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A Compactness Theorem for Yang-Mills
Connections

Xi Zhang

Abstract. In this paper, we consider Yang-Mills connections on a vector bundle E over a compact

Riemannian manifold M of dimension m > 4, and we show that any set of Yang-Mills connections
P

with the uniformly bounded L2 -norm of curvature is compact in C® topology.

1 Introduction

Let M be an m-dimensional manifold with a Riemannian metric g, and E be a vector
bundle over M with a compact Lie group G as its structure group. A connection A of
E can be given by specifying a covariant derivative

Dy: C®(E) — C®(E® Q'M).

In the local trivialization of E, D4 is of the form d + « for some Lie(G)-valued
1-form c.. The curvature of A is a Lie(G)-valued 2-form Fy4, which is equal to D3.
As usual, it measures deviation from the symmetry of second derivatives. Such a
connection A is Yang-Mills if it is a critical point of the Yang-Mills action. A Yang-
Mills connection A satisfies the Euler-Lagrange equation D}F, = 0. By the second
Bianchi identity, we also have DyF4 = 0. The system D}F4 = 0, DyF4 = 0 is called
the Yang-Mills equation and is invariant under gauge transformations.

In the analytical aspect of the Yang-Mills theory, one of the most fundamental
results is K. Uhlenbeck’s compactness theorem on the modulo space ([1, 2]). The
modulo space of Yang-Mills connections is the quotient of the set of solutions of the
Yang-Mills equation by the gauge group, which consists of all gauge transformations.
It is well-known that this modulo space may not be compact. Given any sequence of
Yang-Mills connections {A;} with a uniformly bounded L*-norm of curvature, Uh-
lenbeck ([1]) (see also [3]) proved that by taking a subsequence if necessary, A; con-
verges, modulo gauge transformations, to a Yang-Mills connection A in the smooth
topology outside a closed subset Sp({A;}) of Hausdorff codimension at least 4. If
M is a 4-dimensional compact manifold, the blow-up locus consists of finitely many
points, and the limiting connection A can be extended to be a Yang-Mills connection
on the whole manifold with smaller L?-norm of curvature [1]. With M of higher
dimension, G. Tian [4] studied the geometric structures of the blow-up loci of Yang-
Mills connections and introduced a natural compactification for modulo space of

Received by the editors December 2, 2002; revised March 21, 2003.

The author was supported by NSF in China, No0.10201028

AMS subject classification: 58E20, 53C21.

Keywords: Yang-Mills connection, vector bundle, gauge transformation.
(©Canadian Mathematical Society 2004.

624

https://doi.org/10.4153/CMB-2004-060-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2004-060-x

A Compactness Theorem for Yang-Mills Connections 625

anti-self-dual instantons on higher dimensional manifolds by adding cycles with ap-
propriate geometric structure. He also proved a removable singularity theorem for
any stationary Yang-Mills connections. Particularly, this implies that the limiting
connection A extends to become a smooth connection on M \ S for a closed subset S
with vanishing (n — 4)-dimensional Hausdorff measure H"~*(S) = 0.

In this paper we consider the compactness property of sequences of Yang-Mills
connections A; with a uniformly bounded L> -norm of curvature. We note that the
L% -norm of curvature is conformally invariant, while the L?-norm is not, unless
m = 4. Our result is the following.

Main Theorem Let E be a vector bundle over compact Riemannian manifold M of
dimension m > 4, and {A;} is a sequence of smooth Yang-Mills connections on E with
Jos|Fa % dVy < A; then there is a subsequence {A,} and gauge transformations o,
such that 0, (A,) converges to a smooth Yang-Mills connection A in C*°-topology on M.

In the proof of the Main Theorem, the main tool which will be used is the local
curvature estimate of Yang-Mills connections. First, we will show that there exists a
subsequence {A,} C {A;} (modulo gauge transformations) converging to a Yang-
Mills connection A in smooth topology outside at most finite points. Secondly, we
will use a removable singularity theorem which had been proved by L. M. Sibner[6] to
deduce that there is a gauge transformation o such that o(A) extends to be a smooth
connection on M. Furthermore, by taking subsequence if necessary, we may assume
that |F4,| 2 dV, converges (as measure) weakly to |Fa|2dV, + 211‘:1 Op,0p, for some
constants ©p,, where we set ¥ = {Pj}]]-:p P; € M and 0p, denotes the Dirac mea-
sure. Proceeding as in [4], we will construct bubbling connections on R™ as A, ap-
proach A. On the other hand, by the monotonicity formula of P. Price, we can prove
a non-existence theorem for Yang-Mills connections which will show that if bubbling
connections do not exist, then the blow up set ¥ must be empty. So the subsequence
A, (modulo gauge transformations) converges to a smooth Yang-Mills connection A
in C* topology on M.

2 Preliminary Results

As before, M denotes a Riemannian manifold with a metric g and E is a vector bundle
over M with compact structure group G. A connection A on E is defined by specifying
a covariant derivative

D=Dy: C®(E) » C®(E® Q'M),

where C*°(E) denotes the space of C*° sections of the bundle E. In a local trivializa-
tion (U,, ¢o) of E, the covariant derivative takes the form

D=d+A,,A,: U, — T*U, ® Lie(G)

where Lie(G) denotes the Lie algebra of the structure group G. Note that A, usually
has no global description on M.
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For any connection A of E, its curvature form Fy is determined by D?: Q°(E) —
O2(E). It is a tensor, usually denoted by F4 or simply F if no confusion occurs. For-
mally, the curvature tensor F4 can be written as

Fyr=dA+ANA,
which actually means that in each local trivialization (Uy, ©,),
(2.1) Fu = dAg + Ay A A,

The norm of F, at any P € M is given by

n

|Fal* = Z (Faleie), Faleivej)),

irj=1

where {¢;} is any orthonormal basis of TpM, and ( -, - ) is the Killing form of the Lie
algebra Lie(G).
The Yang-Mills functional of E is defined by

1
(2.2) YM(A) = P/M|FA|2dVg.

If A is a critical point of YM, then we say the A is a Yang-Mills connection. The
Euler-Lagrange of YM is

(2.3) DiF, =0,

where D} denotes the adjoint operator of D4 with respect to the Killing form of
lie(G) and the Riemannian metric g on M. On the other hand, by the second Bianchi
identity, we have

(2.4) DpFy = 0.

This, together with (2.4), is called the Yang-Mills equation.

Let G be the gauge group of E, which consists of all smooth sections of the bundle
P(E) X 44 G associated to the adjoint representation Ad of G, where P(E) denotes the
principal bundle of E. Any o in G is called a gauge transformation. Two smooth
connections A; and A; of E are equivalent if there is a gauge transformation ¢ such
that A, = o(A;), where o(A) is the connection with D,4) = 0 - D4 - 0. One can
easily show YM(c(A)) = YM(A). Then, if A is a Yang-Mills connection, so is o(A)
for any gauge transformation o. In other words, the Yang-Mills equation is invariant
under the action of the gauge group.

Let {¢;}|t|<oc be a one-parameter family of diffeomorphisms of M, Ay a fixed
smooth connection of E and D its associated covariant derivative. Then for any con-
nection A, we can define a family of connections A* = ¢;(A) as follows: In [4] (or
[5]) Tian proved the following formula:

(2.5)
EYM(At)|t:0 = _LZ |Fal* divX — 4 Zm: (Fa(VeX,ej),Falei,e)) ) dVg.

ij=1
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Now suppose that A is a Yang-Mills connection; then
26) 0= / (\FA|2 divX =4 (Fa(VeX,e)), Falei, ej)>) dvy.
M =
i,j=1
By this variation formula, one can derive the following monotonicity.

Theorem 2.1 (A Monotonicity Formula) There exist constants rp, a depending only
on M, such that for any 0 < p < v < rp, we have

(2.7) " Mexpay? / |F4l* dVy — p* ™ exp ap® / |Fal* dV,
B(Pyy) B(P,p)

0
> 4/ " exp (ar®)| = | Fa? avy.
B(B)\B(Pp) or
Moreover, if M = R™ and g is flat, then the equality holds in (2.7) for p € (0, 00) and
a=0.

In the following, we give a basic curvature estimate for Yang-Mills connections.
This estimate was first derived by K. Uhlenbeck [1] (also see [4]). Since it is crucial
to us here, we will outline its proof for the reader’s convenience.

Theorem 2.2  Let A be any Yang-Mills connection of a G-bundle E over M. Then there
are e = e(m) and C = C(m), which depend only on m and M, such that for any P € M

and p < rp, whenever
/ |Fa|? dV, <,
B(P,p)

then
C m 4
sup [Fal* < = ( |[Fal® dV)n
B(2%) P JB@Ep)
<C .
~ E . Em .

In order to compactify the modulo space of Yang-Mills connections, we need to
use singular Yang-Mills connections of a certain type. An admissible Yang-Mills con-
nection ([4]) is a smooth connection A defined outside a closed subset S(A) in M,
such that

(1) H"*(S(A)NK) < oo for any compact subset K C M, where H"~*(-) stands for
the (n-4)-dimensional Hausdorff measure;

(2) Ais Yang-Mills on M \ S(A);

(3) A satisfies fM\S(A) |Fa|* dV, < 0.
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Clearly, A is smooth on M if S(A) = @&. We will call S(A) the singular set of A.
This is not invariant under gauge transformations. Even if S(A) # @, there may be
a gauge transformation o on M \ S(A) such that o(A) extends to become a smooth
connection on M.

Furthermore, an admissible Yang-Mills connection A is called stationary if A sat-
isfies

0= / (‘FAP divX —4 Z <FA(veiX7 ej),FA(ei,ej)>) dVg7
M i,j=1

for any vector field X, where {e;} is any orthonormal basis of M. If A is a smooth
Yang-Mills connection, this follows from the first variation formula for Yang-Mills
action.

Proposition 2.3 Let m = dim M > 4 and S be a discrete set in M. If A is a Yang-Mills
connection on M \ S and satisfies [ |F4|? dVy < oo for each compact set K C M; then
A is stationary and the monotonicity formula (2.7) still holds on M.

Proof Denote

1 m
B(X) = _H/ (|FA\2divX—4Z (Fa(VeX, ej),FA(ei,ej)>) vy,
M

ij=1

where X is a variation vector field with compact support set and {e; } is an orthonor-
mal frame of TM.

We may assume that S consists of a single point P. For r > 0 we take a cut-off
function 1, € C§°(M) satisfying 0 < n, < 1, |Vn,| < % in M and 7,(x) = 1, if
x € B(P,r); n,(x) = 0,if x € M \ B(P,2r). Since A is Yang-Mills on M \ B(a, r) for
any r > 0, we have ®(X — 7,X) = 0 for any r > 0. Thus, we have

B(X)| = [B(n,X)| < C / B2 [ VX + [V, ]1X]) Vg
M

1
<o [ wmpvxlaveer [ npiay,)
B(P2r) T JBp2n
< (rm*4sup|VX|+rm*53up |X|) (/ |Fal? dVg) "
M M B(P2r)

By conditions the right-hand side tends to 0 as r — 0. Hence, we get ®(X) = 0 for
any X. This shows that A is stationary on M.

Theorem 2.4 ([6]) Let A be a Yang-Mills connection stationary on M\ S, where Sis a
discrete set. If [ |F4| % dV, < oo for each compact set K C M, then there exists a gauge
transformation o such that c*(A) can be extended to be a smooth Yang-Mills connection
on M.

https://doi.org/10.4153/CMB-2004-060-x Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2004-060-x

A Compactness Theorem for Yang-Mills Connections 629

3 Proof of the Main Theorem

Theorem 3.1 Let {A;} be a sequence of smooth Yang-Mills connections on E with
[y |Fal? dvy < A; then there exists a subsequence {o} C {i} and a (possibly empty)
finite set ¥ = {Pj}]l:l of M satisfying the following:

(1) the subsequence A, converge to a smooth Yang-Mills connection A in the C*°-
topology on M \ X.
(2) foreach j=1,...,], there exists constants ; > 0 such that

J
$dVy — |Fa|2dVg+ > 05+ 0p,
j=1

(3.1) |Fa,

weakly in the sense of Radon measures on M.

Here dp, denotes Dirac measure.

Proof Let ¢ be as in Theorem 2.2. We define a closed subset for each i and r > 0;
(3.2) E,={xeM| / |Fp|2dVy > €}
B, (x)

It is obvious that E; , C E; g for any r < R. By the standard diagonal process, we can
choose a subsequence {i;} of {i} such that for each k, the E; , -« converge to a closed
subset E,—«. Then E;—« C E,—i fork > 1.

Put S = (), E,—+. We first claim that S is at most a finite set. We fixed an arbitrary
compact set K C int(M). For any 6 > 0 sufficiently small, let {Bys(x,)} be any
finite covering of S N K such that x, € SN K; Bas(xa) N Bys(xg) = @ for a # S.
Take k big enough such that 27% < §. Then for j sufficiently large, there are y,, €
Ej 2+ such that d(x., yo) < 6. Then {Bss(y4)} is a finite covering of S N K and
Bs(yo) N Bs(yg) = @ for a # 3. On the other hand, for each o

(3.3) / |Ea, |2 dVy > e
Bi(ya)

Summing up, we get
I

1
(3.4) 1< [,
€ Z Bs(ya) '

a=1

A
TV, < =
€

This shows H(SNK) < A/e where H” denotes the 0-dimensional Hausdorff measure
on M. Since the 0-dimensional Hausdorff measure coincides with the counting mea-
sure, SNK is at most finite. Since K is an arbitrary compact set and the the right-hand
side of the above inequality is independent of K, then S is at most finite.
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Now we prove that A;; converges to outside S modulo gauge transformations. To
save the notation, we assume {i;} = {i}. We notice that for any r > 0, there is
i(r) > 0, k(r) > 0, such that for any i > i(r) and x € M \ B,(S) we have:

(3.5) / |Fa|? dV, < e
B,k (x)

This is equivalent to saying that x € M \ E; ,—«. By Theorem 2.2, we deduce from the
above inequality that for any x € M \ B,(S),

Ful(x) < C- 220 . en,
A;

It follows from Theorem 3.6 in [2] that there exists a subsequence {i} C {i} and
gauge transformations o (7), such that o (i)(A;) converge to a smooth connection A in
C!-topology on any compact subset outside S. Since A; are Yang-Mills connections,
by the standard elliptic theory, A is a Yang-Mills connection and o (7)(A;) converge to
A smoothly outside S. Using Fatou’s lemma we have

(3.6) / Al dV, < liminf | [Fa|? dV, < A.
M ] M

1— 00

By Theorem 2.4, there exists a gauge transformation ¢ such that o(A) extends to a
smooth connection on M.

In the following, we always assume that the sequence A; converges to a smooth
Yang-Mills connection A in C*°-topology outside S with [, [F4|> dV, < A.

Define

(3.7) S({A}) = () {x € int(M)| liminf/

Fp|? dVg > €}
>0 B(x.r)

Now we want to show that X({A;}) is contained in the above S. In fact, for any
xo € M\ S, if r is sufficiently small,

[
B(xo,r)

This implies that for i sufficiently large,

/ |Fa,|% dV, < e
B(xo,r)

Hence, xo € M \ 3({A;}). This shows that ¥({A;}) C S.
Suppose xy € S\ X({A;}); then there is an ry > 0 such that

/ |2 dV, < e
B(xo,10)

7 dv, <e.
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for some subsequence n; — co. By Theorem 2.2,

sup |F,| < Cp- ré em

x€B(x0,370)

for some constant Cy = Cy(m, M) and all n;. This implies that A is a limit of
some subsequence of {A,, } (modulo gauge transformations ) in B(xo, %ro) in the C*®
topology. Then, there exists a subsequence {A,} C {A;} and a finite set ¥ = X(4,)
such that A, (modulo gauge transformations) converges to A in the C*° topology on
M\ X.

Consider the Radon measure j, = |F,| %dVg. By taking a subsequence if neces-
sary, we may assume that p, — p weakly on M as Radon measures. Let us write (by
Fatou’s lemma)

(3.8) p=|Fa|2dV,+v

for some nonnegative Radon measure v on M. Since {A,} converges to A in the C*°

topology on M \ ¥, the support of measure v is contained in the discrete set . Thus,

we have v =3 ., 0;0p, for some 0; > 0 where we set ¥ = X({Ay}) = {P]-};:l.
We show each 0; is positive. Fix any P;. For arbitrarily small » > 0, we take a

cut-off function 7, € C§° satisfying 0 < n, < 1in M and n.(x) = 1ifx € B(Pj,1);

n(x) = 0if x € M \ B(Pj, 2r). By definition of ¥ we have

(3.9)

¢ < liminf |Fa,|* dVg < lim / m|Ea,|* dVy < 05 + / |F4
a0 JB(p;,r) = Jm B(P; 2r)

7 dv,.

Letting r — 0, we obtain ¢; > ¢ > 0. This completes the proof. ]

Theorem 3.2 Let {A,}, ¥ be as in Theorem 3.1 and P € ¥ . Then there are lin-
ear transformations o,: TpM — TpM such that a subsequence of o expy A, con-
verges smoothly to a Yang-Mills connection B on (TpM, gpo); and satisfying Fg # 0 and
prM |Fp|% dx < Op; where 0p is determined in Theorem 3.1.

Proof We take a normal coordinate neighborhood B(P, 2R) of P and a normal co-
ordinate system x of M centered at P. Choose R > 0 small enough so that ¥ N

B(P,2R) = {P}. Let B(x, r) be the open ball in the x-coordinates with center x and
radius r and let B(r) = B(0, r). Defining the concentration function

(3.10) Yo(t) = sup/ |Fo|? dV,
yEB(R) /By (t)

for any 0 < t < R. Each function Y, is continuous and non-decreasing in ¢, and
Y, (0) = 0. By the definition of ¥

m 76
(3.11) Ya(mz/ Faff vy > 7€
B(R)
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holds for sufficiently large o. Here, the constant € is taken as in Theorem 2.2. By
continuity of Yy, there exist 0 < r, < Rand x, € B(R) such that

Y, (roz) = / |
B(expp(xa),ra)

Since the P is a unique point in ¥ N B(P, 2R), we obtain r, — 0,x, — P, as o — o0.
Defining linear transformations o, (x) = x, — 7, -xon TpM, let U(a) = B(%, %) -
TpM. It is easy to see that B(2R) = o,(U(«)). Since x, lies in B( ) for sufficiently
large o, we have B( ) C U(a), which leads to U(a) — TpM as o — .

We set B, = o expP(Aa) We can easily see B, is a Yang-Mills connection on
(U(a), ga), where the metric g, = r, 207 expsg. Note that the based manifolds

(TpM, g,) converge to (TpM, gpg) = R™ as o — 00. By the definition of By, x4, 7,

we have
~/U(a)

(3.12) Yo (ra) :/ |z dvy, = sup / |Fp, |2
B(1) z€a4 '(B(R)) Y B(z,1)

The constant € in Theorem 2.2 may depend on the metric in general, but by the
definition of g, we are able to take the constant ¢ independent of c.. In fact, the
positive numbers € and C in Theorem 2.2 ([1]) depend only on the bound of sectional
curvature of metrics. Since g, — gpo in C* topology as & — o0, we can conclude
that the sectional curvature of g, are uniformly bounded on B(1), so we can take the
constants € and C independent of a. Using Theorem 2.2, we have

m

dV——

Tdv, = / |Fa,|? dVy < A.
B(P2R)

m L v, = €
2

2
€m

B(z,})
for any z € o, '(B(R)), here C; is a constant independent of aw. Note that
o, '(B(R)) — TpM

as @« — oo. It follows from Theorem 3.6 in [2] that there exists a subsequence
{#} C {a} and gauge transformations 7(03), such that 7(3)(Bs) converge to a
smooth connection B in C'-topology on any compact subset of TpM. Since B, is
a Yang-Mills connection, and g, converges to the flat metric gpo on TpM, by the
standard elliptic theory, B is a Yang-Mills connection on (TpM, gpo) and 7(3)(B3)
converge to B smoothly. Passing to the limit in (3.12), we have

/B(l)

This shows that Fz # 0. By Fatou’s lemma, we have

/ |Fg|* dx<hm1nf/ |FB;\ av. g,,§9p+/ \A|% dvs,.
TpM f—oo Jus B(P2R)
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Letting R — 0, we have

/ |FB|% dx S op.
TpM

This completes the proof. u

Theorem 3.3  If B is a Yang-Mills connection on R™ (m > 5) and satisfying
|Fg|? dx < oo,
Rm
then Fg = 0.
Proof Suppose to the contrary that Fg # 0. Then, there exists » > 0 such that
A=rm / |Fp|* dx > 0.
B(r)
From the monotonicity formula we have

Agtz—m/ \Fa] dx
B(t)

for any t > r. Thus, we have

(3.13) A< tz—m( / |Fg? dx+/ |Ps? dx) ,
B(s) B(H\B(s)
for any s < t. Using the Holder inequality we obtain
(3.14) A< tz_’”/ |F3|2dx+c(m)( / IFs|* x) "
B(s) R™\B(s)

Since [, |Fs| 3 dx < 0o, we may take s large enough to satisfy

c(m) ( / |Fp
R™\B(s)

Fixing such s, we may take ¢ > s large enough to satisfy

A
tz—'”/ |Fp|*dx < —.
B(s) 4

Thus, we have 0 < A < % + % = %, which makes a contradiction. This completes
the proof. ]

w \m A
7.x) m S Z.

From Theorem 3.2 and Theorem 3.3 we obtain that the finite subset 3 in Theo-
rem 3.1 is empty. Then, the subsequence A, (modulo gauge transformations) con-
verges to a smooth Yang-Mills connection A in the C*°-topology on M. This com-
pletes the proof of Main Theorem.
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