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A Compactness Theorem for Yang-Mills
Connections

Xi Zhang

Abstract. In this paper, we consider Yang-Mills connections on a vector bundle E over a compact

Riemannian manifold M of dimension m > 4, and we show that any set of Yang-Mills connections

with the uniformly bounded L
m
2 -norm of curvature is compact in C∞ topology.

1 Introduction

Let M be an m-dimensional manifold with a Riemannian metric g, and E be a vector

bundle over M with a compact Lie group G as its structure group. A connection A of

E can be given by specifying a covariant derivative

DA : C∞(E) → C∞(E ⊗ Ω
1M).

In the local trivialization of E, DA is of the form d + α for some Lie(G)-valued

1-form α. The curvature of A is a Lie(G)-valued 2-form FA, which is equal to D2
A.

As usual, it measures deviation from the symmetry of second derivatives. Such a

connection A is Yang-Mills if it is a critical point of the Yang-Mills action. A Yang-

Mills connection A satisfies the Euler-Lagrange equation D∗
AFA = 0. By the second

Bianchi identity, we also have DAFA = 0. The system D∗
AFA = 0, DAFA = 0 is called

the Yang-Mills equation and is invariant under gauge transformations.

In the analytical aspect of the Yang-Mills theory, one of the most fundamental

results is K. Uhlenbeck’s compactness theorem on the modulo space ([1, 2]). The

modulo space of Yang-Mills connections is the quotient of the set of solutions of the

Yang-Mills equation by the gauge group, which consists of all gauge transformations.

It is well-known that this modulo space may not be compact. Given any sequence of

Yang-Mills connections {Ai} with a uniformly bounded L2-norm of curvature, Uh-

lenbeck ([1]) (see also [3]) proved that by taking a subsequence if necessary, Ai con-

verges, modulo gauge transformations, to a Yang-Mills connection A in the smooth

topology outside a closed subset Sb({Ai}) of Hausdorff codimension at least 4. If

M is a 4-dimensional compact manifold, the blow-up locus consists of finitely many

points, and the limiting connection A can be extended to be a Yang-Mills connection

on the whole manifold with smaller L2-norm of curvature [1]. With M of higher

dimension, G. Tian [4] studied the geometric structures of the blow-up loci of Yang-

Mills connections and introduced a natural compactification for modulo space of
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anti-self-dual instantons on higher dimensional manifolds by adding cycles with ap-

propriate geometric structure. He also proved a removable singularity theorem for

any stationary Yang-Mills connections. Particularly, this implies that the limiting

connection A extends to become a smooth connection on M \ S for a closed subset S

with vanishing (n − 4)-dimensional Hausdorff measure Hn−4(S) = 0.

In this paper we consider the compactness property of sequences of Yang-Mills

connections Ai with a uniformly bounded L
m
2 -norm of curvature. We note that the

L
m
2 -norm of curvature is conformally invariant, while the L2-norm is not, unless

m = 4. Our result is the following.

Main Theorem Let E be a vector bundle over compact Riemannian manifold M of

dimension m > 4, and {Ai} is a sequence of smooth Yang-Mills connections on E with
∫

M
|FAi

|
m
2 dVg ≤ Λ; then there is a subsequence {Aα} and gauge transformations σα,

such that σα(Aα) converges to a smooth Yang-Mills connection A in C∞-topology on M.

In the proof of the Main Theorem, the main tool which will be used is the local

curvature estimate of Yang-Mills connections. First, we will show that there exists a

subsequence {Aα} ⊂ {Ai} (modulo gauge transformations) converging to a Yang-

Mills connection A in smooth topology outside at most finite points. Secondly, we

will use a removable singularity theorem which had been proved by L. M. Sibner[6] to

deduce that there is a gauge transformation σ such that σ(A) extends to be a smooth

connection on M. Furthermore, by taking subsequence if necessary, we may assume

that |FAi
|

m
2 dVg converges (as measure) weakly to |FA|

m
2 dVg +

∑ J
j=1 ΘP j

δPi
for some

constants ΘP j
, where we set Σ = {P j}

J
j=1, P j ∈ M and δPi

denotes the Dirac mea-

sure. Proceeding as in [4], we will construct bubbling connections on Rm as Aα ap-

proach A. On the other hand, by the monotonicity formula of P. Price, we can prove

a non-existence theorem for Yang-Mills connections which will show that if bubbling

connections do not exist, then the blow up set Σ must be empty. So the subsequence

Aα (modulo gauge transformations) converges to a smooth Yang-Mills connection A

in C∞ topology on M.

2 Preliminary Results

As before, M denotes a Riemannian manifold with a metric g and E is a vector bundle

over M with compact structure group G. A connection A on E is defined by specifying

a covariant derivative

D = DA : C∞(E) → C∞(E ⊗ Ω
1M),

where C∞(E) denotes the space of C∞ sections of the bundle E. In a local trivializa-

tion (Uα, ϕα) of E, the covariant derivative takes the form

D = d + Aα, Aα : Uα → T∗Uα ⊗ Lie(G)

where Lie(G) denotes the Lie algebra of the structure group G. Note that Aα usually

has no global description on M.
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For any connection A of E, its curvature form FA is determined by D2 : Ω0(E) →
Ω2(E). It is a tensor, usually denoted by FA or simply F if no confusion occurs. For-

mally, the curvature tensor FA can be written as

FA = dA + A ∧ A,

which actually means that in each local trivialization (Uα, ϕα),

(2.1) FA = dAα + Aα ∧ Aα.

The norm of FA at any P ∈ M is given by

|FA|
2

=

n
∑

i, j=1

〈

FA(ei , e j), FA(ei , e j)
〉

,

where {ei} is any orthonormal basis of TPM, and 〈 · , · 〉 is the Killing form of the Lie

algebra Lie(G).

The Yang-Mills functional of E is defined by

(2.2) Y M(A) =
1

4π2

∫

M

|FA|
2 dVg .

If A is a critical point of Y M, then we say the A is a Yang-Mills connection. The

Euler-Lagrange of Y M is

(2.3) D∗
AFA = 0,

where D∗
A denotes the adjoint operator of DA with respect to the Killing form of

lie(G) and the Riemannian metric g on M. On the other hand, by the second Bianchi

identity, we have

(2.4) DAFA = 0.

This, together with (2.4), is called the Yang-Mills equation.

Let G be the gauge group of E, which consists of all smooth sections of the bundle

P(E) ×Ad G associated to the adjoint representation Ad of G, where P(E) denotes the

principal bundle of E. Any σ in G is called a gauge transformation. Two smooth

connections A1 and A2 of E are equivalent if there is a gauge transformation σ such

that A2 = σ(A1), where σ(A) is the connection with Dσ(A) = σ · DA · σ−1. One can

easily show Y M(σ(A)) = Y M(A). Then, if A is a Yang-Mills connection, so is σ(A)

for any gauge transformation σ. In other words, the Yang-Mills equation is invariant

under the action of the gauge group.

Let {φt}|t|<∞ be a one-parameter family of diffeomorphisms of M, A0 a fixed

smooth connection of E and D its associated covariant derivative. Then for any con-

nection A, we can define a family of connections At = φ∗
t (A) as follows: In [4] (or

[5]) Tian proved the following formula:

(2.5)

d

dt
Y M(At )|t=0 = −

1

4π2

∫

M

(

|FA|
2 div X − 4

m
∑

i, j=1

〈

FA(∇ei
X, e j), FA(ei , e j)

〉

)

dVg .

https://doi.org/10.4153/CMB-2004-060-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-060-x


A Compactness Theorem for Yang-Mills Connections 627

Now suppose that A is a Yang-Mills connection; then

(2.6) 0 =

∫

M

(

|FA|
2 div X − 4

m
∑

i, j=1

〈

FA(∇ei
X, e j), FA(ei, e j)

〉

)

dVg .

By this variation formula, one can derive the following monotonicity.

Theorem 2.1 (A Monotonicity Formula) There exist constants rP, a depending only

on M, such that for any 0 < ρ < γ < rP, we have

(2.7) γ4−m exp aγ2

∫

B(P,γ)

|FA|
2 dVg − ρ4−m exp aρ2

∫

B(P,ρ)

|FA|
2 dVg

≥ 4

∫

B(P,γ)\B(P,ρ)

r4−m exp (ar2)|
∂

∂r
⌋FA|

2 dVg .

Moreover, if M = Rm and g is flat, then the equality holds in (2.7) for ρ ∈ (0,∞) and

a = 0.

In the following, we give a basic curvature estimate for Yang-Mills connections.

This estimate was first derived by K. Uhlenbeck [1] (also see [4]). Since it is crucial

to us here, we will outline its proof for the reader’s convenience.

Theorem 2.2 Let A be any Yang-Mills connection of a G-bundle E over M. Then there

are ǫ = ǫ(m) and C = C(m), which depend only on m and M, such that for any P ∈ M

and ρ < rp, whenever
∫

B(P,ρ)

|FA|
m
2 dVg ≤ ǫ,

then

sup
B(P, ρ

2
)

|FA|
2 ≤

C

ρ4
(

∫

B(P,ρ)

|FA|
m
2 dVg)

4

m

≤
C

ρ4
· ǫ

4

m .

In order to compactify the modulo space of Yang-Mills connections, we need to

use singular Yang-Mills connections of a certain type. An admissible Yang-Mills con-

nection ([4]) is a smooth connection A defined outside a closed subset S(A) in M,

such that

(1) Hn−4(S(A)∩K) < ∞ for any compact subset K ⊂ M, where Hn−4(·) stands for

the (n-4)-dimensional Hausdorff measure;

(2) A is Yang-Mills on M \ S(A);

(3) A satisfies
∫

M\S(A)
|FA|

2 dVg < ∞.
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Clearly, A is smooth on M if S(A) = ∅. We will call S(A) the singular set of A.

This is not invariant under gauge transformations. Even if S(A) 6= ∅, there may be

a gauge transformation σ on M \ S(A) such that σ(A) extends to become a smooth

connection on M.

Furthermore, an admissible Yang-Mills connection A is called stationary if A sat-

isfies

0 =

∫

M

(

|FA|
2 div X − 4

m
∑

i, j=1

〈

FA(∇ei
X, e j), FA(ei, e j)

〉

)

dVg ,

for any vector field X, where {ei} is any orthonormal basis of M. If A is a smooth

Yang-Mills connection, this follows from the first variation formula for Yang-Mills

action.

Proposition 2.3 Let m = dim M > 4 and S be a discrete set in M. If A is a Yang-Mills

connection on M \ S and satisfies
∫

K
|FA|

m
2 dVg < ∞ for each compact set K ⊂ M; then

A is stationary and the monotonicity formula (2.7) still holds on M.

Proof Denote

Φ(X) = −
1

4π2

∫

M

(

|FA|
2 div X − 4

m
∑

i, j=1

〈

FA(∇ei
X, e j), FA(ei , e j)

〉

)

dVg ,

where X is a variation vector field with compact support set and {ei} is an orthonor-

mal frame of TM.

We may assume that S consists of a single point P. For r > 0 we take a cut-off

function ηr ∈ C∞
0 (M) satisfying 0 ≤ ηr ≤ 1, |∇ηr| ≤

2
r

in M and ηr(x) = 1, if

x ∈ B(P, r); ηr(x) = 0, if x ∈ M \ B(P, 2r). Since A is Yang-Mills on M \ B(a, r) for

any r > 0, we have Φ(X − ηrX) = 0 for any r > 0. Thus, we have

|Φ(X)| = |Φ(ηrX)| ≤ C

∫

M

|FA|
2(ηr|∇X| + |∇ηr||X|) dVg

≤ C
(

∫

B(P,2r)

|FA|
2|∇X| dVg +

1

r

∫

B(P,2r)

|FA|
2|X| dVg

)

≤
(

rm−4 sup
M

|∇X| + rm−5 sup
M

|X|
)(

∫

B(P,2r)

|FA|
m
2 dVg

)
4

m

.

By conditions the right-hand side tends to 0 as r → 0. Hence, we get Φ(X) = 0 for

any X. This shows that A is stationary on M.

Theorem 2.4 ([6]) Let A be a Yang-Mills connection stationary on M \ S, where S is a

discrete set. If
∫

K
|FA|

m
2 dVg < ∞ for each compact set K ⊂ M, then there exists a gauge

transformation σ such that σ∗(A) can be extended to be a smooth Yang-Mills connection

on M.
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3 Proof of the Main Theorem

Theorem 3.1 Let {Ai} be a sequence of smooth Yang-Mills connections on E with
∫

M
|FA|

m
2 dvg ≤ Λ; then there exists a subsequence {α} ⊂ {i} and a (possibly empty)

finite set Σ = {P j}
J
j=1 of M satisfying the following:

(1) the subsequence Aα converge to a smooth Yang-Mills connection A in the C∞-

topology on M \ Σ.

(2) for each j = 1, . . . , J, there exists constants θ j > 0 such that

(3.1) |FAα
|

m
2 dVg −→ |FA|

m
2 dVg +

J
∑

j=1

θ j · δP j

weakly in the sense of Radon measures on M.

Here δP j
denotes Dirac measure.

Proof Let ǫ be as in Theorem 2.2. We define a closed subset for each i and r > 0;

(3.2) Ei,r =
{

x ∈ M
∣

∣

∫

Br(x)

|FAi
|

m
2 dVg ≥ ǫ

}

.

It is obvious that Ei,r ⊂ Ei,R for any r ≤ R. By the standard diagonal process, we can

choose a subsequence {i j} of {i} such that for each k, the Ei j ,2−k converge to a closed

subset E2−k . Then E2−k ⊂ E2−l for k ≥ l.

Put S =
⋂

k E2−k . We first claim that S is at most a finite set. We fixed an arbitrary

compact set K ⊂ int(M). For any δ > 0 sufficiently small, let {B4δ(xα)} be any

finite covering of S ∩ K such that xα ∈ S ∩ K; B2δ(xα) ∩ B2δ(xβ) = ∅ for α 6= β.

Take k big enough such that 2−k < δ. Then for j sufficiently large, there are yα ∈
Ei j ,2−k such that d(xα, yα) < δ. Then {B5δ(yα)} is a finite covering of S ∩ K and

Bδ(yα) ∩ Bδ(yβ) = ∅ for α 6= β. On the other hand, for each α

(3.3)

∫

Bδ(yα)

|FAi j
|

m
2 dVg ≥ ǫ.

Summing up, we get

(3.4) I ≤
1

ǫ

I
∑

α=1

∫

Bδ(yα)

|FAi j
|

m
2 dVg ≤

Λ

ǫ
.

This shows H0(S∩K) ≤ Λ/ǫ where H0 denotes the 0-dimensional Hausdorff measure

on M. Since the 0-dimensional Hausdorff measure coincides with the counting mea-

sure, S∩K is at most finite. Since K is an arbitrary compact set and the the right-hand

side of the above inequality is independent of K, then S is at most finite.
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Now we prove that Ai j
converges to outside S modulo gauge transformations. To

save the notation, we assume {i j} = {i}. We notice that for any r > 0, there is

i(r) > 0, k(r) > 0, such that for any i ≥ i(r) and x ∈ M \ Br(S) we have:

(3.5)

∫

B
2−k (x)

|FAi
|

m
2 dVg < ǫ.

This is equivalent to saying that x ∈ M \ Ei,2−k . By Theorem 2.2, we deduce from the

above inequality that for any x ∈ M \ Br(S),

|FAi
|(x) < C · 22k(r) · ǫ

2

m .

It follows from Theorem 3.6 in [2] that there exists a subsequence {ĩ} ⊂ {i} and

gauge transformations σ(ĩ), such that σ(ĩ)(Aĩ) converge to a smooth connection A in

C1-topology on any compact subset outside S. Since Ai are Yang-Mills connections,

by the standard elliptic theory, A is a Yang-Mills connection and σ(ĩ)(Aĩ) converge to

A smoothly outside S. Using Fatou’s lemma we have

(3.6)

∫

M

|FA|
m
2 dVg ≤ lim inf

ĩ→∞

∫

M

|FAĩ
|

m
2 dVg ≤ Λ.

By Theorem 2.4, there exists a gauge transformation σ such that σ(A) extends to a

smooth connection on M.

In the following, we always assume that the sequence Ai converges to a smooth

Yang-Mills connection A in C∞-topology outside S with
∫

M
|FA|

m
2 dVg ≤ Λ.

Define

(3.7) Σ({Ai}) =

⋂

r>0

{

x ∈ int(M)| lim inf
i→∞

∫

B(x,r)

|FAi
|

m
2 dVg ≥ ǫ

}

.

Now we want to show that Σ({Ai}) is contained in the above S. In fact, for any

x0 ∈ M \ S, if r is sufficiently small,

∫

B(x0,r)

|FA|
m
2 dVg < ǫ.

This implies that for i sufficiently large,

∫

B(x0,r)

|FAi
|

m
2 dVg < ǫ.

Hence, x0 ∈ M \ Σ({Ai}). This shows that Σ({Ai}) ⊂ S.

Suppose x0 ∈ S \ Σ({Ai}); then there is an r0 > 0 such that

∫

B(x0,r0)

|Fni
|

m
2 dVg < ǫ
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for some subsequence ni → ∞. By Theorem 2.2,

sup
x∈B(x0,

1

2
r0)

|Fni
| ≤ C0 · r2

0 · ǫ
2

m

for some constant C0 = C0(m, M) and all ni . This implies that A is a limit of

some subsequence of {Ani
} (modulo gauge transformations ) in B(x0,

1
2
r0) in the C∞

topology. Then, there exists a subsequence {Aα} ⊂ {Ai} and a finite set Σ = Σ(Aα)

such that Aα(modulo gauge transformations) converges to A in the C∞ topology on

M \ Σ.

Consider the Radon measure µα = |Fα|
m
2 dVg . By taking a subsequence if neces-

sary, we may assume that µα → µ weakly on M as Radon measures. Let us write (by

Fatou’s lemma)

(3.8) µ = |FA|
m
2 dVg + ν

for some nonnegative Radon measure ν on M. Since {Aα} converges to A in the C∞

topology on M \Σ, the support of measure ν is contained in the discrete set Σ. Thus,

we have ν =
∑ J

j=1 θ jδP j
for some θ j ≥ 0 where we set Σ = Σ({Aα}) = {P j}

J
j=1.

We show each θ j is positive. Fix any P j . For arbitrarily small r > 0, we take a

cut-off function ηr ∈ C∞
0 satisfying 0 ≤ ηr ≤ 1 in M and ηr(x) = 1 if x ∈ B(P j , r);

ηr(x) = 0 if x ∈ M \ B(P j , 2r). By definition of Σ we have

(3.9)

ǫ ≤ lim inf
α→∞

∫

B(P j ,r)

|FAα
|α dVg ≤ lim

α→∞

∫

M

ηr|FAα
|

m
2 dVg ≤ θ j +

∫

B(P j ,2r)

|FA|
m
2 dVg .

Letting r → 0, we obtain θ j ≥ ǫ > 0. This completes the proof.

Theorem 3.2 Let {Aα}, Σ be as in Theorem 3.1 and P ∈ Σ . Then there are lin-

ear transformations σα : TPM → TPM such that a subsequence of σ∗
α exp∗

P Aα con-

verges smoothly to a Yang-Mills connection B on (TPM, gP,0); and satisfying FB 6= 0 and
∫

TPM
|FB|

m
2 dx ≤ θP; where θP is determined in Theorem 3.1.

Proof We take a normal coordinate neighborhood B(P, 2R) of P and a normal co-

ordinate system x of M centered at P. Choose R > 0 small enough so that Σ ∩
B(P, 2R) = {P}. Let B(x, r) be the open ball in the x-coordinates with center x and

radius r and let B(r) = B(0, r). Defining the concentration function

(3.10) Yα(t) = sup
y∈B(R)

∫

By (t)

|Fα|
m
2 dVg

for any 0 ≤ t < R. Each function Yα is continuous and non-decreasing in t , and

Yα(0) = 0. By the definition of Σ

(3.11) Yα(R) ≥

∫

B(R)

|Fα|
m
2 dVg ≥

7ǫ

8

https://doi.org/10.4153/CMB-2004-060-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-060-x


632 Xi Zhang

holds for sufficiently large α. Here, the constant ǫ is taken as in Theorem 2.2. By

continuity of Yα, there exist 0 < rα < R and xα ∈ B(R) such that

Yα(rα) =

∫

B(expP(xα),rα)

|Fα|
m
2 dVg =

ǫ

2
.

Since the P is a unique point in Σ∩ B(P, 2R), we obtain rα → 0, xα → P, as α → ∞.

Defining linear transformations σα(x) = xα− rα ·x on TPM, let U (α) = B( xα

rα
, 2R

rα
) ⊂

TPM. It is easy to see that B(2R) = σα(U (α)). Since xα lies in B( R
2

) for sufficiently

large α, we have B( R
rα

) ⊂ U (α), which leads to U (α) → TPM as α → ∞.

We set Bα = σ∗
α exp∗

P(Aα). We can easily see Bα is a Yang-Mills connection on

(U (α), gα), where the metric gα = r−2
α σ∗

α exp∗
P g. Note that the based manifolds

(TPM, gα) converge to (TPM, gP,0) ∼= Rm as α → ∞. By the definition of Bα, xα, rα,

we have
∫

U (α)

|FBα
|

m
2 dVgα

=

∫

B(P,2R)

|FAα
|

m
2 dVg ≤ Λ.

(3.12) Yα(rα) =

∫

B(1)

|FBα
|

m
2 dVgα

= sup
z∈σ−1

α (B(R))

∫

B(z,1)

|FBα
|

m
2 dVgα

=
ǫ

2
.

The constant ǫ in Theorem 2.2 may depend on the metric in general, but by the

definition of gα we are able to take the constant ǫ independent of α. In fact, the

positive numbers ǫ and C in Theorem 2.2 ([1]) depend only on the bound of sectional

curvature of metrics. Since gα → gP,0 in C∞ topology as α → ∞, we can conclude

that the sectional curvature of gα are uniformly bounded on B(1), so we can take the

constants ǫ and C independent of α. Using Theorem 2.2, we have

sup
B(z, 1

2
)

|FBα
| ≤ C1ǫ

2

m

for any z ∈ σ−1
α (B(R)), here C1 is a constant independent of α. Note that

σ−1
α (B(R)) → TPM

as α → ∞. It follows from Theorem 3.6 in [2] that there exists a subsequence

{β} ⊂ {α} and gauge transformations τ (β), such that τ (β)(Bβ) converge to a

smooth connection B in C1-topology on any compact subset of TPM. Since Bα is

a Yang-Mills connection, and gα converges to the flat metric gP,0 on TPM, by the

standard elliptic theory, B is a Yang-Mills connection on (TPM, gP,0) and τ (β)(Bβ)

converge to B smoothly. Passing to the limit in (3.12), we have

∫

B(1)

|FB|
m
2 dx =

ǫ

2
.

This shows that FB 6= 0. By Fatou’s lemma, we have

∫

TPM

|FB|
m
2 dx ≤ lim inf

β→∞

∫

U (β)

|FBβ
|

m
2 dVgβ

,≤ θP +

∫

B(P,2R)

|A|
m
2 dVg .
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Letting R → 0, we have
∫

TPM

|FB|
m
2 dx ≤ θP.

This completes the proof.

Theorem 3.3 If B is a Yang-Mills connection on Rm (m ≥ 5) and satisfying
∫

Rm

|FB|
m
2 dx < ∞,

then FB ≡ 0.

Proof Suppose to the contrary that FB 6= 0. Then, there exists r > 0 such that

∆ = r2−m ·

∫

B(r)

|FB|
2 dx > 0.

From the monotonicity formula we have

∆ ≤ t2−m

∫

B(t)

|FB|
2 dx

for any t ≥ r. Thus, we have

(3.13) ∆ ≤ t2−m
(

∫

B(s)

|FB|
2 dx +

∫

B(t)\B(s)

|FB|
2 dx

)

,

for any s ≤ t . Using the Hölder inequality we obtain

(3.14) ∆ ≤ t2−m

∫

B(s)

|FB|
2 dx + c(m)

(

∫

Rm\B(s)

|FB|
m
2 x

)
4

m

.

Since
∫

Rm |FB|
m
2 dx < ∞, we may take s large enough to satisfy

c(m)
(

∫

Rm\B(s)

|FB|
m
2 x

)
4

m

≤
∆

4
.

Fixing such s, we may take t > s large enough to satisfy

t2−m

∫

B(s)

|FB|
2 dx ≤

∆

4
.

Thus, we have 0 < ∆ ≤ ∆

4
+ ∆

4
=

∆

2
, which makes a contradiction. This completes

the proof.

From Theorem 3.2 and Theorem 3.3 we obtain that the finite subset Σ in Theo-

rem 3.1 is empty. Then, the subsequence Aα (modulo gauge transformations) con-

verges to a smooth Yang-Mills connection A in the C∞-topology on M. This com-

pletes the proof of Main Theorem.
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