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1. Introduction. It is known that the Fitting length h(G) of a finite soluble group 
G is bounded in terms of the number v(G) of the conjugacy classes of its maximal 
nilpotent subgroups. For \G\ odd, a bound on h(G) in terms of v(G) was discussed 
in Lausch and Makan [6]. In the case when the prime 2 divides |G|, a logarithmic 
bound on h(G) in terms of v(G) is obtained in [7]. The main purpose of this paper 
is to show that the Fitting length of a finite soluble group is also bounded in terms 
of the number of conjugacy classes of its maximal metanilpotent subgroups. In 
fact, our result is rather more general. 

Let F be a saturated formation of finite soluble groups, which is also a Fischer 
class. Then there is a uniquely determined set TT of primes such that N ^ F ^ S , , . , 
where N^ is the class of all finite nilpotent 7r-groups and Ŝ  the class of all finite 
soluble 77-groups (see Hartley [5, §3.3, Remark 1]). Let F° = {1}, the class con­
sisting of the trivial groups, let F^=F j r = S ,̂F and, for an integer k>\, let F*= 
F^-1F;r. (If X and Y are two classes of groups, we define XY to be the class of 
groups G which is an extension of an X-group by a Y-group.) One can easily 
check that F* is both a saturated formation and a Fischer class, for each k>0. 

More precisely, we show: 

THEOREM. For each integer w>l , the V-length 1(G) of a finite soluble group G is 
at most ju,n(G)+n—l, where fin(G) is the number of conjugacy classes of maximal 
F^-subgroups ofG. 

All groups considered in this paper are finite and soluble. For the definitions and 
basic facts about saturated formations, Fitting classes and various subgroups 
related to both these classes which will enter our discussion, we refer the readers 
to Carter and Hawkes [1], Fischer, Gaschutz and Hartley [3], Gaschutz [4], 
Hartley [5] and Wright [8]. 

Given a saturated formation X which is also a Fitting class, a series 

1 = G0 < Gx < G2 < • • • < Gm = G 

of normal subgroups of a group G is called an X-series of G if for each / = 1, 2 , . . . , 
m, either GJG^ G X or GJG^ e Sff,, where IT is the uniquely determined set of 
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primes such that N ^ X ^ S ^ . The X-length of G is defined to be the smallest 
number of X-factors in any X-series of G. Observe that, if X = N , the class of all 
finite nilpotent groups, then the X-length of a group is the familiar Fitting length 
of the group. 

2. A necessary and sufficient condition for an injector to be a projector. In this 
section, we establish a result which we need in proving the theorem and which 
might also be of independent interest. 

PROPOSITION 2.1. Let E be a Fischer class which is also a saturated formation, 
and let Vbe an E-injector of a group H. Then, Vis an E-projector (i.e., an E-covering 
subgroup) of H if and only if V is a maximal E2-subgroup of H. 

For the proof of Proposition 2.1 we need the following result which has been 
proved independently by Graham Chambers [2] and the author (see [7]). Chambers 
obtains this result as a special case of his more general result, namely Theorem 3 
in [2]. 

THEOREM 2.2. Let Xbe a Fischer class and Y a saturated formation. Let D be the 
Y-normalizer of a group G corresponding to a Sylow system Y*ofG and let Vbe the 
X-injector of G into which 2 reduces. Then D and V are permutable subgroups of G 
and, moreover, DV avoids the Y-eccentric, X-avoided chief factors of G and covers 
the rest. 

In Theorem 2.2, we need not assume that Y contains the class N. In that case, D 
is defined as in Wright [8] with respect to an integrated screen. Since, in view of the 
corollary to Lemma 3 in Hartley [5], F i s strongly pronormal in G (see [2], for 
definition), Theorem 2.2 is clearly a special case of Theorem 3 in Chambers [2]. 

We can now prove Proposition 2.1, but before we do so, we wish to make the 
following remark. 

REMARK. Though the various results from Carter and Hawkes [1], which we 
will use in the course of the proof of Proposition 2.1, are proved there for saturated 
formations containing the class N, they also hold for an arbitrary saturated 
formation. 

Proof of Proposition 2.1. Suppose first that V is an E-projector of H and let L 
be an E2-subgroup of H which contains V. By Satz 2 in Fischer, Gaschutz and 
Hartley [3], F is an E-injector of L and so L E < V, where LE is the unique largest 
normal E-subgroup, or the E-radical of L. On the other hand, L/LE e E. Thus, by 
our assumption, L=L^V= F and we have shown that Fis a maximal E2-subgroup 
of H. 
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Suppose next that F is a maximal E2-subgroup of H and proceed by induction 
on \H\ to show that Vis an E-projector of H.lf HeE, V=Hand we are done. 
If H $ E, H has an E-crucial chief factor, say R/S. It will be sufficient to show that 
F covers H/R; for, in that case, VS is an E-crucial maximal subgroup of H and by 
induction V is an E-projector of VS and therefore that of H by Theorem 5.4 of 
Carter and Hawkes [1]. 

Let N=NH(V n R). If N<H, V is, by induction, an E-projector of N and 
therefore covers N/N®, where iVE is the smallest normal subgroup of N such that 
N/N® e E. But, by the Frattini argument N covers H/R e E; hence NB<,R and V 
covers H/R, as required. Hence assume V C\ R<\H. Let S be a Sylow system of 
H which reduces into V and let D be the E-normalizer of H corresponding to S. 
By Theorem 2.2, DV= VD=D(V n R). Thus, DV/V n Rg^DjD nVnReE, 
whence DVeE2 and D< V. But then D, and therefore F, covers H/R, as required. 
The proof is complete. 

3. Proof of the Theorem. Throughout this section Y will denote the class F „ X 
will denote the class F*"1 and H will denote the class F|J. 

We begin with the following lemma. 

LEMMA 3.1. If V is an H-injector of G, then G X = F X . Moreover, V/Gx is a 
Y-injector ofGjG^. 

Proof. The first part of the lemma is a consequence of Lemma 10 in Hartley [5]. 
Next, let (NlGx)<\ < ( ( / /G x ) and consider NnK/G x . Since Fis an H-injector 

of G, N n F is an H-injector of N, and so, by the first part, (N n ^ ) x = ^ x - Thus, 
since N n V is a maximal H-subgroup of N, it follows that (N n F)/iVx is a 
maximal Y-subgroup of iV/iVx. But A^X=GX. Hence, N n F/Gx is a maximal 
Y-subgroup of 7V/GX. Since JV/GX was an arbitrary subnormal subgroup of G/Gx, 
this shows that V/Gx has the defining properties of Y-injectors, and so F/Gx is a 
Y-injector of GjG^, as required. 

With the help of Proposition 2.1 and Lemma 3.1, we can next prove the following 
lemma. 

LEMMA 3.2. Let V be as in Lemma 3.1. If VjGY is a maximal H-subgroup of 
G/GY, then F/Gx is a Y-projector ofG/G^. 

Proof. By Lemma 3.1, F/Gx is a Y-injector of G/Gx. Moreover, since the F-
length of G^/GY is at most n—2, it follows, by our assumption, that K/Gx is a 
maximal Y2-subgroup of G/Gx. Thus, by Proposition 2.1, P7GX is a Y-projector 
of G/G^, as required. 

The following lemma is a straightforward generalization of Lemma 1 in Lausch 
and Makan [6] and provides a basis for induction argument in the proof of the 
theorem. 
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LEMMA 3.3. Let N<\G. Then every maximal H-subgroup ofGjN is the image in 
GjN of a suitable maximal H-subgroup of G. In particular, /^(G/A0<^n((7). If 
moreover, lin{GjN)=^[xn{G), then the image in GjN of every maximal H-subgroup 
of G is a maximal H-subgroup of GjN. 

Proof. Let WjN be a maximal H-subgroup of GjN. Since H is a saturated forma­
tion, W has an H-projector V, say (see Gaschutz [4]). Also, since WjN eH, 
W= VN. Let F* be a maximal H-subgroup of G which contains V. Clearly WjN~ 
NVjN<NV*jN e H. Thus, since WjN is a maximal H-subgroup of GjN, it follows 
that NV*jN= WjN. In particular, since Fis a maximal H-subgroup of W, V*=V. 
The rest of the lemma now follows. 

We can now complete the proof of the theorem as follows: 
We proceed by induction on |G|. Thus, we can assume that ^n(G/GY)=/^n(G). 

Also, we can assume that l(G)>n since otherwise the result is trivially true. Let V 
be an H-injector of G. Then, since ^w(G/GY)=/Jn(G), VjGY is, by Lemma 3.3, a 
maximal H-subgroup of GjGY. Hence, by Lemma 3.2, F/Gx is a Y-projector of 
G/Gx. Since, by Hilfssatz 2.2 in Gaschûtz [4], Y-projectors of G are invariant under 
homomorphisms of G, it follows then that F/GH is a Y-projector of GjGn. 

Next, let WjGY be an H-injector of G/GY. Then, since V^GA, where A = Y n + \ 
VjGY and WjGY belong to two distinct conjugacy classes of maximal H-subgroups 
of GjGY. Hence, WjGY* is not a maximal H-subgroup of GjGY*; for, otherwise, 
WjGu is, in view of Lemma 3.2, a Y-projector of GjG^, and, therefore, conjugate 
to F/GH, contrary to the fact that VjGY and WjGY are not conjugate in GjGY. 
Thus, it follows that ju>n(GjGY*)</j,n(G). In fact, [in(GjGY*)<[jLn(G)—2, since 
VjGY*<VGAjGY*eH. Hence, by the induction hypothesis, /(G/GY

2)<" + 
( / i n (G)~2)- l . Since /(GY2><2, it follows finally that l(G)<n+pn(G)-l, and so 
we are done. 

REMARK. The theorem is not true for n=1 as the case when F = N and ia1(G)=2 
shows (see the corollary following the proof of the main theorem in [6]). 
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