is confirmed by
preliminary stability analyses, despite these components’ small magnitude, preluding
their structural character. This is the first occasion where these data are available
from experiments, rendering the two-dimensional stability approach feasible.

Uncertainties in the mean flow are heuristically linked to the maximum root-
mean-square (r.m.s.) fluctuation and the number of instantaneous snapshots used
for the mean flow, see Raffel et al. (2007); Sciacchitano, Wieneke & Scarano
(2013). The maximum r.m.s. fluctuation has a magnitude of 0.1Ue in the shear
layer accommodating the type I mode. In § 4.6 the correspondence between the
r.m.s. fluctuations and the type I eigenmode itself will be identified. In total, 500
uncorrelated snapshots were obtained at a sampling frequency of 0.5 Hz. The number
of instantaneous frames in the ensemble will be denoted by Nfr. When less than 500,
the individual snapshots are randomly selected from the total pool. The uncertainty of
the mean field is estimated to be 0.1Ue/

√
Nfr = 4.5× 10−3 Ue for the Nfr = 500 case.

As will be demonstrated, this is a high uncertainty with respect to the sensitivity
of the stability analysis. Previous studies, see Groot et al. (2016), demonstrated
sufficient convergence of the stability results with a similar ensemble size as used
here. A formal study on the convergence with Nfr is considered in § 4.2.

Finally, proper orthogonal decomposition (POD) analysis is applied to identify
the most energetic spatially correlated three-dimensional flow structures, using the
snapshot technique introduced by Sirovich (1987). A detailed description of the POD
results is given in Serpieri & Kotsonis (2016). For the present study, access to the
three-dimensional POD modes is indispensable as it enables topological validation of
the applied stability analysis; as presented in § 4.6.

2.2. Pre-processing for stability analysis
Due to the aforementioned sensitivity of the stability results on variations of the base
flow, a pre-processing strategy is followed in regard to the mean flow fields. This
processing is mainly related to the limited field of view and measurement uncertainty
associated with measuring in close proximity to the wall, inherent to tomo-PIV.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Near-wall

Overlap

0.2

0.4

0.6

0.8

FIGURE 2. (Colour online) Overlap and near-wall region, illustrating cosine weights (dash-
dotted lines) for the rotated Blasius (red solid) and base flow profiles (black solid leeward,
dashed windward with respect to Ww). Interpolated points in the near-wall region (circles).

Although the stability eigenmodes of interest decay exponentially in the wall-normal
direction, see Schmid & Henningson (2001), the truncation boundary in this direction
must be placed high enough to preclude artificial effects, see Grosch & Orszag
(1977), Sandstede & Scheel (2000). To this end, the Uw and Ww base flow
velocity components are extrapolated using the Blasius solution in the inviscid
streamline direction, i.e. Ww,e = Uw,e tan 3.26◦ = 1.59 m s−1. An approximation with
a Falkner–Skan–Cooke profile would be better, but the field of view extends to such
heights, approximately 2 undisturbed boundary layer thicknesses as shown in figure 2,
that this approach is deemed sufficient. As expected, the Blasius solution and the
PIV dataset do not match exactly at the top of the field of view. Therefore, a cosine
weight overlap layer is introduced to make the resulting base flow continuous at the
interface. The height up to which the PIV data are unaffected is denoted by δp and
the height of the overlap region by δo, see figure 2. V is extrapolated in a similar
way, approaching zero in the free stream.

A second aspect requiring attention is the PIV fidelity in the near-wall region.
Near-wall PIV measurements are subject to a number of decremental factors such as
laser-light reflections, low particle density and the strong shear, see Scarano (2001).
Effectively, these features result in a deviation of the velocity profile from the no-slip
condition. The type III mode is dominant in this region and therefore expected to
depend on the near-wall details of the flow. The PIV uncertainty in the near-wall
region is judged to render the use of the base flow for the extraction of the type III
mode more challenging. While such objective lies out of the scope of the current
work, technical improvements on the tomo-PIV technique could enable the resolution
of near-wall modes in future explorations. For the present study, the proper secondary
modes of type I and II will be considered.

The near-wall region is approached in 2 steps. First, the profiles are connected
to the wall by linear extrapolation; artificially imposing the no-slip condition. As a
second step, the data at the y-coordinate closest to the wall are overwritten with an
interpolation. As such, the no-slip condition is connected smoothly to the data on
the second non-zero y-coordinate, y/λr = 0.061, designating the near-wall region, see
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figure 2. The modes of type I and II are found to be affected negligibly by this kind
of base flow changes outside their spatial region of dominance, see § 4.4.

A third and final aspect is the fact that the in-plane flow is not divergence
free, i.e. ∂V/∂y + ∂Ww/∂zw 6= 0. As will be indicated in § 3, this is an implicit
assumption in the stability approach and can have an impact on the precise growth
rate values. Bonfigli & Kloker (2007) discuss a treatment, where the ∂V/∂y- and
∂Ww/∂zw-fields are integrated to obtain the W and V fields, respectively. Given the
fields in the near-wall region are fitted with the aforementioned approach, integrating
the ∂V/∂y- and ∂Ww/∂zw-fields, which are experimentally measured data that are
already differentiated, is expected to yield unreliable results. A better approach
to enforce the divergence-free condition on the measured in-plane flow data is to
perform solenoidal interpolation, see Vedula & Adrian (2005). Several approaches on
the treatment of PIV data to yield a closer match with the equations governing fluid
flow have been proposed, for example see Gesemann et al. (2016), Schneiders &
Scarano (2016), however, the main aim of this study is to identify whether stability
results can be extracted from PIV mean flows in the first place. As shown by Bonfigli
& Kloker (2007), the induced change in the growth rates by considering either the V-
or Ww-fixed approach is noticeable, in particular for the type I instability, but it does
not oppose extracting the growth’s order of magnitude. It will be shown in § 4.3 that
the expected induced differences lie within the established bounds of uncertainty.

2.3. Distorted base flow and shear fields
An analysis of the PIV mean flow is described in this section, to distill expectations
for the stability results based on the literature. The resulting velocity fields, confined
to the measurement domain, are shown in figure 3, which is equivalent to figure
18 of Serpieri & Kotsonis (2016), but differs in streamwise location and orientation.
Two spanwise neighbouring stationary crossflow vortices are given. The two vortices
have slightly different strengths, which is possibly a result of minute discrepancies
between the individual DREs responsible for the conditioning of these vortices in
the receptivity region near the leading edge. While this is an unavoidable effect
of experimental conditions, it presents a convenient and realistic opportunity in
demonstrating the effect of the base flow, i.e. the amplitude of the primary crossflow
vortex, on the secondary instability characteristics (Wassermann & Kloker 2002;
Serpieri & Kotsonis 2018). The two vortices are analysed separately, limiting the
spanwise domain length to 1λr = 6.89 mm as indicated in figure 3.

A measure for the primary disturbance amplitude based on the measured mean
velocity profiles was introduced by Fischer & Dallmann (1991):

1
2 max

y

(
max

zw
Us(zw, y)−min

zw
Us(zw, y)

)
, (2.1)

where the subscript s denotes the inviscid-streamline-attached coordinate system.
Using the separate spanwise domains for the two vortices, this yields 28.7 % and
27.3 % for the strong and weak vortex, respectively, with respect to Ue. Scaling
with the edge value of Us yields the same numbers to the given precision, thus this
distinction is omitted in the remainder. Based on their modelling assumptions and
the aforementioned measure, Fischer et al. (1993) observe high-frequency secondary
instabilities for disturbance amplitudes beyond 11 % Ue. Wassermann & Kloker (2002)
(cf. page 75) report that the onset of the secondary instability to the maximal in-plane
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FIGURE 3. (a) Uw/Ue (10 levels, from 0 to 1), (b) V/Ue (11 levels, from −0.02
to 0.02) and (c) Ww/Ue (11 levels, from −0.05 to 0.05) at constant xw (x = 45.6 %
chord at zw/λr = 0), negative contours are dashed. Spatial resolution of experimental data
(pluses, 1y=1zw= 0.022λr), (V,Ww)-field centre and saddle point locations (circles, (zw,
y)/λr = (0.364; 0.202)− (1, 0), (0.719; 0.209)− (1, 0), (0.374; 0.190) and (0.731; 0.209)),
domain separation for strong (right) and weak (left) vortex (vertical dotted line zw/λr= 0),
near-wall region (horizontal dotted line y/λr 6 0.061).

deceleration imposed by the mean flow distortion is equal to 30 % Ue, based on their
DNS. The Reynolds number in both references is approximately half that considered
here, but these values can still act as an order-of-magnitude check for the current
purposes. In the current experiment, the perturbations on the weaker vortex are much
weaker than on the strong vortex, so also the instability is expected to be weaker in
terms of a lower growth rate.

The magnitude of the components in the zwy-plane is condensed in a similar way:

1
2 max

y

(
max

zw
V(zw, y)−min

zw
V(zw, y)

)
, (2.2)

1
2 max

zw

(
max

y
Ww(zw, y)−min

y
Ww(zw, y)

)
. (2.3)

The zw-component is considered instead of the zs-component, because the former
appears in the stability problem. One obtains 1.48 % and 1.51 % for V for the strong
and weak vortices, respectively, with respect to Ue. This component is evidently
quite insensitive to variations in the spanwise direction. For Ww, values of 4.78 %
and 4.22 % for the strong and weak vortex are observed, respectively. In terms of
absolute size, the in-plane velocity components change negligibly as opposed to the
streamwise velocity component.

The total in-plane Uw-shear magnitude of the strong vortex corresponding to the
Nfr = 500 mean tomo-PIV flow field is shown in figure 4(a). This is displayed on
the mapped Chebyshev grid that is ultimately used to perform the stability analysis;
this grid will be introduced in § 3.3. The height of the measurement domain and
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FIGURE 4. (a) In-plane Uw-shear magnitude of the strong vortex for Nfr=500 (levels from
0 to 7 with steps of 0.5 in Ue/λr-units, level 7 Ue/λr is dashed). Position of (V,Ww)-field
saddle point (solid circle), ∂Uw/∂zw-minimum (solid square) and type I |ũw|-maximum
(dash-dotted lines). (b) y- and (c) zw-profiles of ∂Uw/∂zw (circles) and ∂Uw/∂y (squares)
for Nfr= 500 (symbols), 400 (solid line) and 300 (dashed line) along the dash-dotted lines
in (a). Near-wall region (y/λr 6 0.061) and upper limit PIV domain (y/λr= 0.433) (dotted
lines).

the near-wall region are illustrated in figure 4(a,b). Sixth-order finite differences are
used to determine the derivative fields consistently, i.e. using central differences in
the interior and forward/backward differences at the boundaries. Differentiating PIV
data with high-order finite differences is generally discouraged as random errors could
result, see Foucaut & Stanislas (2002). The high order was chosen to reduce the
truncation error corresponding to the finite spatial resolution of the tomo-PIV. Using
lower-order finite differences for the derivatives fields affected the results negligibly,
see § 4.2.

As discussed earlier, conditions on the required base flow accuracy are case
dependent and hence difficult to set in general. It is commonly suggested that the
base flow should satisfy the Navier–Stokes equations to extreme accuracy, see Reed
et al. (1996) and Theofilis (2003). The work of Ehrenstein & Gallaire (2005) and
Alizard & Robinet (2007) reflect this requirement through their use of Navier–Stokes
over Blasius solutions for the flat-plate boundary layer flow. Arnal (1994) shows
the maximum shear values must be represented accurately in the case of inviscid
inflectional instabilities. To identify how well this criterion is satisfied in the current
case, the position of a baseline type I eigenfunction maximum is identified in
figure 4(a) by the dash-dotted lines zw/λr = 0.378 and y/λr = 0.223. Figure 4(b,c)
displays both derivative profiles ∂Uw/∂y and ∂Uw/∂zw along these lines, respectively.
Next to the profiles for Nfr = 500, those corresponding to Nfr = 400 and 300 (single
random samplings) are shown. The derivative profiles are found to be nearly identical.
At the inflection point location, the differences in the shear magnitudes do not exceed
1.1 %. In the near-wall region, the largest deviation is found to be 2.3 %.

The total in-plane shear of the weaker vortex shown to the left in figure 3 is
compared to that associated with the stronger vortex in figure 5. Note that the
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FIGURE 5. (a) In-plane Uw-shear magnitude of the weak vortex (solid contours) for
Nfr = 500 (levels from 0 to 5 with steps of 1 in Ue/λr-units, level 5 Ue/λr is dash-dotted).
Position of (V,Ww)-field saddle point (solid circle), ∂Uw/∂zw-minimum (solid square) and
type I |ũw|-maximum (solid lines). (b) y- and (c) zw-profiles of ∂Uw/∂zw (circles) and
∂Uw/∂y (squares) along the straight solid lines in (a). Strong vortex equivalents of the
shear profiles and eigenfunction maximum position are given by dashed lines.

contours below y/λr = 0.15 near the spanwise domain boundaries are very close
for the different vortices. The shear layer of the weaker vortex protrudes less into
the free stream. In figure 5(c), this effect manifests itself as a shift of the shear
profiles in the negative zw-direction. The profiles shown in both figures 4(b,c) and
5(b,c) suggest the maximum of the type I eigenfunction ((zw, y)/λr = (0.378; 0.223)
and (0.367; 0.223), respectively) lies close to the overall minimum of the ∂Uw/∂zw
shear component. The symbols in figures 4(a) and 5(a) illustrate the latter point
((zw, y)/λr = (0.314; 0.162) and (0.300; 0.153), respectively), in fact, lies quite far. In
both cases, it consistently lies slightly above the saddle point in the in-plane velocity
field imposed by V and Ww.

In conclusion, both vortices are expected to be unstable to secondary instabilities
based on the results of Fischer et al. (1993). The weaker vortex, as opposed to
the stronger, is expected to yield a smaller growth rate, which is mainly caused by
changes in the streamwise velocity component. The in-plane velocity components
vary marginally with respect to the streamwise component, resulting in a relatively
larger magnitude on the weak vortex, which amplifies the type I instability, while
weakening the type II instability (Bonfigli & Kloker 2007). Moreover, the in-plane
location of the maximum amplitude of the type I mode seems to be fixed in close
proximity of the saddle point of the in-plane flow. The derivative fields display small
discrepancies with changing Nfr, being a first requirement for a successful stability
analysis (Arnal 1994).

3. Spanwise global stability analysis
3.1. Formulation

The stability approach accounts for all flow inhomogeneities in a two-dimensional
plane. The flow is assumed to be invariant in the third direction. Based on their
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topological features, the best choice for the invariant direction in the case of the
primary crossflow vortices is orthogonal to the wave vector of the primary vortices:
the xw-direction. Implicitly, the curvature of the vortices is neglected, which is a
posteriori justified by the small wavelengths of the secondary modes, see Malik et al.
(1999), Theofilis (2003) and Bonfigli & Kloker (2007) for more details.

Care should be taken in defining boundary conditions on the introduced domain
boundaries. The domain is confined to either one of the two vortices shown in
figure 3, depending on the investigated case. For a semi-infinite swept wing at
canonical conditions, the flow is periodic in the leading edge parallel z-coordinate.
This suggests considering the zy-plane for the stability analysis and justifies applying
periodic boundary conditions. The xw-direction is non-orthogonal to the zy-plane,
which can be accounted for by projecting the velocity vectors in the zy-plane onto
the zwy-plane. Bonfigli & Kloker (2007) go into high detail describing a similar
approach, illustrating the requirement for a correction concerning flow continuity.

In the present work, the choice is made not to adhere to the most periodic
spanwise direction. The zwy-planes were extracted directly from the tomo-PIV data,
since the PIV cross-correlation is performed in this direction and hence yields
the most consistent representation of the velocity field. This is equivalent to the
adapted-vortex-oriented DNS case of Bonfigli & Kloker (2007) (cf. § 6.1), crucial
for verifying the stability results. The data are directly extracted at xw= 8.02 mm with
respect to the origin indicated in figure 1, which corresponds to 45.6 % chord at zw=0.
The introduced departure from periodicity is negligible: the edge velocity changes less
than 10−3Ue across the domain, as a consequence of the small (6.89 sin 40◦= 4.4 mm)
chordwise extent of the domain. Note that the base flow quantities, including the
shear, change discontinuously across the boundaries, but no new shear elevation is
introduced by the aforementioned procedure. The effect of this approach is assessed
in § 4.8.

Regarding the wall-normal direction, no-slip and pressure compatibility conditions
are applied at y= 0 and homogeneous Dirichlet conditions are used for all amplitudes
on the top boundary as it is located high enough (at 4λr) and as it resolves the
additive-constant non-uniqueness problem with the pressure.

The aforementioned considerations are combined in the global ansatz for the
perturbation as follows:

q′ = q̃(zw, y) ei(αxw−ωt)
+ c.c., (3.1)

where α is the wavenumber in the xw-direction, ω the angular frequency, q′ and q̃
are the perturbation and amplitude variables and c.c. denotes the complex conjugate.
Substituting this ansatz into the linearized Navier–Stokes equations yields the system
of spanwise BiGlobal stability equations, see Pinna & Groot (2014) for more details:

−iω ũw + iαUw ũw + V
∂ ũw

∂y
+Ww

∂ ũw

∂zw
+ ṽ

∂Uw

∂y
+ w̃w

∂Uw

∂zw

=−iα p̃+
1

Re

(
−α2
+
∂2

∂y2
+
∂2

∂z2
w

)
ũw; (3.2a)

−iω ṽ + iαUw ṽ + V
∂ṽ

∂y
+Ww

∂ṽ

∂zw
+ ṽ

∂V
∂y
+ w̃w

∂V
∂zw

=−
∂ p̃
∂y
+

1
Re

(
−α2
+
∂2

∂y2
+
∂2

∂z2
w

)
ṽ; (3.2b)
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−iω w̃w + iαUw w̃w + V
∂w̃w

∂y
+Ww

∂w̃w

∂zw
+ ṽ

∂Ww

∂y
+ w̃w

∂Ww

∂zw

=−
∂ p̃
∂zw
+

1
Re

(
−α2
+
∂2

∂y2
+
∂2

∂z2
w

)
w̃w; (3.2c)

iα ũw +
∂ṽ

∂y
+
∂w̃w

∂zw
= 0. (3.2d)

This system of equations governs general eigenfunctions incorporating all three-
dimensional linear flow physics contained in the zwy-plane. The in-plane base flow
velocity components V and Ww appear amongst the coefficients in the equations,
illustrating their role as advection and reaction terms. The V-terms are no longer
absent, as in the one-dimensional Orr-Sommerfeld analyses due to the parallel flow
assumption. In two-dimensional approaches, this assumption is lifted, because of flow
continuity in the plane. Therefore all velocity components are required as part of the
measurement data to complete the general eigenmode description.

Together with the aforementioned boundary conditions, the system (3.2) is solved
for ω ∈ C (given α ∈ R) or α ∈ C (given ω ∈ R), in what is called the temporal
or spatial framework, respectively. In the considered experimental framework, the
secondary perturbations of interest are convective; i.e. they grow as they travel in the
downstream direction, while having constant amplitude at a fixed point in space, see
Wassermann & Kloker (2002) and Serpieri & Kotsonis (2016). This corresponds to
the spatial stability framework. The spatial stability problem is a quadratic eigenvalue
problem, which is computationally more expensive to solve than the temporal problem.
Previous work indicates that the Gaster transformation can be successfully applied to
link the spatial and temporal solutions, see Malik et al. (1994, 1999) and Koch et al.
(2000). The majority of the eigensolutions presented here are hence based on the
temporal approach, applying the Gaster transformation when in need of the spatial
characteristics. The validity of the Gaster transformation is verified in § 4.5, where
the spatial problem is solved, i.e. α ∈C is unknown and ω ∈R is given.

In what follows, our main interest is in the most unstable eigensolutions and the
solution that can be compared to the relevant POD mode obtained from the tomo-PIV
data. In the latter case, the quantity directly measured from POD is the wavelength of
the type I mode, which equals 4.6 mm. Hence solutions are sought for which 2π/αr=

4.6 mm.

3.2. Reynolds–Orr equation
To cast the eigenmodes in a more physically interpretable form, the eigenvalues are
decomposed into the values attributed to specific terms in the governing system of
equations. To this end, the dot product of the system of equations (taking the complex
conjugate of the continuity equation) with the variable vector [ũ∗w ṽ

∗ w̃∗w p̃]T is used
and integrated over both spanwise and wall-normal directions (executing the proper
function inner product). Integrating the continuity equation and viscous terms by parts
and solving for ω yields:

ω =

∫∫ (
αUw q̃∗ · q̃− i V q̃∗ ·

∂ q̃
∂y
− i Ww q̃∗ ·

∂ q̃
∂zw

)
dy dzw

||q̃||2

+ (α − α∗)

∫∫
ũ∗w p̃

dy dzw

||q̃||2
−D+ R, (3.3)
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where q̃=[ũw ṽ w̃w]
T and ||q̃||2=

∫∫
q̃∗ · q̃ dy dzw. From left to right, the terms represent

advection, pressure work (zero when αi=0), viscous dissipation D and Reynolds stress
work R. The latter two terms represent the combinations of terms:

D =
i

Re

(
α2
+

∫∫ (∣∣∣∣∂ ũw

∂y

∣∣∣∣2 + ∣∣∣∣∂ ũw

∂zw

∣∣∣∣2 + ∣∣∣∣∂ṽ∂y

∣∣∣∣2
+

∣∣∣∣ ∂ṽ∂zw

∣∣∣∣2 + ∣∣∣∣∂w̃w

∂y

∣∣∣∣2 + ∣∣∣∣∂w̃w

∂zw

∣∣∣∣2
)

dy dzw

||q̃||2

)
, (3.4)

R = −i
∫∫ (

ũ∗wṽ
∂Uw

∂y
+ ũ∗ww̃w

∂Uw

∂zw
+ |ṽ|2

∂V
∂y
+ ṽ∗w̃w

∂V
∂zw

+ w̃∗wṽ
∂Ww

∂y
+ |w̃w|

2 ∂Ww

∂zw

)
dy dzw

||q̃||2
. (3.5)

Equation (3.3) is referred to as the Reynolds–Orr equation, see Schmid & Henningson
(2001). Note that due to the particular periodic and no-slip boundary conditions on
the amplitude functions considered in this case, no boundary terms appear. The
different terms of (3.3) represent the complex contribution to ω associated with
specific physical mechanisms pertinent to the base flow. Usually, the equation is used
in the Lagrangian form that excludes the advection terms, see Malik et al. (1996)
and Schmid & Henningson (2001), here these terms do appear as the Eulerian form
is considered.

The following shorthand symbols are introduced for ease of reference:

Ry
=

∫∫
−i ũ∗wṽ

∂Uw

∂y
dy dzw

||q̃||2
; AUw =

∫∫
αUw q̃∗ · q̃

dy dzw

||q̃||2
;

Rzw =

∫∫
−i ũ∗ww̃

∂Uw

∂zw

dy dzw

||q̃||2
; AV

=

∫∫
−i V q̃∗ ·

∂ q̃
∂y

dy dzw

||q̃||2
;

Ry
Ww
=

∫∫
−i w̃∗wṽ

∂Ww

∂y
dy dzw

||q̃||2
; AWw =

∫∫
−i Ww q̃∗ ·

∂ q̃
∂zw

dy dzw

||q̃||2
.


(3.6)

Whenever a reference is made to the integrands of the above terms, the inclusion of
the scaling factor ||q̃||2 is implied.

By substituting the eigensolutions, each term on the right-hand side of (3.3) can
be numerically evaluated. The advection terms generally have a large real part and
thus dominate the real part of ω; i.e. the ωr-budget. The Reynolds stresses and
viscous dissipation have a larger imaginary part and therefore determine the growth
rate, i.e. the ωi-budget, which is a measure of the production or destruction of the
perturbation energy. All terms that do not involve the absolute magnitude of an
amplitude function are generally complex. Thus the advection terms and Reynolds
(shear) stresses do generally contribute respectively to the ωi- and ωr-budgets as well,
albeit to a minor extent.

The individual terms in the ωr- and ωi-budgets encode the underlying physical
mechanisms of every eigenmode; defining their very nature. This work focuses on
the consistency of those terms for each eigenmode, for example that the terms show
the same magnitude independent of the ensemble size Nfr. In particular those terms
involving the (difficult to measure) V and Ww deserve emphasis, due to the sensitivity
of the stability outcomes to those terms, as discussed by Bonfigli & Kloker (2007).
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A general criterion can be derived that indicates a local destabilizing contribution
due to advection. The advection terms in the ωi-budget can be written as:

Im
{

AUw + AV
+ AWw

}
=

Uw

V
Ww

 · Re

−
q̃∗· −αiq̃

q̃∗· ∂ q̃/∂y
q̃∗· ∂ q̃/∂zw

 , (3.7)

(where Re, not in italics, denotes the real part) which is (non-)zero whenever the
perturbation amplitude gradient is (non-)orthogonal to the in-plane flow. Bonfigli &
Kloker (2007) argue that a velocity component normal to the shear layer moves the
perturbations away from the productive region and hence has a stabilizing effect.
However, the former criterion illustrates the opposite and is therefore object of
dedicated analysis in the remainder. Whenever the velocity vector is aligned with
the direction in which the perturbation decays, this results in a locally destabilizing
effect. I.e. a region of high perturbation energy is moved so as to replace a lower
energy region. On the other hand, if the perturbation grows in the advection direction,
that is stabilizing. Generally, advection is destabilizing if it is effective in transferring
energy to the exterior of the vortex core.

3.3. Discretization
The BiGlobal tools of the VKI extensible stability and transition analysis (VESTA)
toolkit are used to set up the stability problem, see Pinna (2012). The problem
is discretized using Chebyshev spectral collocation combined with a biquadratic
mapping resolving both y- and zw-directions in specific areas. It should be noted that
an alternative to this discretization involves Floquet theory; solving the Fourier
transformed problem in the spanwise direction, see Herbert (1988), Janke &
Balakumar (2000) and Koch et al. (2000). Theofilis (2003) notes that a large number
of Fourier coefficients has to be resolved and hence the method is not necessarily
cheaper than solving the partial differential problem directly.

The biquadratic mapping is defined in terms of the y-coordinate as follows:

y= ymax
aη2
+ bη+ c

dη2 + eη+ f
, a= yi2 − 3yi1, b=

3
2
(yi2 − yi1), c= (yi2 + 3yi1)/2,

d= 2(2yi2 − 2yi1 − ymax), e= 0, f = 2ymax − yi2 + yi1,

 (3.8)

where η represents the Chebyshev Gauss–Lobatto quadrature points spanning the
range [−1, 1], see Canuto et al. (2006), and y the node coordinates in physical space
spanning [0, ymax]. The mapping is conceived as a generalization to that used by Malik
(1990), set so as to distribute one third of the collocation nodes over the domains
[0, yi1], [yi1, yi2] and [yi2, ymax], as long as 0 < yi1 < yi2 < ymax and yi2 < 9yi1 and
9yi2< yi1+ 8ymax to ensure a regular monotonic behaviour without discontinuities. The
resulting grids maintain a cosine distribution near the boundaries. The same mapped
Chebyshev collocation discretization is applied in the zw-direction. As opposed to
the commonly used Floquet approach, this allows the specification of arbitrary, i.e.
non-periodic, flow fields. Although periodic boundary conditions are applied at the
boundaries in the spanwise direction, periodizing the base flow fields is avoided in
the present study, to circumvent introducing artificial shear layers. This is a posteriori
justified, as will be shown in § 4.8.
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FIGURE 6. Zoom of mapped Chebyshev grid (55 × 55 nodes). |ũw|/ max |ũw| of type I
(solid contours at 25 %, 50 % and 75 %). Uw/Ue levels 0.6, 0.7, 0.8 and 0.9 (dash-dotted).
Position of (V,Ww)-field saddle point (solid circle).

When considering a domain with a single vortex, the mapping is equipped
with specific parameters aimed at densely resolving the region where the type
I eigenfunction is located, about the saddle point of the in-plane flow. Using
Nz × Ny = 55 × 55 nodes and setting (zi1, zi2, zmax) = (0.30; 0.55; 1.0)λr and
(yi1, yi2, ymax) = (0.18; 0.60; 4.0)λr yields type I eigenvalue errors of O(10−5) in
the absolute value of the real and imaginary parts, separately. An example of the
spatial distribution of mode I on the grid is shown in figure 6. Grid convergence was
verified by increasing the resolution using these mapping parameters and checking
against more conventional grids, applying no or the standard bilinear mapping of
Malik (1990). The type II modes, positioned about the point (zw, y)/λr = (0.7, 0.35)
that is relatively sparsely covered with nodes, has yet to overcome larger eigenvalue
differences with higher resolution results. Nevertheless, the real and imaginary parts
of the eigenvalue corresponding to the most unstable type II mode undergo O(10−4)
absolute changes when changing the grid size from 55 × 55 to 90 × 90, which is
deemed sufficiently small for the current purposes.

In the case of the domain with both vortices, i.e. zw/λr ∈ [−1, 1], the mapping
was programmed to distribute the collocation nodes as uniformly as possible,
corresponding to (zi1, zi2, zmax)= (−1/3, 1/3, 1)λr. The discretization in the y-direction
is left unchanged.

The column-stacked representation of the eigenfunctions as elaborated upon by
Groot (2013) is used, which casts the system (3.2) into one of the following forms:

temporal: AωṼω =ωBωṼω; (3.9)

spatial:
[

Aα −Bα

0 I

] [
Ṽα

αṼα

]
= α

[
0 Cα

I 0

] [
Ṽα

αṼα

]
, (3.10)

where Ṽ = [ũw ṽ w̃w p̃]T, the matrices A, B and C contain the coefficients of system
(3.2) that multiply the eigenvalue to the zeroth, first and second powers, respectively,
and the matrices 0 and I represent the zero and identity matrices with the same size
as A. Equation (3.10) represents the companion matrix approach, casting the spatial
problem into a (twice as large) regular eigenvalue problem, see Schmid & Henningson
(2001).

Using the biquadratic mapping markedly reduces the computational expenses, in
terms of memory and evaluation time. The achieved reduction in the necessary amount
of nodes rendered both temporal and spatial problems small enough to be solved on
a standard workstation in mass.
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FIGURE 7. Resolved spectra using ωg= (0.669+ 2.02i)α/Ue, corresponding to αλr = 1.0
(a) and 8.2 (b). Continuous spectrum (solid surface). Modes dominant in the near-wall
region (left of dash-dotted line). ωg-centred circle enclosing resolved eigenvalues (dashed
line).

3.4. Shift-invert strategy
A final step towards improving solving efficiency is setting the centre of the resolved
spectrum; i.e. adjusting the parameters for the shift & invert transformation in the
Arnoldi algorithm, see Theofilis (2003). This is done considering specific heuristics:
the maxima of the eigenfunctions of interest are all positioned high in the boundary
layer, away from the near-wall region indicated in figure 2. Conversely, the modes that
lie inside the near-wall region are expected to be subject to errors associated with
measurement noise. Modes that lie in the near-wall region have low phase speeds
corresponding to the low Uw values, by inspection smaller than 0.4Ue. Hence, the
region with ωr < 0.4αr, especially the stable region, is avoided. Figure 7 illustrates
examples of temporal spectra for αλr = 1.0 and 8.2. The limit ωr = 0.4αr is indicated
by the dash-dotted line.

Additionally, the modes of interest are discrete and do not belong to the continuous
spectrum. The continuous spectrum contains modes that live in the free stream and
have phase velocity equal to 1, accounting for Ww. They complete the spectrum, but
are very expensive to compute in terms of computational time. Due to Ww,e being non-
zero, the upper bound of the spectrum in the ω-plane is the parabola shown in figure 7,
with its vertex at α(1− iα/Re). The shift ωg = (0.669+ 2.02i)α/Ue is oriented such
as to equally avoid both (stable) near-wall and continuous spectrum regions, but to
capture all interesting discrete modes. See Wheeler & Barkley (2006) for a similar
approach.

As only the modes of interest are captured and the type I mode is usually most
unstable, it suffices to reduce the number of resolved modes to 5, which significantly
reduces the required time to obtain individual spectra. Note that the imaginary shift
value is large, which increases the required computational time; a shift closer to the
modes is helpful at the cost of having to resolve continuum modes. This approach
is fruitful only for the temporal problem, because another continuous branch is
encountered for large negative αi in the spatial problem. Changing the shift or the
number of modes yields eigenvalue changes of O(10−12).
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FIGURE 8. |ũw|/max |ũw| for the type III mode (a, in figure 7a) and the ‘harmonics’ of
type II (b,c, respectively IIb, IIc in figure 7b) modes, levels span [1/6, 5/6] with ∆= 1/6.
Near-wall region (dash-dotted line). Uw/Ue levels 0.1, 0.2, . . . , 0.9 (dotted).

The most typical arrangement of the spectrum is shown in figure 7(b). The
unstable modes are, from most to least unstable: the type I mode, the type II
(fundamental) mode and the second and third harmonic of the latter, by inspection of
the eigenfunctions shown in figures 8(b) and 8(c). These structures correspond closely
to those reported by Koch et al. (2000, cf. figure 16). The Arnoldi algorithm does
not return the type III mode for this number of requested solutions in this particular
case. For αλr = 1, the type III mode is contained within the mode horizon, the
dashed line in figure 7(a). The location of the type III mode and the line indicating
the near-wall limit correspond to the phase speed of the type III mode reported
by Bonfigli & Kloker (2007). The type III eigenfunction is shown in figure 8(a)
and, interestingly, corresponds very closely to the type II/III hybrid shape shown in
figure 35 of Bonfigli & Kloker (2007). The mode horizon approaches the continuous
spectrum very closely in this case, indicating the challenge with tracking the type
III mode with the optimized set-up. Analysis of the type III mode falls beyond the
scope of the present study and will not be considered in the following discussion.

4. Results
4.1. Base spectrum

To give a general overview of the spectrum, the base flow plane conceived with
500 instantaneous snapshots is considered as a reference baseline case. The branches
of eigenvalues corresponding to the type I and II modes are shown in figure 9.
The temporal global stability problem is solved for the α-range [0.5, 18]/λr with a
spacing of 0.1/λr. In the figure, the branches are shown for the α-range over which
the branches are unstable.

Several grid resolutions are used to compute the spectra with the focused grid for
the type I mode, going up to Nz × Ny = 90 × 90 nodes. The mode branches are
found to be converged already for Nz×Ny= 55× 55 nodes, with eigenvalue errors of
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FIGURE 9. Type I (circles) and II (squares) temporal frequency (a) and growth rate (b)
versus the wavenumber using the Nz×Ny= 55× 55 (dashed line) and 90× 90 (solid) grid
nodes.
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FIGURE 10. |ũw|/ max |ũw| for type I (a) and II (b) (levels span [1/6, 5/6] with ∆ =
1/6). 90×90 (filled contours) and 55×55 (dashed) grid resolution. Near-wall region (dash-
dotted line). Uw/Ue levels 0.1, 0.2, . . . , 0.9 (dotted).

Type α λr ω λr/Ue f (kHz) cph /Ue cg /Ue

(Most unstable) I 6.2 4.6737+ i0.1568 3.0194 0.7538 0.7694
(Most unstable) II 8.6 7.272 + i0.107 4.698 0.846 0.840
(POD wavelength) I 9.4 7.1496+ i0.0970 4.6190 0.7606 0.7805

TABLE 1. Parameters of the (most temporally unstable and POD wavelength) modes in
the base spectrum for the strong vortex.

O(10−5) in absolute sense for the type I instability. Despite the lower grid density in
the region of dominance of the type II mode, the spectral discretization captures this
mode properly as well. The most unstable type II eigenvalue experiences a O(10−4)
absolute error, which is deemed sufficiently small for the purposes of this analysis.

The type I mode attains the maximum temporal growth rate and is therefore
locally most unstable. The type II mode is found to be locally more unstable for
ωr > 7.77Ue/λr = 5.0 kHz. The spectral information associated with the locally most
unstable type I and II modes is given in table 1. It is important to note that these
indications do not directly imply these modes are the largest perturbation at this
station. To investigate that, the local results, in terms of the spatial amplification rate,
have to be integrated in space, i.e. N-factors should be considered.

The |ũ|-eigenfunctions corresponding to the most unstable type I and II modes are
shown in figure 10. The spatial distributions of the modes are superimposed over
the isocontours of the streamwise velocity of the base flow. Previous investigations
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FIGURE 11. (Colour online) (a,c) ωr- and (b,d) ωi-budgets (bars) of type I (a,b) and II
(c,d), ω eigenvalue (dashed line). Reynolds stress, viscous dissipation and advection terms
are coloured red, blue and black, respectively, see equation (3.6) for symbol definitions.
Upper bars: 90× 90, lower bars: 55× 55 grid resolution.

from both numerical and experimental perspectives, see Malik et al. (1994), White
& Saric (2005), Bonfigli & Kloker (2007), indicate the type I mode is positioned on
the outer upwashing side of the primary vortex, close to the in-plane saddle point,
while the type II mode rides on top of the vortex. As evident, these characteristics
are well captured by the stability analysis. Two spatial mode distributions are to be
distinguished in figures 10(a) and 10(b) and correspond to different grid resolutions.
The difference is small, further confirming that the 55 × 55 grid yields converged
eigensolutions.

Using the Reynolds–Orr equation (3.3), the most unstable type I and II eigenmodes
can be decomposed into the most dominant contributions shown in figure 11, ordered
from absolute largest to smallest top to bottom. The remainder is composed out
of terms that are individually smaller than the dominant terms in absolute value.
The eigenvalues themselves are indicated with dashed lines. Two bars are given for
each term, again corresponding to different grid resolutions. The differences in the
contributions are consistent with the errors in the eigenvalues.

The ωi-budget for both mode types is most dominantly dictated by the Uw-shear
and viscous dissipation. As per the definitions proposed by Malik et al. (1996), the
type I and II (or, z- and y-) modes are produced by the ∂Uw/∂zw and ∂Uw/∂y shear
components, respectively. This is found in the current case as well, as shown in
figure 11(b,d). The other shear components are usually unimportant and can have a
net destructive nature, as is the case for the type I mode here. Figure 11(d) illustrates
this is not the case for the type II mode; in that case the ∂Uw/∂zw shear also
has a significant net productive role. Modes for which both production terms have
comparable contributions are referred to as y/z-modes, see Li et al. (2014).

Having pinpointed the Reynolds stress terms as most prominent in the ωi-budget,
further insight into their spatial topology is sought. Figure 12 shows the integrands
of Ry and Rzw for both modes in the plane. After integration over the plane, these
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FIGURE 12. Imaginary part of the (a,c) Ry- and (b,d) Rzw -integrands for type I (a,b) and
II (c,d) (9 levels span (b) [6.71, 63.0], (c) [−3.00, 10.4] and (d) [−3.07, 14.1], negative
contours are dashed). Levels in (a) span [−27.5,−3.41], with ∆= 4.83, and [0.350, 1.05],
∆= 0.350. All values are given in Ue/λ

3
r -units. Eigenfunction contour |ũw|/max |ũw|= 1/6

(dash-dotted line). Uw/Ue levels 0.1, 0.2, . . . , 0.9 (dotted).

functions yield the contributions shown in figure 11(b,d). These terms have their
origin in the xw-momentum equation (3.2a) and hence directly produce the ũw (energy)
component. The integrands therefore indicate which part of the ũw eigenfunction they
produce. For the type I mode, the integrands clearly reflect the integral values.
Interestingly, the downward protrusion located about (zw, y)/λr = (0.45; 0.22) is
produced by the Ry-term; as illustrated with the additional contours in figure 12(a).
The integrands for the type II mode are surprising, because the integrand of Rzw

attains the largest value, while the zwy-integral value is smaller. The shape of the
positive Ry- and Rzw-integrand contours is comparable to that by Malik et al. (1999)
(cf. figure 10).

As mentioned, the participation of the advection terms AV and AWw is not restricted
to the real dispersion dynamics; as pointed out in figure 11(b,d), they are the next
terms in line enhancing or reducing the growth rates of the modes, confirming the
inclusion of the V- and Ww-components in the analysis is essential. With respect to
ωi, AV and AWw respectively exert 2.4% and −14.1% contributions for the type I and
7.0% and 2.8% contributions for the type II mode. Figure 11(b,d) shows some of
these values are larger than the Reynolds stress terms associated with these velocity
components.

The origin of the growth induced by the in-plane advection is traced by visualizing
the integrands of the related terms in the Reynolds–Orr equation. The previous
numbers illustrate AV and AWw individually yield a predominant decrease and increase
in the type II and type I growth rates, respectively. Figure 13(a,b,d,e) shows the
integrands associated with AV and AWw for both modes. The sign of the sum of
these terms is illustrated in figure 13(c, f ), indicating the (de)stabilizing regions.
The latter panels clearly reflect the criterion based on the term (3.7); whenever the
in-plane flow is directed away from elevated perturbation levels, the contribution is
destabilizing (black arrows). Conversely, whenever the in-plane velocity is aligned
with the perturbation level gradient, the contribution is stabilizing. Contours of the
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FIGURE 13. (a,b,d,e) Imaginary part of (a,d) AV- and (b,e) AWw -integrands for type I
(a,b) and II (d,e) (9 levels ranging (a) [−6.84, 5.78], (b) [−8.74, 6.68], (d) [−6.43, 5.93]
and (e) [−8.99, 4.32] in Ue/λ

3
r -units, negative contours are dashed). Eigenfunction contour

|ũw|/ max |ũw| = 1/6 (dash-dotted line). (c, f ) (V, Ww)-vectors showing where Im{AV
+

AWw}< 0 (white arrows) and > 0 (black arrows) for type I (c) and II ( f ). Amplitude sum
|ũw| + |ṽ| + |w̃w| (6 filled contours from 0 to maximum). Uw/Ue levels 0.1, 0.2, . . . , 0.9
(dotted).

sum of the amplitudes |ũw| + |ṽ| + |w̃w| are shown, because (3.7) features the gradient
of the velocity amplitudes, not the (square root of the) perturbation energy. In the
case of the type I mode, the in-plane flow has the tendency to focus the perturbation
energy along a spanwise line and therefore has the major effect of increasing the
spanwise extent of the eigenfunction. On the other hand, the eigenfunction’s maximum
is located close to the in-plane flow saddle. This location is thus affected to a minor
extent only. For the type II mode, the main effect is advection in the zw-direction.
Therefore it is expected that the location of the eigenfunction’s maximum is sensitive
to small changes in the productive Reynolds stress. Note that the integrand magnitudes
of the advection terms for the type II mode are comparable with those of the Reynolds
stresses, while they are an order of magnitude smaller for the type I mode.

A large stabilizing pocket is visible in figure 13(b), for which Ww > 0 and
q̃∗ · ∂ q̃/∂zw > 0, above the in-plane flow saddle. That region largely contributes
to the net Ww-advection towards the shear layer’s core causing the negative integral
value for the type I mode. The magnitude of AV in the energy budget for the type
II mode is approximately 3 times smaller than AWw for type I. This is reflected by
more evenly matched levels in figure 13(d). The positive contribution in figure 11(d)
indicates a net V-advection away from the core of the shear layer. The largest
contours in figure 13(d) indicate this is largely associated with an imbalance of
vertical in- and outward advection on the left-hand side of the vortex core. The
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contours in figure 13(a,e) display a symmetric shape with respect to the absolute
eigenfunction contour itself relative to the other cases, explaining negligible integral
values. All contours in figure 13 are contained within the region of dominance of the
Reynolds stress terms and hence do not generate additional eigenfunction features.
Nonetheless, it is noteworthy that the contours in figure 13(a,b,d,e) reach the outer
limits of the eigenfunction, especially the top right of the type I mode at which the
Reynolds stress terms are an order of magnitude smaller.

For both modes, AUw yields the largest contribution to ωr. The action of the in-plane
velocity components is to retard the secondary vortices’ advection in the xw-direction.
In total, AUw is cancelled to 3.1 % and 7.1 % by other terms for the type I and II
modes, respectively. The large retardation in the case of the type II mode, considering
that the other terms cancel out, is solely caused by Ww. This is interpreted to be the
consequence of the fact that the eigenmodes travel in the opposite direction of Ww. No
singular such term can be pointed out for the type I mode. An example of a Reynolds
stress term participating in the ωr-budget is Ry, that slightly reduces the type I mode
frequency.

4.2. Effect of ensemble size

The measured mean flow is subject to an uncertainty of 0.1Ue/
√

500= 4.5× 10−3Ue,
based on the maximum r.m.s. amplitude of 0.1Ue obtained from the 500 instantaneous
PIV snapshots (see § 4.6). The reported uncertainty stems from both systematic
errors (such as tomo-PIV correlation errors), as well as from physical fluctuations
of the instantaneous flow. For instance, Serpieri & Kotsonis (2016) (cf. § 6.3.1)
show the r.m.s. field is dominated by a low-frequency spanwise shake of the whole
primary crossflow vortex, obtained as the most energetic POD mode. While these are
acceptable uncertainty levels for flow diagnostics, their effect on the stability analysis
should be carefully identified. In this section an effort is provided towards quantifying
the effect of the ensemble average on the eigensolutions.

The uncertainty is quantified by deploying a Monte Carlo approach to the stability
analysis. More specifically, stability analysis is performed on mean flows produced
by varying the ensemble size, Nfr, ranging from 300 to 475, with steps of 25.
One hundred different random combinations are made per Nfr from the total pool
of 500 snapshots, resulting in 800 cases in total plus the single case possible for
Nfr = 500; used as the baseline case. Stability simulations were performed on the
45.6 % chord plane using the 55 × 55 grid. For both modes, the respective most
unstable wavenumber in table 1 was used as input.

The results are shown in terms of the mean and 2 standard deviations (±2σ ) of the
growth rate in relation to the ensemble size in figure 14. While the solution undergoes
large fluctuations for small ensemble sizes, which is expected, a clear convergence
trend is established for both the mean value and fluctuations. The difference between
the estimated mean growth rate for Nfr= 450 and the single case growth rate for Nfr=

500 is given in table 2 as 1µ, illustrating convergence of the mean to errors at most
one order of magnitude larger than the grid truncation errors. The percentages in the
table are the relative errors with respect to the value for the Nfr = 500 case.

The growth rate fluctuations within the 100 random cases are relatively large as
shown by the standard deviation bars. Nevertheless, they also show an evident linear
converging trend, illustrating that the mean value is approached in the limit of large
Nfr. The linear trend is extrapolated to obtain a measure at Nfr = 500, also reported
in table 2. The demonstrated trend allows discarding the fluctuations, under the
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FIGURE 14. Growth rate uncertainty versus ensemble size Nfr for both instability modes.
Mean (dots) and 2σ (bars) based on 100 random combinations for fixed Nfr. The dots at
Nfr= 500 and horizontal lines are the calculated eigenvalue itself. Linear fit to the 2σ -bars
(dashed lines).

1µ, Nfr = 450, 500† 2σ at Nfr = 500† Error by δp Error by δo

Type I
ωi λr/Ue 3.92 × 10−5 (0.02 %) 1.06 × 10−2 (6.35 %) 5.54× 10−6 1.22× 10−5

ωr λr/Ue 1.29 × 10−4 (0.003%) 1.45 × 10−3 (0.31 %) 2.42× 10−6 2.86× 10−6

zw/λr 2.68 × 10−4 (0.07 %) 5.48 × 10−3 (1.44 %)

Type II
ωi λr/Ue 1.57 × 10−3 (2.18 %) 2.34 × 10−2 (32.6 %) 2.32× 10−4 6.90× 10−4

ωr λr/Ue 1.61 × 10−4 (0.002 %) 1.65 × 10−2 (0.23 %) 3.72× 10−4 7.24× 10−4

zw/λr 1.53 × 10−3 (0.22 %) 1.68 × 10−2 (2.44 %)

TABLE 2. Uncertainty and errors in type I and II mode parameters with ensemble size
(§ 4.2) and domain extrapolation parameters (handled in § 4.4). †zw is based on Nfr = 475,
avoiding extrapolation.

condition that a minimum threshold Nfr can be defined beyond which the integrity of
the solution structure can be demonstrated.

The terms in the Reynolds–Orr equation are shown as a function of the ensemble
size in figure 15. Fluctuations appear, as expected, but the mean term values per
Nfr are well defined and indicate a consistent balance for all Nfr. Note that some
contribution values, including the standard deviations with respect to the mean value,
are enlarged by a factor 10 for clarity. For the type II mode the mean value of the
Reynolds stress terms Ry and Rzw changes considerably, albeit only for Nfr 6 375 and
the same relative size is retained with respect to the other terms.

Prior to physical underpinning of the energy term fluctuations, it is necessary to
confirm whether these are influenced by the numerical treatment and discretization of
the problem. To this goal, preliminary simulations were performed by altering several
parameters. These included increasing the grid resolution from Nz × Ny = 55 × 55
to 90 × 90 and changing the mean flow differentiation method from a sixth- to
fourth-order finite difference scheme. Both changes yielded negligible differences in
the stability results, corroborating to a physical mechanism as source of the energy
term fluctuations.

Based on the previous, the fluctuations are concluded to be caused by the physical
response of the instability modes to base flow changes. Figure 15(b,d) indicates
that growth rate fluctuations are mainly induced by the fluctuations in the Reynolds
stresses Ry and Rzw and viscous dissipation D. Correlation analysis is used to quantify
the link, using all 800 simulation results (all random combinations for all Nfr). The
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FIGURE 15. (Colour online) (a,c) ωr- and (b,d) ωi-budgets of type I (a,b) and II (c,d),
mean value (bars) and 2σ (slanted lines) per Nfr, ranging from 300 (bottom bar) to 500
(top bar) every 25 samples. Vertical lines indicate the single eigensolution for Nfr = 500
as a reference. Small terms (mean and 2σ ) are magnified with a factor 10, the slanted
lines then indicate 20σ .

correlation coefficient between the combination of the Reynolds stress and dissipation
terms (Ry

+ Rzw − D) on one hand and the growth rate ωi on the other are found
to be 0.988 and 0.995 for the type I and II modes, respectively. The dissipation
evidently adapts itself to the Reynolds stress terms, which is supported by correlation
coefficients larger than 0.958 when omitting the dissipation terms (correlating Ry

+Rzw

to ωi).
For the type I mode, the fluctuations in the Reynolds–Orr terms are relatively small

and never change the energy balance structurally. Additionally, the advection terms
for this mode, although small in the mean, display weak fluctuations. The fluctuations
are small enough that the relative size of the terms in the energy balance is fixed
qualitatively; they do not break its structure. This is not the case for the type II
mode. Especially the Rzw-term experiences fluctuations large enough to drive the term
to negative values (Rzw < 0) on the one hand and larger values than the dominating
Reynolds stress term (Rzw > Ry) on the other for different random ensembles for
fixed Nfr. Nevertheless, all fluctuations show a linear convergence trend with Nfr,
similar to the eigenvalue in figure 14. AV displays relatively small fluctuations for
type II.

The shear values at the (zw, y)-location of the eigenfunction maximum were
extracted (see § 4.9) and inspected based on the correlation between different energy
terms. For both modes, Rzw is highly correlated to the ∂Uw/∂zw values (type I:
−0.954, type II: −0.978), as expected. The Ry-term is also most correlated with the
∂Uw/∂zw values for mode II, yielding the coefficient 0.763 with respect to −0.617
for the ∂Uw/∂y value. This indicates the dominant role of the ∂Uw/∂zw component
in the fluctuations of the type II mode.

The type I eigenfunctions corresponding to Nfr = 500 and 450 (single random
sample from the pool of 100 cases) are compared in figure 16(a), confirming the
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FIGURE 16. |ũw|/max |ũw| for type I (a) and II (b) (levels span [1/6, 5/6] with ∆= 1/6)
for Nfr= 500 (filled contours) and 450 (dashed lines). Centre of gravity of q̃∗ · q̃ for every
case (symbols), the case Nfr = 500 (black circle), in (b): y is determined along the zw

centre of gravity location, Rzw > Ry (B) and Rzw < 0 (D). Uw/Ue levels 0.1, 0.2, . . . , 0.9
(dotted); in (a), Uw/Ue= 0.744 (white dashed) and Im{AV

+ AWw} = 0 (grey solid). Insets:
zooms on rectangles.

eigenfunction is converged. Furthermore, the centre of gravity of the perturbation
velocity contours in the plane is given for all Nfr. All points are clustered densely
about the indicated Uw = 0.744Ue contour, slightly lower than the predicted phase
speed. Compared to figure 12(b), the points are located close to the maximum of the
Rzw-integrand. Furthermore, when comparing to figure 13(c), all points turn out to lie
in the narrow band where the advection terms are destabilizing. This is indicated by
the boundary between the white and black arrows in figure 16(a). The oscillations
in this mode appear to be constrained such that the maximum of the eigenfunction
remains confined to this narrow band.

The type II eigenfunctions are shown in figure 16(b), corresponding to the Nfr= 500
and 450 cases. Similar to type I, these eigenfunctions display negligible differences.
However, the centre of gravity shows a larger spread. The larger spread reconciles
well with the topology of the in-plane advection terms in figure 13( f ). Indeed, there is
no focus point towards which the maximum of the eigenfunction gravitates, in contrast
to the case for the type I mode. Nonetheless, the eigenfunction always displays the
characteristic shape shown in figure 10; i.e. overarching the entire crossflow vortex.
In many cases within the random Monte Carlo pool, however, the eigenfunction
distinctively leans to the left or right. Selecting two such eigenfunctions with their
maximum located at the left- and rightmost position, the Rzw-term was found to have
a very high and low (negative) value, respectively. Testing the correlation between the
zw-location of the centre of gravity with the Rzw-term yields the coefficient −0.994,
indicating a direct link between their respective fluctuations. The interpretation
follows directly from figure 12(d). Whenever the eigenfunction leans to the left, the
destabilizing region of the Rzw-integrand increases and vice versa. The shift can be
sufficiently large that Rzw becomes negative (right shift) or exceeds the Ry-term (left
shift). In the Monte Carlo framework, out of the 800 solutions these extreme right
and left shifts occur 64 and 27 times, respectively. These special occurrences are
indicated with the triangles in figure 16. The last occurrences of the right and left
shift are observed for Nfr = 425 (once) and 450 (trice), respectively.

The zw-position of the maximum of the eigenfunction gives a direct handle on the
convergence of the mode, which is more conclusive than figure 15(d) can show. The
fluctuation amplitudes based on 2 standard deviations and difference in the mean
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FIGURE 17. (Colour online) (a) In-plane flow divergence (red contours, levels from ±2
to ±8 % with steps of 2 % of the maximum in-plane Uw-shear: ξm = 16 Ue/λr, negative
levels are dashed). In-plane Uw-shear magnitude of the strong vortex for Nfr=500 (8 filled
contours from 0 to 7 in Ue/λr-units). |ũw|/max |ũw| of most unstable type I mode from
figure 10 (a) (dash-dotted contours). Near-wall region (y/λr 6 0.061) and upper limit PIV
domain (y/λr = 0.433) (dotted lines). (b) Occurrence histogram of divergence values, bar
width: 0.4 %.

values for Nfr = 475 and 450 are reported in table 2. For Nfr > 400 the amplitude
becomes smaller than the local grid spacing, 1.2× 10−2 λr and 2.9× 10−2 λr for mode
I and II, respectively. Again displaying approximate linear convergence, at Nfr = 475
the amplitudes attain the values 5.48× 10−3 λr and 1.68× 10−2 λr for mode I and II,
respectively.

4.3. Divergence of the in-plane flow
As mentioned in § 2.2, the stability approach requires the in-plane velocity field to be
solenoidal. However, this cannot be expected from experimentally measured data. It
is known from previous work, see Bonfigli & Kloker (2007), that the stability results
depend on how this issue is approached. However, the order of magnitude of the
growth rates is usually preserved. Properly adjusting the fields is out of the current
scope. Nevertheless, for completeness, the in-plane divergence is characterized and the
effect on the growth rate of the type I mode is estimated in this section.

The maximum divergence levels are attained at the locations in the near-wall
region as shown in figure 17(a), where the in-plane Uw-shear is maximal. The type
I eigenfunction displays an overlap for |ũw|/ max |ũw| < 1/3. Outside the near-wall
region, the overall magnitude drops significantly. Figure 17(b) illustrates the overall
statistical distribution of the divergence in the PIV domain. The standard deviation is
1 % of the maximum in-plane shear in the Uw-field.

Basic tests were performed to assess the effect of the terms related to the in-plane
divergence for the type I mode, with αλr = 6.2. Artificial manipulations of the ∂V/∂y
and ∂Ww/∂zw fields were performed, independently of the other fields, to gauge
the change in the eigenvalues. By setting ∂V/∂y = ∂Ww/∂zw = 0 and replacing the
∂V/∂y field by −∂Ww/∂zw, the growth rate changed by −0.0142 and 0.0018 units of
Ue/λr, respectively. The former change lies within the error bound indicated by the
2σ uncertainty specified in table 2 for Nfr = 500. The latter destabilizing change is
qualitatively consistent with the comparison of the wv- and vv–wv-fixed approaches
of Bonfigli & Kloker (2007, cf. figure 15(a)).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

25
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.253


632 K. J. Groot, J. Serpieri, F. Pinna and M. Kotsonis

0 0.2

0.2

0.4 0.6

0.95
0.90

0.6

0.8 1.0

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.6

0.5

FIGURE 18. Overlap region definition and variations. In-plane Uw-shear magnitude of the
strong vortex for Nfr= 500 (8 filled contours from 0 to 7 in Ue/λr-units). |ũw|/max |ũw| =

0.5 for most unstable type I and II modes (white contours). Near-wall region (y/λr 6
0.061) and upper limit PIV domain (y/λr = 0.433) (dotted lines).
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FIGURE 19. (Colour online) Type I (a) and II (b) eigenvalues (αλr = 8.2) for different
domain extrapolation parameters (legend indicates δp; δo in units of δmp): 10−6 (solid line),
10−5 (dashed) and 10−4 (dash-dotted) neighbourhoods of the eigenvalues with δp= δo= δmp.

4.4. Effect of wall-normal extrapolation
Another question related to the use of the measured mean flow is what impact
the free-stream PIV data extrapolation method has on the results. Specifically, the
effect of the overlap region’s parameters is to be quantified. To this end, tests were
performed applying significant variations in its position, through δp, and size, with
δo, see figure 2 for their definition. The largest value for δp is the height of the
PIV domain, δmp = 0.433λr. By setting δp < δmp, the upper part of the PIV data are
artificially altered, which is to be avoided. By increasing δo, the shear caused by the
discontinuity is reduced. Increasing both parameters δp and δo should therefore yield
converging eigenvalues.

To test this, a (δp, δo)-test matrix was set up, setting δp/δmp = 0.9, 0.95 and 1 and
δo/δmp = 0.2, 0.6 and 1, see figure 18. For δp = 0.90δmp the type II mode is covered
significantly and δo= 0.2δmp is comparable to the vorticity thickness of the shear layer,
which is expected to influence the results significantly.

The eigenvalue problem was solved, fixing αλr = 8.2 and using the 55 × 55 grid
resolution on the Nfr=500 mean flow. Figure 19 shows the resulting eigenvalues. Both
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FIGURE 20. (a) Group (dashed lines) and phase (solid lines) speeds for both modes:
55 × 55 (lines) and 90 × 90 (symbols) grid resolution. (b) Gaster transformed temporal
amplification rates, −ωi/cg, (solid, solving (3.9), α ∈ R) and spatial growth rates, αi,
(symbols, solving (3.10), ω ∈R).

modes converge as δp and δo are increased. As expected, the type II mode is affected
more than type I, but the absolute eigenvalue errors are smaller than the discretization
error. This is attributed to the small eigenfunction magnitudes in the overlap region. It
is concluded that, when taking δp= δo=0.433λr, the base flow extrapolation influences
the results negligibly. Table 2 reports the errors for (δp, δo)/δmp = (0.95, 1.0) and
(1.00, 0.6). These results justify using the Blasius profile for the extrapolation.

4.5. Applicability of the Gaster transformation
The secondary vortices are known to be convective instabilities (Bonfigli & Kloker
2007). They grow in space subject to an imposed frequency, which corresponds to
the case where α ∈C is unknown and ω ∈R is given; i.e. the spatial problem. Up to
now, only the solutions of the temporal problem have been handled. Equation (3.10)
illustrates that the spatial stability problem is twice as expensive, because α appears
quadratically in the equations. Solving this problem can be circumvented by applying
the Gaster transformation, see Gaster (1962), based on the fact that spatial and
temporal growth are inter-related for convective perturbations. To this end, the simple
formula:

αi|ωi=0 = c−1
g ωi|αi=0 +O(ωi|

2
αi=0), (4.1)

can be used, where cg is the group speed shown in figure 20(a) for both mode
types and compared to the phase speeds. The Gaster transformation is valid for small
ωi-values only, see Gaster (1962). The inviscid instabilities considered here have
relatively large ωi, which renders its application questionable. Nevertheless, it is well
established in the literature that the transformation yields near-exact results in this
case, see Malik et al. (1999) and Koch et al. (2000). Here, this check is reproduced
to rule out different sensitivities of the spatial and temporal stability problems to
measurement noise in the modified base flow. Furthermore, the difference is regarded
from the point of view of the eigenfunctions and the Reynolds–Orr decompositions
of the eigenvalues.

The comparison between the spatial amplification rates, obtained by solving (3.10),
and the Gaster transformed temporal growth rates, obtained by solving (3.9) and
applying equation (4.1), are shown in figure 20(b), using the 55 × 55 grid on the
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FIGURE 21. Temporal (solid lines, α ∈R) and spatial (dashed lines, ω∈R) eigenfunctions
(|ũw|/max |ũw| levels span [1/6, 5/6] with ∆= 1/6) for type I (a, ωrλr/Ue= 4.5967) and
II (b, ωrλr/Ue = 7.354). Uw/Ue levels 0.1, 0.2, . . . , 0.9 (dotted).
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FIGURE 22. (Colour online) (a,c) ωr- and (b,d) ωi-budgets (bars) of type I (a,b) and II
(c,d), complex conjugate eigenvalue (dashed line). Temporal (top bar, α ∈ R) and spatial
(bottom bar, ω ∈R) problem.

Nfr = 500 mean flow at 45.6 % chord. The eigenvalue error at the most unstable
frequencies is O(10−4); which is in line with the grid resolution accuracy. Thus, next
to the agreement with the literature, the spatial and temporal problems do not display
a relative sensitivity to the used measured flow field.

Although the eigenvalues are virtually identical, this does not warrant similarity of
the eigenfunctions or ω-budgets. Both features are compared in figures 21 and 22 for
the most temporally unstable type I and II modes. It is to be noted that the most
amplified modes (maximal αi) have a slightly lower frequency than the most unstable
modes (maximal ωi). The spatial and temporal eigenfunctions match closely, the only
difference is the slightly larger extent of the temporal eigenfunction. Additionally, the
phase distribution, accounting for the direction reversal, is found to be identical.

The ω-budgets are the same qualitatively, but individual terms show noticeable
changes. A new contribution is that of αUw to ωi. The contribution due to the
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FIGURE 23. (Colour online) Velocity fluctuation fields associated with the eigenmode
(solid contours, |ũw|, levels: 6.67 % and 20 %), the tomo-PIV total r.m.s. (dashed,
xw-component at xw = 15.76 mm, level: 33.3 %) and the temporal r.m.s. of the POD
mode couple (filled,

√
Φ2

9 +Φ
2
10 at xw = 15.76 mm in Serpieri & Kotsonis (2016), level:

20 %) and the hot-wire bandpass filtered fluctuation field (red dashed, effective velocity in
the (X, y)-plane at xw = 0 mm, band 2 in Serpieri & Kotsonis (2016), level: 20 %). All
percentages are relative to the in-plane maximum. Near-wall region for the tomo-PIV and
Uw/Ue levels 0.5, 0.6, . . . , 0.9 at xw = 15.76 mm (dotted lines).

2αiũ∗p̃-term is negligible; the double integral over ũ∗p̃ evaluates to (numerical) zero.
For this particular case, the changes in the individual contributions for the type I mode
cancel, to yield −ωi ≈ αi

∫ ∫
Uw q̃∗ · q̃ dy dzw/||q̃||2. This is not the case in general,

shown by the type II case. The variation in the individual contributions adds up to
the difference between the −ωi, indicated by the dashed line, and αUw-terms. For the
type I mode, this difference turns out to be small. The dominant advection terms in
the ωi-budget change negligibly, which is expected given the similar eigenfunctions.

4.6. Comparison with experiments
A detailed account is given on the spatial structure of the type I mode by Serpieri &
Kotsonis (2016), through means of spectral and POD analysis. In particular, the POD
analysis presented by Serpieri & Kotsonis (2016) undeniably confirms the presence
of the type I mode. This allows a detailed comparison with the retrieved eigenmode
in terms of flow structure and spatial growth. Despite the limited temporal resolution
of the tomo-PIV technique, the power of the POD method is to extract prominent
wavelengths from the experimental data. Based on this, the eigenmode with the same
spatial wavelength as the POD mode representing the type I secondary instability
reported by Serpieri & Kotsonis (2016) is considered. The wavelength is λ= 4.6 mm,
which corresponds to αλr = 2π× 9 cos 40◦/4.6≈ 9.4. Note that this corresponds to a
larger wavenumber than the locally most unstable mode reported in table 1. This is
expected; the mode with the largest amplitude at a given location is usually situated
closer to the neutral curve at a larger wavenumber.

First, a quantitative comparison with the experimentally measured in-plane
amplitude distributions is discussed. Figure 23 shows the absolute amplitude of
the xw-velocity component of the type I eigenmode versus both the hot-wire and
tomo-PIV measurement results presented by Serpieri & Kotsonis (2016). On the
one hand, the eigenmode is compared against the bandpass filtered r.m.s. field
associated with the type I mode frequency obtained from hot-wire measurements,
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see their figure 20 (top centre). The considered band corresponds to slightly higher
frequencies, 5–6 kHz, when compared to the frequency associated with the POD mode
pair, 4.6 kHz, see table 1. On the other hand, it is compared with the magnitude of
the total r.m.s. and the POD pair associated with the type I mode obtained with the
tomo-PIV measurements, see their figure 28.

The hot-wire was oriented in the Z-direction, measuring the effective velocity in
the (X, y)-plane. The y-velocity component is small, as indicated by the base flow
and the eigenfunction, and xw and X deviate only by 5◦, so the measured velocity is
representative of the xw-velocity component. Furthermore, the hot-wire was traversed
in the z-direction, the data corresponding to the 45 % chord station are here projected
onto the zw-coordinate.

POD of the tomo-PIV measurement data gives two phases per advecting mode
(shifted by π/2), representing all velocity components in the entire measurement
volume. Serpieri & Kotsonis (2016) reported this pair as Φ9 and Φ10; the ninth
and tenth POD modes. The Euclidean sum of these modes, weighted with the
variance of their respective time coefficients, yields an amplitude distribution with the
least phase modulation. The total r.m.s. distribution corresponding to the tomo-PIV
measurements is also considered for reference. The attention is focussed on the
xw-velocity component, the symbol Φ will therefore be used to indicate the spatial
structure of that component only. The tomo-PIV data are extracted at the location
where the POD mode attains its maximum amplitude, at xw = 15.76 mm. The
maximum value of the total r.m.s. xw-velocity component is equal to 0.10 Ue; the
number used in the uncertainty arguments treated before.

The shape of the |ũw| amplitudes shows a qualitative agreement and can also be
compared to the results of White & Saric (2005) and Serpieri & Kotsonis (2018). The
bandpass filtered r.m.s. field is found to have an overall similar spatial structure, but it
displays a larger longitudinal extent at the leeward side of the primary vortex (towards
zw/λr = 1). The POD mode Φ9 has a significantly lower magnitude than Φ10 for zw >

0.5λr, consistent with the lower amplitude of the corresponding total r.m.s. distribution.
This corroborates the segmented shape of the Euclidean sum of the POD modes. The
total r.m.s. distribution shows perturbations are supported in a broader spanwise range
under the primary vortex when considering all frequency content.

Effectively, figure 23 demonstrates the merits of the stability analysis technique as
a tool for experimental data reduction. The method is able to isolate the pertinent
monochromatic eigenmodes based on the mean measurement data. Especially in
the case of advanced flow diagnostic techniques such as tomo-PIV, it is very
challenging to distinguish between the physical r.m.s. field of different modes as
well as measurement noise. The (most unstable) eigenmodes give an indication of
the most dominant frequencies and the expected spatial topology. The proposed
methodology extends the information on the perturbation field and, furthermore, it
enables enhancing the measurability of desired features by focusing the experimental
set-up accordingly.

The shape of the eigenfunctions is found to be wavelength independent. However,
the relative magnitudes of the |ṽ| and |w̃w| components change significantly for
different wavelengths. The relative magnitudes of the velocity components of the
eigenmode with the wavelength extracted from POD are in close agreement with
the total r.m.s. values. The ratios of the in-plane maxima of |ṽ| and |w̃w| for
the eigenmode are: 23 % and 50 %, relative to the maximum of |ũw|. The same
quantities for the total r.m.s. are: 21 % and 44 %, respectively. These maxima for
the eigenmode are located at (zw, y)/λr = (0.38; 0.23) for |ũw| and (0.39; 0.25) for
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FIGURE 24. (Colour online) xw-velocity isosurfaces of (a) the type I eigenmode at
ω/2π = 4.6 kHz (αr = 9.4/λr), having maximal amplitude 1 at x = −17.6 mm, plotting
the ±84 % levels, and (b) the tomo-PIV POD mode (Φ10 in Serpieri & Kotsonis (2016)),
plotting the ±0.086Ue levels, the near-wall region is cut. Uw/Ue levels 0, 0.05, . . . , 1
(contours).

|ṽ|, the total r.m.s. has both maxima at (0.36, 0.21). The wavelength from POD is
used to facilitate this specific comparison. When determined for the most unstable
wavenumber reported in table 1, for example, the relative maxima of |ṽ| and |w̃w|

are 14 % and 33 %, respectively, which are lower than the values corresponding to
the POD wavelength. This suggests that the mode’s wavelength can be estimated
by identifying the eigenmode that has approximately the same amplitude ratios as
observed in the total r.m.s. data; POD is not required for that.

A three-dimensional representation of the eigenmode and POD mode associated
with the type I instability is shown in figure 24(a) and (b), respectively, illustrating
their spatial structure. The most unstable eigenmode is extrapolated in space,
incorporating the exponential growth in space calculated using the Gaster transforma-
tion: −ωiλr/cg =−0.09702/0.7805=−0.1243. These structures are compared to the
10th POD mode, Φ10, of Serpieri & Kotsonis (2016). Upstream of xw =−4 mm the
isosurfaces are absent in the POD mode. This is a consequence of the limited dynamic
range of this particular tomo-PIV experiment and of the very low perturbation
amplitude.

Overall, a qualitative match of the topology is established between the modes, the
largest difference being the structures’ length. Serpieri & Kotsonis (2016) documented
the orientation of the secondary instability structures in terms of their azimuthal
angle and inclination: −18.2◦ and 21◦, respectively, with respect to the stationary
vortices. The eigenmode displays a comparable azimuthal angle, −17.8◦, but a
smaller inclination: 12◦. The latter angle agrees with the value reported by Janke &
Balakumar (2000) and Wassermann & Kloker (2002); who also report an inclination
angle of 12◦. A similar difference in the inclination is observed in the application to
the instabilities in the wake of a micro-ramp Groot et al. (2016); the structures as
observed in the tomo-PIV experiment also display a larger inclination in that case.

The instantaneous flow structures are compared to a higher degree of detail in the
zwy-plane in figure 25. The POD mode is extracted at xw = 15.76 mm, maximizing
its absolute amplitude. Both modes show the same arrangement of positive and
negative perturbation velocity pockets, even in locations where the velocity maxima
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FIGURE 25. Eigenmode Re{ũw}/ max |ũw| (solid contours) (levels: ±6.67 % and ±20 %)
and POD mode xw-velocity component (Φ10 in Serpieri & Kotsonis (2016)) at xw =

15.76 mm (dashed) (levels: ±20 % of in-plane maximum), level signs are indicated.
Near-wall region and Uw/Ue levels 0.5, 0.6, . . . , 0.9 at xw = 15.76 mm (dotted lines).

are small, despite a slight misalignment. The orientation of the contours is the same
and can be compared to phase-locked hot-wire measurement observations presented
by Kawakami et al. (1998) and Serpieri & Kotsonis (2018) and the computations
of Janke & Balakumar (2000). Two contour levels are shown for the eigenmode,
of which the largest corresponds to the POD mode contour level. The lowest
level shows that the structure corresponding to the POD mode is broader than the
eigenmode in the direction perpendicular to the shear layer, as was already apparent
in figure 24. But both modes have the same qualitative shape; both show a contour in
the centre that has a large downwards protrusion. This illustrates the stability analysis
effectively describes the perturbation flow topology. The broader structures observed
in the measurement could be explained by the limited capability of the tomo-PIV
experiment in capturing complicated flow structures in the presence of strong shear.
From the perspective of the (de)stabilizing action of the in-plane advection terms in
(3.7), the broader structure would be more stabilized as this corresponds to a larger
white region in figure 13(c).

Having identified the correspondence between the structures of the eigenmode and
POD mode, the exponential growth can be analysed. It should be highly stressed
here that there is no reason to expect that the eigenmode and POD mode should
display the same growth rate. The POD mode is a data-driven, energy-maximizing
coherent structure having a broad spectral content, that is, to a degree, corrupted with
systematic and random measurement noise. As stated by Serpieri & Kotsonis (2016),
other POD modes showed similar structures to that in figure 24 and this corroborates
with the broad frequency band in the hot-wire spectrum for type I mode fluctuations.
An eigenmode, on the other hand, is purely monochromatic and represents a rigorous
solution of the governing equations, making it an entirely different entity. Growth rates
are moreover notoriously hard to match, as pointed out with the executed sensitivity
study and by verification studies in the computational literature, see Bonfigli & Kloker
(2007). For this reason, the scope of this comparison serves more as a qualitative
comparison for the methodology, rather than a strict validation.

The r.m.s. field of the coupled POD modes is integrated in both wall-normal and
spanwise directions, towards producing a relative amplitude. The N-factor is defined
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FIGURE 26. (Colour online) N-factors based on the: POD mode couple r.m.s. (dotted
line), linear fit to POD r.m.s. (solid line), bandpass filtered hot-wire anemometry velocity
fluctuation fields reproduced from figure 21(b) of Serpieri & Kotsonis (2016, band 2)
(red), eigenmode: most unstable (dashed, αλr = 6.2) and POD wavelength (dash-dotted,
9.4). Uncertainty in linear fit slope and growth rate based on 2σ in table 2 (shaded).

as the natural logarithm of the resulting quantity:

N(xw)= ln
(∫∫

|Φ(xw, y, zw)| dy dzw

)
, (4.2)

where Φ corresponds to the xw-velocity component of the POD mode couple. The
integral can be evaluated in the xw-range [−4, 17] in millimetres, where the dynamical
range of the experiment was sufficient to resolve the mode couple. Serpieri &
Kotsonis (2016) reported N-curves in their figure 21(b), based on the bandpass
filtered r.m.s. data corresponding to the type I frequency range, measured using
hot-wire anemometry. That figure illustrates that the former streamwise range does
not include the upstream neutral point. For that reason, the currently extracted N-curve
is shifted to the value (N = 2.44) extracted from their results at the location currently
investigated. The resulting N-curve is shown in figure 26. The oscillation in the
dotted curve, with a wavelength comparable to the individual POD mode of 4.6 mm,
reflects the underlying phase undulation of the spatial velocity maxima. A clear
growth trend is obtained nonetheless. A linear fit is used to obtain a quantitative
means of comparison for the eigenmode growth. The fitted slope corresponds to
−αiλr = 0.230 ± 0.008. This value is significantly larger compared to the growth
rate of the eigenmode with the same wavelength, for which −αiλr = 0.1243. This
is reflected in the mismatch of the slopes of the N-curves in figure 26. The grey
area about the N-curve for the eigenmode indicates the uncertainty (±2σ =±0.0106
units) given in table 2. Including the worst error estimate, the growth rate does not
match that extracted from the POD mode. The N-curve corresponding to the most
unstable eigenmode is also included, for which −αiλr = 0.2041. This value only
slightly underestimates the value corresponding to the POD mode.

The N-curve corresponding to the bandpass filtered fluctuation field associated
with the type I mode (band 2) shown in figure 21(b) of Serpieri & Kotsonis
(2016), corresponding to hot-wire measurements of the same vortices, is repeated
here. This curve reflects the growth rate −αiλr = 0.1270, including the projection
onto the xw-direction (uncorrected value: 0.1272), which does match the considered
eigenmode’s growth to within the uncertainty. The latter match should, however, be
interpreted with caution. The experimental curve corresponds to the r.m.s. amplitude
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FIGURE 27. (Colour online) Type I (circles) and II (squares) temporal stability branches
for the weak vortex using Nz×Ny= 55× 55 (dashed lines) and 90× 90 (solid) grid nodes.
Strong vortex branches (solid without open symbols). Arrows link type I and II modes
with αλr = 6.2 and 8.6 (filled symbols), respectively, on the different vortices. All most
unstable eigenvalue symbols are filled. Eigenvalues corresponding to domain containing
both strong and weak primary vortices using Nz×Ny= 140× 70 (red symbols). Branches
corresponding to the interpolated base flows with χ = 0.2, 0.4, 0.6 and 0.8 (dotted lines,
bottom to top).

averaged over 3 neighbouring vortices, amongst which are both the currently
investigated ones, and the curve has a sample spacing of 0.025 % chord, corresponding
to 29 mm in the xw-coordinate. In summary, qualitative agreement between the
stability analysis and experimental measurements further demonstrates the applicability
of the proposed methodology towards enhancing and extending the experimental
measurability.

4.7. Effect of primary vortex strength
As mentioned in § 2.3, two neighbouring vortices are measured, where the left-hand
side vortex is slightly weaker (27.3 % Ue) than the right-hand side vortex (28.7 %
Ue) considered up to now. Next to the reduced strength, the perturbations have been
experimentally identified to be much weaker by using the POD technique in the
vicinity of the weak vortex, suggesting that the lower primary amplitude results in a
reduced growth of the secondary instability modes.

The mild difference in amplitude between the primary crossflow vortices provides
an ideal case in demonstrating the ability of the global stability approach to identify
pertinent stability features based on the measured mean flow alone. The analysis
performed so far on the baseline stronger vortex is here repeated for the weaker
vortex using the domain −1 6 zw/λr 6 0 indicated in figure 3 and a mean field
constructed with 500 instantaneous snapshots. For ease of comparison purposes, the
domain is translated in the zw-direction, so the zw-coordinate again spans [0, λr]. In
figure 27, the type I and II mode branches are shown and compared with those
corresponding to the stronger vortex. The branches are given for two grid resolutions.
The most unstable type I and II modes are again found to be subject to O(10−5) and
O(10−4) eigenvalue errors, respectively.

Despite the mild differences in the base flow, the stability characteristics of the
weaker vortex are drastically changed towards a more stable state. The type I mode
is stable for all wavenumbers and type II is marginally unstable, indicating the weak
vortex amplitude of 27.3 % Ue based on (2.1) is close to the neutral secondary
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Type α λr ω λr/Ue f (kHz) cph /Ue

(Weak) I 6.2 4.7956− i0.0019 3.0984 0.7735
(Strong) I 6.2 4.6737+ i0.1568 3.0194 0.7538
(Weak) II 7.8 6.675 + i0.006 4.312 0.856
(Strong) II 8.6 7.272 + i0.107 4.698 0.846

TABLE 3. Parameters of the most temporally unstable modes in the base spectrum
corresponding to the weaker (left) and stronger (right) vortex in figure 3.

instability limit for both currently considered modes. This further corroborates the
low perturbation amplitude observed in the experimental flow field. The most unstable
modes’ characteristics for both vortices are compared in table 3.

Due to the apparent extreme sensitivity of stability on the vortex strength, an
order-of-magnitude check is performed by comparing the order of magnitude
of the growth rates to the work of Koch et al. (2000) and Bonfigli & Kloker
(2007). The current Reynolds number, Re = Ueλr/ν = 1.32 × 104, while the
latter authors’ simulations correspond to 1.34 × 104 and 0.87 × 104, respectively.
Assuming a comparable integral effect of the pressure gradient, the current results
are comparable with those of Koch et al. (2000), while relatively larger shear
levels and therefore growth rates are expected in the case of Bonfigli & Kloker
(2007). By converting the maximal growth rates in these reference into Ue/λr

units, one respectively retrieves the values 0.49 and 1.5, which, compared to
the currently found maximal value of 0.16, are significantly larger. (In their
nomenclature, for Koch et al. (2000, cf. figure 18): (σrL∗ref /Q

∗

ref ) × (λ∗zc
/L∗ref )×

(Q∗ref /Q
∗

e)= 0.029× 12/0.7092× 1= 0.49 and for Bonfigli & Kloker (2007, cf. figure
13): (Im(ω)L∗ref /u

∗

∞
)× (λ∗0,z/L

∗

ref )× (u
∗

∞
/u∗b,e)= 10× 12/100× 14/11= 1.5.) Similarly,

the maximal growth rate of the primary instability reported by Koch et al. (2000)
is 0.12. This is taken as an indication that the currently considered strong vortex
lingers close to neutral conditions. This is a reasonable explanation for the apparent
large decrease of the growth rate of the strong, as opposed to the weak vortex. The
near-neutral conditions are also reasonable in the perspective of the small difference
in the vortex amplitudes.

The estimate of the primary amplitude leading to neutral secondary modes of
Fischer et al. (1993) of 11 % Ue is rather low compared to the value found here.
The order of magnitude is comparable with the results of Wassermann & Kloker
(2002), reporting 30 % Ue based on the maximum deceleration imposed by the mean
flow distortion. Instances of the type I eigenmode being more stable than type II for
all wavenumbers are uncommon, e.g. see Koch et al. (2000). As elaborated on in
§ 2.3, the in-plane velocity components show a small increase relative to the primary
perturbation amplitude based on Us. Based on figure 20 of Bonfigli & Kloker (2007),
this effect should render the type II mode more stable than type I.

For the stronger vortex, the most unstable wavenumbers for the type I and II
modes are αλr = 6.2 and 8.6, respectively. The arrows in figure 27 link the modes
corresponding to these wavenumbers for both vortices. Bonfigli & Kloker (2007)
show (cf. figure 36b) the frequencies for fixed wavenumbers are proportional to the
primary vortex strength, i.e. a decrease of approximately 1.4 % is expected. Instead,
the frequency at a fixed wavenumber increases 2.6 % for type I and 1.2 % for type
II. By inspection of the terms in the ωr-budget, the increase of the frequency for
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FIGURE 28. |ũw|/max |ũw| for type I (a) and II (b) (levels span [1/6, 5/6] with ∆= 1/6)
for the weak (filled contours) and strong (dashed) vortex. Uw/Ue levels 0.1, 0.3, . . . , 0.9
for the weak (dash-dotted) and strong (dotted) vortex.

a fixed wavenumber cannot be associated with an individual term; it is the integral
effect of small changes in all terms. For the type I mode, αλr = 6.2 is again most
unstable. For the type II mode, the most unstable wavenumber is smaller for the
weaker vortex. This behaviour for the type I mode agrees with the results of Koch
et al. (2000), who report a type I branch (cf. figure 18) that has an invariant most
unstable frequency at different streamwise locations, although that type I branch is
not the most unstable type I harmonic over the considered streamwise range.

To further assess the reliability of the decrease in the growth rate from the strong
to the weak vortex, intermediate temporal stability branches are computed based on
the flow obtained by artificially interpolating the two vortices considered here. The
strength parameter χ is introduced, defining the interpolated solution as follows:

Qχ(zw, y)= χQ[0,1](zw, y)+ (1− χ)Q[−1,0](zw − λr, y), (4.3)

where Q denotes any mean flow variable, Qχ is the interpolated flow variable and
Q[0,1] and Q[−1,0] denote the strong and weak vortices, respectively. A similar approach
is deployed by Piot (2008) to investigate the effect of a bump on a boundary layer
flow. The values χ = 0.2, 0.4, 0.6 and 0.8 are considered and the attention is
restricted to the type I mode. The results are shown as the dotted lines in figure 28.
Evidently, transitioning from the strong to the weak vortex corresponds to a consistent
and monotonic decrease of the branch in the ω-plane, further confirming that the
decreased growth rate is not a random artefact of the measured flow representation.

A comparison of the most unstable eigenfunctions of the different vortices is
shown in figure 28. Both eigenfunctions display a broader support about the vortex.
This behaviour is qualitatively comparable to the findings of Koch et al. (2000).
Furthermore, the maxima of the functions have a higher position relative to the
distorted base flow contours, which is reflected by slightly higher phase speeds, see
table 3. In turn, this is directly linked to the slight increase of the frequencies at
constant wavenumber discussed before. The difference in the orientation of the highest
level contour of the type II mode is important to note. For the stronger vortex, this
is located to the left of the primary vortex core and tilted to the left, whereas for the
weaker vortex it is located and tilted to the right.

The previous analysis clarifies that while the spatial topology of the type I and
type II modes is rather insensitive to mild changes in the base flow, their respective
growth rates are strongly affected. To identify the physical mechanism that renders
the eigenmodes more stable for the weaker vortex, the energy balances corresponding
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FIGURE 29. (Colour online) ωi-budgets (bars) of type I (a) and II (b), ω eigenvalues
(dashed lines). Bar triplets: strong vortex, nominal Re (top, ‘1’); weak vortex, nominal
Re (middle, ‘2’); strong vortex, lower Reynolds number (bottom, ‘3’): 10−0.54Re (a) and
10−0.55Re (b).

to the most unstable modes is displayed in figure 29 (top and middle bars per term).
For the type I mode, the vortex strength difference leads to a decrease of both Ry

and Rzw in the ωi-budget. Note that the size of AWw persists. The topology of the
production terms related to the Reynolds stress and advection terms is represented
in figure 30. The highest level contours are nearly identical to those observed
in figures 12 and 13, which explains the similarity of the ωi-budgets. The shape
displayed by the lower contour levels is quite different, however, and explains the
differences in the eigenfunction shape. As the ∂Uw/∂zw shear component is smaller
for the weaker vortex, other productive contributions come into play in the region
located above the primary vortex. Figure 30(a,c,d) shows productive contributions
by the integrands of Ry, AV and AWw , respectively. The downwards protrusion of the
eigenfunction about the point (zw, y)/λr = (0.45; 0.22) in figure 10(a), associated
with the marginally positive Ry contribution in figure 12(a), is absent in figure 28(a).
In figure 30(a), the equivalent Ry-integrand contours have a smaller magnitude and
extend less in the direction orthogonal to the shear layer. The local maximum of
the Ry-integrand in the neighbourhood of the protrusion has dropped from 1.41 to
0.92 Ue/λ

3
r for the strong and weak vortices, respectively.

For the type II mode, unexpectedly, the main Reynolds stress production term, Ry,
exerts a virtually identical contribution in the ωi-budget shown in figure 29. In fact, the
production term Rzw is largely responsible for the stabilization relative to the stronger
vortex. This illustrates that, although the type II instability is mainly generated by the
Reynolds stress associated with the ∂Uw/∂y shear component, in this case the other
component is the main translator of the vortex strength. The apparent link between the
spanwise location of the eigenfunction’s maximum and the Reynolds stress Rzw , first
encountered in § 4.2, reappears here; as the maximum of the eigenfunction moves in
the positive zw-direction, this production term decreases. The relation to the topology
of the production term can be deduced by comparing figure 30( f ) with 12(d). The
negative contours have approximately the same magnitude, but the positive productive
contours change quite considerably, the maximum reducing from 16.2 to 6.9 Ue/λ

3
r

for the strong and weak vortices, respectively. Lastly, although it has a small overall
magnitude, AV reduces significantly in the ωi-budget; it is comparable to the decrease
in D. Comparing figures 30(g) and 13(d), the levels corresponding to the weaker
vortex are smaller and are more balanced in the zw-direction than those corresponding
to the stronger vortex.
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FIGURE 30. Imaginary part of the (a,e) Ry-, (b, f ) Rzw -, (c,g) AV- and (d,h) AWw -integrands
for type I (a–d) and II (e–h) on the weaker vortex (9 levels span (b) [−0.300, 47.2],
(c) [−0.873, 7.62], (d) [−4.69, 5.59], (e) [−6.74, 4.42], ( f ) [−8.76, 6.21], (g)
[−3.20, 4.00], (h) [−5.01, 3.56], negative contours are dashed). Levels in (a) span
[−27.8, −3.63] with ∆ = 4.84, and [0.300, 0.900], ∆ = 0.300. All values are given in
Ue/λ

3
r -units. Eigenfunction contour |ũw|/max |ũw| = 1/6 (dash-dotted lines). Uw/Ue levels

0.1, 0.2, . . . , 0.9 (dotted) for the weak vortex.

4.8. Effect of periodic boundary conditions
As mentioned in § 3, the measured flow fields of the single strong and weak vortices
have not been periodized. The coefficients are left discontinuous across the boundary,
such that no artificial shear layer is introduced. To assess the impact of this approach
on the solutions, the problem was set up for the domain containing both vortices,
as shown in figure 3, herein denoted as the double-vortex domain. The problem was
evaluated at the most unstable wavenumbers presented in table 3. Given the domain is
twice as large, the resolution had to be increased accordingly. The currently available
resources maximally allowed Nz × Ny = 140× 70, which, for this domain, represents
a resolution in between the cases 55× 55 and 90× 90 on the single-vortex domains.

The resulting eigenvalues match up to O(10−4) absolute errors with those presented
in table 3, and effectively collapse in figure 27. The corresponding eigenfunctions are
shown in figure 31. Note that each eigenfunction on the different vortices corresponds
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FIGURE 31. |ũw|/ max |ũw| for type I (a) and II (b) (levels span [1/6 5/6] with ∆ =
1/6) of respective modes for both vortices, computed on the single (filled contours)
and double (dashed) domain. To emphasize: the eigenfunctions on the different vortices
correspond to different eigenvalues; each has a support limited to one vortex. Uw/Ue levels
0.1, 0.2, . . . , 0.9 (dotted). Domain separation for strong (right) and weak (left) vortex
(vertical dotted line, zw/λr = 0).

to a different eigenvalue in the spectrum of the double-vortex domain problem. They
are compared to the eigenfunctions retrieved with the single-vortex domains, adjusted
to appropriately illustrate their support on the double-vortex domain, using the periodic
boundary conditions. All eigenfunctions match perfectly, even the smaller amplitude
contours of the type II mode on the weak (left) vortex. Moreover, despite the fact this
eigenfunction significantly protrudes the zw/λr = 0 boundary, it does not experience
distortion due to the minor discontinuity in the coefficients for the single-vortex
domain. This illustrates that, in this case, using discontinuous coefficients across the
boundary is justified.

These results are very similar to those presented by Bonfigli & Kloker (2007,
cf. § 6.2) and Choudhari et al. (2016). The current results corroborate the notion
that the type I and II eigenmodes on different vortices do not participate in the
same resonance; they correspond to different modes in the collective spectrum. In
this sense, they are proper discrete modes. In addition, in this case, the single-vortex
domain problems are representative of the dynamics in the double-vortex domain.
So, it is deduced that, given the primary vortices are reasonably separated in space,
it is not necessary to consider the more expensive double-vortex domain problem.
Neighbouring primary vortices do not contribute crucial information, in that case.

4.9. Reynolds number dependence
Following the analysis of Bonfigli & Kloker (2007), the type I and II modes are
Kelvin–Helmholtz instabilities and hence display an independency of the Reynolds
number when large enough; this is as opposed to viscous Tollmien–Schlichting
instabilities that are stable in the Rayleigh limit, see Schlichting et al. (2003) and
Drazin & Reid (2004). The stability problem for the strong vortex is solved, varying
the Reynolds number artificially and fixing all other parameters. The type I and
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II modes are each evaluated at the most unstable wavenumber (αλr = 6.2 and 8.6,
respectively). With increasing Reynolds number, the eigenfunction shapes become
very slender. Therefore a 90 × 90 grid is used to ensure accurately capturing all
structural details.

It is well known that viscosity has a significant impact on the stability of free shear
layers when the parameter

α
δv

2
Reδv ≡ α

δv

2
1Uw δv

4ν
= α

δv

2
1Uw/2

Ue

δv/2
λr

Re, (4.4)

is of o(102) (small-o notation) (Tatsumi, Gotoh & Ayukawa 1964; Michalke 1972).
Here, δv and 1Uw are the vorticity thickness and velocity difference relevant for
the particular instability. In the present case, these parameters are determined by
quantifying the in-plane shear components ∂Uw/∂zw and ∂Uw/∂y at the location
where the |ũ|-amplitude is maximal. Along the direction indicated by the shear
components, denoted by θ , the closest minimum or, if no minimum exists, the
closest ‘favourable’ inflection point of Uw is determined under the layer of interest.
The difference between the free-stream velocity and Uw at this point is 1Uw. The
vorticity thickness is defined as:

δv ≡
1Uw√(

∂Uw

∂zw

)2

+

(
∂Uw

∂y

)2
. (4.5)

The inset in figure 32 illustrates the location at which the shear components are
extracted together with the vorticity thickness δv and orientation θ . All relevant
parameters are reported in table 4, including: the parameter αδvReδv/2, the extraction
location, the Uw-shear components and the angle θ . Using these scales, customized
for each mode, insight is gained into the relative ‘efficiency’ of the type I with
respect to the II mode.

The growth rates in the δv-scaling are presented with full black symbols in figure 32.
It is evident that the growth rates saturate with increasing Reynolds number. Viscosity
has a significant effect in the nominal case. This is as expected, because all values
αδvReδv/2 < 100. The parameter values for the type II mode are smaller than those
for type I, causing the type II growth rate to saturate more slowly.

It is striking that the type II mode is the most unstable of the two, in the custom
per-mode scaling. The type II mode is the more efficient mechanism. This suggests
that the Reynolds stress production terms do not contribute to the growth rate as
in the case of a one-dimensional shear layer. For the strong vortex, both shear
components act constructively for the type II mode, while the ∂Uw/∂y component
acts destructively for the type I mode. However, next to these Reynolds stresses, there
are effects associated with the in-plane velocity components; i.e. the equivalents of
non-parallel flow effects. The largest contributions in the ωi-balance, except D, are
found to vary mildly with the Reynolds number as shown in figure 29 (compare top
and bottom bars per term). Only the Reynolds stress production terms in the type II
budget show an increase, but have the same character. The non-parallel contributions
also retain the same character; V-advection destabilizes the type II mode and the
Ww-term stabilizes type I.

Based on the previous observations, further links are sought between growth,
base flow strength and Reynolds number. Figure 32 suggests the eigensolutions
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FIGURE 32. Type I (αλr = 6.2, circles) and II (8.6, squares) growth rate in δv-scaling
versus Re for the strong vortex. Eigenvalues: computed (filled symbols), excluding AV

and AWw (open symbols), weak vortex (grey symbols). Nominal Re (vertical dashed line),
interpolation of weak vortex onto strong vortex data (arrows). Inset: |ũw|/max |ũw| = 0.5
for both modes at nominal Re and Uw/Ue levels 0.4, 0.5, . . . , 0.9 for the strong (solid
respectively dotted lines) and weak (dashed respectively dash-dotted) vortex. |ũ|-maximum
location (crosses) and δv in the θ -direction (bars).

Type δv/λr 1Uw/Ue α δv/2 Reδv zw/λr y/λr ∂Uw/∂zw ∂Uw/∂y θ

(Strong) I 0.107 0.506 59.0 0.373 0.221 −3.02 3.65 40◦
(Weak) I 0.104 0.451 50.3 0.366 0.221 −2.53 3.50 36◦
(Strong) II 0.073 0.188 14.1 0.640 0.378 −0.16 2.58 3.5◦
(Weak) II 0.078 0.164 13.4 0.673 0.362 0.22 2.19 −5.6◦

TABLE 4. Vorticity thickness parameters for the nominal most unstable modes. Shear
component values are in units of Ue/λr.

corresponding to the weak vortex have common features with those on the strong
vortex at a lower Reynolds number. The horizontal arrows in figure 32 indicate the
interpolation of the weak vortex growth rates onto the curve with varying Reynolds
number of the strong vortex. This interpolation yields nearly matching Reynolds
numbers for both mode types, 10−0.54Re= 3770 for type I and 10−0.55Re= 3700 for
type II. The mild variation in the energy budgets with the Reynolds number mentioned
before implies that the increased viscous dissipation term is directly equivalent to
the net reduction of the Reynolds stress terms for the weaker vortex case. Figure 29
visualizes this; the energy budgets are given for these specific Reynolds numbers. For
the type II instability, for example, the change in D closely matches the change in
the Rzw-term.

Despite these equivalences, the eigenfunctions for the two cases are different.
As mentioned before, the main dependency of the eigenfunctions on the Reynolds
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(a) (b)

FIGURE 33. |ũw|/max |ũw| = 1/6 for Reynolds number: 10−0.8Re (dashed line), nominal
(solid) and 100.8Re (dash-dotted) for type I (a) and II (b). Uw/Ue levels 0.1, 0.2, . . . , 0.9
(dotted).

number is their respective width orthogonal to the shear layer. The eigenfunctions
corresponding to the strong vortex are shown in figure 33 for various Reynolds
numbers. For an increasing Reynolds number, the eigenfunction focuses about the
region where the Reynolds stresses are active. The increase in width is caused by
viscous diffusion. The distinction is attributed to the fact that the dissipation acts
on all velocity components, while both dominant Reynolds stress terms produce or
destroy the ũw component directly. In the weak vortex case the latter is reduced
causing a redistribution of the energy balance at local points in the zwy-plane. The
decreased Reynolds number instead has a global impact on all terms, which does not
cause a significant redistribution within the plane.

Using the energy decomposition, the solely parallel effects can be separated from
the total contributions in the eigenvalue information. This is done by subtracting all
contributions involving the V- and Ww-components from the computed eigenvalue,
i.e. all associated advection and Reynolds stress terms, including those in the
remainder. The results are the empty symbols shown in figure 32. It is revealed
that, in close proximity to the nominal Reynolds number for the strong vortex case,
the modes are equally matched. In terms of the growth rate, this demonstrates both
mode types are the offspring of the same parallel instability mechanism. This is a
non-trivial result regarding the productive and destructive character of the Reynolds
stress terms. Nevertheless, the cumulative effect is the same in this particular range.

The previous analysis demonstrates that the eigensolutions incorporating all non-
parallel effects, including non-trivial redistribution, generation and destruction effects
imposed by the V- and Ww-components, can be recast into a self-similar parallel form
that only depends on the details associated with the main shear layers, viz. δv and
1Uw. Capturing those details sets the main physical basis of the perturbation and
the non-parallel velocity components are extra effects. Note that the reverse approach,
i.e. performing the stability analysis on the Uw-field only, does not necessarily yield
the same result due to the redistribution imposed by the in-plane velocity components.

From the relationship governing the inviscid stability of the piecewise linear shear
layer, see Drazin & Reid (2004):

(2ωδv/1Uw)
2
= (1− 2αδv)2 − (e−2αδv )2, (4.6)

the maximal temporal growth rate ωi= 0.20121Uw/δv is found, which is significantly
larger than the limiting values shown in figure 32. Although it is not in the scope
of the current paper, next to the destructive nature of the Reynolds stress terms, other
effects like the two-dimensionality imposed by the shear layer’s finite spanwise extent
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and wall proximity have to be carefully factored before the results can be expected
to be comparable to the one-dimensional shear layer characteristics, see Groot et al.
(2016) (cf. figure 6 (left)). Both effects are stabilizing and not accounted for in the
simple scaling. Drazin & Reid (2004) show this for the wall proximity. Measured
orthogonally with respect to the shear layers, their centres are located more than 2δv
from the wall, which indicates no significant effect. The modes have a wavelength in
the zwy-plane parallel to the shear layer, which has a stabilizing effect through viscous
dissipation, but is not accounted for in the one-dimensional case. In the case of the
strong vortex, the most unstable modes have approximately equal such wavelengths
(≈ 0.3λr) for the larger part of the domain and therefore has an equal impact for both
modes.

5. Conclusion

A combined experimental and numerical approach to the analysis of the secondary
stability of realistic swept-wing boundary layers is presented, as a continuation of
the work of Serpieri & Kotsonis (2016). The studied boundary layer develops on the
pressure side of a 45◦ swept wing at an angle of attack (RecX = 2.17× 106, M= 0.075).

Bonfigli & Kloker (2007) point out that the a complete description of the distorted
base flow field is essential when performing the secondary stability analysis, especially
regarding the wall-normal and spanwise (in-plane) velocity components. However,
how the latter components affect the secondary stability is described only in a
conceptual manner. Serpieri & Kotsonis (2016) used tomographic particle image
velocimetry (tomo-PIV) that provides such a complete description of the base flow
and fluctuations, allowing applying two-dimensional linear stability theory to the
measured mean flow.

Two neighbouring primary vortices, of different strength, extracted at the same
streamwise location, are considered in the global stability analysis. The two
eigenmodes of type I and II (Koch et al. (2000)), referred to as the z- and y-modes
of Malik et al. (1999), are extracted primarily. The type III mode is obtained as
well, but it is expected a priori to be affected by the uncertainty of the current PIV
measurement near the wall. The attention is therefore focussed on type I and II.

The energy decompositions of the type I and II modes are investigated in detail,
divulging the contribution of the in-plane velocity components. For the type I mode,
the effect is stabilizing and mainly caused by the spanwise velocity component. This
imposes a net perturbation energy advection towards the vortex core, decreasing the
growth rate by 14.1 %. For mode II, the growth rate is increased by 7 % by advection
caused by the wall-normal velocity, that yields a net advection away from the vortex
core. Another important difference between the modes regarding advection is that the
type I perturbation energy is driven or ‘squeezed’ onto a line, while no such line exists
for the type II mode. This renders the position of the type I mode with respect to the
primary crossflow vortex more robust than that of the type II mode.

The measured mean flow is subject to an uncertainty, which is highly related to
the most energetic POD mode that manifests itself as a spanwise shift of the entire
primary vortex structure. A Monte Carlo approach is deployed to investigate the
convergence of the results with the number of instantaneous snapshots, Nfr, used for
the mean flow. The mean growth rate and energy decomposition values converge for
increasing Nfr. The growth rate fluctuations are large, but display a linear convergence
trend. Therefore they can be neglected beyond the Nfr value where the fluctuations
are so small they do not change the solution structure any more. For the type I
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mode this is straightforward as the arrangement of the energy decomposition is fixed
for every considered Nfr. For the type II mode, the Reynolds stress production term
associated with the spanwise shear component experiences large fluctuations about
its mean value. These fluctuations correlate strongly to the movement of the type
II eigenfunction in the spanwise direction, which, in turn, is deduced to be the
logical result of the most energetic POD mode. The link between the movement and
the Reynolds stress production term is physically supported by the topology of the
latter. Additionally, the relative sensitivity of the different modes is explained by the
different topologies of the in-plane advection terms for the different modes; being
more robust for the type I mode.

Using a measured base flow implies the in-plane flow is not divergence free and
the fields have to be extrapolated in the wall-normal direction. A crude estimation
points out the non-zero divergence yields smaller growth rate changes compared to
the observed uncertainty due to the mean ensemble size. The effect of extrapolation
is negligible up to the discretization error when using parameters representative of the
non-intrusive limit.

The applicability of the Gaster transformation when applied the measured base flow
is verified. Despite slight changes in the Reynolds–Orr terms, the spatial and temporal
eigenfunctions were found to change negligibly.

The flow structure of the type I eigenmode is compared against that of the POD
mode, a main difference being the inclination of the vortex structures. The eigenmode
growth is found to be underestimated when compared to a measure based on the
POD mode. A cause for this could be the latter’s low phase resolution, when
considering only 2 POD modes. Using bandpass filtered hot-wire anemometry results,
corresponding to the type I mode, a match is established with the eigenmode growth.
This illustrates the approach is capable of extracting the order of magnitude of the
growth rates.

Analysing the weak primary vortex, both modes are found to be (marginally)
stable. This is in line with the experimental observations, but poses a remarkable
difference with respect to the strong vortex. Comparing the growth rates reported in
the literature illustrates that both vortices linger close to the neutral limit, explaining
the (only apparently) large growth rate difference. The robustness of the growth rate is
checked by analysing artificially interpolated base flow solutions. For the type I mode,
the Reynolds stress terms related to the wall-normal shear layer and the advection
terms now have a more pronounced effect and increase the spanwise extent of the
eigenfunction, also encountered by Koch et al. (2000). Interestingly, the stabilization
of the type II mode is mainly caused by a strong decrease in the Reynolds stress
production term associated with the spanwise shear layer; while the wall-normal
shear layer’s contribution remains identical. Furthermore, the eigenfunction displays a
significant rightward lean, which can be directly compared to the behaviour observed
in the uncertainty quantification. This manifestation demonstrates that behaviour is
indeed physical.

Solving the problem with a domain containing both vortices, virtually identical
results are retrieved. This indicates that, for the vortices considered, the periodic
boundary conditions influence the results negligibly.

The Kelvin–Helmholtz nature of the type I and II modes (Bonfigli & Kloker 2007)
is confirmed by analysing the strong vortex and artificially changing the Reynolds
number. This mainly results in eigenfunction width changes as a consequence of
viscous diffusion. The growth rate results displayed in personalized vorticity thickness
scaling shows that the type II mode is the more efficient mechanism over type I with
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respect to the active shear strength. Omitting the terms related to in-plane advection
eliminates the difference. This illustrates the impact of the in-plane flow directly
and demonstrates that the stability solutions can be cast into a parallel basis form
to which the in-plane velocity components pose a deviation. The elimination of the
efficiency difference is not universal; despite the correction for the in-plane velocity
components the characteristics diverge when considering a larger Reynolds number
range and the weak vortex case.

These outcomes indicate, at least for this application, that resolving the shear
layers allows extracting stability data. Having to scrutinize the delicate primary
vortices’ receptivity in a computational approach is thereby circumvented. With the
current approach, these essential features are incorporated in the base flow and, by
consequence, in the stability analysis. To model this computationally can be very
challenging and requires experimental calibration nonetheless.

More physical understanding results in terms of the solutions’ robustness to realistic
perturbations of the problem. Therefore, by bringing the stability approach closer
to the experiment, making their ever-present relationship more mutual, a better
representation and physical understanding can result. This information can be fed
back into the design of further experimental campaigns.

The conclusions of this article are expected to be applicable in a broader range of
flow topologies and the methodology can extend experimental measurability at other
fronts. For example, the perturbation pressure field can be extracted from a PIV base
flow.
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