Canad. Math. Bull. Vol. 47 (4), 2004 pp. 624-634

A Compactness Theorem for Yang-Mills Connections

Xi Zhang

Abstract. In this paper, we consider Yang-Mills connections on a vector bundle E over a compact Riemannian manifold M of dimension m > 4, and we show that any set of Yang-Mills connections with the uniformly bounded $L^{\frac{m}{2}}$ -norm of curvature is compact in C^{∞} topology.

1 Introduction

Let *M* be an *m*-dimensional manifold with a Riemannian metric *g*, and *E* be a vector bundle over *M* with a compact Lie group *G* as its structure group. A connection *A* of *E* can be given by specifying a covariant derivative

 $D_A: C^{\infty}(E) \to C^{\infty}(E \otimes \Omega^1 M).$

In the local trivialization of E, D_A is of the form $d + \alpha$ for some Lie(G)-valued 1-form α . The curvature of A is a Lie(G)-valued 2-form F_A , which is equal to D_A^2 . As usual, it measures deviation from the symmetry of second derivatives. Such a connection A is Yang-Mills if it is a critical point of the Yang-Mills action. A Yang-Mills connection A satisfies the Euler-Lagrange equation $D_A^*F_A = 0$. By the second Bianchi identity, we also have $D_AF_A = 0$. The system $D_A^*F_A = 0$, $D_AF_A = 0$ is called the Yang-Mills equation and is invariant under gauge transformations.

In the analytical aspect of the Yang-Mills theory, one of the most fundamental results is K. Uhlenbeck's compactness theorem on the modulo space ([1, 2]). The modulo space of Yang-Mills connections is the quotient of the set of solutions of the Yang-Mills equation by the gauge group, which consists of all gauge transformations. It is well-known that this modulo space may not be compact. Given any sequence of Yang-Mills connections $\{A_i\}$ with a uniformly bounded L^2 -norm of curvature, Uhlenbeck ([1]) (see also [3]) proved that by taking a subsequence if necessary, A_i converges, modulo gauge transformations, to a Yang-Mills connection A in the smooth topology outside a closed subset $S_b(\{A_i\})$ of Hausdorff codimension at least 4. If M is a 4-dimensional compact manifold, the blow-up locus consists of finitely many points, and the limiting connection A can be extended to be a Yang-Mills connection on the whole manifold with smaller L^2 -norm of curvature [1]. With M of higher dimension, G. Tian [4] studied the geometric structures of the blow-up loci of Yang-Mills connections and introduced a natural compactification for modulo space of

Received by the editors December 2, 2002; revised March 21, 2003.

The author was supported by NSF in China, No.10201028

AMS subject classification: 58E20, 53C21.

Keywords: Yang-Mills connection, vector bundle, gauge transformation.

[©]Canadian Mathematical Society 2004.

A Compactness Theorem for Yang-Mills Connections

anti-self-dual instantons on higher dimensional manifolds by adding cycles with appropriate geometric structure. He also proved a removable singularity theorem for any stationary Yang-Mills connections. Particularly, this implies that the limiting connection A extends to become a smooth connection on $M \setminus S$ for a closed subset S with vanishing (n - 4)-dimensional Hausdorff measure $H^{n-4}(S) = 0$.

In this paper we consider the compactness property of sequences of Yang-Mills connections A_i with a uniformly bounded $L^{\frac{m}{2}}$ -norm of curvature. We note that the $L^{\frac{m}{2}}$ -norm of curvature is conformally invariant, while the L^2 -norm is not, unless m = 4. Our result is the following.

Main Theorem Let E be a vector bundle over compact Riemannian manifold M of dimension m > 4, and $\{A_i\}$ is a sequence of smooth Yang-Mills connections on E with $\int_M |F_{A_i}|^{\frac{m}{2}} dV_g \leq \Lambda$; then there is a subsequence $\{A_\alpha\}$ and gauge transformations σ_α , such that $\sigma_\alpha(A_\alpha)$ converges to a smooth Yang-Mills connection A in C^∞ -topology on M.

In the proof of the Main Theorem, the main tool which will be used is the local curvature estimate of Yang-Mills connections. First, we will show that there exists a subsequence $\{A_{\alpha}\} \subset \{A_i\}$ (modulo gauge transformations) converging to a Yang-Mills connection A in smooth topology outside at most finite points. Secondly, we will use a removable singularity theorem which had been proved by L. M. Sibner[6] to deduce that there is a gauge transformation σ such that $\sigma(A)$ extends to be a smooth connection on M. Furthermore, by taking subsequence if necessary, we may assume that $|F_{A_i}|^{\frac{m}{2}} dV_g$ converges (as measure) weakly to $|F_A|^{\frac{m}{2}} dV_g + \sum_{j=1}^{J} \Theta_{P_j} \delta_{P_i}$ for some constants Θ_{P_j} , where we set $\Sigma = \{P_j\}_{j=1}^{J}$, $P_j \in M$ and δ_{P_i} denotes the Dirac measure. Proceeding as in [4], we will construct bubbling connections on R^m as A_{α} approach A. On the other hand, by the monotonicity formula of P. Price, we can prove a non-existence theorem for Yang-Mills connections which will show that if bubbling connections do not exist, then the blow up set Σ must be empty. So the subsequence A_{α} (modulo gauge transformations) converges to a smooth Yang-Mills connection A in C^{∞} topology on M.

2 Preliminary Results

As before, M denotes a Riemannian manifold with a metric g and E is a vector bundle over M with compact structure group G. A connection A on E is defined by specifying a covariant derivative

$$D = D_A \colon C^{\infty}(E) \to C^{\infty}(E \otimes \Omega^1 M),$$

where $C^{\infty}(E)$ denotes the space of C^{∞} sections of the bundle *E*. In a local trivialization $(U_{\alpha}, \varphi_{\alpha})$ of *E*, the covariant derivative takes the form

$$D = d + A_{\alpha}, A_{\alpha} \colon U_{\alpha} \to T^*U_{\alpha} \otimes Lie(G)$$

where Lie(G) denotes the Lie algebra of the structure group *G*. Note that A_{α} usually has no global description on *M*.

For any connection A of E, its curvature form F_A is determined by $D^2: \Omega^0(E) \rightarrow \Omega^2(E)$. It is a tensor, usually denoted by F_A or simply F if no confusion occurs. Formally, the curvature tensor F_A can be written as

$$F_A = dA + A \wedge A,$$

which actually means that in each local trivialization $(U_{\alpha}, \varphi_{\alpha})$,

(2.1)
$$F_A = dA_\alpha + A_\alpha \wedge A_\alpha.$$

The norm of F_A at any $P \in M$ is given by

$$|F_A|^2 = \sum_{i,j=1}^n \left\langle F_A(e_i, e_j), F_A(e_i, e_j) \right\rangle$$

where $\{e_i\}$ is any orthonormal basis of T_PM , and $\langle \cdot, \cdot \rangle$ is the Killing form of the Lie algebra Lie(*G*).

The Yang-Mills functional of *E* is defined by

(2.2)
$$YM(A) = \frac{1}{4\pi^2} \int_M |F_A|^2 \, dV_g.$$

If A is a critical point of YM, then we say the A is a Yang-Mills connection. The Euler-Lagrange of YM is

$$(2.3) D_A^* F_A = 0$$

where D_A^* denotes the adjoint operator of D_A with respect to the Killing form of lie(G) and the Riemannian metric g on M. On the other hand, by the second Bianchi identity, we have

$$(2.4) D_A F_A = 0.$$

This, together with (2.4), is called the Yang-Mills equation.

Let *G* be the gauge group of *E*, which consists of all smooth sections of the bundle $P(E) \times_{Ad} G$ associated to the adjoint representation *Ad* of *G*, where P(E) denotes the principal bundle of *E*. Any σ in *G* is called a gauge transformation. Two smooth connections A_1 and A_2 of *E* are equivalent if there is a gauge transformation σ such that $A_2 = \sigma(A_1)$, where $\sigma(A)$ is the connection with $D_{\sigma(A)} = \sigma \cdot D_A \cdot \sigma^{-1}$. One can easily show $YM(\sigma(A)) = YM(A)$. Then, if *A* is a Yang-Mills connection, so is $\sigma(A)$ for any gauge transformation σ . In other words, the Yang-Mills equation is invariant under the action of the gauge group.

Let $\{\phi_t\}_{|t|<\infty}$ be a one-parameter family of diffeomorphisms of M, A_0 a fixed smooth connection of E and D its associated covariant derivative. Then for any connection A, we can define a family of connections $A^t = \phi_t^*(A)$ as follows: In [4] (or [5]) Tian proved the following formula:

(2.5)

$$\frac{d}{dt}YM(A^{t})|_{t=0} = -\frac{1}{4\pi^{2}}\int_{M} \left(|F_{A}|^{2}\operatorname{div} X - 4\sum_{i,j=1}^{m} \left\langle F_{A}(\nabla_{e_{i}}X,e_{j}),F_{A}(e_{i},e_{j})\right\rangle \right) dV_{g}.$$

A Compactness Theorem for Yang-Mills Connections

Now suppose that A is a Yang-Mills connection; then

(2.6)
$$0 = \int_{M} \left(|F_{A}|^{2} \operatorname{div} X - 4 \sum_{i,j=1}^{m} \left\langle F_{A}(\nabla_{e_{i}}X, e_{j}), F_{A}(e_{i}, e_{j}) \right\rangle \right) dV_{g}.$$

By this variation formula, one can derive the following monotonicity.

Theorem 2.1 (A Monotonicity Formula) There exist constants r_P , a depending only on M, such that for any $0 < \rho < \gamma < r_P$, we have

(2.7)
$$\gamma^{4-m} \exp a\gamma^2 \int_{B(P,\gamma)} |F_A|^2 dV_g - \rho^{4-m} \exp a\rho^2 \int_{B(P,\rho)} |F_A|^2 dV_g$$
$$\geq 4 \int_{B(P,\gamma) \setminus B(P,\rho)} r^{4-m} \exp (ar^2) |\frac{\partial}{\partial r} |F_A|^2 dV_g.$$

Moreover, if $M = R^m$ *and* g *is flat, then the equality holds in* (2.7) *for* $\rho \in (0, \infty)$ *and* a = 0.

In the following, we give a basic curvature estimate for Yang-Mills connections. This estimate was first derived by K. Uhlenbeck [1] (also see [4]). Since it is crucial to us here, we will outline its proof for the reader's convenience.

Theorem 2.2 Let A be any Yang-Mills connection of a G-bundle E over M. Then there are $\epsilon = \epsilon(m)$ and C = C(m), which depend only on m and M, such that for any $P \in M$ and $\rho < r_p$, whenever

$$\int_{B(P,\rho)} |F_A|^{\frac{m}{2}} \, dV_g \le \epsilon,$$

then

$$\begin{split} \sup_{B(P,\frac{\rho}{2})} |F_A|^2 &\leq \frac{C}{\rho^4} (\int_{B(P,\rho)} |F_A|^{\frac{m}{2}} dV_g)^{\frac{4}{m}} \\ &\leq \frac{C}{\rho^4} \cdot \epsilon^{\frac{4}{m}}. \end{split}$$

In order to compactify the modulo space of Yang-Mills connections, we need to use singular Yang-Mills connections of a certain type. An admissible Yang-Mills connection ([4]) is a smooth connection A defined outside a closed subset S(A) in M, such that

- (1) $H^{n-4}(S(A) \cap K) < \infty$ for any compact subset $K \subset M$, where $H^{n-4}(\cdot)$ stands for the (n-4)-dimensional Hausdorff measure;
- (2) *A* is Yang-Mills on $M \setminus S(A)$;
- (3) A satisfies $\int_{M \setminus S(A)} |F_A|^2 dV_g < \infty$.

Clearly, *A* is smooth on *M* if $S(A) = \emptyset$. We will call S(A) the singular set of *A*. This is not invariant under gauge transformations. Even if $S(A) \neq \emptyset$, there may be a gauge transformation σ on $M \setminus S(A)$ such that $\sigma(A)$ extends to become a smooth connection on *M*.

Furthermore, an admissible Yang-Mills connection A is called stationary if A satisfies

$$0 = \int_M \left(|F_A|^2 \operatorname{div} X - 4 \sum_{i,j=1}^m \left\langle F_A(\nabla_{e_i} X, e_j), F_A(e_i, e_j) \right\rangle \right) \, dV_g;$$

for any vector field X, where $\{e_i\}$ is any orthonormal basis of M. If A is a smooth Yang-Mills connection, this follows from the first variation formula for Yang-Mills action.

Proposition 2.3 Let $m = \dim M > 4$ and S be a discrete set in M. If A is a Yang-Mills connection on $M \setminus S$ and satisfies $\int_{K} |F_A|^{\frac{m}{2}} dV_g < \infty$ for each compact set $K \subset M$; then A is stationary and the monotonicity formula (2.7) still holds on M.

Proof Denote

$$\Phi(X) = -\frac{1}{4\pi^2} \int_M \left(|F_A|^2 \operatorname{div} X - 4 \sum_{i,j=1}^m \left\langle F_A(\nabla_{e_i} X, e_j), F_A(e_i, e_j) \right\rangle \right) dV_g,$$

where *X* is a variation vector field with compact support set and $\{e_i\}$ is an orthonormal frame of *TM*.

We may assume that *S* consists of a single point *P*. For r > 0 we take a cut-off function $\eta_r \in C_0^{\infty}(M)$ satisfying $0 \le \eta_r \le 1$, $|\nabla \eta_r| \le \frac{2}{r}$ in *M* and $\eta_r(x) = 1$, if $x \in B(P, r)$; $\eta_r(x) = 0$, if $x \in M \setminus B(P, 2r)$. Since *A* is Yang-Mills on $M \setminus B(a, r)$ for any r > 0, we have $\Phi(X - \eta_r X) = 0$ for any r > 0. Thus, we have

$$\begin{split} |\Phi(X)| &= |\Phi(\eta_r X)| \le C \int_M |F_A|^2 (\eta_r |\nabla X| + |\nabla \eta_r| |X|) \, dV_g \\ &\le C \Big(\int_{B(P,2r)} |F_A|^2 |\nabla X| \, dV_g + \frac{1}{r} \int_{B(P,2r)} |F_A|^2 |X| \, dV_g \Big) \\ &\le \Big(r^{m-4} \sup_M |\nabla X| + r^{m-5} \sup_M |X| \Big) \, \Big(\int_{B(P,2r)} |F_A|^{\frac{m}{2}} \, dV_g \Big)^{\frac{4}{m}}. \end{split}$$

By conditions the right-hand side tends to 0 as $r \to 0$. Hence, we get $\Phi(X) = 0$ for any *X*. This shows that *A* is stationary on *M*.

Theorem 2.4 ([6]) Let A be a Yang-Mills connection stationary on $M \setminus S$, where S is a discrete set. If $\int_{K} |F_A|^{\frac{m}{2}} dV_g < \infty$ for each compact set $K \subset M$, then there exists a gauge transformation σ such that $\sigma^*(A)$ can be extended to be a smooth Yang-Mills connection on M.

628

3 Proof of the Main Theorem

Theorem 3.1 Let $\{A_i\}$ be a sequence of smooth Yang-Mills connections on E with $\int_M |F_A|^{\frac{m}{2}} dv_g \leq \Lambda$; then there exists a subsequence $\{\alpha\} \subset \{i\}$ and a (possibly empty) finite set $\Sigma = \{P_j\}_{j=1}^J$ of M satisfying the following:

- (1) the subsequence A_{α} converge to a smooth Yang-Mills connection A in the C^{∞} -topology on $M \setminus \Sigma$.
- (2) for each j = 1, ..., J, there exists constants $\theta_j > 0$ such that

(3.1)
$$|F_{A_{\alpha}}|^{\frac{m}{2}}dV_{g} \longrightarrow |F_{A}|^{\frac{m}{2}}dV_{g} + \sum_{j=1}^{J}\theta_{j} \cdot \delta_{P_{j}}$$

weakly in the sense of Radon measures on M.

Here δ_{P_i} *denotes Dirac measure.*

Proof Let ϵ be as in Theorem 2.2. We define a closed subset for each *i* and r > 0;

(3.2)
$$E_{i,r} = \left\{ x \in M \mid \int_{B_r(x)} |F_{A_i}|^{\frac{m}{2}} dV_g \ge \epsilon \right\}.$$

It is obvious that $E_{i,r} \subset E_{i,R}$ for any $r \leq R$. By the standard diagonal process, we can choose a subsequence $\{i_j\}$ of $\{i\}$ such that for each k, the $E_{i_j,2^{-k}}$ converge to a closed subset $E_{2^{-k}}$. Then $E_{2^{-k}} \subset E_{2^{-l}}$ for $k \geq l$.

Put $S = \bigcap_k E_{2^{-k}}$. We first claim that *S* is at most a finite set. We fixed an arbitrary compact set $K \subset int(M)$. For any $\delta > 0$ sufficiently small, let $\{B_{4\delta}(x_\alpha)\}$ be any finite covering of $S \cap K$ such that $x_\alpha \in S \cap K$; $B_{2\delta}(x_\alpha) \cap B_{2\delta}(x_\beta) = \emptyset$ for $\alpha \neq \beta$. Take *k* big enough such that $2^{-k} < \delta$. Then for *j* sufficiently large, there are $y_\alpha \in E_{i_j,2^{-k}}$ such that $d(x_\alpha, y_\alpha) < \delta$. Then $\{B_{5\delta}(y_\alpha)\}$ is a finite covering of $S \cap K$ and $B_{\delta}(y_\alpha) \cap B_{\delta}(y_\beta) = \emptyset$ for $\alpha \neq \beta$. On the other hand, for each α

(3.3)
$$\int_{B_{\delta}(y_{\alpha})} |F_{A_{i_j}}|^{\frac{m}{2}} dV_g \ge \epsilon$$

Summing up, we get

(3.4)
$$I \leq \frac{1}{\epsilon} \sum_{\alpha=1}^{l} \int_{B_{\delta}(y_{\alpha})} |F_{A_{i_j}}|^{\frac{m}{2}} dV_g \leq \frac{\Lambda}{\epsilon}.$$

This shows $\mathbb{H}^0(S \cap K) \leq \Lambda/\epsilon$ where \mathbb{H}^0 denotes the 0-dimensional Hausdorff measure on *M*. Since the 0-dimensional Hausdorff measure coincides with the counting measure, $S \cap K$ is at most finite. Since *K* is an arbitrary compact set and the the right-hand side of the above inequality is independent of *K*, then *S* is at most finite. Now we prove that A_{i_j} converges to outside *S* modulo gauge transformations. To save the notation, we assume $\{i_j\} = \{i\}$. We notice that for any r > 0, there is i(r) > 0, k(r) > 0, such that for any $i \ge i(r)$ and $x \in M \setminus B_r(S)$ we have:

(3.5)
$$\int_{B_{2^{-k}}(x)} |F_{A_i}|^{\frac{m}{2}} dV_g < \epsilon.$$

This is equivalent to saying that $x \in M \setminus E_{i,2^{-k}}$. By Theorem 2.2, we deduce from the above inequality that for any $x \in M \setminus B_r(S)$,

$$|F_{A_i}|(x) < C \cdot 2^{2k(r)} \cdot \epsilon^{\frac{2}{m}}.$$

It follows from Theorem 3.6 in [2] that there exists a subsequence $\{\tilde{i}\} \subset \{i\}$ and gauge transformations $\sigma(\tilde{i})$, such that $\sigma(\tilde{i})(A_{\tilde{i}})$ converge to a smooth connection A in C^1 -topology on any compact subset outside S. Since A_i are Yang-Mills connections, by the standard elliptic theory, A is a Yang-Mills connection and $\sigma(\tilde{i})(A_{\tilde{i}})$ converge to A smoothly outside S. Using Fatou's lemma we have

(3.6)
$$\int_{M} |F_{A}|^{\frac{m}{2}} dV_{g} \leq \liminf_{\tilde{i} \to \infty} \int_{M} |F_{A_{\tilde{i}}}|^{\frac{m}{2}} dV_{g} \leq \Lambda.$$

By Theorem 2.4, there exists a gauge transformation σ such that $\sigma(A)$ extends to a smooth connection on *M*.

In the following, we always assume that the sequence A_i converges to a smooth Yang-Mills connection A in C^{∞} -topology outside S with $\int_M |F_A|^{\frac{m}{2}} dV_g \leq \Lambda$.

Define

(3.7)
$$\Sigma(\{A_i\}) = \bigcap_{r>0} \left\{ x \in int(M) | \liminf_{i \to \infty} \int_{B(x,r)} |F_{A_i}|^{\frac{m}{2}} dV_g \ge \epsilon \right\}.$$

Now we want to show that $\Sigma({A_i})$ is contained in the above *S*. In fact, for any $x_0 \in M \setminus S$, if *r* is sufficiently small,

$$\int_{B(x_0,r)} |F_A|^{\frac{m}{2}} \, dV_g < \epsilon.$$

This implies that for *i* sufficiently large,

$$\int_{B(x_0,r)} |F_{A_i}|^{\frac{m}{2}} dV_g < \epsilon.$$

Hence, $x_0 \in M \setminus \Sigma(\{A_i\})$. This shows that $\Sigma(\{A_i\}) \subset S$.

Suppose $x_0 \in S \setminus \Sigma(\{A_i\})$; then there is an $r_0 > 0$ such that

$$\int_{B(x_0,r_0)} |F_{n_i}|^{\frac{m}{2}} dV_g < \epsilon$$

for some subsequence $n_i \rightarrow \infty$. By Theorem 2.2,

$$\sup_{x\in B(x_0,\frac{1}{2}r_0)}|F_{n_i}|\leq C_0\cdot r_0^2\cdot\epsilon^{\frac{2}{m}}$$

for some constant $C_0 = C_0(m, M)$ and all n_i . This implies that A is a limit of some subsequence of $\{A_{n_i}\}$ (modulo gauge transformations) in $B(x_0, \frac{1}{2}r_0)$ in the C^{∞} topology. Then, there exists a subsequence $\{A_{\alpha}\} \subset \{A_i\}$ and a finite set $\Sigma = \Sigma(A_{\alpha})$ such that A_{α} (modulo gauge transformations) converges to A in the C^{∞} topology on $M \setminus \Sigma$.

Consider the Radon measure $\mu_{\alpha} = |F_{\alpha}|^{\frac{m}{2}} dV_g$. By taking a subsequence if necessary, we may assume that $\mu_{\alpha} \to \mu$ weakly on *M* as Radon measures. Let us write (by Fatou's lemma)

(3.8)
$$\mu = |F_A|^{\frac{m}{2}} dV_g + \nu$$

for some nonnegative Radon measure ν on M. Since $\{A_{\alpha}\}$ converges to A in the C^{∞} topology on $M \setminus \Sigma$, the support of measure ν is contained in the discrete set Σ . Thus, we have $\nu = \sum_{j=1}^{J} \theta_j \delta_{P_j}$ for some $\theta_j \ge 0$ where we set $\Sigma = \Sigma(\{A_{\alpha}\}) = \{P_j\}_{j=1}^{J}$.

We show each θ_j is positive. Fix any P_j . For arbitrarily small r > 0, we take a cut-off function $\eta_r \in C_0^\infty$ satisfying $0 \le \eta_r \le 1$ in M and $\eta_r(x) = 1$ if $x \in B(P_j, r)$; $\eta_r(x) = 0$ if $x \in M \setminus B(P_j, 2r)$. By definition of Σ we have (3.9)

$$\epsilon \leq \liminf_{\alpha \to \infty} \int_{B(P_j, r)} |F_{A_\alpha}|^{\alpha} \, dV_g \leq \lim_{\alpha \to \infty} \int_M \eta_r |F_{A_\alpha}|^{\frac{m}{2}} \, dV_g \leq \theta_j + \int_{B(P_j, 2r)} |F_A|^{\frac{m}{2}} \, dV_g.$$

Letting $r \to 0$, we obtain $\theta_j \ge \epsilon > 0$. This completes the proof.

Theorem 3.2 Let $\{A_{\alpha}\}$, Σ be as in Theorem 3.1 and $P \in \Sigma$. Then there are linear transformations σ_{α} : $T_PM \to T_PM$ such that a subsequence of $\sigma_{\alpha}^* \exp_P^* A_{\alpha}$ converges smoothly to a Yang-Mills connection B on $(T_PM, g_{P,0})$; and satisfying $F_B \neq 0$ and $\int_{T_PM} |F_B|^{\frac{m}{2}} dx \leq \theta_P$; where θ_P is determined in Theorem 3.1.

Proof We take a normal coordinate neighborhood B(P, 2R) of *P* and a normal coordinate system *x* of *M* centered at *P*. Choose R > 0 small enough so that $\Sigma \cap B(P, 2R) = \{P\}$. Let B(x, r) be the open ball in the *x*-coordinates with center *x* and radius *r* and let B(r) = B(0, r). Defining the concentration function

(3.10)
$$Y_{\alpha}(t) = \sup_{y \in B(R)} \int_{B_{y}(t)} |F_{\alpha}|^{\frac{m}{2}} dV_{g}$$

for any $0 \le t < R$. Each function Y_{α} is continuous and non-decreasing in t, and $Y_{\alpha}(0) = 0$. By the definition of Σ

(3.11)
$$Y_{\alpha}(R) \ge \int_{B(R)} |F_{\alpha}|^{\frac{m}{2}} dV_{g} \ge \frac{7\epsilon}{8}$$

holds for sufficiently large α . Here, the constant ϵ is taken as in Theorem 2.2. By continuity of Y_{α} , there exist $0 < r_{\alpha} < R$ and $x_{\alpha} \in \overline{B(R)}$ such that

$$Y_{\alpha}(r_{\alpha}) = \int_{B(\exp_p(x_{\alpha}), r_{\alpha})} |F_{\alpha}|^{\frac{m}{2}} dV_g = \frac{\epsilon}{2}.$$

Since the *P* is a unique point in $\Sigma \cap B(P, 2R)$, we obtain $r_{\alpha} \to 0$, $x_{\alpha} \to P$, as $\alpha \to \infty$. Defining linear transformations $\sigma_{\alpha}(x) = x_{\alpha} - r_{\alpha} \cdot x$ on T_PM , let $U(\alpha) = B(\frac{x_{\alpha}}{r_{\alpha}}, \frac{2R}{r_{\alpha}}) \subset T_PM$. It is easy to see that $B(2R) = \sigma_{\alpha}(U(\alpha))$. Since x_{α} lies in $B(\frac{R}{2})$ for sufficiently large α , we have $B(\frac{R}{r_{\alpha}}) \subset U(\alpha)$, which leads to $U(\alpha) \to T_PM$ as $\alpha \to \infty$.

large α , we have $B(\frac{R}{r_{\alpha}}) \subset U(\alpha)$, which leads to $U(\alpha) \to T_P M$ as $\alpha \to \infty$. We set $B_{\alpha} = \sigma_{\alpha}^* \exp_P^*(A_{\alpha})$. We can easily see B_{α} is a Yang-Mills connection on $(U(\alpha), g_{\alpha})$, where the metric $g_{\alpha} = r_{\alpha}^{-2} \sigma_{\alpha}^* \exp_P^* g$. Note that the based manifolds $(T_P M, g_{\alpha})$ converge to $(T_P M, g_{P,0}) \cong R^m$ as $\alpha \to \infty$. By the definition of $B_{\alpha}, x_{\alpha}, r_{\alpha}$, we have

$$\int_{U(\alpha)} |F_{B_\alpha}|^{\frac{m}{2}} \, dV_{g_\alpha} = \int_{B(P,2R)} |F_{A_\alpha}|^{\frac{m}{2}} \, dV_g \leq \Lambda.$$

(3.12)
$$Y_{\alpha}(r_{\alpha}) = \int_{B(1)} |F_{B_{\alpha}}|^{\frac{m}{2}} dV_{g_{\alpha}} = \sup_{z \in \sigma_{\alpha}^{-1}(B(R))} \int_{B(z,1)} |F_{B_{\alpha}}|^{\frac{m}{2}} dV_{g_{\alpha}} = \frac{\epsilon}{2}.$$

The constant ϵ in Theorem 2.2 may depend on the metric in general, but by the definition of g_{α} we are able to take the constant ϵ independent of α . In fact, the positive numbers ϵ and *C* in Theorem 2.2 ([1]) depend only on the bound of sectional curvature of metrics. Since $g_{\alpha} \rightarrow g_{P,0}$ in C^{∞} topology as $\alpha \rightarrow \infty$, we can conclude that the sectional curvature of g_{α} are uniformly bounded on B(1), so we can take the constants ϵ and *C* independent of α . Using Theorem 2.2, we have

$$\sup_{B(z,\frac{1}{2})}|F_{B_{\alpha}}|\leq C_{1}\epsilon^{\frac{z}{m}}$$

for any $z \in \sigma_{\alpha}^{-1}(B(R))$, here C_1 is a constant independent of α . Note that

$$\sigma_{\alpha}^{-1}(B(R)) \to T_P M$$

as $\alpha \to \infty$. It follows from Theorem 3.6 in [2] that there exists a subsequence $\{\beta\} \subset \{\alpha\}$ and gauge transformations $\tau(\beta)$, such that $\tau(\beta)(B_{\beta})$ converge to a smooth connection *B* in *C*¹-topology on any compact subset of T_PM . Since B_{α} is a Yang-Mills connection, and g_{α} converges to the flat metric $g_{P,0}$ on T_PM , by the standard elliptic theory, *B* is a Yang-Mills connection on $(T_PM, g_{P,0})$ and $\tau(\beta)(B_{\beta})$ converge to *B* smoothly. Passing to the limit in (3.12), we have

$$\int_{B(1)} |F_B|^{\frac{m}{2}} \, dx = \frac{\epsilon}{2}$$

This shows that $F_B \neq 0$. By Fatou's lemma, we have

$$\int_{T_PM} |F_B|^{\frac{m}{2}} dx \leq \liminf_{\beta \to \infty} \int_{U(\beta)} |F_{B_\beta}|^{\frac{m}{2}} dV_{g_\beta}, \leq \theta_P + \int_{B(P,2R)} |A|^{\frac{m}{2}} dV_g.$$

Letting $R \rightarrow 0$, we have

$$\int_{T_PM} |F_B|^{rac{m}{2}} \, dx \leq heta_P.$$

This completes the proof.

Theorem 3.3 If B is a Yang-Mills connection on \mathbb{R}^m $(m \ge 5)$ and satisfying

$$\int_{R^m}|F_B|^{\frac{m}{2}}\,dx<\infty,$$

then $F_B \equiv 0$.

Proof Suppose to the contrary that $F_B \neq 0$. Then, there exists r > 0 such that

$$\Delta = r^{2-m} \cdot \int_{B(r)} |F_B|^2 \, dx > 0.$$

From the monotonicity formula we have

$$\Delta \le t^{2-m} \int_{B(t)} |F_B|^2 \, dx$$

for any $t \ge r$. Thus, we have

(3.13)
$$\Delta \leq t^{2-m} \left(\int_{B(s)} |F_B|^2 dx + \int_{B(t) \setminus B(s)} |F_B|^2 dx \right),$$

for any $s \le t$. Using the Hölder inequality we obtain

(3.14)
$$\Delta \le t^{2-m} \int_{B(s)} |F_B|^2 \, dx + c(m) \left(\int_{R^m \setminus B(s)} |F_B|^{\frac{m}{2}} x \right)^{\frac{4}{m}}.$$

Since $\int_{\mathbb{R}^m} |F_B|^{\frac{m}{2}} dx < \infty$, we may take *s* large enough to satisfy

$$c(m)\Big(\int_{R^m\setminus B(s)}|F_B|^{rac{m}{2}}x\Big)^{rac{4}{m}}\leq rac{\Delta}{4}.$$

Fixing such *s*, we may take t > s large enough to satisfy

$$t^{2-m}\int_{B(s)}|F_B|^2\,dx\leq\frac{\Delta}{4}.$$

Thus, we have $0 < \Delta \leq \frac{\Delta}{4} + \frac{\Delta}{4} = \frac{\Delta}{2}$, which makes a contradiction. This completes the proof.

From Theorem 3.2 and Theorem 3.3 we obtain that the finite subset Σ in Theorem 3.1 is empty. Then, the subsequence A_{α} (modulo gauge transformations) converges to a smooth Yang-Mills connection A in the C^{∞} -topology on M. This completes the proof of Main Theorem.

Acknowledgements The author wishes to thank Prof. Jiayu Li for many useful discussions. The author would also like to thank Prof. Yibing Shen and the referee for many suggestions.

633

Xi Zhang

References

- [1] K. K.Uhlenbeck, Removable singularities in Yang-Mills fields. Comm. Math. Phys. 83(1982), 11–29.
- [2] _____, Connections with L^p bounds on curvature. Comm. Math. Phys. 83(1982), 31–42.
 [3] H. Nakajima, Compactness of the moduli space of Yang-Mills connections in higher dimensions. J.
- Math. Soc. Japan **40**(1988), 383–392.
- [4] G. Tian, Gauge theory and calibrated geometry. Ann. Math. 151(2000), 193–208.
- [5] P. Price, A monotonicity formula for Yang-Mills fields. Manuscripta Math. 43(1983), 131–166.
 [6] L. M. Sibner, The isolated point singularity problem for the coupled Yang-Mills equation in higher dimensions. Math. Ann. 271(1985), 125-131.

Department of Mathematics Zhejiang University Hangzhou, 310027 People's Republic of China e-mail: xizhang@zju.edu.cn

634