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Abstract

In this paper we investigate principal prime ideals in commutative rings. Among other things we
characterize the principal prime ideals that are both minimal and maximal and characterize the maximal
ideals of a polynomial ring that are principal. Our main result is that if (p) is a principal prime ideal of
an atomic ring R, then ht(p)≤ 1.
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In this paper we study principal prime ideals in commutative rings. Throughout, all
rings will be commutative rings with identity. Let R be a commutative ring. A nonunit
p ∈ R is prime (often called a principal prime) if p | ab (a, b ∈ R) implies p | a or
p | b, or equivalently, (p) is a prime ideal of R. Now a nonunit a ∈ R is irreducible
(or an atom) if a = bc (b, c ∈ R) implies a ∼ b or a ∼ c, where x ∼ y denotes being
associate, that is, (x)= (y). In addition, R is said to be atomic if each nonunit of R is a
finite product of atoms. If R satisfies the ascending chain condition on principal ideals
(ACCP), then R is atomic, but the converse is false. Of course, a principal prime p
is irreducible, but the converse is false. One of our main results is that for a principal
prime ideal (p) in an atomic ring R, we have ht(p)≤ 1.

Examples of principal prime ideals that come to mind (besides (0) in an integral
domain) are the height-one primes of a unique factorization domain (UFD) (or
equivalently, (a) where a is irreducible), the maximal ideal of an n-dimensional
discrete valuation domain, or the maximal ideal of a special principal ideal ring (SPIR)
such as Z/pnZ. (Recall that a UFD is an atomic integral domain in which any two
factorizations of a nonzero nonunit element into atoms are unique up to order and
associates and a SPIR is a principal ideal ring with one nonzero prime ideal and
that prime ideal is nilpotent.) In these examples, the principal prime ideals are either
maximal or have height less than or equal to one. We first give an example to show
that in a (quasilocal) domain a principal prime ideal can have arbitrary height and
co-height.

c© 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 $16.00

130

https://doi.org/10.1017/S000497271000170X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271000170X


[2] Some remarks on principal prime ideals 131

EXAMPLE 1. (A principal prime ideal (p)with ht(p)=n and coht(p)=m where 0≤n,
m ≤∞.) Let (V, (p)) be an n-dimensional discrete valuation domain (0≤ n ≤∞).
For 0≤ m ≤∞, let X̄ = {X1, . . . , Xm} be a set of indeterminates over V (X̄ = ∅ if
m = 0 and X̄ = {X1, X2, . . .} if m =∞). Then pV [X̄ ] is a principal prime ideal
of V [X̄ ] with ht pV [X̄ ] = n (as V [X̄ ]pV [X̄ ] = V (X̄) has dim V (X̄)= dim V = n)

and coht pV [X̄ ] = dim V [X̄ ]/pV [X̄ ] = dim(V/(p))[X̄ ] = m. Thus in the quasilocal
domain D = V [X̄ ](p,X̄) we have ht pD = n and coht pD = m. (For the existence of

an n-dimensional discrete valuation domain and the fact that dim V = dim V (X̄), the
reader may consult [4, Corollary 18.5] and [4, Proposition 18.7], respectively.)

It is well known that if (p) is a principal prime ideal with p regular (that is,
not a zero divisor), then J =

⋂
∞

n=1(p
n) is prime, J = pJ , and if Q is a prime

ideal with Q ( (p), then Q ⊆ J . Less well known is the following generalization
[3, Corollary 2.3].

THEOREM 2. Let R be a commutative ring and (p) a principal prime ideal of R with
ht(p) 6= 0 and set J =

⋂
∞

n=1(p
n). Then:

(1) J is prime;
(2) pJ = J ; and
(3) any prime ideal properly contained in (p) is contained in J .

The above theorem is false if (p) is a minimal prime ideal. For example, in
Z/(4),

⋂
∞

n=1(2̄
n) is not prime. However, in this example condition (2) still holds.

In [3, Example 2.4] it is shown that condition (2) may also fail. Briefly, let k be a
field and let R = k[X, Z , Y1, Y2, . . .] be the polynomial ring over k in indeterminates
X, Z , Y1, Y2, . . . . Let

A = (X − ZY1, X − Z2Y2, X − Z3Y3, . . .)

and put R̄ = R/A. Then (X̄ , Z̄)= (Z̄) is a minimal principal prime ideal of R̄; but

X̄ ∈
∞⋂

n=1

(Z̄n)− Z̄
∞⋂

n=1

(Z̄n).

Suppose that (p) is a principal prime ideal of R with ht(p)≥ 1 and let J =⋂
∞

n=1(p
n). Let P be a minimal prime ideal of R. If x ∈ (0 : p), then xp = 0 ∈ P and

p /∈ P gives x ∈ P . Therefore, (0 : p)⊆
√

0⊆ J (since J is prime by Theorem 2).
Thus if R is reduced, then p is regular. In the case where ht(p)≥ 1, it is easy to
characterize the ideals between (p) and J .

THEOREM 3. Let (p) be a principal prime ideal of a commutative ring R with
ht(p)≥ 1 and let J =

⋂
∞

n=1(p
n). For ideals A ⊆ B of R, let

[A, B] = {K is an ideal of R | A ⊆ K ⊆ B}.

Then the map θ : [J, R] → [J, (p)] given by θ(I )= pI is a complete lattice
isomorphism.
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PROOF. First θ([J, R])⊆ [J, (p)] since pJ = J by Theorem 2. If B ∈ [J, (p)], then
J ⊆ B ⊆ (p) gives B = p(B : p) where (B : p)⊇ J , so θ is onto. By the remarks
of the previous paragraph, (0 : p)⊆ J . Therefore, if p A = pB where J ⊆ A, B are
ideals, then A = A + (0 : p)= B + (0 : p)= B; thus θ is one-to-one. Certainly θ
preserves arbitrary sums. Finally, we show that if {Aα} ⊆ [J, R], then

θ
(⋂

Aα
)
=

⋂
θ(Aα) or p

(⋂
Aα
)
=

⋂
p Aα.

Therefore((
p
⋂

Aα
)
: p
)
=
(⋂

Aα
)
+ (0 : p)=

⋂
Aα =

⋂
(Aα + (0 : p))

=

⋂
(p Aα : p)=

((⋂
p Aα

)
: p
)
;

hence
p
⋂

Aα = p
((

p
⋂

Aα
)
: p
)
= p

((⋂
p Aα

)
: p
)
=

⋂
p Aα.

This concludes the proof. 2

The following theorem is well known, at least for integral domains, but we could
not find a reference.

THEOREM 4. Let (p) be a principal prime ideal in a commutative ring R. If
ht(p)≥ 1, then {(pn)}∞n=1 is the set of (p)-primary ideals. Suppose that ht(p)= 0
and n is the least positive integer n with (pn)(p) = 0(p). Then {(pm)}nm=1 is the set of
(p)-primary ideals.

PROOF. First, suppose that ht(p)≥ 1, so J =
⋂
∞

n=1(p
n)( (p) is prime by

Theorem 2. We show that (pn) is (p)-primary for each n ≥ 1. Since J ( (pn) is prime,
we can pass to R/J and hence assume that R is an integral domain. Now

√
(pn)= (p).

Suppose that xy ∈ (pn), but x /∈ (p). Suppose that y /∈ (pn), say y = apm where
0≤ m < n and a /∈ (p). Then

xapm
= xy ∈ (pn)⇒ xa ∈ (pn−m)⊆ (p),

which is a contradiction since x /∈ (p) and a /∈ (p). Next, let Q be (p)-primary.
Now Q 6⊂ J , so there exists an n ≥ 1 with Q ⊆ (pn) but Q * (pn+1). Therefore,
Q = A(pn) where A * (p). Hence (pn)⊆ Q so Q = (pn).

Next, suppose that ht(p)= 0 and n is the least positive integer with (pn)(p) = 0(p).
Then (p)) (p)(2) ) · · ·) (p)(n) is the set of (p)-primary ideals where (p)(s) =
(ps)(p) ∩ R. It suffices to show that (ps)= (p)(s) for 1≤ s ≤ n. Certainly we have
(ps)⊆ (p)(s). If (p)(s) ⊆ (pn), then (p)(s) ⊆ (p)(n), so s = n and (p)(s) = (pn).
Therefore, we can assume that (p)(s) ⊆ (pt ), but (p)(s) * (pt+1) for some 1≤ t < n,
so (p)(s) ⊆ (pt )A where A * (p). Since (p)(s) is (p)-primary, (pt )⊆ (p)(s) and
so (p)(s) = (pt ). Since (ps)(p) = (p)(s)(p) = (p

t )(p), we have s = t . 2

We next give our main result. Recall that a DVR (a rank-one discrete valuation ring)
is a principal ideal domain with exactly one nonzero prime ideal.
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THEOREM 5. Let R be an atomic ring and let (p) be a principal prime ideal of R.
Then ht(p)≤ 1. Moreover, ht(p)= 1 if and only if p is regular and in this case R(p)
is a DVR.

PROOF. Suppose that p is a zero divisor. If ht(p)≥ 1, there is a prime ideal Q ( (p).
Let 0= a1 · · · an , a product of atoms, so some ai ∈ Q. Then (ai )⊆ Q ( (p).
Therefore, by [2, Theorem 1], p is regular; this is a contradiction. This implies
ht(p)= 0. In addition, of course, if ht(p)= 0, then p is a zero divisor. (Note that
when p is a zero divisor we have only used the fact that 0 is a product of atoms.) Next,
suppose that p is not a zero divisor. As ht(p)≥ 1, by Theorem 2, Q =

⋂
∞

n=1(p
n)

is a prime ideal and there are no prime ideals strictly between Q and (p). Let
a ∈ Q be irreducible. Then (a)⊆ Q ( (p), so a = r p for some r ∈ R. Now as a
is irreducible we must have r ∼ a; say r = r ′a. Then a = r ′ pa, so (1− r ′ p)a = 0 and
hence (a)(p) = 0(p). Now let b ∈ Q. Since b is a product of atoms, there is an atom a
with (b)⊆ (a)⊆ Q. Hence (b)(p) ⊆ (a)(p) ⊆ 0(p) and therefore Q(p) = 0(p). Thus
R(p) is a DVR and ht(p)= ht(p)(p) = 1. 2

Of course, Example 1 shows that Theorem 3 fails if R is not atomic. Also,
Theorem 3 fails if we replace the principal prime p by an atom as seen by our next
example.

EXAMPLE 6 [5, Exercise 8, p. 114]. Let k be a field and X, Y indeterminates
over k. Let R = k[Y ][{XnY }n≥1]. Then R is a bounded factorization domain (for each
nonzero nonunit f ∈ R, there exists a positive integer N ( f ) so that if f = f1 · · · fn
where each fi is a nonunit, then n ≤ N ( f )), even a finite factorization domain (each
nonzero nonunit of R has only finitely many (irreducible) factors, up to associates),
and hence satisfies the ACCP and thus is atomic. However, Y ∈ R is irreducible (but
not prime) and ht(Y )= 2.

What can we say about chains (p1)( · · ·( (pn) of principal prime ideals?
Certainly we can have maximal chains of length one or two as seen by taking Z/4Z or
Z. Now by [2, Theorem 1, Corollary 2] any chain of principal ideals (a1)( · · ·( (an)

where ai is irreducible has n ≤ 2 and if n = 2, then a2 is regular and a1 is a zero
divisor. Since a principal prime is irreducible, any (maximal) chain of principal prime
ideals has length at most two and for a chain of principal prime ideals (p1)( (p2),
p1 is a zero divisor and p2 is regular. However, in the case of principal prime ideals,
there is a simpler proof and more can be said. For suppose that (p1)( (p2) is a chain
of principal prime ideals in a commutative ring R. (Note that the proof only uses the
fact that p2 is irreducible.) Since p1 = r p2 for some r , p2 /∈ (p1) and (p1) is prime,
we have (p1)= (p1)(p2). Let M be a maximal ideal of R containing (p2). Then,
in RM , we have (p1)M = (p1)M (p2)M , so (p1)M = (0)M . Thus RM is a domain and
ht(p1)= ht(p1)M = 0, and hence p1 is a zero divisor. Suppose that sp2 = 0. If M is
a maximal ideal of R with M ⊇ (p2), then s/1= 0/1 in RM since RM is an integral
domain. If p2 /∈ M , then p2/1 is a unit in RM , so s/1= 0/1 in RM . Thus s = 0 and
p2 is regular. Finally, what can be said if (p1) is a maximal chain of principal prime
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ideals? Certainly we can have ht(p1)= 0 and p1 can be a zero divisor. But consider
a two-dimensional discrete valuation domain V with prime ideals (π)) P ) 0. Then
since P2

6= P is P-primary, π̄ is a regular element of V̄ = V/P2, ht(π̄)= 1 and (π̄)
is a maximal chain of principal prime ideals. However, if we take an ideal Q of V with
P ) Q ) P2, then Q is not P-primary and (π̄) is a height-one principal prime ideal
of V/Q with π̄ a zero divisor. In a similar manner, Example 1 can easily be modified
to construct maximal chains (p) of principal prime ideals with p either regular (unless
ht(p)= 0) or a zero divisor with arbitrary height and co-height. We sum up these
comments in the following theorem.

THEOREM 7. Let R be a commutative ring. Then a chain (p1)( · · ·( (pn) of
principal prime ideals has n = 1 or 2. If (p1)( (p2) is a chain of principal prime
ideals, then ht(p1)= 0, p1 is a zero divisor and p2 is regular.

The principal prime ideals that are both minimal and maximal are easy to
characterize. If (R, (p)) is a SPIR and S is any commutative ring, then (p)× S is
a principal prime ideal of R × S that is both minimal and maximal. We next show that
the converse is also true.

THEOREM 8. Let R be a commutative ring. For a principal prime ideal (p) of R, the
following are equivalent.

(1) (p) is both a minimal prime ideal and a maximal ideal.
(2) (p) is a maximal ideal and some power of (p) is idempotent.
(3) For some n ≥ 1, R/(pn) is a SPIR and is a direct factor of R.

In this case, there exists a positive integer n with (pn)= (pm) for all m ≥ n.

PROOF. (1) ⇒ (2). Suppose that (p) is both a minimal prime ideal and a maximal
ideal. Let M be a maximal ideal of R. If M 6= (p), then RM = (pn)M for all n ≥ 1. If
M = (p), then RM is a SPIR and so Mn

M = 0M for some n ≥ 1 and hence Mn
M = Mm

M
for m ≥ n. Thus (pn)= (pm) locally and hence globally for all m ≥ n.

(2)⇒ (3). Suppose that (pn) is idempotent, so (pn)= (p2n). Let pn
= r p2n . Then

e = r pn is idempotent and (pn)= (e). Then R = Re
⊕

R(1− e) and R(1− e)≈
R/(pn) is a SPIR.

(3)⇒ (1). This is clear. 2

Of course all the prime ideals of a commutative ring R are principal if and only if
R is a principal ideal ring. For suppose that R is not a principal ideal ring. Let I be a
nonprincipal ideal of R. By Zorn’s lemma, I can be enlarged to an ideal P maximal
with respect to not being principal. However, by [5, Exercise 10, p. 8], an ideal P
maximal with respect to not being principal is prime. Thus P is principal, which is a
contradiction. Since any chain of principal prime ideals has length at most two, this
result can be sharpened: a ring R is a principal ideal ring if and only if the maximal
ideals and minimal prime ideals are principal. What can be said of a commutative ring
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if all its maximal ideals are principal? Of course valuation domains with principal
maximal ideals abound. In fact, for a valuation domain (V, M) either M is principal
or M = M2. Loper [6] has given an example of a Prüfer domain (an integral domain
in which every nonzero finitely generated ideal is invertible) whose maximal ideals
are all principal but which is not a Bezout domain (an integral domain in which every
finitely generated ideal is principal).

It is easy to see that a power series ring R[[X ]] has a principal maximal ideal if and
only if R is a field. However, if D is a G-domain with quotient field k and nonunit a
with D[1/a] = k, then (aX − 1) is a principal maximal ideal of D[X ] since it is the
kernel of the homomorphism D[X ] → k given by X→ 1/a [5, Exercise 2, p. 19].
Recall that an integral domain with quotient field k is a G-domain if k = D[1/a] for
some a ∈ D. This is equivalent to 0= M ∩ D for some maximal ideal M of D[X ] or
to
⋂
{P | 0 6= P, a prime ideal of D} 6= 0. A prime ideal P of a ring R is a G-ideal

if R/P is a G-domain, or equivalently, P = M ∩ R for some maximal ideal of R[X ].
See [5] for a treatment of G-domains. We next characterize the maximal ideals of a
polynomial ring R[X ] that are principal.

THEOREM 9. Let R be a commutative ring and f = a0 + a1 X + · · · + an Xn
∈ R[X ].

(1) Suppose that M = ( f ) is a maximal ideal of R[X ]. Then P = M ∩ R is a
G-ideal, ht P = 0, and ht M = 1. Either P = (a0) is an idempotent maximal
ideal of R or a0 is a unit.

(2) If M = ( f ) is a maximal ideal of R[X ] with P = (a0) idempotent, then M =
(e + (1− e)X) where e ∈ R is idempotent with (a0)= (e). Conversely, if e ∈ R
is idempotent with (e) a maximal ideal of R, then (e + (1− e)X) is a maximal
ideal of R[X ].

(3) Suppose that M = ( f ) is a maximal ideal of R[X ] where a0 is a unit. Then
for each prime ideal Q of R with Q ) P = M ∩ R, we have a1, . . . , an ∈ Q.
Conversely, if ( f ) is a prime ideal of R[X ] with a0 a unit and a1, . . . , an ∈ Q
for each prime ideal Q of R with Q ) P = ( f ) ∩ R, then ( f ) is a maximal ideal
of R[X ].

PROOF. (1) Since P is the contraction of a maximal ideal of R[X ], it is a G-ideal.
Suppose that P is not minimal, say P0 ( P . Pass to R̄ = R/P0. Therefore, ( f̄ ) is
a maximal ideal of the integral domain R̄[X ] and ( f̄ ) ∩ R̄ = P̄ ∩ R̄ 6= 0̄. But ( f̄ )
maximal gives deg f̄ ≥ 1 so ( f̄ ) ∩ R̄ = 0̄, which is a contradiction. Since ht P = 0, we
have ht( f )= 1 since in a polynomial ring a chain of three prime ideals can not have the
same contraction to R. Since M is maximal, ( f, X)= (M, X)= ( f ) or R[X ]. First,
suppose that ( f, X)= ( f ). Then ( f )= (a0, X), so P = ( f ) ∩ R = (a0, X) ∩ R =
(a0). Note that, since (a0, X) is a maximal ideal of R[X ], (a0) must be a maximal
ideal of R. Now a0 R[X ] ⊆ ( f ) and a0 R[X ] is prime, so

a0 R[X ] = a0 R[X ]( f )= a0(a0, X)= (a2
0, a0 X).

Hence (a0)= (a2
0, a0 X) ∩ R = (a2

0). Next, suppose that ( f, X)= R[X ]. Then
R[X ] = ( f, X)= (a0, X), so a0 is a unit.
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(2) Suppose P = (a0) is idempotent, so (a0)= (e) for some idempotent e ∈ R.
Then

( f )= (a0, X)= (e, X)= (e + (1− e)X).

Conversely, if (e) is a maximal ideal of R with e idempotent, then (e, X) is a maximal
ideal of R[X ] and (e, X)= (e + (1− e)X).

(3) Suppose that M = ( f ) is a maximal ideal of R[X ] with a0 a unit. Let Q ) P =
( f ) ∩ R be a prime ideal of R. Since Q[X ] 6⊆ ( f ), we have ( f )+ Q[X ] = R[X ].
Therefore, ( f̄ )= R̄[X ] for R̄ = R/Q. Thus ā1, . . . , ān = 0̄ in R̄ or a1, . . . , an ∈ Q.
(Of course, this condition is vacuous if there are no such prime ideals Q.) Conversely,
suppose that ( f ) is a prime ideal of R[X ] where a0 is a unit and a1, . . . , an ∈ Q
for each prime ideal Q ) P = ( f ) ∩ R. Suppose that ( f ) is not a maximal ideal;
say ( f )( N , a maximal ideal. Then N ∩ R ) P since ( f ) ∩ R = P[X ] ∩ R = P , so
a1, . . . , an ∈ N ∩ R ⊆ N . Thus a0 ∈ N where a0 is a unit, which is a contradiction. 2

We end by characterizing the commutative rings in which all minimal prime ideals
are principal.

THEOREM 10. For a commutative ring R the following conditions are equivalent.

(1) All the minimal prime ideals of R are principal.
(2)

√
0 is a finite intersection of principal prime ideals.

(3)
√

0 is a finite product of principal prime ideals.
(4) 0 is a finite product of principal prime ideals.

Thus in this case R has only finitely many minimal prime ideals.

PROOF. (1) ⇒ (2). By [1, Theorem], if all the minimal prime ideals are finitely
generated, R has only finitely many minimal prime ideals. Since

√
0 is the intersection

of the minimal prime ideals of R, the result follows.
(2)⇒ (3). Suppose that

√
0= (p1) ∩ · · · ∩ (pn), a finite intersection of principal

prime ideals. We can assume that each (pi ) is a minimal prime ideal. Let x ∈
(p1) ∩ · · · ∩ (pn). Then x = r p1 for some r ∈ R, so r p1 ∈ (p2) ∩ · · · ∩ (pn) gives
r ∈ (p2) ∩ · · · ∩ (pn). Continuing we get x = r ′ p1 · · · pn for some r ′ ∈ R. Thus

(p1) ∩ · · · ∩ (pn)⊆ (p1) · · · (pn)⊆ (p1) ∩ · · · ∩ (pn).

(3)⇒ (4). This is clear.
(4)⇒ (1). This is clear. 2
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