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The advent of fast pixelated detectors for electron microscopy has given rise to an explosion of four-

dimensional scanning transmission electron microscopy (4D STEM) applications over the last decade [1], 

not least in the field of focused-probe STEM ptychography (FPSP) [2].  FPSP utilizes the interference in 

convergent beam electron diffraction (CBED) patterns to detect the sample-induced phase shifts of the 

electron wave. With super-resolution capabilities, post-processing aberration correction and efficient 

phase contrast imaging versus other STEM imaging techniques [3], FPSP has significant potential for 

atomic resolution imaging of light elements and beam-sensitive materials.  However, slow scanning 

speeds (1kHz), narrow information transfer and high standard beam currents ( >1pA) has rendered FPSP 

challenging to achieve on such materials.          

This presentation will explore the experimental and analytical approaches to minimizing electron dose 

(electrons per unit area) and maximizing dose efficiency of FPSP. Various direct electron detectors enable 

acquisition speed to be increased via binning (up to 7.5 kHz [4] in integrating mode); others do so by 

adjusting their dynamic range (up to 12.5kHz [5] in counting mode). Using such methods has enabled 

phase reconstructions of zeolites at cumulative electron doses below 1000 e Å
-2

, as shown in Figure 1. 

The choice of convergence angle and sampling settings can be optimized before data acquisition to 

minimize the cumulative electron dose. When the data is dominated by noise, 4D STEM acquisition can 

be performed using multiple fast scans before performing non-rigid registration and averaging, mitigating 

scan distortions and sample drift which can be present in a single, slower scan [6]. In addition to optimizing 

experimental parameters, post-processing techniques can be applied to maximize the dose efficiency of 

the reconstruction. For example, aberration correction can be performed in post-processing, thus removing 

the need to expose the sample to the beam before data acquisition. Furthermore, noise normalization can 

increase the window of information transfer in phase reconstructions, such that both low and high spatial 

frequencies are transferred with high contrast. These approaches will be described together with their 

application to a range of beam-sensitive samples, such as zeolites and crystalline polymers. The 

commercialization of prototype fast pixelated detectors with frame rates close to 0.1 MHz is in future 

expected to play a major role in further enabling low dose FPSP experiments [7],[8]. 
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Figure 1. Ptychographic phase reconstruction of ZSM-5 zeolite using a MerlinEM fast pixelated detector 

with 1-bit counting depth at a frame rate of 12.5 kHz. Scale bar: 1 nm. Adapted from Appl. Phys. Lett. 

116, 124101 (2020), with the permission of AIP Publishing. DOI: https://doi.org/10.1063/1.5143213. 
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